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Abstract
In this paper, we quantify the economic gain from accounting for departures from normality for the mean-variance (MV) 
investor. We provide two models that account for the key empirical regularities of financial returns: stochastic volatility, 
asymmetric returns, heavy tails and tail dependence. We show that accounting for departures from normality leads to sig-
nificant gains in expected utility commensurate with or exceeding typical active management fees. The majority of the uplift 
in expected utility derives from accounting for stochastic volatility.

Keywords Asset allocation · Non-normality · Asymmetry · Tail dependence · Expected utility

Introduction

The 2008–2009 and more recent financial crises have spurred 
renewed interest in risk management and approaches to cap-
ital allocation. The Markowitz (1952) approach, for long 
the mainstay of MBA textbooks, has been criticised for the 
maintained hypotheses that returns are well-described by a 
Gaussian distribution or that investors have mean-variance 
(MV) utility.1,2 With this in mind, we provide closed-form 
solutions for the gain in expected utility from accounting for 
non-normality in a mean-variance framework. Our analytical 
approach circumvents the pitfalls that can thwart empirical 
studies. We make assumptions about return and volatility 

generating models that change from very strong assump-
tions to versions closer to empirical data. Readers should be 
aware that we do not claim that each model is an accurate 
representation of the returns faced by asset managers; rather, 
such an approach allows us, at least partially to decompose 
the changes in expected utility that arise. We quantify the 
gain in expected utility for both international and domestic 
investors. First, we show that there are economically sig-
nificant gains in mean-variance utility from accounting for 
non-normality commensurate with typical mutual fund fees. 
Second, we find that most of the gains in expected utility 
derive from accounting for stochastic volatility. Fleming 
et al. (2001, 2003, 2012), Gomes (2007), Han (2006), Busse 
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1 Ingersoll (1987) also shows that if returns are multivariate nor-
mal, expected utility is again a function of the mean and the variance 
under mild restrictions of the utility function (4.46-4.49)

2 While the Markowitz approach and mean variance are often used 
interchangeably, a careful reading of Markowitz (1952) reveals no 
mention of the Gaussian distribution, nor does it claim that investors 
have mean-variance utility. See also Kritzman and Markowitz (2017).

http://crossmark.crossref.org/dialog/?doi=10.1057/s41260-023-00338-9&domain=pdf
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(1999), and Kim and In (2012) all provide empirical evi-
dence that accounting for stochastic volatility adds economic 
value. Our analytical model identifies the potential origin of 
this uplift in performance. Our result provides justification 
for an increased use of conditional volatility models, show-
ing real economic gains for investors.

The remainder of this paper is organised as follows. In the 
section “Non-Normality and Investment”, we survey litera-
ture relating to investor preferences and the non-Gaussian 
characteristics of financial data. In the section “Analytical 
Framework”, we set out our stochastic return models and 
analytical approach. In the section “Derivation of Proposi-
tions”, we propose two distributions for our state variables 
that control asymmetry and stochastic volatility. Next, we 
derive closed-form solutions for the gain in expected utility 
from accounting for non-normality and then provide two 
empirical applications for a domestic and an international 
investor, before concluding.

Non‑normality and investment

It has long been established that the returns of financial 
assets depart from normality. Mandelbrot (1963) docu-
mented extreme departures from normality for commodity 
prices, “warranting a radically new approach to the prob-
lem of price variation”. Analysing large cap equities, Fama 
(1963) reported that 5-standard deviation events occur 2000 
times more often than the Gaussian distribution predicts.3 
Further, financial data tend to contain more extreme negative 
returns than extreme positive returns: the return distribution 
is asymmetric or skewed. In common parlance, “busts” are 
more common than “booms” (Beedles 1979; Alles and Kling 
1994). Mandelbrot (1963) also identified volatility clustering 
for commodities where “large changes tend to be followed 
by large changes, of either sign, and small changes tend to 
be followed by small changes”. More recent research reveals 
asymmetric dependence structures between assets. In the 
international context, Karolyi and Stulz (1996) find that the 
dependence between US and Japanese stocks increases dur-
ing large shocks to the respective markets. Within the US 
market, Ang and Chen (2002) show that the dependence 
between individual stocks and the aggregate market index 
is significantly higher for extreme downside moves than for 
extreme upside moves of the index.4

Throughout our analysis, we consider a single inves-
tor with mean-variance utility. While the mean-variance 
assumption is largely normative in practice, our use of the 
mean-variance utility assumption is motivated in three 
ways. First, despite it being well established that returns are 
non-Gaussian and that investors are concerned with higher 
moments, the mean-variance approach remains ubiquitous. 
In a survey of investment managers, Amenc et al. (2011) 
find that most investors do not employ extreme risk meas-
ures, instead relying on the Gaussian distribution or not 
quantifying tail events whatsoever (see also Fabozzi et al. 
2007). Second, the use of the mean-variance approxima-
tion is also justified through a second-order Taylor series 
expansion of expected utility. Samuleson’s (1970) Funda-
mental Approximation Theorem shows that for “compact” 
probabilities involving less and less risk, the mean-variance 
approach becomes increasingly accurate. Third, the mean-
variance assumption is consistent with exponential utility 
when returns are normally distributed. Finally, in addressing 
the claims of DeMiguel et al (2009) that 1/N portfolios out-
perform optimised ones, Allen et al. (2019) show that M-V 
approaches can outperform more passive 1/N approaches 
with minimal forecasting ability. Although we formally com-
pare the expected utility of “distinct” informed and unin-
formed investors, this is consistent with treating them as the 
same entity with and without information. This is important 
as comparing utility across different individuals leads to a 
number of additional requirements, which we do not wish 
to assume.

Analytical framework

Stochastic return models

The relationship between conditional returns and conditional 
variance intuitively plays an important role in determining 
the effect of accounting for stochastic volatility. If, for exam-
ple, conditional returns and conditional variance are unre-
lated, it should be possible to increase utility by increasing 
exposure when risk is low, thereby capturing higher returns, 
and decreasing exposure when risk is high. Under the effi-
cient market hypothesis, agents must be compensated for 
systematic risk and hence it follows that the conditional 
variance of market returns should be positively related to 
conditional excess returns. Empirical evidence, however, is 
inconclusive. Pindyck (1984), French et al. (1987), and Ghy-
sels et al. (2005) find a positive relationship, while Camp-
bell (1987), Glosten et al. (1993), Whitelaw (1994), (2003) 
and Brandt and Kang (2004) document negative relation-
ships. Given this lack of a clear relationship between risk 
and return, we use two stochastic return models with dif-
ferent assumptions on the relationship between conditional 

3 We estimate that in the 2010-2015 period, 17 three standard devia-
tion returns have occurred during the 1,000 most recent daily returns 
for the S&P 500 index against an expected 2.7 for a normal distribu-
tion.
4 For a more extensive review of recent literature, see Alcock & 
Satchell (2018).
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variance and conditional excess returns. Both stochastic rep-
resentations accommodate skew, heavy tails, tail dependence 
and stochastic volatility. Although the term unconditional 
expected mean variance may sound as if it has a redundancy, 
we use it to remind the reader that we have accounted for all 
variation in state variables. We also assume, in effect, three 
information sets for each of our different models. Knowing 
the full set and taking expectations is denoted by a subscript 
O (“Omniscient”), repeating the exercise with “possible” 
information is denoted by the subscript I (Informed), and 
for knowing less than the informed set, we use the subscript 
U (Uninformed). The precise details of each information set 
depend upon the model structure that we assume. This will 
change throughout the paper. Readers may wish to peruse 
Table 1 which sets out a sense of how this works.

