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ABSTRACT
Inertial particle microfluidics (IPMF) is an emerging technol-
ogy for the manipulation and separation of microparticles 
and biological cells. Since the flow physics of IPMF is complex 
and experimental studies are often time-consuming or costly, 
computer simulations can offer complementary insights. In 
this tutorial review, we provide a guide for researchers who are 
exploring the potential of the lattice-Boltzmann (LB) method 
for simulating IPMF applications. We first review the existing 
literature to establish the state of the art of LB-based IPMF 
modelling. After summarising the physics of IPMF, we then 
present related methods used in LB models for IPMF and show 
several case studies of LB simulations for a range of IPMF 
scenarios. Finally, we conclude with an outlook and several 
proposed research directions.
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1. Introduction

Microfluidics involves the manipulation of small amounts of fluids in chan-
nels with dimensions between tens and hundreds of micrometres [1]. The 
precise handling of fluids and cells, the portability of devices, and the reduc-
tion or elimination of cross-contamination are some of the advantages of such 
miniaturised systems, making them appealing for lab-on-chip applications 
[2–4]. Over the past decades, several microfluidic methods have been devel-
oped – such as dielectrophoresis [5], magnetophoresis [6], acoustophoresis 
[7], thermophoresis [8], pinched flow fractionation [9], deterministic lateral 
displacement [10] and inertial microfluidics [11]—and applied to cell sep-
aration [12,13], tissue engineering [14,15], drug and gene delivery systems 
[16,17] and clinical research [18–20].

While inertia is often negligible in microfluidic applications due to the 
small length scales involved, flow speeds in inertial microfluidics are signifi-
cantly larger than their counterparts in non-inertial microfluidics [21]. As a 
consequence, the channel Reynolds number is typically of the order of several 
10s or 100s, and a range of inertial effects can be exploited to manipulate the 
fluid, the suspended particles or both.

In inertial particle microfluidics (IPMF), which we focus on in this tutorial 
review, the aim is to manipulate suspended particles through inertial lift and 
drag forces. The most important inertial forces are i) the wall repulsion force, 
pushing particles away from nearby walls, ii) shear-gradient lift forces, usually 
pushing particles to regions of higher shear, and iii) drag forces in secondary 
flow fields that are caused by curved streamlines (e.g., due to curved chan-
nels or obstacles in the flow)  [11,22–25]. Figure 1 shows how, using these 
forces, particles can be focussed at off-centre lateral equilibrium positions, a 
phenomenon called the Segré-Silberberg effect [26,27]. Particles can also be 
axially ordered into particle trains which have consistent inter-particle spac-
ing. These inertial forces strongly depend on the properties of the particles 
and the shape of the underlying flow field, which in turn is governed by the 
channel geometry. Hence, channel design lies at the heart of many IPMF 
research efforts [25,28,29]. 

IPMF devices, for instance the one shown in Figure 2, have been employed 
in a wide range of industries, such as microbiology [30–33], biochemistry 
[34–37], and biotechnology [38–42]. Many of these applications are devoted 
to the separation of a solid phase (cells, bacteria, and other particles) from 
a carrier fluid. For example, researchers have successfully demonstrated the 
isolation of circulating tumour cells [43–46], malaria parasites [47,48], bac-
teria [49], and circulating fetal cells [50–52]. IPMF has been used for water 
filtration [53], dewatering of microalgae suspensions [54,55], blood plasma 
separation [56–58], exosome sorting [59,60], blood cell fractionation [61,62], 
stem cell purification [63,64], and the concentration of mammalian cells [65]. 
IPMF has also proven its value in flow cytometry applications and as a particle 
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Figure 1. Visualisation of inertial forces acting on suspended particles. (top) Particles out of equi-
librium and resulting forces at earlier times and (bottom) particles in equilibrium at later times. 
Each particle experiences a wall repulsion force (red) and a shear-gradient lift force (blue) which, 
once they are balanced, result in stable off-centre lateral equilibrium positions (Segré-Silberberg 
effect). Particles also interact hydrodynamically through their flow field distortions; the resulting 
drag forces (green) can lead to the axial arrangement of particles, in this specific case, the emer-
gence of a staggered train with regular axial spacing. Once a stable train has formed, all inertial 
forces are balanced.

spacer [66–68], turning disordered dilute suspensions into orderly spaced 
particle trains that can be used for downstream processes [69–72], such as 
cell encapsulation in droplets [73,74]. 

The governing equations of IPMF are non-linear, and there are no suitable 
analytical approaches to predict the dynamics of finite-size particles in real-
istic IPMF geometries [23,75–77]. Due to the intricate relationship between 
device geometry, flow field and particle dynamics, most experimental IPMF 
research relies on time-consuming and costly trial-and-error approaches. The 
few existing design rules for IPMF devices have been established using par-
ticular device geometries; the range of applicability of these rules to more 
general designs is not well-understood [25,68,78–80]. Thus, in order to tai-
lor geometries to particular needs (e.g., the separation of specific tumour 
cells or bacteria from whole blood) and to optimise devices (e.g., to reduce 
clogging or decrease the pressure needed to pump the fluid), computer sim-
ulations can be a powerful addition to the existing experimental expertise in 
the community.

Simulating IPMF systems comes with its own challenges. First, all IPMF 
scenarios are fluid-structure interaction (FSI) problems that require a high 
resolution of the flow field around the moving and possibly deforming 
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Figure 2. Suspension of particles in a spiral device. Disordered particles near the inlet. Separa-
tion of two types of particles near the outlet at a Reynolds number of 80. The two particle types 
have been focused in two different streams, allowing the separation of both populations. (author 
provided). 

particles in order to calculate the lift forces to a sufficient level of accuracy 
[81]. Second, most devices used today have channel lengths that are around 
three orders of magnitude larger than the particle diameters, and the as-
sumption of periodic boundary conditions is often not appropriate for IPMF 
applications. Third, IPMF devices often have relatively small confinement 
(particle diameter divided by channel height) to avoid clogging [11,82]. Thus, 
there are several relevant length scales that cannot all be resolved at the same 
time. It seems attractive to attack these challenges from two directions: i) sim-
ulate simple IPMF problems in detail to understand the underlying physics 
better and ii) develop reliable reduced-order models that are suitable for sim-
ulations with lower resolution. In this tutorial review we will focus on the 
former approach, which indirectly contributes to the success of the latter.

Over the past 30 years, the lattice-Boltzmann (LB) method has emerged 
as an alternative to conventional computational fluid dynamics (CFD) 
approaches [83–87]. It has since been accepted that the LB method is a 
Navier-Stokes solver in its own right, and the method shows a number of 
advantages that makes it attractive for IPMF [88]. While conventional CFD 
methods directly solve the Navier-Stokes equations, the LB method is rooted 
in kinetic theory [89–93]. No pressure Poisson equation needs to be solved, 
which results in high numerical efficiency but also artificial compressibility 
[94,95]. The local and kinetic nature of the LB method makes it suitable 
for problems with complex and moving geometries [96–99]. Due to its 
intrinsic properties, the LB method is particularly useful for fluid dynamics 
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problems with Reynolds numbers between around 1 and several 100, which 
includes the typical range of Reynolds numbers found in IPMF. Unlike other 
particle-based counterparts, such as multi-particle collision dynamics and 
dissipative particle dynamics, the original LB algorithm is fully deterministic 
without thermal fluctuations, therefore advantageous for IPMF with its high 
Péclet number [100].

The scope of this tutorial review is to provide a comprehensive, yet con-
cise overview of LB modelling for IPMF. We review the published literature 
(Section 2), define the physical and mathematical models underpinning 
IPMF (Section 3), describe the numerical methods (LB method in Section 4, 
particle methods in Section 5, FSI in Section 6, and additional numerical 
modelling considerations in Section 7), and provide four example cases that 
can be used for practice and validation purposes (Section 8). Finally, we pro-
vide an outlook with challenges and opportunities (Section 9). We assume 
that readers have a basic understanding of IPMF and the LB method. For 
those readers who have not, we provide relevant references throughout the 
text.

2. Overview of existing works

In this section, we focus on previous works in the field of inertial particle 
microfluidics (IPMF) using the lattice-Boltzmann (LB) method. We pay par-
ticular attention to the underlying physical observations and mechanisms, 
while the physical model and the numerical methods are detailed in later 
sections. The dynamics of particles in inertial microfluidics is largely affected 
by four main physical ingredients: the channel geometry, the degree of in-
ertia (Reynolds number), the particle properties, and the concentration of 
particles. To maximise benefit to the reader and to avoid repetition, we first 
cover different types of geometries in Section 2.1 and then the role of parti-
cle concentration in Section 2.2. The effects of Reynolds number and particle 
properties (e.g., size, softness, density) are included throughout both sections. 
Figure 3 shows a timeline of important works that contributed to the develop-
ment of LB-based IPMF modelling. Table A1 in the Appendix lists all works 
we identified that use LB to simulate at least one particle in a microfluidic 
channel at appreciable inertia.

A particularly important consideration is the dimensionality of the sim-
ulations. While all IPMF applications are intrinsically 3D, many authors use 
2D simulations. Hydrodynamic interactions, which are crucial for suspension 
dynamics, are different in 2D and 3D. Hence, 3D simulations are essential 
for quantitative predictions. 2D simulations, however, can still shed light 
on fundamental mechanisms and inform further 3D investigations. Unless 
mentioned otherwise, all studies in this section are 3D.
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Figure 3. The timeline of important milestones in inertial particle microfluidics modelling using 
LB. References to the relevant published works are as follows: Chun and Ladd [101], Kilimnik et 
al.  [102], Masaeli et al.  [70], Jiang et al.  [103], Wang et al.  [104], Haddadi et al.  [105], Schaaf and 
Stark [106], Ma et al.  [107] and Patel et al.  [108]. 

2.1. Microfluidic geometries

A key aim of inertial microfluidic devices is the manipulation of the dynam-
ics and trajectories of suspended particles. Since particle dynamics is strongly 
affected by the flow field, which in turn is shaped by the device geometry, a 
wide range of geometries have been proposed (see Figure 4). Factors such as 
the efficiency of particle focusing and separation, ease of fabrication and de-
vice footprint play important roles in choosing a suitable geometry. An open 
challenge is the design of optimised geometries for specific purposes, e.g., the 
recovery of circulating tumour cells from whole blood. In the following, we 
provide a panoramic review of LB-based inertial microfluidic applications in 
a variety of channel types: straight channels (Section 2.1.1), straight channels 
with additional features (Section 2.1.2), curved channels (Section 2.1.3) and 
other geometries (Section 2.1.4).

2.1.1. Straight channels with smooth surface
In order to decouple fundamental effects caused by the geometry and the 
particle behaviour in IPMF, it is advantageous to start with the simplest 
possible geometry: straight channels. Most channels used in 3D LB-based 
IPMF have a rectangular cross-section (referred to as ducts), reflecting their 
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Figure 4. Commonly employed channel structures in inertial microfluidics: a) straight channel, b) 
microgrooved channel, c) contraction-expansion channel, d) serpentine channel, e) channel with 
cavities, f ) other complex geometries. The flow is from left to right in all cases.

ease of fabrication compared to non-rectangular cross-sections. While other 
cross-sectional shapes have been explored in experiments to induce different 
particle lift force profiles, these ideas have not yet been picked up by the LB 
community [29,109]. In the following, we highlight a few key works using 
straight channels.

Chun and Ladd  [101] conducted the first LB-based study of IPMF, in-
vestigating the equilibrium positions of rigid particles within a square duct, 
both for single particles and dilute suspensions. The authors demonstrated 
that the equilibrium positions of single particles generally move closer to the 
channel centre with increasing Reynolds number, in agreement with theory 
and experiments [27]. It was also shown that the location of the equilibrium 
positions within the channel cross-section depends on the Reynolds number: 
particles favour the diagonal lines (corners), rather than the edges centrelines, 
at higher Reynolds numbers.

Prohm and Stark  [110] investigated the effect of the aspect ratio of the 
channel cross-section in rectangular ducts. The authors observed that parti-
cles migrate to the middle of the longer edges when the aspect ratio decreases 
from unity to around 0.5, in agreement with previous experimental work 
[111]. This phenomenon effectively allows quasi-2D analyses for particle 
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migration since particles were observed to stay on the mid-plane without 
external interactions. Later studies have taken advantage of the quasi-2D 
behaviour in order to reduce the number of independent parameters, thus 
facilitating the analysis of particle-particle interaction mechanisms in the 
inertial regime [106,112].

Several studies investigated the effect of particle shape and density in 
straight channels. Hu et al.  [113] demonstrated, in 2D, that elliptical and 
rectangular particles perform steady oscillations about their average lat-
eral equilibrium position. Similar steady oscillations were also observed for 
non-neutrally buoyant particles at sufficiently large Stokes number [114,115].

Straight channels have been used for the investigation of soft particles in in-
ertial microfluidics for single particles [102,116], pairs of particles [108,112], 
particle trains [117], and particle suspensions [118]. A more detailed discus-
sion of the effect of particle concentration is provided in Section 2.2.

There has been increasing interest in employing non-Newtonian fluids for 
IPMF. Straight channels have been used to demonstrate that the lateral equi-
librium position of a particle is modified in a non-Newtonian fluid [113,119]. 
A more detailed discussion of the effect of non-Newtonian fluids is provided 
in Section 2.2.

2.1.2. Straight channels with geometric alterations or surface patterns
Channels with constrictions, cavities, grooves and similar features induce sec-
ondary flows, enabling more efficient manipulation of particles than in plain 
straight channels [120]. Here we summarise IPMF simulations of channels 
with additional features.

Mao and Alexeev  [121] published the first work using LB for IPMF in a ge-
ometry more complex than a straight channel with smooth walls. The authors 
performed 3D simulations combining LB with the lattice spring model to in-
vestigate the motion of neutrally buoyant solid particles in a channel with 
diagonally aligned ridges (or grooves) on the channel walls. For Reynolds 
numbers up to 20, it was found that the ridges enhanced the separation of 
differently-sized particles.

3D simulations in contraction-expansion microchannels were performed 
to separate rigid particles of different sizes [122]. The smaller particles were af-
fected by the secondary helical flow patterns and migrated closer to the walls. 
Contrarily, the larger particles stayed near the channel centreline. Jiang et 
al.  [123] simulated a mixture of particles with two different sizes in 3D 
channels with different contraction-expansion ratios for Reynolds numbers 
between 15 and 120. It was found that particle focusing was improved at larger 
contraction-expansion ratios.

Haddadi and Di Carlo  [105] explored the dynamics of a single or a dilute 
suspension of neutrally buoyant particles inside a cavity using 3D simulations. 
The Reynolds number was varied between 30 and 308, and the size of the 
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vortex gradually increased with the Reynolds number. It was shown that the 
vortex is able to trap particles, especially larger ones. Jiang et al.  [124] investi-
gated a single rigid particle in a cavity through 3D simulations. The different 
observed particle entrapment modes result from an interplay of centrifugal 
and inertial lift forces.

More recently, Nizkaya et al.  [125] considered particle migration in a 
straight channel with superhydrophobic striped walls in 3D. It was found that 
the superhydrophobic stripes change the lift forces acting on the particles and, 
therefore, their equilibrium positions.

