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ABSTRACT
Large-scale retrieval is to recall relevant documents from a huge col-
lection given a query. It relies on representation learning to embed
documents and queries into a common semantic encoding space.
According to the encoding space, recent retrieval methods based
on pre-trained language models (PLM) can be coarsely categorized
into either dense-vector or lexicon-based paradigms. These two
paradigms unveil the PLMs’ representation capability in different
granularities, i.e., global sequence-level compression and local word-
level contexts, respectively. Inspired by their complementary global-
local contextualization and distinct representing views, we propose
a new learning framework, Unifier, which unifies dense-vector
and lexicon-based retrieval in one model with a dual-representing
capability. Experiments on passage retrieval benchmarks verify its
effectiveness in both paradigms. A uni-retrieval scheme is further
presented with even better retrieval quality. We lastly evaluate the
model on BEIR benchmark to verify its transferability.

CCS CONCEPTS
• Information systems → Novelty in information retrieval; •
Computing methodologies→ Ranking.

KEYWORDS
Deep representation learning, Pre-trained language model, Neural
encoder, Hybrid retrieval

1 INTRODUCTION
Large-scale retrieval aims to efficiently fetch all relevant documents
for a given query from a large-scale collection with millions or
billions of entries1. It plays indispensable roles as a prerequisite for a
broad spectrum of downstream tasks, e.g., information retrieval [2],
open-domain question answering [3]. To make online large-scale
retrieval possible, the common practice is to represent queries and
documents by an encoder in a Siamese manner (i.e., Bi-Encoder,

1An entry can be passage, document, etc., and we take document for demonstrations.

Corresponding author: Daxin Jiang (djiang@microsoft.com).

BE) [39]. So, its success depends heavily on a powerful encoder by
effective representation learning.

Advanced by pre-trained language models (PLM), e.g., BERT [9],
recent works propose to learn PLM-based encoders for large-scale
retrieval, which are coarsely grouped into two paradigms in light of
their encoding spaces with different focuses of representation gran-
ularity. That is, dense-vector encoding methods leverage sequence-
level compressive representations that embedded into dense seman-
tic space [14, 24, 51, 54], whereas lexicon-based encoding methods

make the best of word-level contextual representations by consider-
ing either high concurrence [36] or coordinate terms [12] in PLMs.
To gather the powers of both worlds, some pioneering works pro-
pose hybrid methods to achieve a sweet point between dense-vector
and lexicon-based methods for better retrieval quality. They focus
on interactions of predicted scores between the two paradigms.

Nonetheless, such surface interactions – score aggregations [25],
direct co-training [16], and logits distillations [5] – cannot fully
exploit the benefits of the two paradigms – regardless of their com-
plementary contextual features and distinct representation views.
Specifically, as for contextual features, the dense-vector models
focus more on sequence-level global embeddings against infor-
mation bottleneck [13, 14, 31], whereas the lexicon-based models
focus onword-level local contextual embeddings for precise lexicon-
weighting [10, 11, 36]. Aligning the two retrieval paradigms more
closely is likely to benefit each other since global-local contexts are
proven complementary in general representation learning [1, 44].
As for representing views, relying on distinct encoding spaces, the
two retrieval paradigms are proven to provide different views in
terms of query-document relevance [15, 16, 25]. Such a sort of ‘dual
views’ has been proven pivotal in many previous cooperative learn-
ing works [4, 17, 18, 27], which provides a great opportunity to
bridge the two retrieval paradigms. Consequently, without any in-
depth interactions, neither the single (dense/lexicon) nor the hybrid
retrieval model can be optimal.