In the first model, we assume that conditional mean 
returns and conditional variance are independent. The first 
stochastic representations is given by

where rt is a vector of returns, � , is the vector of uncondi-
tional mean returns, H is the Cholesky decomposition of the 
covariance matrix, Σ , s1 and s2 are state variables, and Ω is 
the unconditional covariance matrix.

The vector zt consists of iid normal variables. Hereinafter, 
we drop the time subscript for the state variables. For clar-
ity, we initially drop information subscripts for expectations, 
showing them in later models. In both models, the expected 
values of the two state variables  are: E

[
s1
]
= E

[
s2
]
= 1 

and the two state variables are independent of each other, 
E
[
s1s2

]
= 1 , and independent of zt . In Model 1, when s1 > 1 , 

the conditional expected return is greater than � . Similarly, 
when s2 > 1 , the conditional covariance matrix is increased 
in the sense that the difference between the new and old 
matrices is positive semi-definite. The first model sub-
sumes many notable cases. If s1 = 1 and s2 = 1 , we recover 
the Gaussian distribution; if s1 = s2 ∼ N−(�,� ,�) where 
N− denotes the generalised inverse Gaussian distribution,5 
we have the central generalised hyperbolic distribution;6 if 

(1)Model 1 ∶ rt = s1,t� + s
1

2

2,t
Hzt

s1 = s2 ∼ IG(v∕2, v∕s) , where IG denotes the inverse gamma 
distribution, and v is the degrees of freedom parameter, 
we have the central multivariate skewed-t distribution of 
DeMarta and McNeil (2005).

The first state variable, s1 , introduces skew, heavy tails 
and tail dependence to the unconditional distribution with 
jumps occurring simultaneously across all assets. The sec-
ond state variable, s2 , introduces time-varying volatility and 
heavy tails to the unconditional distribution. In this way, we 
capture the four stylised facts of financial assets: heavy tails, 
negative skew, volatility-clustering and tail dependence.

In the second model, we assume that conditional returns 
and the conditional variance of the market are positively 
dependent, in line with standard equilibrium theory. The 
second stochastic model is given by

Under the second model, assets react differently to infor-
mation depending on the state of the market. When volatility 
is high, a given negative shock, s1 < 1 , will result in a larger 
price decline than when volatility is low.

Informed and uninformed investors

To quantify the benefits from accounting for non-normality, 
we assume the existence of informed and uninformed inves-
tors (or, equivalently, consider an investor with and without 
information, given our prior caveat). The informed investor 
is aware that the return distribution is skewed and that vola-
tility is stochastic, whereas the uninformed investor assumes 
that returns are i.i.d. multivariate Gaussian. We therefore 
assume that informed investors are aware of the state varia-
ble, s1 , but are unaware of the value of s1 at any point in time. 
This is consistent with the rational expectations equilibrium 
model of Veronesi (1999). Intuitively, this means that the 
informed investor accounts for the probability of a crash 
but cannot predict when that crash will occur. Additionally, 

(2)Model 2 ∶ rt = s
1

2

2

(
s1� + Hzt

)

Table 1  Unconditional and 
conditional moments under 
Model 1 with skew and 
stochastic volatility

Unconditional and conditional moments of the uninformed, informed and omniscient investors in the pres-
ence of skew and stochastic volatility under the first stochastic representation

Return vector Covariance matrix

Unconditional � Ω = ���
Var(s

1
) + Σ

Investor type
 Uninformed unconditional EU[r] = � EU[Ω] = Σ

 Informed conditional EI[r] = � EI

[
Ω|s

2

]
= ���Var(s

1
) + s

2
Σ

5 McNeil, Frey and Embrechts (2005), Appendix 2.5
6 McNeil, Frey and Embrechts (2005), 3.2.3
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we assume that the informed investor can observe the con-
ditional level of variance, s2.7

Derivation of propositions

We compare the objective expected utility of the mean-vari-
ance investor who ignores non-normality, with the objective 
expected utility of the informed mean-variance investor who 
takes non-normality into account. Our focus is on the objec-
tive conditional expected utility as known by the “omnisci-
ent being” that observes the true underlying probability dis-
tribution. We denote this with the subscript O. We also refer 
to the subjective expected utility that the investor expects to 
receive given her conditional expectations of return and risk 
which may or may not be equal to the objective conditional 
utility. We assume that we have no parameter uncertainty, 
no forecasting ability8 and no budget constraint. We assume:

1. Returns are skewed, and volatility is stochastic
2. The investor has mean-variance utility
3. The uninformed investor assumes the mean is non-sto-

chastic: var(s1) = 0

4. The uninformed investor assumes volatility is non-sto-
chastic: var(s2) = 0 and sets s2 = 1

5. The informed investor is aware that the overall mean is 
stochastic: var(s1) > 0

6. The informed investor is aware that volatility is stochas-
tic: var(s2) > 0

7. The informed investor is unaware of the level of the 
mean in each period.

8. The informed investor conditions on the level of volatil-
ity s2

The unconditional and subjective investor moments are 
shown in Table 1.