2.1.3. Curved or serpentine channels
Curved channels for IPMF have proven advantageous since the induced Dean 
flow contributes to the separation of particles and can reduce the required 
length for particle focusing by nearly an order of magnitude [24]. Curved 
geometries have also been shown to decrease the effective viscosity of the 
suspension [126]. However, simulating curved channels, in particular those 
with a large radius of curvature, is challenging, and only a limited number of 
studies using LB have been published to date. There is a strong need for sim-
ulating channels with large curvature radii in order to match experimental
practice.

Jiang et al.  [103] simulated suspension flow in a serpentine channel using 
the immersed-boundary method. In order to manage the complexity of the 
geometry, the authors simulated a single curved unit of the symmetric serpen-
tine and applied periodic boundary conditions in flow-wise direction. Two 
populations of neutrally buoyant particles with different sizes were consid-
ered, and the Reynolds number varied between 25 and 100. At a low Reynolds 
number, the smaller particles were located closer to the sidewalls. With in-
creasing Reynolds number and increasing Dean drag, the small particles were 
first focused closer to the channel centreline and then returned back to the 
side walls at a Reynolds number of 100. Larger particles remained near the 
channel centreline over the entire investigated range of Reynolds numbers 
demonstrating the dependence of particle size-based separation performance 
on Reynolds number.

Using 2D simulations in a serpentine channel, an empirical relationship 
was developed between the fluid/solid density ratio and the time taken for 
a particle to pass through the channel [127]. A critical value in the particle-
to-fluid density ratio was found that allows a single rigid particle to traverse 
the channel faster. It was concluded that both the initial particle position 
and the value of the Reynolds number contribute significantly to the particle 
equilibrium position.

Ni et al.  [128] simulated, and experimentally verified, the focussing of 
particles in an asymmetric serpentine channel with high aspect ratio. The au-
thors observed that the periodic turn of the Dean flow causes the particles to 
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migrate in waves within the channel and promotes the 3D single line focus-
ing of the particles. It was concluded that 3D focusing of the particles near 
the centreline can be achieved irrespective of particle size while the focusing 
can be controlled by flow rate.

2.1.4. Other types of geometries
There are hardly any limits to the diversity of geometries that can be used for 
IPMF applications. More complex geometries, such as those with multiple 
inlets and outlets, allow for more bespoke particle behaviour to be used in 
various applications.

Inspired from the shark’s skin, the entrapment of particles by the vortex 
in a riblet structure has been simulated in 2D at Reynolds numbers between 
4.7 and 12 [129]. The authors found that flow pulsatility has a strong effect: 
particles were trapped in geometries with flat-edged walls in a steady flow, 
and smaller particles escaped the vortex under pulsating conditions. In the 
case of curved walls, particles remained trapped only at the lowest studied 
Reynolds number.

Wang et al.  [130] investigated the motion of a hyperelastic capsule in a 
diverging T-shaped junction using the immersed-boundary method in 3D. 
The effects of capsule softness, Reynolds number and junction flow split ratio 
were considered. It was found that higher inertia causes the capsule to re-
main in the main branch, even when the side branch received a higher flow 
rate. Larger capsules had a higher probability of entering the side branch. 
Capsule softness introduced additional complexity; softer capsules show a 
stronger cross-streamline migration, making it possible to leave through the 
side branch under some circumstances.

Kechagidis et al.  [131] studied the transient behaviour of a rigid particle 
passing through a cross-slot with two inlets and two outlets and a steady-state 
vortex located at the centre of the junction. The authors reported that larger 
particles and initial positions closer to the plane of vortex rotation lead to an 
increased residence time within the junction.

2.2. Particle concentration

While channel geometry determines the flow field and, therefore, the leading 
order contributions of lift and drag forces, hydrodynamic particle interactions 
are crucial and can lead to a variety of phenomena in IPMF. We first revisit 
the behaviour of single particles in more detail (Section 2.2.1), before re-
viewing particle pairs (Section 2.2.2), trains (Section 2.2.3), and suspensions 
(Section 2.2.4).
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2.2.1. Single particles
Single particle simulations are crucial in understanding the fundamental 
mechanisms behind IPMF. Removing all possible particle-particle interac-
tions, it is possible to investigate the effect of parameters such as device 
geometry, particle properties (e.g., shape, size, rigidity), and flow conditions.

2.2.1.1. Fundamental migration dynamics. Prohm and Stark [110] demon-
strated that the eight equilibrium positions in a duct with a square cross-
section previously identified by Chun and Ladd  [101] are not all stable at 
the same time. In particular, it was found that small rigid particles migrate to 
face-centre equilibrium positions, while larger rigid particles migrate to di-
agonal equilibrium positions. Jebankumar et al.  [114] incorporated particle 
density as an additional degree of freedom to the analysis. They demonstrated 
that, at a low Stokes number, non-neutrally buoyant particles behave in the 
same way as neutrally buoyant particles: these particles migrate to a steady lat-
eral equilibrium position. However, at higher Stokes numbers, non-neutrally 
buoyant particles oscillate about a mean equilibrium position. Further work 
by Zhang et al.  [115] showed that the oscillation amplitude increases with in-
ertia. They observed that non-neutrally buoyant particles oscillate about the 
channel centreline if the oscillation is large enough for particles to cross the 
centre of the channel. Recent experimental work showed that, upon increas-
ing the Reynolds number, the particle equilibrium positions first move closer 
to the channel walls before reversing the trend and moving back towards the 
channel centreline [132]. Yuan et al.  [133] attributed this behaviour to the in-
creasing size of the two vortices around the particle which, once large enough 
to get in contact with the wall, push the particle back towards the centre of 
the channel.

2.2.1.2. Effect of particle shape. Single particle simulations have been used 
to understand the effect of particle shape on inertial migration. Several 
works have investigated channel flows with non-circular particles in 2D 
[113,134–137] and non-spherical particles in 3D [70,138,139]. Investigations 
of rigid biconcave objects have shown that their tumbling rotation leads to 
an oscillation of the lateral positions that depends on the particle size and 
aspect ratio [134]. Masaeli et al.  [70] investigated the migration of ellip-
soids of differing aspect ratios and demonstrated that the lateral equilibrium 
position depends on particle shape. Increasing the aspect ratio of ellipsoids 
has been shown to reduce the rotation frequency of the particle [136] and 
to facilitate the formation of stable trains (see Section 2.2.3) at high particle 
concentrations and for large particle size due to the high inclination angle of 
the ellipsoids in the train [140]. Recently, Nizkaya et al.  [138] demonstrated 
that the equilibrium position of an oblate spheroid is shape-dependent with 
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regard to its equatorial radius only. The authors also suggested a strategy to 
compare the behaviour of an oblate spheroid and a spherical particle. Li et 
al.  [139] demonstrated that three different equilibrium behaviours exist for 
a single oblate spheroid: log-rolling, tumbling, and inclined log-rolling, with 
the latter disappearing with increasing Reynolds number.

2.2.1.3. Effect of particle deformation. Kilimnik et al.  [102] were the first to 
model deformable particles using LB in IPMF, finding that particle equilib-
rium positions move closer to the channel centre when particles are softer. 
These observations were verified in 2D by Sun et al.  [117]. Chen  [141] 
expanded on this work by investigating the contributions of inertial and 
deformation-based migration, uncovering that particle migration is driven 
by competition between particle elastic contraction, fluid shear forces and 
fluid inertial stress. Schaaf et al.  [116] investigated the lift profiles of parti-
cles across the channel width, showing that profiles for rigid and soft particles 
are similar. However, it was found that a significant difference between rigid 
and soft particles exists if an axial control force was introduced: rigid parti-
cles move towards the channel centre once they are slowed down, while soft 
particles do the opposite with the equilibrium position being independent of 
the degree of softness.

Apart from particle deformability, Takeishi et al.  [142] further took the 
stress-free shape of soft particles into account, where biconcave red blood cells 
with various initial positions and orientation angles in a circular channel were 
modelled. The complex shape of the particle was found to introduce bi-stable 
motion regimes, depending on the particle initialisation, namely rolling and 
tumbling, the former of which impedes the inertial migration of the particle 
towards the wall whereas the later promotes such migration. Furthermore, the 
equilibrium position of the biconcave particle in the tumbling regime could 
be closely approximated by its spherical equivalent.

2.2.1.4. Effect of complex fluids. In recent years, there has been increasing 
interest in the inertial effects of particles in non-Newtonian liquids, such 
as shear-thinning [143–145] and shear-thickening liquids [146]. Focus has 
been placed on the reduced focusing length required by shear-thinning liq-
uids [143], with particles suspended in these liquids migrating to equilibrium 
positions farther away from the channel centre [147]. Başa ̆gao ̆glu et al.  [135] 
have shown that particle migration is shape-dependent in non-Newtonian 
liquids. Investigations of stratified flows have demonstrated that the equilib-
rium position of the particle can be manipulated by varying the viscosity and 
flow rate of the two-component liquids [119]. Another method of manipu-
lating the equilibrium position of particles is through the use of viscoelastic 
liquids. Ni and Jiang  [148] demonstrated that the equilibrium position can 
be controlled through the elasticity number, the ratio between inertial and 
elastic forces, with increasing elastic number resulting in positions closer to 
the channel wall.
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Figure 5. Illustration of particle pairs and trains. a) For a linear pair and train, particles are on the 
same side of the channel. b) For a staggered pair and train, particle positions alternate between 
both sides of the channel.

2.2.1.5. Behaviour in complex geometries. Single particle simulations have 
also been used to understand the effects of more complex geometries, such 
as ridged channels [121], bifurcating channels [130], channels with cavities 
[124], serpentine channels [127] and channels with superhydrophobic striped 
walls [125] (see Section 2.1 for details).

2.2.2. Particle pairs
In addition to the Segré-Silberberg migration of a single particle, one observes 
that multiple particles align in the direction of the flow. When the particle 
number density increases, the particles form train-like structures with a char-
acteristic axial spacing  [68], see Figure 5. These trains occur as a sequence of 
pairs where particles are located either on the same side (linear pairs) or on 
opposite sides of the channel (staggered pairs)  [78]. Before discussing these 
trains in Section 2.2.3, we first need to establish the behaviour of particle pairs.

The analysis of particle pairs is typically done in rectangular channels since 
they are easy to fabricate and, unlike square channels, the number of equi-
librium positions is reduced to two at the midpoints of the longer edges of 
the cross-section  [110]. Particles tend to stay on the midplane once focussed 
there, thus simplifying the analysis. In such a configuration, staggered pairs 
assemble at a typical distance of around four particle radii  [106,112], while 
linear pairs have about twice that axial distance  [106,149].
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The axial spacing of staggered pairs emerges as a combination of two ef-
fects: the inertial lift force pushes the particles towards their single-particle 
equilibrium position while the imposed channel flow and the viscous distur-
bance flow determine the axial distance  [78]. Qualitatively, the formation 
of staggered pairs can be understood as one particle moving in the distur-
bance flow created by the other particle  [150]. Humphry et al.  [69] observed 
that a single particle creates a disturbance flow in its own frame of reference 
where an inwards spiralling eddy is formed around four radii upstream and 
downstream of the particle. The second particle moves along these stream-
lines while the inertial lift force drives the particle to the centre of this 
eddy  [106,151]. In such a stable configuration, both particles move with ex-
actly the same axial velocity and the lift force is zero for both particles [106]. 
Without inertia, the particles perform undamped oscillations instead [152].

The axial distance of linear pairs is about twice that of staggered pairs. 
Though this behavior has been reported by multiple numerical and exper-
imental studies  [68,78,153], the stability of linear configurations is still un-
clear. Some LB simulations have shown that linear pairs are stable  [68], which 
was explained by a minimisation of the kinetic energy of the fluid  [151]. These 
results are also supported by recent experiments which were performed for 
Reynolds numbers between 1 and 4  [154]. However, a numerical analysis of 
the two-particle lift force profile reported no stable linear pair configuration, 
at least for the investigated particle-to-channel confinement  [106]. Rather, 
when two particles are initialised on the same streamline at the equilibrium 
distance of a staggered pair, the particles increase their axial spacing until no 
longer interacting with each other [155]. This result agrees with early experi-
ments [78] and recent 2D LB simulations  [143] reporting a slow increase of 
the spacing for linear trains.

Recently, Patel and Stark [108] analysed how deformability influences the 
behavior of particle pairs. The authors observed that the presence of the 
second particle can change the stability of the single-particle equilibrium po-
sitions. Depending on the initial conditions, the leading particle may not 
move to an off-centre position, but rather migrates toward the channel cen-
tre. Li et al.  [156] demonstrated that a deformable and a rigid particle are able 
to form a pair after a number of passing interactions, exploiting the numer-
ical artifact of periodic images. Owen and Kr ̆gger  [112] demonstrated that 
highly deformable particles form pairs for a greater range of initial positions 
than less deformable particles. However, the authors also showed that highly 
deformable pairs that migrate to the channel centreline do not attain stable 
axial distances and therefore cannot be considered stable.

Lin et al.  [157] investigated pair formation of elliptical and rectangular 
particles. The authors found that increasing the aspect ratio of the particle 
moves the lateral equilibrium positions closer to the channel wall while also 
increasing the axial inter-particle spacing. Chen et al.  [158] investigated pair 
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formation in 2D for bi-disperse particles. They found that, for the values of 
Reynolds number and particle confinement studied, pairs do not form when 
the leading particle is smaller, whereas pairs can form when the leading par-
ticle is larger. Thota et al.  [159] also investigated the formation and stability 
of pairs of particles of different sizes in 3D. It was found that pair formation 
of differently sized particles is determined by their initial lateral position and 
axial arrangement, while the stability and properties of the pairs depend on 
the particle size and their size ratio.

2.2.3. Particle trains
With increasing particle line fraction – the proportion of the length, rather 
than the volume, of a channel segment covered by particles – pairs assemble 
into trains which form along the channel axis where the particles are located 
close to their single-particle equilibrium position [160,161], see Figure 5. 
These trains appear in staggered, linear, or mixed configurations. Similar to 
pairs, staggered trains have a characteristic axial spacing of about four parti-
cle radii between neighbouring particles while linear trains assemble at about 
twice that distance [68,162].

For rigid particles, the train configuration seems to be largely independent 
of the Reynolds number. However, for deformable capsules, the Reynolds 
number has a strong influence on the train configuration as shown in recent 
2D simulations  [163]. When the Reynolds number is small, deformable par-
ticles migrate towards the channel centre and form linear trains. For higher 
Reynolds numbers, the equilibrium position shifts towards the walls and cap-
sules form staggered pairs. Upon an increase of the line fraction the pairs 
move together and form staggered trains.