Motivated by the above, we propose a brand-new learning frame-
work, Unified Retriever (Unifier), for in-depth mutual benefits of
both dense-vector and lexicon-based retrieval. On the one hand,
we present a neural encoder with dual representing modules for
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Unifier, which is compatible with both retrieval paradigms. Built
upon an underlying-tied contextualization that empowers consis-
tent semantics sharing, a local-enhanced sequence representation
module is presented to learn a dense-vector representation model.
Meantime, a global-aware lexicon weighting module considering
both the global- and local-context is proposed for a lexicon-based
representation. On the other hand, we propose a new self-learning
strategy, called dual-consistency learning, upon our unified encoder.
Besides a basic contrastive learning objective, we first exploit the
unified dual representing modules by mining diverse hard negatives
for self-adversarial within the Unifier. Furthermore, we present a
self-regularization method based on list-wise agreements from the
dual views for better consistency and generalization.

After being trained, Unifier performs large-scale retrieval via
either its lexicon representation by efficient inverted index or dense
vectors by parallelizable dot-product. Moreover, empowered by our
Unifier, we present a fast yet effective retrieval scheme, uni-retrieval,
to gather the powers of both worlds, where the lexicon retrieval is
followed by a candidate-constrained dense scoring. Empirically, we
evaluate Unifier on both passage retrieval benchmarks to check its
effectiveness and the BEIR benchmark [48] with twelve datasets
(e.g., Natural Questions, HotpotQA) to verify its transferability.

2 RELATEDWORK
PLM-based Retriever. Built upon PLMs, recent works propose to

learn encoders for large-scale retrieval, which are coarsely grouped
into two paradigms in light of their encoding spaces with differ-
ent focuses of representation granularity: (i) Dense-vector encoding
methods directly represent a document/query as a low-dimension
sequence-level dense vector 𝒖 ∈ R𝑒 (𝑒 is embedding size and
usually small, e.g., 768). And the relevance score between a docu-
ment and a query is calculated by dot-product or cosine similarity
[14, 24, 51, 54]. (ii) Lexicon-based encoding methods make the best
of word-level contextualization by considering either high concur-
rence [36] or coordinate terms [12] in PLMs. It first weights all
vocabulary lexicons for each word of a document/query based on
the contexts, leading to a high-dimension sparse vector 𝒗 ∈ R |V |
(|V| is the vocabulary size and usually large, e.g., 30k). The text is
then denoted by aggregating over all the lexicons in a sparse man-
ner. Lastly, the relevance is calculated by lexical-based matching
metrics (e.g., BM25 [42]). In contrast, we unify the two paradigms
into one sophisticated encoder for better consistency within PLMs,
leading to complementary information and superior performance.

Hybrid Retriever. Some works propose to bridge the gap be-
tween dense and lexicon for a sweet spot between performance
and efficiency. A direct method is to aggregate scores of the two
paradigms [25], but resulting in standalone learning and sub-optimal
quality. Similar to our work, CLEAR [16] uses a dense-vector model
to complement the lexicon-based BM25 model, but without feature
interactions and sophisticated learning. Sharing inspiration with
our uni-retrieval scheme, COIL [15] equips a simple lexicon-based
retrieval with dense operations over word-level contextual embed-
dings. Unifier differs in not only our lexicon representations jointly
learned for in-depth mutual benefits but also sequence-level dense
operations involved for memory-/computation-efficiency. Lastly,
SPARC [26] distills ranking orders from a lexicon model (BM25)

into a dense model as a companion of the original dense vector,
which is distinct to our motivation.

Bottleneck-based Learning. In terms of neural designs, our en-
coder is similar to several recent representation learning works, e.g.,
SEED-Encoder [31]. Condenser [13], coCondenser [14], and Dif-
fCSE [6], but they focus on the bottleneck of sequence-level dense
vectors. For example, SEED-Encoder, Condenser, and CoCondenser
enhance their dense capabilities by emphasizing the sequence-level
bottleneck vector and weakening the word-level language model-
ing heads, while DiffCSE makes the learned sentence embedding
sensitive to the difference between the original sentence and an
edited sentence by a word-level discriminator. With distinct motiva-
tions and targets, we fully exploit both the dense-vector bottleneck
and the word-level representation learning in a PLM for their mu-
tual benefits. These are on the basis of not only the shared neural
modules but also structure-facilitated self-learning strategies (see
the next section). Nonetheless, as discussed in our experiments,
our model can still benefit from these prior works via parameter
initializations.