For the informed investor, returns are skewed and volatil-
ity is stochastic under Model 1. The utility function is:

The optimal weights are given by

(3)��� − ���Ω� ∕2

(4)�̂� =
Ω−1𝜇

𝜆
=

(𝜇𝜇�Var(s1)+s2Σ)
−1
𝜇

𝜆

Substituting the optimal weight of the informed investor 
into the expected utility function gives the following:

Proposition 1 The unconditional expected mean-variance 
utility of the informed mean-variance investor under the 
assumptions of stochastic volatility and skew under Model 
1 and where  � = ��Ω−1� is given by

Proof: See “Appendix A”
For the uninformed investor, returns are skewed and vola-

tility is stochastic under Model 1
The optimal weights of the uninformed investor are again 

given by

The conditional expected return of the uninformed inves-
tor is given by

The conditional expected risk is then:

The expected utility of the uninformed investor is hence 
given by

Now, since EO

[
s1
]
= 1 and EO

[
s2
]
= 1 , we have:

Proposition 2 The unconditional expected mean-variance 
utility of the uninformed mean-variance investor under the 
assumptions of stochastic volatility and skew under Model 1

It is again clear that this is less than the subjective 
expected utility. The gain in utility is given by:

Now from Jensen’s inequality, we know

(5)EO

[
UI

]
= EI

[
UI

]
=

�

2�

(
E

[
1

s2 + Var
(
s1
)
�

])

w =
Σ−1�

�

EO[rp|s1 ] =
s1�

�Σ−1�

�

EO

[
�2
p
|s1, s2

]
=�� Ω�

=
1

�2

(
Σ−1�

)�(
Var

(
s1
)
��� + s2Σ

)(
Σ−1�

)

=
1

�2

(
s2� + Var

(
s1
)
�2
)

EO

[
UU|s1, s2

]
=
( s1α

�
−

1

2λ

(
s2α + Var

(
s1
)
�2
))

(6)EO

[
UU

]
=

�

2�

(
1 − Var

(
s1
)
�
)

EO
[

UI
]

− EO
[

UU
]

= �
2�

((

EO

[

1
s2 + Var

(

s1
)

�

])

−
(

1 − Var
(

s1
)

�
)

)

8 See Allen et al. (2019) for an analysis of the impact of forecasting 
ability in MV allocations.

7 An alternative and equally valid interpretation is that the state 
variable, s

2
 , represents a form of estimation error in the covari-

ance matrix, see, for example, Coles, Loewenstein and Suay (1995). 
Whereas Kan and Zhou (2007) and Allen, Lizieri and Satchell (2019) 
evaluate the impact of estimation error in the individual terms of 
the covariance matrix, the current work can be viewed as evaluating 
errors in the overall level of estimated market volatility.
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Hence,

The effect of skew and stochastic volatility under Model 2
We now turn to our second model where conditional 

returns are positively related to conditional variance, and the 
size of the crash depends on the prevailing level of volatility. 
Rewriting, for convenience:

The objective conditional mean-variance utility functions 
for our second model are given by:

where � is the risk aversion parameter, and, as before, the 
subscript “O” refers to the expectation of the “omniscient 
being”, with full information.

As in Model 1, the expected values of the two state vari-
ables are EO

[
s1
]
= EO

[
s2
]
= 1 and the two state variables are 

independent, implying that EO

[
s1s2

]
= 1 . As well as captur-

ing the characteristics of market behaviour, this approach 
yields convenient mathematical properties. The objective 
mean return is determined by the interaction of the two state 
variables as follows:

The objective conditional covariance matrix is defined 
as follows

Assuming that the elements of �  are positive, the first 
state variable increases each element of the covariance 
matrix due to the effect of stochastic mean returns, while the 
second state variable scales the resulting covariance matrix. 
Under this model, the informed investor is aware that mean 

𝛼

2𝜆

((
EO

[
1

s2 + Var
(
s1
)
𝛼

]))
>

𝛼

2𝜆

(
1

1 + Var
(
s1
)
𝛼

)

EO

[
UI

]
− EO

[
UU

]
>

𝛼

2𝜆

((
1

1 + Var
(
s1
)
𝛼

)
−
(
1 − Var

(
s1
)
𝛼
))

> 0

Model 2 ∶ rt = s
1∕2

2

(
s1� + Hzt

)

(7)
EO

[
UI|s1, s2

]
= ���s1s

1∕2

2
−

�s2
2
��

(
���Var

(
s1
)
+ Σ

)
�

EO

[
r|s1, s2

]
= s1s

1∕2

2
�

Ωs = Cov
[
rt|s1, s2

]
= s2

(
���Var

(
s1
)
+ Σ

)

returns are stochastic and that volatility is also stochastic. 
Again, the informed investor is unaware of the value of the 
state variable s1 . The informed investor is unaware that the 
true mean return is a function of the second state variable 
s2 . Again, the informed investor can condition volatility on 
s2 and thus can forecast the future level of volatility with-
out error. The uninformed investor uses the Gaussian i.i.d. 
assumption.

The unconditional and conditional moments of the inves-
tors are shown in Table 2:

For informed investors, returns are skewed and volatility 
is stochastic under Model 2.

Model 2
The conditional expected return of the informed investor 

is given by:

The informed covariance matrix is defined as follows:

The optimal weights are then given by:

Substituting the optimal weights of the informed investor 
into the objective utility function gives:

Proposition 3 The unconditional expected mean-variance 
utility of the informed mean-variance investor under the 
assumptions of stochastic volatility and skew under Model 2

For the uninformed investor, returns are skewed and vola-
tility is stochastic in Model 2.

The full results are derived in Appendix B. Substituting 
the weights of the uninformed investor as before into the 
objective utility function gives:

EI

[
r|s2

]
= s

1∕2

2
�

EI

[
Ω|s2

]
= s2

(
���Var

(
s1
)
+ Σ

)

�̂� =

(
𝜇𝜇�Var

(
s1
)
+ Σ

)−1
𝜇

s
1∕2

2
𝜆

(8)EO

[
UI

]
= EI

[
UI

]
=

�

2�

(
1

1+Var(s1)�

)

Table 2  Unconditional and 
conditional moments under 
Model 2 with skew and 
stochastic volatility

Unconditional and conditional moments of the uninformed and informed investors in the presence of skew 
and stochastic volatility under the second stochastic representation

Return vector Covariance MATRIX

Unconditional � Ω =
(
���

Var(s
1
) + Σ

)
Investor type
 Uninformed unconditional EU[r] = � EU[Ω] = Σ

 Informed conditional EI

[
r|s

2

]
= s

1∕2

2
� EI

[
Ω|s

2

]
= s

2

(
���Var(s

1
) + Σ

)
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Proposition 4 The unconditional expected mean-variance 
utility of the uninformed mean-variance investor under the 
assumptions of non-stochastic volatility and skew under 
Model 2

It is easily seen that this is less than the subjective 
expected utility as s1∕2

2
 is a concave function so

EO

[
s
1∕2

2

]
< 1 as EO

[
s2
]
= 1.

Using Propositions 3 and 4, the gain in utility is given by:

Taking the first term with the brackets of Eq. (10), we 
have

Now,

and

Thus, the first term within the brackets of equation (10) 
is greater than two, and the second term is strictly less than 
two by Jensen’s inequality and the gain from accounting 
for non-normality is unambiguously positive under both 
of our models.