The formation of staggered trains depends on particle-to-channel confine-
ment and Reynolds number, with larger confinement generally increasing the 
range of Reynolds number in which a staggered train can be stable  [164]. 
When a staggered train with multiple particles is initialised with an axial 
distance larger than the equilibrium distance, it contracts via several mech-
anisms [155]. Initially, only the two leading and the two trailing particles, 
respectively, move together and slow down due to a collective drag reduc-
tion [165]. This effect causes the trailing pair to separate, and the leading pair 
moves closer to the next particle in line. The resulting three-particle clus-
ter slows down further  [155] as trains consisting of more particles move 
slightly more slowly than those with fewer particles. The trailing pair is even-
tually able to catch up with the leading particles, resulting in the final stable 
configuration.

Hu et al.  [143] analysed the formation of staggered trains using 2D LB 
simulations and found that particles do not have a fixed axial distance but 
rather perform oscillations around their equilibrium position [143]. The am-
plitude of the oscillation increases with the Reynolds number. Liu et al.  [160] 
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identified two different distribution patterns in staggered trains depending on 
particle concentration, a continuous pattern where uniform spacing between 
all particles exists, and a discontinuous pattern where a larger spacing exists 
between two particles, effectively breaking the train.

While the axial spacing in linear trains is characteristic, it has been reported 
that the distance slowly increases with time  [78,143,155]. Linear trains are 
not perfectly aligned with the channel axis but have a slight inclination where 
trailing particles are pushed closer to the walls compared to the single particle 
equilibrium position. In an unstable linear train, the leading particle experi-
ences a lift towards the channel centre, resulting in a slightly higher speed and 
a slow increase in the axial distance [143,155].

Recently, particles of different shapes have been shown to form linear trains 
in 2D [166] while the formation of linear trains consisting of differently sized 
particles has been studied in experiments and simulations  [167,168]. Both 
studies showed that the trains behave similarly to homogeneous trains as long 
as the ratio of the particle diameters is close to unity. When the ratio increases 
beyond two, the smaller particles form pairs or triplets in the gaps between 
the larger particles. The pairs or triplets of small particles keep their position 
within the trains while the individual particles oscillate about their common 
lateral equilibrium position [168]. Most bi-disperse trains have been observed 
to have a large leading and a small trailing particle [167]. For large size dif-
ferences, only the larger particles form trains, and the inertial focusing of the 
smaller particles is inhibited by the presence of the larger ones.

2.2.4. Particle suspensions
The primary objective in many applications of IPMF is to focus particles into 
trains in a high-throughput fashion (cf. Figure 2). Since Chun and Ladd  [101] 
observed that particles in dilute suspensions focus at symmetrically placed 
equilibrium positions in a duct flow, a number of studies have investigated 
the effect of particle concentration on train formation. Kahkeshani et al.  [68] 
found that increased concentration causes the inter-particle spacing to de-
crease until train formation is no longer possible. Feng et al.  [163] showed 
that the formation of trains in dilute suspensions depends on particle concen-
tration, Reynolds number, and particle softness. Huang et al.  [169] further 
demonstrated that, once the line fraction was too large for more particles to 
enter the train, additional particles were likely to locate close to the channel 
centre, moving at a larger axial velocity than particles in the train.

Focussing and separation characteristics of particle suspensions are often 
used to assess and optimise the performance of complex geometries in IPMF. 
Examples include microcavities [105], serpentine flows [103], contraction-
expansion flows [123] and channel networks [170]. See Section 2.1 for more 
details on the effect of geometry on IPMF.
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For non-dilute suspensions (i.e., at concentrations typically above the 
threshold below which stable trains can exist) under inertial conditions, 
the lateral migration of the suspension is important for optimising high-
throughput particle enrichment and separation. Krüger et al.  [118] simulated 
a capsule suspension at 10% volume concentration. The authors demon-
strated that particle deformation and inertial effects both cause lift forces that 
can compete with or complement each other, resulting in reduced off-centre 
particle focusing. Further work found that inertial migration decreases with 
particle concentration in dense suspensions (volume concentration between 
5% and 50%) [171]. Inertial migration was also observed to decrease due to 
agglomeration of particles with adhesive properties [172] while the focusing 
length was observed to increase with Reynolds number [173]. Millet [174] 
determined that the multi-directional confinement of the suspension hinders 
inertial focusing due to the capsule-free layers that develop in the two trans-
verse directions. The thickness of capsule-free layer in a given cross-section 
depends on the wall length (in a transverse direction). As a result, a non-
square cross-section (i.e. rectangular) has a non-homogeneous capsule-free 
layer.

Particles in non-dilute suspensions can also be separated based on their 
individual properties. Sun et al. demonstrated that particles of different size 
[175] and deformability [176] in non-dilute suspensions migrate to dis-
tinct lateral equilibrium positions in straight channels and therefore can be 
separated. Particles of different shapes can also be separated through the 
same mechanism, with the shape-dependence of lateral equilibrium positions 
found to be larger when particles are suspended in a pseudo-plastic rather 
than a Newtonian fluid [135].

3. Physical model

Having summarised the variety and richness of emerging behaviour of 
IPMF problems in Section 2, we now turn our attention to the underly-
ing physical mechanisms that need to be included in any model of IPMF 
with resolved particles. This section summarises the underlying assumptions, 
physical model, and governing equations for IPMF. We need to consider 
the fluid (Section 3.1), the particles (Section 3.2), and the boundary con-
ditions (Section 3.3). As a general note, although all inertial microfluidic 
experiments are three-dimensional (3D), there exist several two-dimensional 
(2D) LB-based models of IPMF. While any realistic IPMF application re-
quires 3D simulations, 2D simulations can be useful for the study of fun-
damental mechanisms, for instance the migration of particles in channel
flow.
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3.1. Fluid model

The fluid model normally comprises incompressible Newtonian fluids gov-
erned by the continuity and Navier-Stokes equations (Section 3.1.1). We 
also briefly comment on external forces (Section 3.1.2) and non-Newtonian 
liquids (Section 3.1.3).

3.1.1. Governing equations
In IPMF, we can assume that the fluid is an incompressible viscous liq-
uid in the continuum limit. Since the liquid can be considered isothermal 
with negligible viscous heating, the energy equation can be neglected, and 
only the mass and momentum balance equations are relevant [177]; they 
take the form of the incompressible continuity and Navier-Stokes equations,
respectively: 

∇ ⋅ u = 0, (1)

 𝜌 (𝜕u
𝜕t + (u ⋅ ∇)u) = –∇p + ∇ ⋅ (𝜇∇u) + 𝜌b (2)

where 𝜌 is the density, u is the velocity, b is an external body force density, 
p is the pressure, and 𝜇 is the dynamic viscosity (which is not necessarily 
constant). Section 4 describes the LB method as a numerical method to solve 
the Navier-Stokes equations.

We can define the channel Reynolds number as 

Re =
𝜌Uℓ

𝜇 (3)

where U is a characteristic velocity (for example the average flow velocity 
in the channel) and ℓ is a characteristic length scale, typically the smallest 
channel dimension. In IPMF applications, Re is usually in the range 10–500.

3.1.2. External forces
IPMF in its original form is a passive method, i.e., particles experience only 
fluid drag and lift and no other external forces. Several research groups have 
combined IPMF with active methods that involve electromagnetic or other 
forces to manipulate the flow and particles therein (see [178] for a review of 
active methods). In the following, we will not discuss forces related to active 
methods and instead focus on passive IPMF.

Gravity can usually be neglected in IPMF. The sedimentation speed v of 
a small spherical particle [179] (radius a, density 𝜌p) settling in a viscous 
fluid (viscosity 𝜇, density 𝜌) can be estimated by equating the Stokes drag 
and buoyancy forces (gravity g): v = 2a2(𝜌p – 𝜌)g/(9𝜇). In a typical IPMF 
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Table 1. Typical properties of liquids and particles in IPMF 
devices.

 Particle radius, a ∼ 10 𝜇m
Viscosity, 𝜇 ∼ 1 mPa s
Relative density, 𝜌p – 𝜌 ∼ 100 kg m–3

Gravity, g ∼ 10 m s–2

Flow velocity, U ∼ 1 m s–1

application, we expect the system to have dimensions of the same order as 
those in Table 1, resulting in a sedimentation speed of v ∼ 20 𝜇m/s. Typical 
particle advection speeds are ∼ 1 m/s, making the effect of buoyancy orders 
of magnitude smaller than the effect of advection.

3.1.3. Non-Newtonian liquids
The vast majority of IPMF applications involve Newtonian liquids. However, 
several important biological fluids are non-Newtonian, at least over a limited 
range of shear rates, such as blood plasma [180,181]. There has been a recent 
interest in combining inertial with non-Newtonian effects to modify parti-
cle focusing and separation behaviour [182–184]. See Section 4.4 for relevant 
LB-based papers.

3.2. Particle model

Certain particle properties are relevant for their dynamics in inertial flows 
(Section 3.2.1). Beyond these general properties, we distinguish between rigid 
particles (Section 3.2.2) and deformable particles (Section 3.2.3).

3.2.1. General properties
Since the primary area of application of IPMF is the processing of biological 
cells, particle density is usually within 5–10% of the density of the suspending 
liquid. Typical particle radii a range from around one to 15 microns. Due to 
high flow speeds in IPMF, the Péclet number is large, and particles are non-
Brownian. In cases where particle inertia is important, it is common to use 
the Stokes number, St, which is the ratio of the particle response time in the 
flow to a characteristic flow time scale (e.g., advection) [114,115].

A key parameter is the particle-to-channel confinement 

𝜒 = 2a
ℓ (4)

where ℓ is a characteristic length of the channel cross-section. It is often con-
venient to define the particle Reynolds number Rep which characterises the 
strength of inertia on the scale of the particle, rather than the channel. A 
common definition is Rep = Re𝜒2, although various alternatives are used 
throughout the literature.
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Particle concentration in rheology is normally given as a volume fraction 𝜙, 
but in IPMF the line fraction 𝜙l is usually more important since it determines 
particle train formation which can happen even at small values of 𝜙.

3.2.2. Rigid particles
While most biological cells deform under the high stresses occurring in IPMF, 
rigid artificial particles are often used to characterise the focusing and sepa-
ration characteristics of IPMF devices. In the majority of cases, rigid particles 
are spherical and fully characterised by their radius a and density 𝜌p. Non-
spherical rigid particles can play an important role in IPMF, e.g., ellipsoidal 
particles or hardened red blood cells, see Section 2.2.1.

The dynamics of rigid particles is determined by Newton’s equations of 
motion and rigid body dynamics (in the stationary reference frame): 

̇v = F
mp

, (5)

 

𝝎̇ = I–1 ⋅ T (6)

where v is the velocity, mp is the mass, 𝝎 is the angular velocity and I is the 
inertia tensor of the particle. The total force and torque acting on the par-
ticle are denoted by F and T , respectively. Since buoyancy is negligible and 
electromagnetic effects are usually absent, the forces and torques acting on a 
particle merely arise from fluid stresses (see Section 3.3).

3.2.3. Deformable particles
Nearly all biological particles used in IPMF are deformed under high fluid 
stresses. Since deformable particles in fluid flow behave substantially differ-
ently than rigid particles, appropriate models for deformable particles must 
be considered in certain scenarios.

3.2.3.1. Types of deformable particles. One key application of IPMF is the pro-
cessing, focussing and separation of biological cells, such as white blood cells 
(WBCs), circulating tumour cells (CTCs) and red blood cells (RBCs) [46]. 
Compared to WBCs and CTCs, RBCs have much simpler mechanical proper-
ties, which led to a number of accurate numerical RBC models (Section 5.3). 
RBCs are formed by a compound membrane comprising a lipid bilayer and a 
supporting cytoskeleton, while the interior consists of a viscous concentrated 
haemoglobin solution [185]. Modelling WBCs and CTCs as deforming par-
ticles accurately, however, is an ongoing challenge since these cell types have 
internal structures, more complex shapes and richer dynamics [104,186].
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Instead, the research community is often focussing on simplified models 
for soft particles. For example, capsules are hyperelastic membranes enclos-
ing a liquid that may be different from the suspending liquid. Vesicles are 
lipid mono- or bilayers enclosing a liquid. Unlike capsule membranes, vesi-
cle membranes are viscous and incompressible. Both capsules and vesicles 
have been used as models for RBCs due to similar properties and dynamic 
behaviour [187,188]. For a comprehensive summary of the properties of 
capsules, vesicles and RBCs we refer to [187,189–192].

3.2.3.2. Governing physical effects. The dynamics of deformable particles is 
governed by a number of physical effects. Biological membranes, like those 
of the RBC, are usually viscoelastic, incompressible and show a finite resis-
tance to bending [185,193,194]. The corresponding material parameters are 
𝜅s (elastic shear modulus of the membrane), 𝜅b (bending modulus) and 𝜂m
(membrane viscosity). The capillary number is the ratio of fluid stress in shear 
flow (shear rate ̇𝛾) to membrane elastic stress: 

Ca =
𝜇 ̇𝛾a
𝜅s

. (7)

For RBCs (with radius a = 4 𝜇m), the ratio of elastic and bending moduli 
obeys 𝜅sa2/𝜅b ≈ 400 [190,195,196]. The internal dynamics of red blood cells, 
which are filled with a haemoglobin solution without carrying a nucleus, is 
determined by the cytoplasmic viscosity 𝜂in that is about 5–7 times higher 
than that of water or blood plasma [197,198]. The viscosity contrast is defined 
as Λ = 𝜂in/𝜇.

Other biological cells, such as leukocytes, have an internal structure with a 
nucleus (eukaryotic cells), organelles and microtubules. Nearly all deformable 
particles in IPMF do not change their volume in flow since they are filled 
with an incompressible medium and the membranes are impermeable to wa-
ter on the time scales relevant to flow in IPMF devices. While vesicles, which 
are made of a liquid incompressible membrane, have a constant surface area, 
capsules can undergo surface stretching which is characterised by an elastic 
dilation modulus 𝜅𝛼.

3.2.3.3. Red blood cell membrane model. In the following, we will present 
physical models of the RBC membrane. Various models for the RBC have 
been developed over the past decades, some of which are generic enough for 
modelling other types of cells that can be considered as capsules or vesicles. 
Detailed models of leukocytes in IPMF have not yet been proposed.

Existing RBC models can be classified into two categories: continuum-
level models and spectrin-level models. The continuum-level models are 
constructed from constitutive laws that describe the cell membrane as a 
thin and elastic shell separating the cytoplasm and the suspending medium. 
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Common models in this category include the Skalak model [199] and the 
neo-Hookean model (a case of the Mooney-Rivlin model under small defor-
mations) [200,201]. The spectrin-level models, as the name suggests, mimic 
the spectrin-link network of the cytoskeleton supporting the lipid bilayer in 
the membrane [202,203]. In spectrin-level models, the membrane is repre-
sented by a mass-spring system, which often needs to be coarse-grained to 
constrain the otherwise prohibitive computational cost [204].

We focus on the continuum-level model in more depth since the spectrin-
level model has not been used for LB-based IPMF studies. The corresponding 
numerical model will be discussed in Section 5.3.1. Starting from the unde-
formed shape of the RBC, any deformation of a two-dimensional membrane 
element can be quantified by the two principal stretch ratios 𝜆1 and 𝜆2.