Closed‑form expressions for expected utility 
under non‑normality

Modelling the state variables

In order to quantify the gains from accounting for non-
normality, we need to model the distributions of the two 
state variables. For the first state variable, we require a 

(9)EO

[
UU

]
=

�

2�

(
2EO

[
s
1∕2

2

]
−
(
1 + Var

(
s1
)
�
))

(10)

EO
[

UI
]

− EO
[

UU
]

= �
2�

(

1
1 + Var

(

s1
)

�

)

− �
2�

(

2EO

[

s1∕22

]

−
(

1 + Var
(

s1
)

�
)

)

= �
2�

(

1
1 + Var

(

s1
)

�
+
(

1 + Var
(

s1
)

�
)

− 2EO

[

s1∕22

]

)

= �
2�

(

1 +
(

1 + Var
(

s1
)

�
)2

1 + Var
(

s1
)

�
− 2EO

[

s1∕22

]

)

1 +
(
1 + Var

(
s1
)
�
)2

1 + Var
(
s1
)
�

=
1

1 + Var
(
s1
)
�
+
(
1 + Var

(
s1
)
�
)

1

1 + Var
(
s1
)
𝛼
+
(
1 + Var

(
s1
)
𝛼
)
> 2

1

1 + Var
(
s1
)
𝛼
> 1 − Var

(
s1
)
𝛼 as 1 > 1 − Var

(
s1
)2
𝛼2

distribution that can accommodate skew and has a mean 
of one. We use a modified Bernoulli distribution defined 
as follows

where the steady-state scaling factor, a > 1 , with a prob-
ability, p, and a crash scaling factor, b < 1 with probability, 
1 − p . Multiplying the mean return vector, � , by our modified 
Bernoulli variable creates negative skew and a heavy left tail 
while leaving the unconditional return unchanged on aver-
age. This is a further example of a mean-preserving spread 
(Rothschild and Stiglitz 1970). The variance of the Bernoulli 
distribution is given by

Since the expected value of the second state variable 
is 1,

and we can express the variance solely in terms of the crash 
probability, p, and the crash scaling factor, b.

For a fixed probability, 1 − p , we can see that the vari-
ance of our modified Bernoulli distribution increases as 
the absolute magnitude of the crash, b , increases.

The second state variable that we use to capture sto-
chastic volatility must be strictly positive to prevent the 
variance from becoming negative and also have a mean 
of one to ensure the unconditional variance is unchanged 
on average. We use the scaled chi-square distribution to 
capture time-varying volatility. This distribution has the 
attractive feature that the inverse moment can be calcu-
lated which allows for explicit expressions for expected 
utility. Like the standard chi-square, the scaled chi-square 
is bounded by zero from below and is generated by sum-
ming squared random normal variables, consistent with 
the calculation of variance. Unlike the standard chi-square, 
the mean is one for all values of k , corresponding to the 
steady-state market volatility level. The distribution of s2 
is given by

where �2 defines a chi-square variable with k ⩾ 3 degrees of 
freedom. The m-th moment of the distribution is given by:

(11)s1 a + (b − a)Bernoulli

V
(
s1
)
= (b − a)2(1 − p)p

E(s1) = a + (b − a)p = 1

(12)V
(
s1
)
=

1

p
(1 − b)2(1 − p)

(13)s2
�2(k)

k

(14)E[Xm] =
2mΓ

(
m+

k

2

)

kmΓ
(

k

2

)
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The parameter k controls the level of variability in the 
volatility level, s2 . As k increases, the variability in the 
level of volatility approaches zero. The second moment of 
the scaled chi-square distribution is given by

Panel A of Fig. 1 shows the density function of the 
scaled chi-square distribution for four values of k. Panel 
B shows the variance of the distribution conditional on k.

We also draw upon the inverse moment of our modified 
chi-square distribution.

We now use our modified Bernoulli and scaled chi-
square distributions to give closed-form solutions for the 
expected gain in utility from accounting for non-normality.

(15)E
[
X2

]
=

4Γ
(
2+

k

2

)

k2Γ
(

k

2

) = 1 +
2

k

(16)var (X) =
2

k

(17)E
[
X−1

]
=

kΓ
(

k

2
−1

)

2Γ
(

k

2

) =
k

k−2

Incorporating stochastic volatility and skew 
under Model 1

We now look to derive closed-form solutions under Model 
1 incorporating skew and stochastic volatility. For the 
informed investor, it is possible to derive a closed-form 
solution for expected mean-variance utility for particular 
distributions of the state variable, s2 using the following 
relationship:

As far as we are aware, however, it is not possible to 
derive a closed-form solution for expected utility of the 
informed investor using the scaled chi-square distribution. 
Accordingly, in the section “Empirical Application” we 
use numerical integration to give the expected utility of 
the informed investor. For the uninformed investor, we 
substitute the expected variance of the modified Bernoulli 
distribution into Proposition 2 to derive a closed-form 
expression for expected utility as follows:
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Fig. 1  Probability density of the scaled chi-square distribution (panel 
A). Variance of scaled chi-square distribution vs. degrees of freedom, 
k  (panel B). The left-hand panel shows the probability density func-

tion of the scaled chi-square distribution for 4, 8, 12 and 16 degrees 
of freedom. The right-hand panel shows the variance of the scaled 
chi-square distribution vs. k as given in equation 18
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Corollary 1 The unconditional expected mean-variance 
utility of the uninformed mean-variance investor under the 
assumptions of stochastic volatility and skew under Model 
1 using the expected first moment of the modified Bernoulli 
distribution is

For our second stochastic representation, where risk and 
return is known, we can provide closed-form solutions for 
the gain in expected utility for both investors as we now 
show by substituting the variance of the modified Ber-
noulli distribution (14) into Proposition 3:

Corollary 2 The unconditional expected mean-variance 
utility of the informed mean-variance investor under the 
assumptions of non-stochastic volatility and skew under 
Model 2 using the expected moments of the scaled chi-
square and the modified Bernoulli distribution is:

Substituting the definition of the kth moment of the 
scaled chi-square distribution (16) with m=0.5 and the 
variance of the modified Bernoulli distribution (14) into 
Proposition 4 gives:

Corollary 3 The unconditional expected mean-variance 
utility of the uninformed mean-variance investor under the 
assumptions of non-stochastic volatility and skew under 
Model 2 using the expected moments of the scaled chi-
square and the modified Bernoulli distribution is:

The gain in expected utility is then given by the difference 
between Corollaries 2 and 3.

Again, we see that this is unambiguously nonnegative as 
the first term within the brackets is strictly greater than or 
equal to 2 and the second term is strictly less than or equal 
to 2.

Corollary 4 The unconditional expected mean-variance utility 
of the informed mean-variance investor under the assumptions 
of non-stochastic volatility, skew and no estimation error under 
Model 2 using the expected moments of the modified Bernoulli 
and scaled chi-square distributions is:
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Corollary 5 The unconditional expected mean-variance 
utility of the uninformed mean-variance investor under the 
assumptions of non-stochastic volatility and skew under 
Model 2 using the expected moments of the modified Ber-
noulli and scaled chi-square distributions is:

Empirical application

Data

In this section, we quantify the gain in expected utility from 
accounting for non-normality by calibrating our models to 
empirical data. Now, we have stepped away from the gen-
eral case, and it is a valid criticism that our results are now 
subject to the vagaries of the data sets we have employed. To 
mitigate this risk and the scope for data-mining, we use asset 
classes that span significant periods of time that are com-
monly used in the literature. We consider the cases of both 
an international and a domestic investor. The opportunity 
set of our international investor is comprised of the MSCI 
equity indices of the G7 countries, Canada, France, Ger-
many, Italy, Japan, the UK and the USA. To calibrate the two 
models, we use the MSCI total return indices for the period 
February 1999 to March 2013. Table 3 provides the sample 
summary statistics. All of the asset returns are negatively 
skewed and display excess kurtosis. Using the Jarque–Bera 
test, we can reject normality for each of the assets at the 
1% level. We also reject normality in an average of 28% of 
overlapping 1,000 day sub-periods. The autocorrelation in 
the absolute value of returns is large and positive, indicative 
of heteroskedasticity.

The investment universe of our domestic investor contains 
the five value-weighted US sectors using the K.R. French 
data for the period 1/1983-12/2012. The universe contains 
all NYSE, AMEX and NASDAQ stocks. Sector definitions 
are based on the four-digit SIC codes. The 30-year interval 
spans multiple market regimes including the October 1987 
crash, the Russian debt default in and collapse of LTCM in 
1998, the Tech bubble and ensuing correction beginning in 
March, 2001, the Financial Crisis of 2007-8 and the ensuing 
recovery. Table 4 provides the summary statistics. Again, 
we can reject the hypothesis of normality at the 1% level for 
each of the indices.
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Modelling the state variables with the method 
of simulated moments

To quantify the gain in utility from accounting for non-
normality, we first need to estimate the parameters of the 
two return models. We employ the Bernoulli and scaled chi-
square distributions for the two state variables; other choices 
are also valid, as discussed above. Estimating the models 
allows us to decompose the unconditional distribution into 
a Gaussian i.i.d. component employed by the uninformed 
investor and a non-Gaussian component that is employed by 
the informed investor. The stochastic representations of our 
two models are given by

where s1 and s2 are described in equations (11) and (13).
We require estimates of the parameters, b̂ , and p̂ , for the 

first state variable, the parameter, k for the second state vari-
able, the vector �̂  and the upper triangular matrix, Ĥ where 
Ĥ is the Cholesky decomposition of the covariance matrix 
of the uninformed investor, Σ̂ . By simultaneously estimat-
ing the parameters, we can decompose the unconditional 
distribution into a skew-related component and a standard 
covariance-related component. It is then strictly true that the 
unconditional covariance matrix, Ω , is greater than Σ over all 
elements. In total, we have 3 + 2n + n(n − 1)∕2 terms to esti-
mate. This is a formidable challenge made more difficult by 

(24)
Model 1 ∶ rt = s1� + s

1∕2

2
Hzt

Model 2 ∶ rt = s
1∕2

2

(
s1� + Hzt

)

the lack of a closed-form multivariate density function, rul-
ing out standard maximum likelihood estimation. McFadden 
(1998) introduced the method of simulated moments (MSM) 
to estimate the parameters of multivariate functions for prob-
lems where the density function may be difficult to estimate, 
and it is this approach that we use here. Prior examples of 
employing the MSM for fitting return generating distribu-
tions in an asset allocation context include Brandt (1999), 
Ait-Sahalia and Brandt (2001) and Das and Uppal (2004).

We are interested in replicating the non-Gaussian charac-
teristics of our data, and we select the parameters, � , to mini-
mise weighted squared deviation between the second, third 
and fourth simulated and empirical moments as described 
below in (17). To ensure the covariance structure is also 
captured, we also employ the cross-moments of order two. 
The i-th empirical moment is given by the time-series aver-
age as follows:

where T is the number of data points, mi(.) is a function that 
gives the moment of order i, and zempt  is the observed return 
in period t.

The simulated counterpart of (15) is given by

(25)m̂simkT ,k =
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z
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(26)m̂simkT ,i =
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mi

�
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(𝜃)
�
, i =,… , nm

Table 3  G7 MSCI indices summary statistics

The summary statistics for the G7 countries for the period 2/1999-3/2013 using weekly data for the MSCI total return indices. The mean return 
refers to the weekly arithmetic return. The standard deviation is also weekly. Kurtosis is defined as excess kurtosis such that the normal distri-
bution has a kurtosis of zero. The % of Jarque–Bera failures refers to the proportion of 1000 day overlapping sub-periods where normality is 
rejected at the 5% level. The % of statistically significant skewness and % of statistically significant kurtosis refers to the proportion of sub-peri-
ods where the skewness and kurtosis are statistically significant at the 5% level. corr(rt , rt−1) refers to the autocorrelation in returns at one lag. 
corr

(||rt ||, ||rt−1||
)
 refers to autocorrelation of the absolute value of returns at one lag.

MSCI Canada MSCI France MSCI Germany MSCI Italy MSCI Japan MSCI UK MSCI USA Mean

Mean return 0.24 0.11 0.13 0.39 0.43 0.11 0.09 0.21
Standard deviation 3.43 3.46 3.73 3.69 2.83 2.98 2.66 3.26
Skewness − 0.68 − 0.57 − 0.46 − 0.67 − 0.10 − 0.71 − 0.48 − 0.52
Kurtosis 6.2 4.4 3.6 5.3 1.6 9.3 5.0 5.1
Maximum 19.4 14.8 16.4 19.9 12.0 17.7 12.3 16.1
Minimum − 22.9 − 23.4 − 22.9 − 23.6 − 14.8 − 24.1 − 18.2 − 21.4
Jarque–Bera 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
% of Jarque–Bera failures 21 21 21 36 29 36 29 28
% of statistically significant 

skewness
14 14 7 36 14 7 14 15

% of statistically significant 
kurtosis

7 21 21 29 7 21 29 19

�(rt, rt−1) − 0.10 − 0.05 − 0.01 − 0.02 − 0.06 − 0.10 − 0.08 − 0.06
�(|rt|, |rt−1|) 0.44 0.18 0.26 0.28 0.13 0.24 0.30 0.26
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where k ≥ 1 is a scaling factor that determines the length 
of the simulation. We select k to give 100,000 simulated 
periods per asset.