Assuming that the elastic properties of the RBC membrane are isotropic, 
each membrane element has only two physically relevant parameters (shear 
and dilation) which are often written as the strain invariants I1 = 𝜆2

1 + 𝜆2
2 – 2

and I2 = 𝜆2
1𝜆2

2 – 1. In the following, we assume that the RBC membrane is hy-
perelastic [205]; see [206–208] for viscoelastic models of the RBC membrane. 
Any shear or bending deformation of the RBC is associated with an increase 
of the free energy of the RBC membrane: E = ES + EB where ES and EB are 
the strain and bending contributions, respectively.

Skalak’s model [199] is the most popular strain energy model for RBCs: 

ES = ∮ dA [ 𝜅s
12 (I2

1 + 2I1 – 2I2) +
𝜅𝛼
12 I2

2] (8)

where the integration is performed over the closed RBC surface. The bending 
energy is often approximated by Helfrich’s model [209]: 

EB = ∮ dA
𝜅b
2 (H – H0)

2 (9)

where H is the trace of the surface curvature tensor and H0 is the spontaneous 
curvature, a local property of the membrane. Since the total RBC surface area 
and volume remain nearly constant, constraints on the total cell volume and 
surface area are usually added in the form of stiff harmonic potentials [210]. 
Finally, the forces acting on each element of the RBC surface can be calculated 
through the principle of virtual work [211,212].

3.3. Boundary conditions and fluid-structure interaction

Chemical transport and diffusion are often not part of IPMF applications. 
Thus, we focus on hydrodynamic boundary conditions only. There are gen-
erally three different types of boundaries that need to be considered in IPMF 
applications: 1) the boundary condition at the surface of the device; 2) the 
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Figure 6. Different types of boundaries that need to be considered in IPMF modelling, here illus-
trated for a straight channel: 1) the boundary condition at the stationary surface of the device; 
2) the boundary condition at the surface of the moving and possibly deforming particles; 3) in-
let and outlet conditions which may coincide with each other if periodic conditions are used. The 
flow (illustrated by the curved blue line) is usually driven by a pressure drop or driving force.

boundary condition at the surface of the moving and possibly deforming par-
ticles; 3) inlet and outlet conditions since IPMF devices are open systems, as 
illustrated in Figure 6.

3.3.1. Device-fluid boundaries
Device surfaces are normally assumed impermeable and satisfy the no-slip 
condition. The device surface can be considered rigid and immobile in most 
cases, hence the interaction of the device and the flow is fully characterised 
by the stationary surface and the no-slip condition. See Section 6.1.1 for the 
numerical treatment of the boundary condition at the surface of the device.

3.3.2. Particle-fluid boundaries
The motion and deformation of particles both affect the flow and are affected 
by the flow, therefore defining an FSI problem. While the instantaneous par-
ticle surface shape imposes the no-slip condition, the particle translation, 
rotation and deformation are governed by hydrodynamic forces and torques. 
For rigid particles, these effects are described by Equation 5 and Equation 
6. In IPMF applications, forces and torques acting on particles are usually of 
hydrodynamic origin, hence 

F = ∮ dA 𝝈 ⋅ n, (10)

 

T = ∮ dA x × (𝝈 ⋅ n) (11)
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where 𝝈 is the fluid stress tensor with components 𝜎𝛼𝛽 = –p𝛿𝛼𝛽 + 𝜇(𝜕𝛼u𝛽 +
𝜕𝛽u𝛼), n is the surface normal vector pointing into the surrounding fluid and
x is the position of a point on the particle surface.

The numerical treatment of the FSI problem is probably the most challeng-
ing aspect of IPMF modelling, see Section 6.2.

When particles come very close to other particles or the device surface, 
other forces might become significant, either for physical reasons (friction 
forces, van-der-Waals forces) or for numerical reasons (particle collision de-
tection and overlap handling). Due to the typically low volume concentrations 
and large fluid stresses in IPMF, additional physical forces are normally not 
relevant. In simulations, however, additional lubrication or repulsion forces 
are often used to keep particles from overlapping, see Section 7.1.

It is possible to use under-resolved particles with appropriate drag and 
lift force models instead of particles with resolved FSI [213,214]. Although 
under-resolved particle models are desirable for the simulation of large ge-
ometries that would otherwise be too expensive to be simulated, it is a major 
challenge to find suitable drag and lift force models that are accurate in gen-
eral flow fields and in the presence of other particles. Since the study of the 
dynamics of resolved particles can be used to construct effective drag and lift 
force models, it is currently indispensable to focus the community’s modelling 
efforts on resolved particles.

3.3.3. Inlet and outlet boundaries
Finally, the inlet and outlet conditions play an important role in IPMF (see 
Section 6.1.2 for their numerical treatment). In the vast majority of realistic 
modelling scenarios, only subsets of a device are of interest or can be afforded 
in simulations. Therefore, the flow on the inlet and outlet planes of the cho-
sen subset must be specified. If the subset consists of a straight channel or is a 
unit cell of a channel with periodic features (e.g., a serpentine channel), peri-
odic boundary conditions are normally the most suitable and straightforward 
choice. Using periodic boundary conditions, any fluid or particle leaving the 
numerical domain on one side enters on the other side. Physically, the simu-
lated system is an infinite array of unit cells where the unit cell is defined by 
the actual simulated domain.

If periodic boundary conditions are not appropriate, for example, if the de-
vice subset has a complex shape, it is necessary to impose velocity or pressure 
conditions at the inlet and outlet. Unless the flow field on the inlet plane is 
known, modellers usually need to impose the fully developed velocity profile 
for a given channel cross-section which assumes the absence of any upstream 
flow perturbations. Closed-form time-independent solutions to the Navier-
Stokes equations for the duct pipe are known for many geometrically simple 
cross-sections [177,215], and these solutions are the natural choice for a fully 
developed velocity profile. Since the downstream range of flow perturbations 
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increases with Reynolds number [216,217], this assumption can be inappro-
priate for IPMF applications, making the entire simulation invalid in the 
worst case. The treatment of the outlet is conceptually simpler since the up-
stream range of flow perturbations outside the simulated domain is small and 
the flow field on the outlet plane is largely determined by the flow inside the 
simulated domain. A common alternative outflow condition to periodicity is 
a zero-gradient condition [124,130]. A further complication of non-periodic 
boundary conditions is the treatment of particles entering and leaving the 
subset (see Section 7.2 for numerical details).

4. Lattice-Boltzmann method for fluid flow

After having summarised the physical model of IPMF in Section 3, we will 
now outline the lattice-Boltzmann (LB) method for fluid flow. We focus 
on those LB aspects and features that are relevant for simulating IPMF: LB 
essentials (Section 4.1), collision operators (Section 4.2), forcing schemes 
(Section 4.3), and non-Newtonian fluids (Section 4.4). Numerical bound-
ary conditions and FSI approaches are covered in Section 6 since they 
require a detailed separate discussion. We do not present a comprehensive 
LB summary here since there exist various suitable introductory texts, such 
as [88,94,218,219]. Several open-source LB codes are available, some of which 
can be used for IPMF simulations, for example, OpenLB [220], Palabos [221] 
and waLBerla [222].

4.1. Lattice-Boltzmann essentials

The main aim of LB is to solve the Navier-Stokes equations governing fluid 
mechanics (Section 3.1) by discretising the Boltzmann equation in space, time 
and velocity space, and by replacing the Boltzmann collision operator by a 
simplified relaxation step. As a result, the probability distribution function 
f (x, v, t) becomes a finite set of discrete populations fi(x, t) that can move on 
a lattice with the corresponding discrete velocities ci. The stencil defined by 
the d spatial dimensions of the problem and the number q of discretised pop-
ulations is called DdQq. For example, a common discretisation in 3D space 
involves 19 populations at each lattice point, hence the associated stencil is 
called D3Q19 [223].

In the LB method, the populations f i propagate and collide on a regular 
lattice. The corresponding evolution equation, the LB equation, is generally 
written as 

fi(x + ciΔt, t + Δt)–fi(x, t)= (Ωi + Si)Δt (12)
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or 

fi(x + ciΔt, t + Δt)= f ⋆
i (x, t) (13)

where Δt is the time step, Ωi is the collision operator, Si includes any source 
terms, and the f ⋆

i (x, t)= fi(x, t)+(Ωi + Si)Δt are called the post-collision pop-
ulations. The collision operator in the LB method is usually modelled as a 
relaxation process in which the populations relax towards a local equilibrium 
state f eq

i . Details about the collision operator and the equilibrium distribution 
are summarised in Section 4.2. The source term includes any external forces, 
such as gravity, but also those forces that come from FSI schemes, such as the 
immersed boundary method (Section 6.2.2). The inclusion of forces in the LB 
method is discussed in Section 4.3. The left-hand-side of Equation 12 is called 
the propagation or streaming step as it describes how a population f i moves 
from one point x to its neighbour by the corresponding distance ciΔt during 
a time step Δt.

The macroscopic variables of fluid flow, such as density and flow veloc-
ity, can be recovered from the populations at any lattice point in the absence
of Si: 

𝜌 = ∑
i

fi, (14)

 
𝜌u = ∑

i
fici. (15)

As detailed in [224], pressure and viscous stress can also be locally obtained 
from the populations. The link between the LB equation and the Navier-
Stokes equation has been established through the Chapman-Enskog analysis 
[88,225,226].

Depending on the number of spatial dimensions and the number of dis-
cretised velocities, various lattice discretisations exist. For 2D problems, the 
most common stencil is D2Q9. In 3D, a wider range of stencils is available, 
most notably D3Q15, D3Q19 and D3Q27. A detailed discussion of velocity 
sets is given in [88]. Lattices with more velocities than nine in 2D and 27 in 
3D have not been employed in IPMF applications. Although D3Q15 requires 
less memory and computational effort, it usually lacks accuracy and stability 
when compared with D3Q19 and D3Q27. For inertial flows, the D3Q27 lat-
tice has shown its benefit in accuracy over 3D lattices with fewer speeds [227]. 
D3Q19 (Figure 7) is the most common stencil employed for IPMF problems 
due to its compromise between numerical efficiency, accuracy and stability. 
We will comment on parameter selection strategies for IPMF simulations in 
Section 7.4.
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Figure 7. Illustration of the D3Q19 velocity lattice. The central lattice node is connected to 18 of its 
neighbours (indicated by the arrows) which are located on the principal planes (grey). Black arrows 
indicate velocity vectors along the main axes, and grey arrows have two non-zero components. 
The enclosing cube (dashed line) has an edge length of 2Δx. 

4.2. Equilibrium distribution and collision operators

A key step that led to the conceptual simplification of the LB equation was the 
replacement of the complex collision operator by much simpler relaxation-
based operators [94]. In virtually all LB flavours that are currently used, the 
populations f i are relaxed to a local equilibrium state f eq

i  (Section 4.2.1). This 
way, the collision operator in Equation 12 assumes the form 

Ωj = –Rjif
neq

i (16)

where R is a q × q-matrix that describes the relaxation process and f neq
i =

fi – f eq
i , the non-equilibrium distribution, is the deviation of f i from its equi-

librium f eq
i . In IPMF applications, by far the most commonly used collision 

operator is the Bhatnagar-Gross-Krook (BGK), also called single-relaxation 
time (SRT) collision operator, see Section 4.2.2. We comment on other 
relaxation operators in Section 4.2.3.

4.2.1. Equilibrium distribution
The discretised equilibrium distribution f eq

i  can be obtained from the 
Maxwell-Boltzmann distribution using either a truncated Hermite polyno-
mial expansion or an expansion in Mach number [228]. The most commonly 
used equilibrium distribution is 

f eq
i = wi𝜌 (1 +

ueq ⋅ ci
cs

2 +
uequeq : (cici – cs

21)
2‵cs

4 ) (17)
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where 1 is the unit matrix. The quantities wi are the lattice weights, and cs is the 
lattice speed of sound, both associated with the chosen lattice discretisation; 
see [88,228,229] for a detailed list of relevant parameters. The equilibrium 
velocity is given by 

ueq = 1
𝜌 ∑

i
fici (18)

in the absence of forces (see Section 4.3 for changes due to the inclusion of 
external forces). The term in Equation 17 containing the quadratic expression 
ueq

𝛼 ueq
𝛽  is necessary for the recovery of the advective term in the Navier-Stokes 

equation and therefore essential for all IPMF applications.

4.2.2. BGK collision operator
In the widely used BGK or SRT model, the collision operator takes the form 
[223] 

Ωi = –1
𝜏 f neq

i (19)

where 𝜏 is the single relaxation time. The dynamic viscosity of the fluid is 
linked to the BGK relaxation time as

𝜇 = cs
2𝜌 (𝜏 – Δt

2 ) . (20)

The BGK collision operator is extremely popular due to its simplicity and ease 
of implementation. However, the BGK model has limitations in terms of sta-
bility, errors arising from boundary conditions, and reaching very low or very 
large viscosity values [230,231]. Although IPMF applications can usually be 
simulated with the BGK operator, some problems at higher Reynolds num-
bers can be overcome by choosing more sophisticated collision operators, 
such as MRT (see Section 4.2.3).

4.2.3. Other collision operators
A few IPMF works have employed the multi-relaxation time (MRT) colli-
sion operator, rather than BGK [121,134,136,175,176]. The underlying idea 
behind the MRT collision operator is to use independent relaxation times (or 
frequencies) for different moments of the populations in order to improve the 
stability and accuracy of the method [230]. The q populations f i are mapped 
onto a q-dimensional moment space, and different moments mi (rather than 
populations f i) are relaxed with different frequencies 𝜔j = 1/𝜏j. After relax-
ation, the moments are transformed back to the original population space. 
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MRT enables the decoupling of bulk and shear viscosity parameters. This 
additional freedom is useful for low-viscosity problems and is therefore an ad-
vantage for IPMF applications. However, most IPMF problems can be safely 
simulated with the conceptually simpler BGK operator.

In recent years, various advanced collision operators have been proposed, 
such as the regularised [232,233], entropic [234], cascaded [235] and cumu-
lant [236] collision operators. Each of these operators comes with a set of 
advantages, mostly in terms of numerical accuracy and stability. In particular 
the entropic and cumulant collision operators are suitable for 3D turbu-
lence modelling, but this advantage is usually not strongly visible at moderate 
inertia as found in IPMF applications. Since most of these advanced colli-
sion operators are more challenging to implement or more computationally 
expensive, they have not been employed for IPMF simulations.

4.3. Including external forces

External forces, including those from the immersed boundary method, usu-
ally enter the LB algorithm through the source term Si in Equation 12 and a 
modification of the equilibrium velocity ueq in Equation 18. There are various 
forcing schemes available since the forms of Si and ueq are not unique for a 
given physical force b. This review does not aim to revise all existing forcing 
schemes. Instead, we present two popular methods, the Guo [237] and the 
Shan-Chen [238] forcing schemes, and refer to [239] for other schemes.

For the Guo forcing scheme [237], the source term takes the form 

Si = wi (1 – Δt
2𝜏 ) (ci – u

cs
2 +

u ⋅ ci
cs

4 ci) ⋅ b. (21)

The equilibrium velocity is changed to 

ueq = 1
𝜌 ∑

i
fici + bΔt

2𝜌 . (22)

The Shan-Chen forcing scheme [238] is not to be confused with the Shan-
Chen force that is often used to model multi-phase or multi-component flows. 
In the Shan-Chen forcing scheme, we have Si = 0 and 

ueq = 1
𝜌 ∑

i
fici + 𝜏b

𝜌 . (23)

The Guo and Shan-Chen forcing schemes are second-order accurate in 
space and time under diffusive scaling when the macroscopic fluid velocity 
is additionally redefined as 
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u = 1
𝜌 ∑

i
fici + bΔt

2𝜌 . (24)

The Chapman-Enskog analysis shows that both schemes are equivalent in 
terms up to 𝒪(u2) (see [88] for a detailed discussion).

There is a whole range of other forcing schemes that are also equivalent 
up to 𝒪(u2) [239]. For IPMF applications, any second-order accurate forcing 
scheme is usually appropriate.

4.4. Non-Newtonian fluids

There is a growing interest in using non-Newtonian liquids in IPMF applica-
tions since non-Newtonian rheology gives rise to additional particle lift forces 
that interact with the inertial lift forces. The LB method in its original formu-
lation recovers Newtonian fluid mechanics, but it can also be used for viscous 
non-Newtonian liquids and for viscoelastic liquids.

Several LB-based works have been published that considered inertial ef-
fects in combination with either power-law liquids [113,135,143,144,146,147] 
or viscoelastic liquids [107,148]. For viscous non-Newtonian liquids (such 
as shear-thinning or shear-thickening liquids), the strategy is to adapt the 
local relaxation time 𝜏 to the local strain rate to achieve the desired viscos-
ity via Equation 20 [240,241]. Viscoelastic liquids are more challenging to 
model since additional constitutive equations have to be solved. Details can 
be found, for example, in [242,243].

5. Numerical methods for particles

Here we focus only on resolved particles with radii significantly larger than 
the fluid grid resolution, a ≫ Δx, since under-resolved particle models in 
IPMF are still immature and need to be informed by resolved models. In order 
to simulate resolved particles in IPMF (see Section 3.2 for the physical parti-
cle models), their surface needs to be discretised, for example through mesh 
generation algorithms (Section 5.1). The numerical treatment of the particles 
is different for rigid and deformable particles (Section 5.2 and Section 5.3, 
respectively). The numerical coupling between particles and flow requires a 
separate discussion (Section 6.2).

5.1. Particle mesh discretisation

It is necessary to define and discretise the shape of the particles in order to 
resolve them in IPMF simulations. The most common approach for captur-
ing the surface of a particle in IPMF simulations is to distribute multiple 
marker points over the surface of each particle. Depending on the type of 
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Figure 8. Surface markers (or vertices, black) and corresponding unstructured surface mesh 
(blue). The mesh consists of Nf = 2420 elements and Nv = 1212 vertices and was generated 
through the procedure presented in [244]. 

Table 2. Discretisation requirements for rigid and soft particles and different FSI schemes. ‘ver-
tices’: only surface points are needed; ‘mesh’: vertices with mesh are needed; ‘analytical’: analyti-
cally known particle shape is used, and no vertices are needed; ‘—’: not available or not practical. 
See Section 5.1 for the particle mesh discretisation and Section 6.2 for the numerical FSI schemes.

FSI scheme rigid particle soft particle
Immersed boundary method vertices mesh
Interpolated bounce-back mesh mesh
Staircase bounce-back analytical —

the particle (rigid or soft) and the actual FSI algorithm chosen, the vertices 
need to be connected to their neighbours in order to create an unstructured 
surface mesh (Figure 8). In most cases, such a mesh consists of N f  flat trian-
gular elements (or facets). Any pair of connected vertices defines the edge of 
two neighbouring triangles. For soft particles, the mesh is needed to numeri-
cally evaluate the local particle deformation and surface forces (Section 5.3). 
Table 2 summarises the cases for which a mesh is required.

Distributing vertices and, if needed, generating a mesh is relatively straight-
forward for simple particle shapes, such as spheres, ellipsoids or red blood 
cells. Details of the surface mesh generation for spheres and red blood cells 
are provided in [244]. Although the vast majority of IPMF simulations in-
volve simple particle shapes, open-source or commercial meshing software, 
such as CGAL [245] or Gmsh [246], might be used for more complex particle 
shapes.

A key consideration is the relative resolution of the particle discretisa-
tion compared to the lattice spacing, which can be quantified by the ratio 
̄ℓ/Δx where ̄ℓ is the average distance between neighbouring vertices. As a 

rule of thumb, the numerical resolution of the particle mesh and the fluid 
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lattice should be similar, ̄ℓ/Δx ≈ 1, in particular, if the particle is soft and 
its deformation needs to be captured accurately. This rule is particularly im-
portant for most immersed boundary methods, although different algorithms 
might work best with different ratios. If the interpolated bounce-back method 
is used, ̄ℓ/Δx is less constrained, and the particle discretisation is largely 
determined by the degree of complexity of the particle shape and the par-
ticle deformation expected during the simulation. Section 6.2 provides more 
details about the different FSI schemes employed in IPMF.

In some cases, it is also useful or necessary to create a particle volume 
mesh [247] or a different internal particle structure [248], although these ap-
proaches have not yet been used for IPMF problems. Interior vertices are 
required by some immersed boundary methods or when the particle has 
an internal structure that determines the deformation of the particle, see 
Section 6.2.2.

5.2. Rigid particles

Rigid particles are characterised by the constant distance between any pair of 
marker points on their surface. Therefore, the rigid particle algorithm should 
translate and rotate the particles according to Equation 5 and (Equation 6) 
while keeping the particles’ shape invariant. An example algorithm for the 
simulation of rigid particles in inertial microfluidics can be found in [107].

Several numerical schemes can be used for the implementation of the mo-
tion of rigid particles. However, when choosing an algorithm, its numerical 
stability relative to that of the fluid solver is critical. Ideally, the rigid-particle 
solver should have similar stability to the fluid solver over an extensive range 
of time step sizes. A good candidate is the Verlet integrator [249,250]: it 
provides second-order accuracy and good numerical stability. Additionally, 
it preserves the time reversibility and the symplectic form of the govern-
ing equations. Symplectic solvers are a class of numerical algorithms which, 
by construction, ensure that the system’s total energy is conserved during 
numerical integration [251].

The representation of the orientation of the particles in 3D requires special 
attention. Due to the properties of the Lie group SO(3), which represents the 
space of all possible 3D rotations, it is not possible to describe the orientation 
of a particle without the emergence of singularities using 3D vectors [252]. 
These singularities are commonly called ‘gimbal lock’. The gimbal lock can be 
avoided by using either a rotation matrix or unit quaternions to represent the 
orientation of the particles. Quaternions are a 4D extension of complex num-
bers, and their mathematical multiplication rules can encode SO(3) without 
encountering singularities [253]. Quaternions have several advantages over 
rotation matrices in numerical schemes for rigid particles; they have a smaller 
memory footprint than matrices, and they are more algorithmically efficient 
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when performing rotation operations on vectors. Detailed information on the 
implementation of quaternions can be found in [254].

5.3. Soft particles

To treat soft particles numerically, we need to discretise the physical model 
presented in Section 3.2.3. We distinguish between the outer membrane of 
soft particles (Section 5.3.1) and their internal properties (Section 5.3.2).

5.3.1. Hyperelastic model for membrane-based particles
For hyperelastic particles that are made of a thin membrane (e.g., RBCs, cap-
sules, vesicles), numerical treatments of in-plane elasticity, bending, and – 
if required – surface and volume conservation are needed. In the follow-
ing we will discuss a commonly used approach based on the finite-element 
method in more detail [244]. We will not cover the lattice spring method 
(LSM) here since it has been used only in a small number of IPMF works 
[70,102,121,146]. Viscoelastic membrane models are covered, for example, 
in [207,208], although they have not yet been used for IPMF applications.

The elastic and bending energies of a soft particle, Equation 8 and 
Equation 9, may be discretised as [189] 

ES = ∑
i

a(0)
i 𝜖s

i , (25)

 

EB =
√

3𝜅b ∑
i,j>i

(𝜃ij – 𝜃(0)
ij )

2
(26)

where the sum in Equation 25 runs over all surface elements i and the sum in 
Equation 26 runs over each pair of neighbouring elements, a(0)

i  is the area of 
the undeformed element, 𝜖s

i  is the strain energy density of the deformed ele-
ment, 𝜃ij is the current angle between the normal vectors of two neighbouring 
elements, and 𝜃(0)

ij  is the angle between the normal vectors of two neigh-
bouring elements of the undeformed mesh. The strain energy density of each 
element, 𝜖s

i , can be calculated through a finite-element-based scheme using 
linear shape functions [244]. See [255] for a detailed discussion of alternative 
bending models.

In cases where the enclosed volume or the surface area of the membrane 
is constant, the constraints on volume and surface area can be implemented 
using penalty energy terms [189]: 

EV =
𝜅V
2

(V – V (0))2

V (0) , (27)
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Figure 9. Visualisation of a single RBC squeezing through a spleen-like slit. The mesh of the unde-
formed RBC (left) and the deformed RBC (right) is indicated by black lines. One plane of the fluid 
grid is shown in grey. The colour of the deformed RBC indicates the strain force (N) arising from 
local relative surface deformation.

 

EA = 𝜅A

2

(A–A(0))2

A(0)
(28)

where 𝜅V and 𝜅A are the corresponding penalty moduli, V and A are the cur-
rent volume and surface area, and V (0) and A(0) are the volume and surface 
area of the undeformed particle.

The force acting on each vertex i of the particle surface can be obtained 
from the total particle energy E = ES + EB + EV + EA using the principle of 
virtual work [211,212] 

f i = –
𝛿E(xi)

𝛿xi
(29)

where f i can be written directly as a function of vertex positions, xi, see 
[256] for implementation details. Figure 9 demonstrates the capabilities of 
the model.

5.3.2. Internal particle properties
Some particles have an internal structure or are filled with a liquid whose 
properties are different from those of the suspending liquid. For these types 
of particles, additional numerical methods are needed. At the time of writing 
this review article, no LB-based IPMF paper has been published in which soft 
particles with complex internal structures have been considered. However, we 
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anticipate that the behaviour of nucleated cells or similar particles in IPMF 
devices will be simulated in the near future.

The interior viscosity of red blood cells, vesicles and capsules is often 
different from that of the suspending liquid. In practice, the fluid nodes in-
side the membrane need to be tracked and updated as the particle deforms 
and moves. Different strategies have been suggested, such as simple ray-
casting [257] and the Hoshen-Kopelman algorithm [258]. More recently, a 
fast tracking algorithm has been proposed by computing the scalar product 
of area-weighted surface normals and local distance vectors in the vicinity 
of the membrane [259]. Once each lattice node knows its viscosity 𝜇(x), the 
local lattice-Boltzmann relaxation time is calculated via Equation 20.

For eukaryotes (i.e., biological cells with a nucleus), a compound mem-
brane model may be needed where the outer cell membrane and the inner nu-
clear envelope are interconnected by a cytoskeleton within the cytoplasm. The 
nuclear envelope can be modelled and discretised in a way similar to the RBC 
membrane model, and the cytoskeleton can be represented as cross-linked 
filaments consisting of discrete particles [248] or cylindrical segments [260].

6. Numerical boundary conditions and fluid-structure interaction

In this section, we present the boundary conditions and FSI schemes com-
monly used for LB-based IPMF applications. In Section 6.1, we revisit the 
different types of boundary conditions identified in Section 3.3 from a nu-
merical point of view. Since FSI is typically the biggest numerical challenge 
in IPMF, we cover it in more detail in Section 6.2.

6.1. Boundary conditions

In Section 3.3, we distinguished between three different types of boundary 
conditions: 1) device-fluid, 2) particle-fluid, and 3) inlet and outlet bound-
ary conditions (see Figure 6). Since the first and third types do not require 
FSIs and are relatively straightforward to implement, we outline them in 
Section 6.1.1 and Section 6.1.2, respectively.

6.1.1. Device-fluid boundaries
Numerical algorithms for the device-fluid boundaries are well established and 
do not pose significant challenges for IPMF simulations. The easiest method 
for realising the no-slip condition at stationary walls in LB-based simulations 
is the simple (or halfway) bounce-back (SBB) method (Figure 10). In SBB, a 
post-collision population f ⋆

i  streaming from a fluid node xf to a solid node xs
is simply reflected (bounced back) to its original node xf while reversing its 
direction [100]: 
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Figure 10. Illustration of the simple bounce-back (SBB) algorithm. A post-collision population 
f ⋆

i  that would stream from a fluid node xf to a solid node xs bounces back when it reaches the 
wall (solid line) which is located half-way between the fluid and solid nodes. The point where the 
bounce-back event occurs is indicated by a small black dot. The population returns to its starting 
point as f ̄i . 

f ̄i(xf, t + Δt)= f ⋆
i (xf, t) (30)

where ̄i is defined through c ̄i = –ci. In this scheme, the no-slip condition is 
recovered to second-order accuracy if the physical wall is flat, aligned with 
one of the principal lattice axes, and located halfway between xf and xs. SBB 
is a method that is only available for LB or similar methods since the popula-
tions do not exist in macroscopic CFD approaches, such as finite volume or 
finite difference methods. A clear advantage of SBB is its local character and, 
thus, relative ease of parallelisation. In situations where the geometry is not 
aligned with the lattice axes, SBB leads to a ‘staircase’ representation of the 
boundary, and the method’s accuracy degrades to first order [261].

A common improvement of the SBB for curved boundaries is the inter-
polated bounce-back (IBB) method, where the distance between the lattice 
nodes and the actual wall location is taken into account. The Bouzidi method 
[262] is a popular IBB variant that uses two or three neighbour nodes to obtain 
a second-order representation of curved boundaries via linear or quadratic 
interpolation at the population level. IBB methods are often less local than 
SBB, potentially creating challenges for parallelisation and for moving parti-
cles (see Section 6.2.1). For example, the Bouzidi method requires at least 
two fluid lattice nodes between nearby boundaries. This limitation of the 
Bouzidi method can be overcome by approximating the equilibrium and non-
equilibrium parts of f i at a fictitious node at the exact boundary location, and 
carrying out interpolations with only the immediate boundary lattice node 
[263,264].

Bounce-back methods can be extended to situations where the boundary 
is moving, either as an imposed movement (e.g., the lid in a Couette flow) 
or as part of fully coupled fluid-structured interaction (Section 6.2.1). The 
resulting momentum exchange at a moving wall is captured by a correction 
term, here shown for SBB [100]: 
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f ̄i(xf, t + Δt)= f ⋆
i (xf, t)–

2wi𝜌wci ⋅ uw
cs

2 (31)

where uw and 𝜌w are the velocity of the wall and the density at the point 
of intersection between the lattice link and the wall, respectively. For IBB, 
the correction term has to be applied to the fraction of the post-collision 
population that streams into the wall boundary [265].