The vector of differences between the empirical and simu-
lated moments is then given by

To obtain the optimal values of the parameter vector, � , 
we minimise the error term, Qk,T (�) , as follows.

where W is a covariance matrix that we discuss below.
We perform k-step MSM (Hall 2005) as follows. To 

obtain an initial estimate of �̂  , we minimise the squared dif-
ferences between the simulated and observed moments with 
respect to the identity matrix. This of course gives equal 
weight to each of the moment and cross-moment conditions. 
We can improve on this result by repeating the minimisation 
with respect to an optimal weighting matrix Ŵ that provides 
the smallest asymptotic covariance of the estimator. We can 
estimate the optimal weighting matrix, Ŵ  , as the inverse of 
the estimated asymptotic covariance matrix of the moment 
conditions using the simulated data series. The most ele-
mentary estimator we could construct to capture all of the 
autocovariance is given by

gs,T
(
𝜃, z

emp

t

)
= m̂simkT − m̂simpT

(27)�̂� = argmin QT (𝜃) = gs,T (𝜃)
�Wgs,T (𝜃)

(28)Ω̂
�
�̂�
�
= Γ̂0 +

T−1∑
i=1

�
�Γi +

�Γ�
i

�

where

We follow common practice and use a Newey–West 
(1987) covariance estimator to weight the autocovariances. 
The result is a heteroskedasticity and autocovariance consist-
ent (HAC) estimator that is guaranteed to be positive defi-
nite and has a single solution. The Newey–West estimator 
computes the asymptotic covariance matrix as if the moment 
process is a vector moving average and uses the sample auto-
covariances up until a given lag, l, as follows.

While there are a number of complicated formulae 
that can be used to calculate the optimal number of lags, 
l, we satisfy ourselves with the smallest integer that satis-
fies l = T1∕4.9 The optimal weighting matrix for the rth run 
(iteration) is then given by

We then solve equation (21) iteratively, updating the opti-
mal weighting covariance, Ŵr , using the most recent param-
eter estimates, �̂�r−1 , until we achieve convergence.

(29)Γ̂i = T−1
T−1∑
T=i+1

g
�
�̂�, z

emp

t

�
g
�
�𝜃,z

emp

t−j

��

(30)Ω̂ = Γ̂0 +
l∑

l=1

l+1−i

l+1

�
�Γi +

�Γ�
i

�

(31)�Wr = Ω̂−1
r

(
�̂�r−1

)

Table 4  Value-weighted US 
sectors: summary statistics

The summary statistics for the 5 US value-weighted sectors for the period 1/1983-12/2012 using weekly 
data. The mean return refers to the weekly arithmetic return. The standard deviation is also weekly. Kurto-
sis is defined as excess kurtosis such that the normal distribution has a kurtosis of zero. The % of Jarque–
Bera failures refers to the proportion of 1000 day overlapping sub-periods where normality is rejected at 
the 5% level. The % of statistically significant skewness and % of statistically significant kurtosis refers to 
the proportion of sub-periods where the skewness and kurtosis are statistically significant at the 5% level. 
corr(rt , rt−1) refers to the autocorrelation in returns at one lag. corr

(||rt ||, ||rt−1||
)
 refers to autocorrelation of 

the absolute value of returns at one lag.

Cons. Manuf. Tech. Health. Other. Mean

Mean return 0.26 0.26 0.23 0.26 0.22 0.25
Standard deviation 2.29 2.28 3.12 2.50 2.80 2.60
Skewness − 0.52 − 0.82 − 0.35 − 0.37 − 0.55 − 0.52
Kurtosis 4.2 5.8 3.3 3.5 4.7 4.32
Maximum 11.0 10.3 16.8 15.8 11.8 13.17
Minimum − 17.1 − 16.1 − 18.6 − 17.0 − 18.4 − 17.43
Jarque–Bera 0.00 0.00 0.00 0.00 0.00 0.00
% of Jarque–Bera failures 28 41 17 38 31 31
% of statistically significant skewness 24 28 17 31 14 23
% of statistically significant kurtosis 28 31 10 24 24 23.45
�(rt, rt−1) − 0.05 − 0.08 − 0.08 − 0.08 − 0.06 − 0.07
�(|rt|, |rt−1|) 0.18 0.22 0.15 0.14 0.22 0.18

9 See Franke (2008)
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Parameter estimates

The optimal parameters for the two models for the G7 coun-
tries and the five value-weighted sector indices are shown 
in Table 5.

Both models describe the data well. Using the J test, we 
cannot reject the hypothesis that the empirical returns are 
generated by either of the stochastic return models. The 
correlation coefficients between the observed historical 
moments and the estimated moments of the simulated mod-
els are very high for each model and for each data set. In par-
ticular, the variance, covariance and kurtosis terms map on 
extremely well with the correlation coefficients approaching 
unity. For the sake of brevity, we do not report the t-statistics 
comparing the empirical and simulated moments.

Consistent with the high correlation coefficients, t-statis-
tics for the moment conditions exceed the 5% critical value 
for both of the models. It appears that both models are sat-
isfactory in reproducing the key moments of the two data 
sets. Further, the parameter estimates appear plausible. For 
example, in the case of the first model for the G7 MSCI 
index data, the crash probability is 1 − p = 0.38%, and the 
crash state value is -84.76. If we take the average weekly 
asset return across the G7 countries of 0.21% and substitute 
into the stochastic return equation of Model 1, we have a 
steady-state return of 0.26% per week and a crash return of 
-17.8% per week occurring once every 263 weeks or 5 years. 
The standard errors of the estimated crash probabilities, p̂ , 

are small, particularly for the G7 data set. We recognise, 
however, that the period used to estimate the models for the 
G7 MSCI data set included the dot-com crash and the global 
financial crisis and thus may overstate the long-term crash 
probability and potentially overstate the benefits of account-
ing for departures from normality, although the possibility 
of sharp downward corrections in response to major shocks 
remains a valid concern.