All bounce-back-based boundary conditions show a dependency of the ex-
act wall location on the chosen value of the relaxation time 𝜏 when the BGK 
collision operator is used. This problem usually worsens for large values of 
𝜏 and is, therefore, not a common problem in IPMF applications where the 
viscosity (and therefore 𝜏) is relatively small. Replacing the BGK by the MRT 
or other collision operators with well-chosen relaxation times can avoid this 
unphysical dependency [266]. A detailed analysis of the bounce-back method 
and strategies for improving its accuracy are given in [88].

Bounce-back methods are classified as link-wise boundary conditions 
since the wall location is somewhere between the fluid and solid nodes. There 
exists a large range of alternative LB boundary conditions where the boundary 
condition is enforced directly on lattice nodes, e.g.  [267–269]. These meth-
ods are often called ‘wet-node’ approaches. Since wet-node methods are rarely 
used in IPMF applications, we do not cover them here.

Finally, it is also possible to use the immersed-boundary (IB) method for 
the surface of the geometry. However, since the IB method is more commonly 
employed for FSI problems, we cover it in Section 6.2.2 instead.

6.1.2. Inlet and outlet boundaries
Nearly all published papers with LB-based IPMF simulations use periodic 
boundary conditions to treat the channel inlet and outlet. Periodic boundary 
conditions are straightforward to implement, both for the fluid and for the 
particles. In particular, particles do not have to be created or removed once 
the simulation has started, see Section 7.2.

To drive the flow in a geometry with streamwise periodic boundary con-
ditions, there are two strategies: 1) use a body force b or 2) superimpose a 
pressure drop Δp on the periodic boundary condition. The first strategy is 
particularly suitable for straight channels where the pressure gradient is es-
sentially constant and can be replaced by a constant body force b = –∇p. The 
pressure fluctuations caused by the presence of the particles are then automat-
ically captured by the LB algorithm. For more complex geometries, it is often 
more suitable to impose an overall pressure drop Δp between the inlet and 
outlet planes [270]. The LB algorithm will then recover the correct pressure 
field in the interior of the domain, including any pressure fluctuations caused 
by the particles.
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Although tempting and conceptually simple, periodic boundaries do not 
come without their own problems. Since an infinite array of particles is sim-
ulated, long-range particle-particle interactions across periodic boundaries 
need to be controlled by having sufficiently long channel segments subject to 
sensitivity tests of the chosen unit cell length [116,271].

There are situations where periodic boundary conditions are not suitable, 
for example, if the geometry of interest cannot be approximated by a peri-
odic unit cell. One example is the cross-slot junction with two inlets and two 
outlets simulated in [130]. In these situations, it is common to impose a fully 
developed velocity profile at the inlet and a pressure condition at the out-
let, or the opposite. The most frequently used LB scheme in such cases is the 
non-equilibrium extrapolation method [272].

Challenges remain in developing more suitable boundary conditions for 
complex geometries. In particular, in inertial flows, flow field distortions can 
propagate far downstream. By imposing a fully developed velocity profile at 
the inlet, any upstream influence is neglected, which might make the sim-
ulation unsuitable. Pressure waves and flow distortions leaving the domain 
should not be reflected back at the outlet, which imposes additional con-
straints on the performance of the chosen numerical scheme. Concluding, 
more work is needed to enable accurate and practical LB simulations of IPMF 
device segments that cannot be approximated as periodically repeating units.

6.2. Fluid-structure interaction methods

The purpose of the FSI algorithm is to impose appropriate boundary con-
ditions on the moving particles and to evaluate forces and torques that 
accelerate the particles in flow. In LB-based IPMF applications, there are dif-
ferent algorithms used over the years, some of which are suitable for either 
rigid or soft particles, or both. The key point is that any re-meshing of the 
fluid domain is undesired as the original LB method relies on a fixed lat-
tice. Therefore, all FSI schemes covered here are based on a fixed fluid lattice 
and moving particle meshes which need to be coupled. Here we will focus on 
the two most commonly employed methods in LB-based IPMF: 1) bounce-
back-based methods that operate on the level of the populations and involve a 
momentum-exchange algorithm (MEA) (Section 6.2.1) and 2) the immersed 
boundary (IB) method that uses forces to mimic the existence of bound-
aries (Section 6.2.2). Other FSI methods are less established in IPMF, such as 
the external boundary force method [273] and the Noble-Torczynski method 
[172]; we do not cover them here.

6.2.1. Bounce-back methods and momentum exchange algorithm
The bounce-back-based algorithms for FSI are essentially the same as those 
in Section 6.1.1. In order to calculate the force and torque the suspended
particles experience, a MEA is required. Additionally, the location of the 
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boundary changes every time step, which requires the fluid-solid links to be 
updated dynamically and some nodes to be switched from fluid to solid, or 
vice versa.

In the vast majority of cases, SBB and IBB are used for rigid particles. It is 
possible to employ bounce-back-based methods for soft particles, although 
instead the IB method (Section 6.2.2) is normally the method of choice in 
those cases. We found only two studies where IBB has been used for soft 
particles in IPMF [102,146].

The MEA treats populations crossing fluid-particle boundaries as discrete 
mass packets that exchange momentum with the particle surface [274]. The 
momentum that is transferred from the fluid to the solid due to a single pop-
ulation initially moving in direction ci and then bouncing back at point xbi
on the boundary is (in 3D) 

pi(xbi, t + Δt/2)= Δx3 (f ⋆
i + f ̄i) ci (32)

where f ⋆
i  is the post-collision population moving towards the boundary and 

f ̄i is the population moving in the opposite direction after the bounce-back 
event. For SBB, f ̄i is given by Equation 31. Since the population bounces back 
between time steps, the force is evaluated at half-time steps, t+Δt/2. Equation 
32 holds for simple and interpolated bounce-back methods. The total force 
and torque acting on a particle at t + Δt/2 are calculated as 

F = 1
Δt

∑
i

pi,

T = 1
Δt

∑
i

(xbi – x0)×pi

(33)

where the sum runs over all links on which a bounce-back event occurs and
x0 is the centre of mass of the particle.

Two fundamentally different strategies have been suggested to treat the in-
terior of rigid particles and the fresh nodes that are crossed by the moving 
particle surface. Ladd [100] kept the fluid inside the particles and included 
the internal stresses by applying the MEA both to the exterior and interior 
fluid regions. This approach will be problematic if inertia is significant since 
the inertia of the internal fluid can affect the dynamics of the particle. How-
ever, the fresh node treatment consists of merely passing nodes through the 
surface without further modification. Aidun and Lu [275] proposed a dif-
ferent approach where the MEA only considers the exterior fluid. Different 
fresh-node strategies have been proposed [276,277].

Table 2 reminds us that SBB does not usually require meshing of the parti-
cle surface since SBB is mostly applied when particles have simple shapes (e.g., 
spheres or ellipsoids) and the identity of fluid and solid nodes can be easily es-
tablished at each time step. IBB, however, requires detailed information about 
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the location of the bounce-back event along the link between lattice nodes, in 
particular when particles are deformable. A particle surface mesh combined 
with a ray-tracing algorithm [278] can be employed for this purpose. Partic-
ular attention must be given to the relative resolutions of the fluid lattice and 
the particle surface mesh [279].

Bounce-back-based approaches do not generally conserve mass when 
particles are moving. However, the MEA emerges naturally from the bounce-
back scheme, and no additional computation is needed to obtain traction 
vectors from the surrounding flow field. The MEA employing Equation 32 
has been shown to violate Galilean invariance on order 𝒪(u2), and a correc-
tion term has been proposed to remove this artefact [280]. While the SBB 
is simpler to implement than IBB, it suffers from a staircase approximation 
of the moving particles. IBB has second-order accuracy but is less local and 
more cumbersome to implement.

In conclusion, the implementation of bounce-back-based FSI schemes for 
IPMF requires several careful considerations, but the available methods are 
well established and of sufficient efficiency and accuracy.

6.2.2. Immersed boundary method
The second class of FSI methods commonly used for IPMF is the IB method in 
its various flavours. Peskin’s underlying idea was to use body forces to manip-
ulate the fluid flow field around the boundary to satisfy the no-slip condition 
at the boundary [281,282]. There are versions of the IB method coupled to 
an LB solver for both soft [244,283–286] and rigid particles [287–292]. It is 
not possible to cover all flavours of the IB method in detail here. Instead, we 
provide a concise outline and refer to recent review articles [293,294].

The general IB algorithm consists of a few key steps (not necessarily in this 
order):

• Interpolate the fluid velocity u(X) at the position xi of each particle mesh 
vertex i (see Section 5.1 for details about the mesh).

• Calculate forces f i acting on each vertex i. See Section 5.3 for the force 
calculation in the case of soft particles. See below for rigid particles.

• Spread vertex forces f i to the fluid where they will be treated as body 
forces b(X) according to Section 4.3.

• For each particle in the simulation, update its position and orientation. 
See Section 5.2 for rigid particles. See below for soft particles.

Here we distinguish between position vectors X of fluid nodes on the regular 
Eulerian lattice and position vectors xi denoting the location of a Lagrangian 
vertex with index i.

Figure 11 illustrates the interpolation and spreading steps. In d spatial di-
mensions, the discretised forms of the velocity interpolation and the force 
spreading steps, which are key to any IB algorithm, can be written as [282] 
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Figure 11. Illustration of interpolation and spreading in the immersed boundary method. The ve-
locity of the Eulerian lattice nodes (open circles, coordinates X) is interpolated at the location xi(t)
of each Lagrangian vertex (solid circles), see Equation 41 Equation 34. Only lattice nodes within 
the interpolation window (grey square) around the Lagrangian vertex of interest are considered. 
Force spreading, Equation 35 Equation 41, works the other way around, where each Lagrangian 
vertex distributes its force to the lattice nodes within the corresponding spreading window.

̇xi = Δxd ∑
X

u(X)𝛿(X – xi), (34)

 
b(X) = ∑

i
f i𝛿(X – xi) (35)

where ̇xi is the interpolated velocity of vertex i and 𝛿(X – xi) is a discrete delta 
distribution with the dimension of L–d where L is length. Note that f i has the 
dimension of a force and b has the dimension of a force per Ld.

A key feature of the IB method is the shape of the discrete delta dis-
tribution 𝛿(X – xi). An important simplification is the factorisation 𝛿(x)=
𝜙(x′)𝜙(y′)𝜙(z′)/Δx3 in 3D, or 𝛿(x)= 𝜙(x′)𝜙(y′)/Δx2 in 2D, where 𝜙(x′)
is a suitable 1D kernel function and x′ = x/Δx = (x, y, z)T/Δx. The most 
commonly used forms are 

𝜙2(x′) = {
1 – |x′| (0 ≤ |x′| ≤ 1)
0 (1 ≤ |x′|)

,

𝜙3(x′) =

⎧{{
⎨{{⎩

1

3
(1 + √1 – 3|x′|2)| (0 ≤ |x′| ≤ 1

2
)

1

6
(5 – 3|x′| – √–2 + 6|x′| – 3|x′|2|) ( 1

2
≤ |x′| ≤ 3

2
)

0 ( 3

2
≤ |x′|)

,

𝜙4(x′) =

⎧{{
⎨{{⎩

1

8
(3 – 2|x′| + √1 + 4|x′| – 4|x′|2) (0 ≤ |x′| ≤ 1)

1

8
(5 – 2|x′| – √–7 + 12|x′| – 4|x′|2) (1 ≤ |x′| ≤ 2)

0 (2 ≤ |x′|)

(36)
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Figure 12. Plots of the interpolation stencils in Equation 36 Equation 41. The stencil 𝜙n covers n
lattice nodes along each coordinate axis.

where 𝜙2, 𝜙3 and 𝜙4 are often called the 2-point, 3-point and 4-point stencils 
since they cover two, three or four grid points along each coordinate axis, 
respectively (Figure 12). Therefore, IB interpolation and spreading for each 
Lagrangian vertex involves a square or cube covering nd lattice nodes where 
n is the width of the stencil (n = 2, 3, 4). The rationale behind these forms and 
mathematical derivations are available elsewhere [282].

There is an important difference between the IB algorithms for soft and 
rigid particles. For soft particles, the vertex velocity is determined by Equation 
34 and particle deformation is caused by different vertices, i and j, generally 
moving in a way that the distance |xi –xj| changes with time. The resulting de-
formation of the mesh elements then leads to forces acting on each vertex, for 
example, via Equation 29. These forces are then spread to the Eulerian lattice 
through Equation 35 after which they enter the LB algorithm (Section 4.3). 
Note that, in general, the vertices used for the force calculation and the IB 
interpolation and spreading do not have to be the same [295,296], although 
in most works both are identical. Vertex positions are usually updated using 
a forward-Euler approach: 

xi(t + Δt)= xi(t)+ ̇xi(t)Δt. (37)

The IB algorithm for soft particles is detailed in [107,244,297,298].
There exist various different IB algorithms for rigid particles. The chal-

lenge in applying the IB method to rigid particles lies in satisfying the rigidity 
conditions |xi – xj| = const and the no-slip conditions in Equation 34 simul-
taneously. The vertex forces f i need to be calculated in such a way that these 
conditions are met to a sufficient level of accuracy. Several IB flavours have 
been used for rigid particles in combination with the LB method:

• Feng and Michaelides’s direct-forcing method [288] applies an explicit 
correction due to the mismatch of desired and interpolated velocities at 
each Lagrangian vertex. Although relatively simple to implement, this 
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method does not strictly satisfy the no-slip condition at the particle 
surface.

• The implicit IB method [289] solves the system of equations resulting 
from the simultaneous satisfaction of no-slip and rigidity conditions. 
Since this method requires inverting large matrices at every time step, 
only few works have adopted this approach.

• Multi-direct-forcing methods perform multiple iterations during each 
time step to approximate the solution of the implicit method [290–292]. 
This approach combines the ease of implementation of the direct-forcing 
method and the accuracy of the implicit method.

For details of the algorithms and implementation strategies, we refer the 
reader to the original publications.

An important consideration for any IB method is the average distance be-
tween neighbouring mesh vertices, ̄ℓ, in relation to the lattice spacing, Δx
(see Section 5.1). If ̄ℓ/Δx is significantly larger than unity, there are ‘holes’ in 
the mesh and fluid can leak through the mesh surface. This detrimental effect 
starts to become visible for ̄ℓ/Δx ≈ 2 [244]. At the other end, if ̄ℓ/Δx is too 
small, neighbouring mesh vertices see approximately the same flow field since 
the velocities ̇xi are obtained through interpolations in Equation 34. Thus, it is 
often recommended to use a relative spacing of ̄ℓ/Δx ≈ 1 [244]. As a conse-
quence, different meshes need to be prepared for the same particle at different 
spatial resolutions.

7. Additional considerations

IPMF simulations come with a range of additional requirements that have not 
been covered in the previous sections. Here we will address particle interac-
tion forces (Section 7.1), strategies to initialise simulations (Section 7.2), code 
parallelisation and grid refinement (Section 7.3), and strategies for parameter 
selection (Section 7.4).

7.1. Particle-particle interaction forces

As long as particle surfaces are a few lattice points away from each other, 
the particle interactions are hydrodynamic and can be accurately handled by 
the LB and FSI algorithms without additional considerations. However, when 
particles come close (e.g., in denser suspensions), the lattice resolution may 
not be sufficient to capture lubrication forces and avoid particle overlap.

If particles are rigid and circular or spherical, conventional lubrication 
forces or elastic repulsion forces can be applied based on the centre-to-centre 
distance between the particles. For example, Başa ̆gao ̆glu et al.  [129] used a 
Lennard-Jones potential. Liu and Wu  [171,172] employed a discrete-element 
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method where contact forces have both elastic and damping contributions. 
Schaaf et al.  [106] followed a different strategy by implementing an event-
based Euler step to handle particle collisions. The collision treatment in 
several other works [147,158,164,168] is based on the short-range repulsion 
model proposed by Glowinski et al.  [299]. Liu et al.  [160] employed Wan 
and Turek’s repulsion force model [300].

For more complex particle shapes and deformable particles, forces are 
usually calculated for any pair of nearby surface vertices belonging to two dif-
ferent particles. Hu et al.  [140] used a velocity-dependent lubrication force 
for rigid circular and ellipsoidal particles, following Ding and Aidun  [301]. 
Similar approaches have been used for soft particles, although mostly in non-
inertial settings  [302,303]. More work is required to accurately simulate the 
contact dynamics in denser suspensions of soft particles in IPMF.

7.2. Simulation initialisation, particle insertion, and removal

Due to the movement of particles, all IPMF applications are transient, and ini-
tial conditions can play an important role. However, the background flow field 
in the absence of particles is steady in most cases, which allows for relatively 
straightforward initialisation strategies.

The simplest approach to initialise the background flow is to start a sim-
ulation with zero velocity and wait until the flow field has converged under 
the imposed boundary conditions or driving force. If the simulation program 
supports a checkpoint functionality, the converged state of a simulation can be 
stored to the hard drive and used as the initial condition for other simulations. 
Initialisation strategies for LB simulations have been discussed previously, 
e.g.  [267,304–308].

Assuming that the background flow field has already been established, par-
ticles may be ‘dropped’ in the simulation domain subsequently, although the 
sudden addition of particles will lead to pressure waves and changes in the 
flow field. Since the flow requires some time to adjust to the presence of par-
ticles, the first few hundred or thousand time steps are usually unphysical and 
should be excluded from the data analysis.

It is not always obvious at which positions particles should be initialised. 
For example, when a subset of an IPMF device is simulated (see Section 3.3 
and Section 6.1.2), it is generally unknown at which position and under which 
deformed state particles would enter the numerical domain. Assuming that 
the channel upstream of the simulated segment is straight and long, a good 
strategy is to obtain the lateral equilibrium positions of the particles in sep-
arate simulations of straight channels and then initialise particles at these 
positions when they enter the domain of interest. Two migration character-
istics can be exploited to accelerate the straight channel simulations. First, 
lateral particle migration is faster for particles initially positioned between 
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the equilibrium position and the channel wall than for particles initially po-
sitioned between the equilibrium position and the channel centre. Second, 
particle migration in the radial direction is significantly faster than in the 
circumferential direction [309].

The initialisation of particles in periodic domains is usually straightfor-
ward. Depending on the aim of the study, the desired number of particles can 
be initialised at predefined or random positions. In the latter case, particle-
particle and particle-wall overlap checks may be necessary. For denser sus-
pensions, it can be useful to initialise particles with a reduced size and run a 
pre-simulation to grow particles to their full size [310].

Most LB-based IPMF studies have employed periodic boundary con-
ditions. We are not aware of LB-based IPMF studies where particles are 
continuously inserted at the inlet and removed at the outlet (see [303,311,312] 
for non-inertial applications of inflow boundary conditions for red blood 
cells). There is a need for more advanced particle initialisation strategies that 
faithfully capture the upstream behaviour of the system when subsets of non-
periodic geometries are simulated and the assumption of a long channel is 
not appropriate.

7.3. Parallelisation and grid refinement strategies

Accurate IPMF simulations typically demand a large number of grid points 
due to the requirement of high resolution. Since inertial effects are long-
ranged, it is normally necessary to simulate domains that are much larger 
than the particles inside. There are two fundamental strategies to address this 
issue: code parallelisation and local grid refinement.

While the LB algorithm can be easily parallelised, the parallelisation of 
the moving particles and the associated FSI treatment is more challenging. 
Parallel open-source LB codes are available, e.g.  [220–222,313–316]. De-
tailed parallelisation strategies for particle-laden LB simulations have been 
published previously [286,310,312,317–320]. Recent breakthroughs in the 
parallelisation of dissipative particle dynamics codes [321–325] also provide 
insights for further improving the parallel performance of existing LB codes 
in simulating particle-laden flows. Particularly noteworthy is lbmpy [326], 
a meta-programming system for automatic code generation for parallel LB 
simulations.

For IPMF problems, the flow field around the particles usually shows finer 
features than in the regions farther away from the particles. Therefore, it 
should be possible to have a more refined fluid region around the particles 
and a coarser mesh elsewhere. Local grid refinement for LB simulations is 
an active research field, e.g. [327–332]. However, dynamic grid refinement 
around moving particles using the LB method is largely unexplored.
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7.4. Parameter selection

In order to set up and run IPMF simulations that are accurate, stable, and 
efficient, there are a few helpful rules of thumb, ideally considered in this 
order:

1. Define the geometry for the simulation first. If periodic boundary condi-
tions are used, undesired interactions of periodic images of particles need 
to be avoided. As a guideline, start with a periodic system length of around 
ten particle diameters and test whether results are independent when this 
length is varied by several particle diameters. The domain length should 
be sufficiently large to ensure that periodic images have no effect; the 
minimum domain length depends on particle-to-channel confinement, 
Reynolds number, and particle concentration.

2. Once the geometry is defined, choose a lattice resolution that balances ac-
curacy and efficiency. The numerical algorithms chosen require a certain 
number of grid points to resolve the particle diameter (a good starting 
point is around 10Δx). A challenge of IPMF modelling is that particles 
are often small compared to the channel size. Therefore, it is advisable to 
perform a grid-independence study and use the lowest resolution that still 
gives sufficiently accurate results. Example grid-independence studies can 
be found in [116,271].

3. Based on the chosen spatial resolution, the desired Reynolds number 
dictates the range of fluid viscosity 𝜈 and characteristic velocity U via
Equation 3. Keep in mind that U in units of Δx/Δt should ideally not 
exceed 0.1 and that the relaxation time 𝜏 in units of Δt should not get too 
close to 0.5. As a starting point, use 𝜏 ≈ Δt. Generally, reducing 𝜏 (and 
therefore 𝜇), while keeping the spatial resolution and Reynolds number 
fixed, reduces the velocity U and therefore the time step Δt. This variation 
leads to a trade-off between efficiency on the one hand (smaller Δt means 
more time steps need to be simulated for the same physical time) and ac-
curacy and stability on the other hand (smaller Δt usually means more 
stable and accurate results, but 𝜏/Δt → 0.5 can cause numerical instabil-
ity). An in-depth discussion of the choice of parameters in LB simulations 
can be found in [88].

4. In case the flow is driven by prescribed inlet and outlet conditions, rather 
than by periodic boundary conditions and a driving force, a pressure drop 
between the inlet and outlet is required. Since pressure in LB simulations 
is linked to the variation of the fluid density, it is important that the re-
sulting pressure drop does not lead to unreasonable density variations 
along the flow axis. In order to balance the numerical pressure differ-
ence between the inlet (pin) and the outlet (pout) with other numerical 
requirements, it is worth keeping in mind the Hagen-Poiseuille law for 



ADVANCES IN PHYSICS: X  47

the laminar flow (average velocity ̄u) in a straight tube with radius R and 
length L, which is a good starting point even for different channel shapes: 

pin – pout =
8𝜇 ̄uL

R2 . (38)

The resulting density difference is 𝜌in –𝜌out = (pin – pout)/cs
2 and, as a rule 

of thumb, should not exceed a few percent of the average density.

8. Example cases

This section provides four example cases that capture the general physics of 
IPMF: the lateral migration of a rigid and a soft particle in a square duct 
(section 8.1 and section 8.2, respectively), the interaction of a pair of soft par-
ticles in simple shear flow (section 8.3), and the formation of a train of soft 
particles in a square duct (section 8.4). We use the in-house BioFM code and 
compare results with existing literature data. For all example cases, we use the 
D3Q19 lattice (qian_lattice_1992), the BGK collision operator [333] with re-
laxation time 𝜏 and the forcing method of Guo et al.  [334]. Throughout this 
section, we report the kinematic viscosity 𝜈 = 𝜇/𝜌, rather than the dynamic 
viscosity of the liquid.

8.1. Example case 1: migration of a single rigid particle in a square duct

The first example case simulates the lateral migration and equilibrium po-
sition of a rigid, spherical, neutrally buoyant particle placed in a straight 
duct with square cross-section with width 2 w. Originally proposed by Lash-
gari et al.  [271], the trajectories and equilibrium positions are compared for 
three different confinement values, 𝜒 = a/w. The confinement is varied by 
modifying the particle radius a, resulting in 𝜒 = 0.1, 0.2 and 0.287.

Figure 13 (a,b) show a full 3D and a 2D cross-sectional schematic of the ge-
ometry. Table 3 contains values of the relevant fluid and particle properties. 
For this case, we follow Lashgari et al.  [271] by defining the Reynolds num-
ber as Re = U2w/𝜈 where U is the mean cross-sectional flow velocity. The 
flow is driven by a body force to reach the desired velocity U. Simulations are 
initialised by dropping the particles in the simulation box and then driving 
the flow, starting at t = 0.

As shown in Figure 13(c,d), the particle migrates to a lateral equilib-
rium position located on the closest face centre for all investigated values 
of 𝜒. As 𝜒 increases, the equilibrium position moves closer to the centre 
of the channel, matching the general trend observed experimentally [81]. 
Excellent quantitative agreement is found between our results and those of
Lashgari et al.  [271].
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Figure 13. Example case 1: migration of a single rigid particle in a square duct. (a) 3D schematic. 
The grey plane denotes the channel cross-section. Particles of different sizes are illustrated by 
the two spheres. (b) 2D cross-sectional schematic. (c) Migration path of a particle with 𝜒 = 0.2 
along the z-axis; multiple time instances are overlaid with higher saturation indicating later time. 
Note that the axial direction is not to scale. (d) Lateral migration paths for different confinement 
values starting at the same initial position. Resulting equilibrium positions are compared to results 
obtained by Lashgari et al.  [271]. Blue, orange, and green circles visualise the particle shape for 
different particle sizes.

Table 3. Parameters of example case 1: migration of a single 
rigid particle in a square duct. See Figure 13 for an illustration 
of the set-up. Grid size Δx and time step Δt are set to 1 in 
simulation units.

Parameter Value
Re 100
U 1/30 Δx/Δt
𝜈 1/30 Δx2/Δt
𝜌 1
a 5Δx, 10Δx, 14.28Δx
w 50Δx
L 300Δx
y0 2/3w
z0 1/3w

8.2. Example case 2: migration of a single soft particle in a square duct

The second example case investigates the impact of particle deformabil-
ity on lateral migration. Originally proposed by Schaaf and Stark  [116], 
Figure 14(a,b) show a single soft spherical particle in a straight duct with 
square-cross section with width 2 w. The confinement is 𝜒 = 0.3. The channel 
Reynolds number is set to Re = 10, following the definition Re = Umax2w/𝜈
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Figure 14. Example case 2: migration of a single soft particle in a square duct. (a) 3D schematic. 
(b) 2D cross-sectional schematic. Migration path of a particle with (c) La = 1 and (d) La = 100; 
multiple time instances are overlaid with higher saturation indicating later time. Note that the 
axial direction is not to scale. (e) Lateral migration paths for different Laplace numbers starting 
at the same initial position. Resulting equilibrium positions are compared to results obtained by 
Schaaf and Stark [116]. 

where Umax is the maximum velocity in the channel. The flow is driven by a 
body force to reach the desired maximum velocity Umax. The deformable cap-
sules are modelled using the neo-Hookean model introduced in Section3.2.3. 
Particle deformability is characterised by the Laplace number, La, which is 
the ratio of particle Reynolds number, Rep, and capillary number, Ca, and 
represents the ratio of the elastic forces to the intrinsic viscous force scale: 

La =
Rep

Ca =
𝜅sa
𝜌𝜈2 (39)

The initial position is the same for all cases as shown in Figure 14(b). 
Simulation parameters are reported in Table 4.

The lateral migration path of particles with La = 1, 10, and 100 are shown 
in Figure 14(c). Particles begin their migration toward their equilibrium po-
sition located on the cross-sectional diagonals. The equilibrium position is 
La-dependent with more deformable particles migrating to positions closer 
to the channel centre. This observation is in line with the findings of other 
studies [102,112,149]. Excellent quantitative agreement is found between our 
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Table 4. Parameters of example case 2: migration of a single 
soft particle in a square duct. See Figure 14 for an illustration 
of the set-up. The Laplace number is controlled by the shear 
elasticity via Equation 39. Grid size Δx and time step Δt are 
set to 1 in simulation units.

Parameter Value
Re 10
La 1, 10, 100
Umax 0.027778 Δx/Δt
𝜈 1/6Δx2/Δt
𝜌 1
𝜅𝛼 2Δx3/Δt2

𝜅b 0.00287Δx5/Δt2

a 18Δx
w 60Δx
L 480Δx
y0 0.5 w
z0 0.3 w

results and those of Schaaf and Stark [116]. Figure 14(d,e) show snapshots of 
particles with La = 1 and La = 100, respectively.

8.3. Example case 3: a pair of soft particles in a shear flow

Having established the lateral migration behaviour of single rigid and soft 
particles, we now explore particle-particle interaction in inertial flows. Origi-
nally proposed by Doddi and Bagchi [335], the third example case consists of 
two deformable capsules in a shear flow as shown in Figure 15(a). The initial 
positions of the particles have a small offset around the centre of the shear-
ing plane ensuring that the particles migrate toward each other. The effect of 
inertia is investigated by increasing the particle Reynolds number 

Rep =
̇𝛾a2

𝜈 (40)

where the fluid shear rate is defined by the velocity of the confining walls 
(±uw) and their distance L: 

̇𝛾 = 2uw/L. (41)

The deformable capsules are modelled using the neo-Hookean model intro-
duced in Section3.2.3. The capillary number in Equation 7 characterises the 
capsule deformation. Simulation parameters are reported in Table 5.

As Rep increases, each capsule moves closer to the mid-plane between the 
walls, resulting in the transition from passing to reversing trajectories. Using 
our in-house code, we observed this transition between Rep = 0.575 and 0.75, 
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Figure 15. Example case 3: a pair of soft particles in a shear flow. (a) 3D schematic. (b) 2D cross-
sectional schematic. Example migration paths of capsule pairs with (c) passing trajectory and (d) 
reversing trajectory; multiple time instances are overlaid with higher saturation indicating later 
time. (e) Migration paths of capsule pairs with increasing Rep compared to results obtained by 
Doddi and Bagchi [335].