Expected utility and the effect of non‑normality 
under Model 1

We now use Proposition 1 and Corollary 3 to quantify the 
gain in expected utility from accounting for non-normality 
using the first stochastic representation. In Fig. 2, we show 
the expected utility of the informed and uninformed mean-
variance investors conditional on the variability of volatility 
for three different levels of skew. The horizontal axis shows 
the variability of the second state variable given by the vari-
ance of the scaled chi-square distribution in equation (19). 
We increase the magnitude of negative skew by increasing 
the scaling factor, b while keeping the crash probability con-
stant. The left-hand panel pertains to the G7 MSCI indices, 
and the right-hand panel pertains to the value-weighted US 
sectors. In the left panel, we show weekly crash sizes of 0, 
-8.9% and -17.8%, all at the 0.4% probability level consistent 
with the best fit parameters in the first column of Table 5. 
In the right panel, we show weekly crash sizes of 0, -10.6% 

Table 5  Parameter estimates for 
G7 MSCI indices and value-
weighted sectors

The method of simulated moments parameter estimates for the G7 MSCI Indices for the period 2/1999 to 
3/2013 and the 5 value-weighted US sectors for the period 1/1983 to 12/2012. k̂ refers to the estimated 
degrees of freedom of the scaled chi-square distribution; p̂ and b̂ refer the probability and scale parameters 
of the modified Bernoulli distribution. Standard errors are shown in brackets. The J-statistic tests whether 
the model is consistent with the empirical moments and converges asymptotically to a chi-square distribu-
tion

Model 1 Model 2

rt = s
1
� + s

1∕2

2
Hzt rt = s

1∕2

2

(
s
1
� + Hzt

)

Countries Sectors Countries Sectors

k̂ 6 4 6 4

p̂ 0.996152 0.991531 0.998369 0.991531
(0.0045) (0.0351) (0.0040) (0.0311)

b̂ − 84.76 − 84.67 − 84.75 − 84.67

(51.49) (115.72) (76.12) (126.99)
corr(varemp, varsim) 0.9965 0.9989 0.9994 0.9997
corr(covaremp, covarsim) 0.9989 0.9982 0.9998 0.9993
corr(skewemp, skewsim) 0.8732 0.9788 0.8569 0.9777
corr(kurtemp, kurtsim) 0.9941 0.9938 0.9917 0.9663
degrees of freedom 4 2 4 2
J-critical 9.49 5.99 9.49 5.99
J-statistic 7.58 2.37 8.56 2.03
p-value 0.11 0.31 0.07 0.36
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and -21.2%, at the 0.85% probability level. For the best-
fit parameters, we have marked the expected utility of the 
uninformed and informed investors with a black dot. In each 
case, we show a zero skew, low skew and high skew case. 
The high negative skew case in each panel has been selected 
to correspond with the best fit parameters in Table 5.

The effect of increasing the magnitude of negative skew 
is straightforward, decreasing the expected utility of the 
informed and uninformed investors. The loss in expected 
utility is not very large, consistent with Das and Uppal 
(2004). When volatility is non-stochastic, the expected util-
ity of the informed investor shifts downwards by more than 
the expected utility of the uninformed investor, because the 
informed investor is accounting for the additional compo-
nent of risk due to extreme events, whereas the uninformed 
investor is not. The introduction of extreme joint returns 
increases both the correlation and the variance of the uncon-
ditional distribution relative to the naïve expectations of 
the uninformed investor. A parallel can be drawn with the 
normal mean-variance mixing family where the variance is 
comprised of a standard variance component and a compo-
nent driven by the variance in the mean.

The effect of stochastic volatility requires more inter-
pretation. For the informed investor, increasing the level of 
variability in volatility actually increases expected utility. 
This is perhaps counter-intuitive and requires more expla-
nation. The reason lies in the convexity of expected utility 
with respect to volatility. To make this concrete, consider the 
case of a mean-variance investor with a risk aversion of one 
in a two-state world investing in a single asset. In the two 
equally likely states, the variance is equal to 0.5 units in the 
first state and 1.5 units in the second, and the mean return is 
1 unit in both states. The unconditional variance is therefore 
equal to 1 unit. Assuming that the informed investor can 
forecast the level of volatility without error, the expected 
utility is 1 in the first state and 0.33 in the second giving an 
unconditional expected utility of 0.66. If volatility is non-
stochastic, it is easily seen through the standard relation

that the expected utility equals 0.5. Thus, the informed 
investor gains more when volatility is low than she loses 
when volatility is high and, paradoxically, a departure from 
Gaussian i.i.d. returns leads to an increase in expected utility 
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Fig. 2  Model 1: Expected utility for the informed and uninformed 
investors for the G7 and US sectors allocation problems. The 
expected mean-variance utility of the informed and uninformed inves-
tors using Proposition 1 and Corollary 3. The left-hand panel relates 
to the G7 MSCI country indices for the period 2/1999 to 3/2013. 
The right-hand panel relates to the US value-weighted sectors for 

the period 1/1983 to 12/2013. The models are calibrated using the 
method of simulated moments (MSM). We use Monte Carlo simula-
tion to derive the expected values for Proposition 1 and direct sub-
stitution for Corollary 3. The parameters used in Proposition 1 and 
Corollary 3 are given in Table 5. We use a risk aversion � = 0.05.
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over the non-stochastic case. This is perhaps an unexpected 
result and an under-appreciated source of utility. For the 
uninformed investor, the objective expected utility in state 
one is 0.75 and 0.25 in state two, giving an unconditional 
expected utility of 0.5 units. The reason the uninformed 
investor underperforms the informed investor in the pres-
ence of non-stochastic volatility is more intuitive. The inves-
tor takes too little risk when risk is low and too much risk 
when risk is high. Put another way, in a world where you can 
model and account for changes in risk, stochastic volatility 
represents an opportunity.

The gain in expected utility from accounting for non-
normality is given by the vertical distance between the black 
dots in each panel. For the international investor, the gain in 
expected mean-variance utility is approximately 3 bps per 
week, or crudely 1.5% per year. For the domestic investor, 
the gain is approximately 1.25 bps per week, or 0.65% per 
year. It is common in the practitioner literature to equate the 
gain in certainty equivalence to the incremental fee the asset 

manager could charge by applying a given technique. Malkiel 
(2013) finds that the average mutual fund fees are approxi-
mately 0.9%.10 In this context, a gain in certainty equivalence 
of 0.65% to 1.5% per year is significant. A potential criticism 
of quantifying the gains in this way is that the gain in expected 
utility is a function of risk aversion which we have had to esti-
mate. To break the link between the level of risk aversion and 
the benefits of accounting for non-normality, we consider the 
percentage gain in expected utility. Dividing Corollary 4 by 
Proposition 1, we can see that the percentage gain in expected 
utility is independent of the level of risk aversion. The percent-
age gain in utility is approximately 38% for the international 
investor, and 44% for the domestic investor. The majority of 
the uplift in each case comes from accounting for stochastic 
volatility. This is a highly significant uplift suggesting that 
investors should account for non-normality.