Table 5. Parameters of example case 3: a pair of soft particles in a shear 
flow. See Figure 15 for an illustration of the set-up. The shear rate 𝛾̇
depends on Rep according to Equation 40, and the shear elasticity 𝜅s
is calculated using Equation 7. Grid size Δx and time step Δt are set 
to 1 in simulation units.

Parameter Value
Rep 0.125, 0.575, 0.75
Ca 0.025
uw 0.0090423, 0.041594, 0.054253 Δx/Δt
𝜈 1/6Δx2/Δt
𝜌 1
𝜅b 0.00287Δx5/Δt2

a 14.4Δx
L 180Δx
𝛿x0 8.0a = 115.2Δx
𝛿z0 0.4a = 5.76Δx

in agreement with the results of Doddi and Bagchi [335]. Excellent agree-
ment between the two sets of results is seen throughout the entire capsule 
trajectories at all values of Rep.
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Figure 16. Example case 4: formation of a linear train of soft particles in a square duct. (a) 2D 
schematic. (b–e) Particle positions in the x-z (axial) and y-z (cross-sectional) planes at selected 
times. (f ) Absolute axial position of each particle in time. (g) Zoomed-in section of (f ) highlighting 
absolute axial position of each particle in time. (h) Distance of each particle from the channel cen-
treline, r, in time. Note that migration occurs along both the y- and z-directions. (i) Inter-particle 
distances within the simulation domain in time. Line colour in (f–i) corresponds to particle colour 
in (b–e). Note that line colour in (i) refers to the leading particle in the pair.
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Table 6. Initial particle positions of example case 4: formation of a lin-
ear train of soft particles in a square duct. For the x-axis, the relative 
positions of each particle with respect to the first particle are provided. 
Absolute positions in the y- and z-directions are given with the origin 
set on the channel centerline.

Particle 𝛿x/a y0/w z0/w
1 0 0.400 0.583
2 –4 0.317 0.400
3 –8 0.333 0.433
4 –12 0.300 0.500
5 –16 0.217 0.550

8.4. Example case 4: formation of a linear train of soft particles in a square 
duct

The final example case investigates the formation of a train of soft particles. 
We use the same simulation parameters as for case 2 (section 8.2) with the 
only difference that five particles are included in the simulation. All parti-
cles are positioned on the same side of the channel as shown in Figure 16(a). 
The particles are placed near the same streamline with a random variation 
in their lateral coordinates (y- and z-coordinates) to ensure that no ordered 
train exists at the beginning. The initial positions of the particles are reported 
in Table 6.

Figure 16(b-e) show particle configurations at various times during the 
train formation. The time evolution of relevant spatial observables are shown 
in Figure 16(f-i). In the early stages, between t/tad = 0 and 150, the particle 
disorder increases significantly (Figure 16(h)). During this period, multiple 
close particle-particle interactions lead to the swapping of lateral positions 
or particles passing each other. After the initial increase of disorder, parti-
cles start to band together whereby several particles follow the same general 
migration path, albeit with irregular fluctuations around the general trend. 
Once all five particles exist within a narrow lateral band, the fluctuations 
dampen further. Eventually, the particles migrate to their lateral equilibrium 
positions and form a linear train with equal inter-particle spacing throughout 
(Figure 16(i)). One disadvantage of implementing periodic boundary condi-
tions is demonstrated through the comparison of the absolute axial distance 
travelled by each particle (Figure 16(f)) and the axial behaviour within the 
computational domain (Figure 16(i)). The absolute axial distance travelled by 
each particle varies by several computational domain lengths (shown more 
clearly in the zoomed section in Figure 16(g)), meaning that any given particle 
is interacting with periodic images upstream or downstream of it. However, 
valuable steady-state behaviour can still be obtained, for instance, the lat-
eral equilibrium positions in Figure 16(h) and the inter-particle spacing in 
Figure 16(i).
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9. Conclusions and outlook

Inertial particle microfluidics (IPMF) is an emerging technology for the 
manipulation and separation of microparticles and biological cells. The 
lattice-Boltzmann (LB) method is a relatively new alternative to conventional 
Navier-Stokes solvers and has shown its advantages in simulating particle-
laden and inertial flows. This tutorial review provides a comprehensive, yet 
concise overview of LB modelling for IPMF applications.

We have not attempted to replicate earlier reviews of IPMF and its applica-
tions or the LB method and its theoretical basis. Instead, we have structured 
this review as a top-level guide for researchers who want to employ the LB 
method to simulate IPMF problems. Throughout the review, we refer the 
reader to relevant publications for more detailed reading. We start by revis-
iting relevant LB-based works in terms of geometries considered (straight 
channels, channels with feature modifications, and curved channels) and 
particle concentration used (single particles, pairs and trains of particles, 
and non-dilute suspensions). We then describe the physical and mathemat-
ical models underpinning IPMF, including the fluid dynamics, dynamics of 
rigid and soft particles, boundary conditions, and relevant aspects of fluid-
structure interaction (FSI). We concisely summarise the relevant numerical 
methods, including the LB method applied to IPMF, commonly used al-
gorithms for the dynamics of rigid and soft particles, numerical boundary 
conditions, and FSI algorithms, including bounce-back variants, the momen-
tum exchange method, and suitable immersed-boundary methods. Addition-
ally, we provide an overview of other important simulation aspects, such as 
particle interaction forces, simulation initialisation, code parallelisation, grid 
refinement, and the selection of simulation parameters. Finally, we include 
four example cases that are suitable for the verification and validation of codes 
aiming at simulating IPMF.

Despite recent progress in the field of LB-based modelling of IPMF applica-
tions, there are several challenges and related opportunities. A key challenge is 
the multi-scale nature of IPMF problems. Due to the long range of inertial ef-
fects in IPMF and the need for finely resolved flow features around suspended 
particles, the relevant length scales range from (sub-)micron to hundreds 
and thousands of micrometres. Furthermore, realistic IPMF applications 
call for three-dimensional simulations, although two-dimensional simula-
tions can guide the understanding of underlying effects. High-accuracy IPMF 
simulations in realistic geometries are, therefore, extremely computationally 
expensive, even with state-of-the-art parallelisation techniques. The imple-
mentation of advanced schemes for local and dynamic grid refinement and 
the development of well-tested reduced-order models would help overcome 
this challenge.

Nearly all realistic IPMF applications involve curved channels or chan-
nels with additional geometric complexity in order to generate secondary 
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flows that accelerate the manipulation of the dynamics of suspended particles. 
Currently, most available algorithms and simulation codes are not suitable 
for this geometric complexity. A related problem is the importance of inflow 
and outflow boundary conditions which are essential whenever segments of 
an IPMF device, rather than the entire device, are simulated. To simulate the 
particle dynamics in a given device segment, the upstream effects need to be 
taken into account. Nearly all existing works ignore the history of particles 
accumulated in upstream segments. Moving from the commonly used flow-
wise periodic boundary conditions to more realistic geometric configurations 
would increase the scientific value of IPMF simulations.

We also believe that the currently available methods are underused in de-
termining the fundamental flow physics of IPMF. The vast majority of works 
focus on the particle kinetics, without attempting a more detailed analysis of 
the underlying fluid dynamics and the interaction of the particles and the 
fluid. Analysing IPMF problems as actually coupled fluid-particle systems 
would not only answer fundamental questions but also provide the physi-
cal insight needed to develop reduced-order models for less computationally 
demanding simulations.

We hope that this tutorial review will act as a point of entry and accom-
panying guide for researchers interested in LB-based modelling of IPMF 
problems.

Nomenclature

Latin Letters
A Surface area of a particle
A(0) Surface area of an undeformed particle
a(0)

i Area of undeformed mesh element
b Body force density
f (x, v, t) Probability distribution function
cs Lattice speed of sound
fi(x, t) Discretised probability distribution function
ci Discretised lattice velocities
E Total energy of the membrane
EB Bending energy of the membrane
ES Strain energy of the membrane
EA Surface area energy of the membrane
EV Volume energy of the membrane
f eq
i Discretised equilibrium distributions function

F Total force acting on a particle
g Gravitational acceleration
H0 Spontaneous curvature of the membrane
H Trace of the surface curvature tensor
I Inertia tensor of a particle
I1, I2 Strain invariants
ℓ Characteristic length scale of the system
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ℓ Average distance between neighbouring mesh vertices
f neq
i Discretised non-equilibrium distribution function

n Surface normal vector pointing into the surrounding fluid
p Fluid pressure
mi Discretised moments of distribution functions
x Position vector of a point on the particle surface
a Particle radius
Rij Relaxation matrix
Si Forcing source terms
t Time
Δt Length of the time step
T Total torque acting on a particle
1 Unit matrix
U Characteristic velocity of the system
u Macroscopic fluid velocity
ueq Equilibrium fluid velocity
v Linear particle velocity
V Volume of a particle
V (0) Volume of an undeformed particle

Greek Letters
𝜃ij Angle between two neighbouring normal vectors of the deformed mesh
𝜃(0)

ij Angle between two neighbouring normal vectors of the undeformed mesh
𝝎 Angular velocity of a particle
Ωi Collision operator
𝜙l Particle line fraction
𝜙 Volumetric particle concentration
𝜌p Particle density
𝜌 Fluid density
𝜎𝛼𝛽 Fluid stress tensor
𝜆1, 𝜆2 Principal stretch ratios
𝜅b Bending modulus
𝜅𝛼 Dilation modulus
𝜅s Shear modulus
𝜅S Area constraint modulus
𝜅V Volume constraint modulus
𝜏 Relaxation time
𝜔j Relaxation frequency
𝛾̇ Fluid shear rate
𝜖s

i Strain energy density
𝜇 Dynamic fluid viscosity
𝜂in Cytoplasmic viscosity
𝜂m Membrane viscosity
wi Lattice weights

Superscripts
Ca Capillary number
𝜒 Particle-to-channel confinement
Re Reynolds number
Rep Particle Reynolds number
St Stokes number
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Appendix

Table A1. List of all LB-based works of IPMF where at least one particle is considered in a 
microfluidic channel. Abbreviations: Circ. = circular, Sph. = spherical, RBC = red blood cell, El-
lips. = ellipsoid, Dilute = dilute suspension, Dense = dense suspension, Rigid∗ = rigid limit of a 
soft particle model. Note microstructures refers to any channel which features a non-smooth wall.

Source Geometry Soft/Rigid Shape Concentration
Chun and Ladd (2006) 
[101]

Channel Rigid Sph. Single, Dilute

Kilimnik et al. (2011) [102] Channel Soft Sph. Single
Mao and Alexeev (2011) 
[121]

Microstructures Rigid Sph. Single

Masaeli et al. (2012) [70] Channel Rigid Various Dilute
Sun et al. (2013) [117] Channel Soft Circ. Single, Train
Wen et al. (2013) [134] Channel Rigid RBC Single
Chen (2014) [141] Channel Soft, Rigid Sph. Single
Krüger et al. (2014) [118] Channel Soft Sph. Single, Dilute, 

Dense
Prohm and Stark (2014) 
[110]

Channel Rigid Sph. Single

Başa ̆gao ̆glu et al. (2015) 
[129]

Microstructures Rigid Circ. Pair, Dilute

Sun and Bo (2015) [175] Channel Soft Sph. Dilute
Jebakumar et al. (2016) 
[114]

Channel Rigid Circ. Single

Jiang et al. (2016) [103] Serpentine Rigid∗ Sph. Train
Kahkeshani et al. (2016) 
[68]

Channel Rigid Sph. Train

Sun et al. (2016) [176] Channel Rigid∗ Sph. Train, Dilute
Wang et al. (2016) [130] Junction Soft Sph. Single
Wu et al. (2016) [122] Microstructures Rigid Sph. Dilute
Zhang et al. (2016) [115] Channel Rigid Sph. Single
Haddadi and Di Carlo 
(2017) [105]

Cavity Rigid Sph. Single, Dilute

Schaaf and Stark (2017) 
[116]

Channel Soft Sph. Single

Jiang et al. (2018) [123] Contract.-expan. Rigid∗ Sph. Train
Jiang et al. (2018) [124] Cavity Rigid Sph. Single
Liu et al. (2018) [127] Serpentine Rigid Circ. Single
Yuan et al. (2018) [133] Channel Rigid Sph. Single
Başa ̆gao ̆glu et al. (2019) 
[135]

Channel Rigid Various Single, Dilute

Hu et al. (2019) [143] Channel Rigid Circ. Single, Train
Jyothi et al. (2019) [119] Channel Rigid Circ., Sph. Single
Liu and Wu (2019) [171] Channel Rigid Circ. Train, Dense
Schaaf et al. (2019) [106] Channel Rigid Sph. Single, Pair
Wen et al. (2019) [136] Channel Rigid Ellips. Single
Chrit et al. (2020) [146] Channel Soft, Rigid Sph. Single
Hu et al. (2020) [144] Channel Rigid Sph. Single
Hu et al. (2020) [164] Channel Rigid Circ. Train
Liu and Wu (2020) [172] Channel Rigid Sph. Dense
Ni and Jiang (2020) [148] Channel Soft Sph. Single
Nizkaya et al. (2020) [125] Microstructures Rigid Sph. Single
Nizkaya et al. (2020) [138] Channel Rigid Ellips. Single
Schaaf and Stark (2020) 
[155]

Channel Rigid Sph. Pair, Train

Chen et al. (2021) [158] Channel Rigid Circ. Single, Pair
Feng et al. (2021) [163] Channel Soft Circ. Single, Dense
Hu et al. (2021) [140] Channel Rigid Circ., Ellipse Train
Hu et al. (2021) [147] Channel Rigid Circ. Train
Hu et al. (2021) [113] Channel Rigid Various Single

(Continued)
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Table A1. (Continued).
Source Geometry Soft/Rigid Shape Concentration
Hubman et al. (2021) 
[168]

Channel Rigid Circ. Train

Li et al. (2021) [156] Channel Soft, Rigid Circ., Sph. Pair
Liu et al. (2021) [160] Channel Rigid Sph. Train
Patel and Stark (2021) 
[108]

Channel Soft, Rigid Sph., RBC Pair

Qian et al. (2021) [336] Channel Rigid Sph. Single
Owen and Krüger (2022) 
[112]

Channel Soft Sph. Pair

Aouane et al. (2022) [173] Channel Rigid Sph. Dilute
Takeishi et al. (2022) [142] Channel Soft Sph., RBC Single
Li et al. (2022) [139] Channel Rigid Ellips. Single
Liu and Pan (2022) [161] Channel Rigid Sph. Train
Huang et al. (2022) [169] Channel Soft Circ. Train
Lin et al. (2022) [157] Channel Rigid Ellipse, Rect. Pair
Ni et al. (2022) [128] Serpentine Soft Sph. Train
Kechagidis et al. (2022) 
[131]

Cross-slot Rigid Sph. Single

Thota et al. (2023) [159] Channel Rigid∗ Sph. Pair
Millet (2023) [174] Channel Soft Sph. Dense
Hu et al. (2023) [166] Channel Rigid Various Train
Hu et al. (2023) [145] Channel Rigid Ellips. Single
Li et al. (2023) [137] Channel Rigid Various Single
Feng et al. (2023) [126] Curved Soft Sph. Single, Dense
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