10 Excluding Exchange Traded Funds (ETFs) and index funds

Informed, No Skew
Informed, Low Skew
Informed, High Skew

Uninformed, No Skew
Uniformed, Low Skew
Uninformed, High Skew

Informed, No Skew
Informed, Low Skew
Informed, High Skew

Uninformed, No Skew
Uniformed, Low Skew
Uninformed, High Skew

Fig. 3  Model 2: Expected utility for the informed and uninformed 
investors for the G7 asset allocation problem. The expected mean-
variance utility of the informed and uninformed investors using corol-
laries 6 and 7. The left-hand panel relates to the G7 MSCI country 
indices for the period 2/1999 to 3/2013. The right-hand panel relates 

to the US value-weighted sectors for the period 1/1983 to 12/2012. 
The models are calibrated using the method of simulated moments 
(MSM). The parameters used in corollaries 6 and 7 are given in 
Table 5.
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Expected utility and the effect of non‑normality 
under Model 2

In Fig. 3, we show the expected utility of the informed 
and uninformed investors using corollaries 6 and 7, for the 
second stochastic representation. While in the first model, 
mean returns and covariance are independent, in the second 
model, the return vector and the covariance matrix move in 
lock-step.

As in Model 1, the introduction of skew leads to a decrease 
in the expected utility for both the informed and the unin-
formed investors; the uninformed investor experiences a 
larger decrease in expected utility than the informed investor. 
In contrast to Fig. 2, as the variability in volatility increases 
moving left to right, the expected utility of the informed inves-
tor remains constant. This is because when volatility is high 
(low), exposure is low (high) coinciding with when expected 
returns are high (low). Thus, the investor is not able to exploit 
low volatility periods and benefit from the variability in vola-
tility in the same way as under our first model. What about the 
uninformed investor? Increasing the variability in volatility 
in this case leads to a decrease in expected utility. Whether 
volatility is above or below the steady-state level, the util-
ity of the uninformed investor is less than the utility of the 
informed investor. Again, we have highlighted the expected 
utility for the informed and uninformed investors for the opti-
mal MSM estimates with black dots. For the international 
investor, the gain in expected utility is approximately 1.3 bps 
per week, or 0.7% per year. In percentage terms, this trans-
lates to a gain of 15%. For the domestic investor, the gain 
is approximately 0.6 bps per week, or 0.30% per year. The 
percentage gain for the domestic investor, however, is higher 
at 25%. Again, the majority of the utility gain comes from 
accounting for stochastic volatility. Under both our models, 
whether mean returns are independent of volatility or not, 
there are economically significant gains from accounting for 
both stochastic volatility and skew. The gains, however, are 
more pronounced in the first model where conditional mean 
returns and conditional variance are independent. This makes 
sense in that the informed investor can benefit during low 
volatility periods by scaling up portfolio weights and captur-
ing higher returns. Given the lack of clear empirical evidence 
showing that conditional mean returns are positively related to 
conditional variance, it could be argued that the conclusions 
of our first model should carry more weight.

Conclusion

In this paper, we believe we have been the first to analyti-
cally quantify the economic gains that can be captured by the 
mean-variance investor from accounting both for the skew and 

stochastic volatility known to be present in asset returns. These 
gains are economically significant, commensurate with typi-
cal mutual fund management fees. The percentage uplift in 
certainty equivalent is also highly significant at approximately 
40%. While accounting for skew is important, the majority of 
the gains are due to accounting for non-stochastic volatility. 
This finding aligns with the empirical work of Fleming et al. 
(2001, 2003), Kirby, and Ostdiek (2012), Gomes (2007) and 
Han (2006) on volatility timing and the mutual fund work of 
Busse (1999). The utility gains from incorporating the effect of 
stochastic volatility into the asset allocation decision are per-
haps under-appreciated. In particular, if expected mean returns 
and volatility are independent, we show that the expected 
utility of the informed investor actually exceeds the expected 
utility of the mean-variance investor when returns are non-
stochastic. Thus, paradoxically, violations of the i.i.d. Gaussian 
assumption can increase expected utility relative to the non-
stochastic case. This finding also provides theoretical support 
for the use of conditional volatility models including exponen-
tially weighted moving averages, option implied volatility and 
GARCH models for portfolio construction. The mean-variance 
approximation is ubiquitous in the finance industry today and 
often goes unquestioned by practitioners.

Appendix A: Derivation of propositions: 
the effect of stochastic volatility and skew 
under Model I

Proof of Proposition 1

The unconditional expected mean-variance utility of the 
informed mean-variance investor under the assumptions of 
stochastic volatility and skew under Model 1.

The conditional moments of the informed investor are

The optimal weights are given by

Now,

Making use of E
[
s1
]
= 1 , we have

EI[r] = �

CovI
[
r|s2

]
= ���Var

(
s1
)
+ s2Σ
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In turn, we have

Proposition 1

Proof of Proposition 2

The unconditional expected mean-variance utility of the 
uninformed mean-variance investor under the assumptions 
of stochastic volatility and skew under Model 1

The conditional expected return of the uninformed inves-
tor is given by:

EO[rp|s1 ] = s1�
�Σ−1�

�
.

The expected risk is then

The expected utility of the uninformed investor is hence 
given by

Since E
[
s1
]
= 1 , we thus prove the result.
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Appendix B: Derivation of propositions: 
the effect of stochastic volatility and skew 
under Model 2

Our second stochastic representation is given by

where � is the unconditional mean, Σ is the unconditional 
covariance matrix, s1 and s2 are stochastic state variables, 
and H is as previously defined.

The objective conditional mean-variance utility function 
for our second model is given by

where � is the risk aversion parameter, and the subscript “O” 
refers to the expectation of the omniscient being.

The objective mean return is determined by the interac-
tion of the two state variables as follows

The objective covariance matrix is defined as follows

Proof of Proposition 3

The unconditional expected mean-variance utility of the 
informed mean-variance investor under the assumptions of 
stochastic volatility and skew under Model 2

The conditional expected return of the informed investor 
is given by

The conditional covariance matrix is defined as follows

The optimal weights are given by

Thus, the expected return is independent of the second state 
variable, s2.

Now,
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Thus, we have

Hence Proposition 3:

Proof of Proposition 4

The unconditional expected mean-variance utility of the unin-
formed mean-variance investor under the assumptions of sto-
chastic volatility and skew under Model 2.

The optimal weights of the uninformed investor are again 
given by

The conditional expected return of the uninformed inves-
tor is given by

The expected risk is

The expected utility of the uninformed investor is hence 
given by

Since E
[
s1
]
= 1 , we have Proposition 4:
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