Instance-dependent Prompt. Our model also shares high-level
inspiration with recent instance-dependent prompt learning meth-
ods [22, 50]. They introduce a trainable component to generate
prompts based on each input example. Such generated prompts can
provide complementary features to the original input for a better
prediction quality. Analogously, our sequence-level dense vector
can be seen as a sort of ‘soft-prompt’ for the sparse lexicon-based
representation module, resulting in the superiority of our lexicon-
based retrieval, which will be discussed in experiments. In addition,
the ‘soft-prompt’ in our Unifier also serves as crucial outputs in a
unified retrieval system.

Reranker-taught Retriever. Distilling the scores from a reranker
into a retriever is proven promising [10, 19, 20] . In light of this,
recent works propose to jointly optimize a retriever and a reranker:
RocketQAv2 [41] is proposed to achieve their agreements with
reranker-filtered hard negatives, while AR2 [56] is to learn them in
an adversarial fashion where the retriever is regarded as a generator
and the reranker as a discriminator. In contrast to reranker-retriever
co-training, we resort to in-depth sharing from the bottom (i.e.,
features) to the top (i.e., self-learning) merely within a retriever,
with no need for extra overheads of reranker training. Meantime,
our unified structure also uniquely enables it to learn from more
diverse hard negatives mined by its dual representing modules.

3 METHODOLOGY
Task Definition. Given a collection with numerous documents

(i.e., D = {𝑑𝑖 } |D |𝑖=1) and a textual query 𝑞 from users, a retriever
aims to fetch a list of text pieces D̄𝑞 to contain all relevant ones.
Generally, this is based on a relevance score between 𝑞 and every
document 𝑑𝑖 in a Siamese manner, i.e., < Enc(𝑞), Enc(𝑑𝑖 ) >, where
Enc is an arbitrary representation model (e.g., Bag-of-Words and
neural encoders) and < ·, · > denotes a lightweight relevance metric
(e.g., BM25 and dot-product).

3.1 General Retriever Learning Framework
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Figure 2: The encoder in Unifier.

Figure 1: Bi-encoder learning.

To ground a method, we first
introduce a contrastive learn-
ing framework to train a re-
trieval model (Figure 1). For
supervision data in retriever
training, differing from tradi-
tional categorical tasks, only
query-document tuples (i.e.,
(𝑞, 𝑑+𝑞 )) are given as positive
pairs. Hence, given a 𝑞, a
method needs to sample a set of negatives N𝑞 = {𝑑−𝑞 }𝑀1 from
D, and trains the retriever on tuples of (𝑞, 𝑑+𝑞 ,N𝑞).𝑀 is the number
of negatives. If no confusion is caused, we omit the subscript ‘𝑞’ for
a specific query in the remaining.

Formally, given 𝑞 and ∀𝑑 ∈ {𝑑+} ∪ N, an encoder, Enc(·;𝜃 ),
is applied to them individually to produce their embeddings, i.e.,
Enc(𝑞;𝜃 ) and Enc(𝑑 ;𝜃 ), where the encoder is parameterized by 𝜃
if applicable. It is noteworthy we tie the query encoder with the
document encoder in our work for simplicity. Then, a relevance
metric is applied to each pair of the embeddings of the query and
each document. Thus, a probability distribution over the documents
{𝑑+}∪N can be defined as

𝒑 B 𝑃 (d | 𝑞, {𝑑+}∪N;𝜃 ) = (1)
exp(< Enc(𝑞;𝜃 ), Enc(𝑑 ;𝜃 ) >)∑

𝑑 ′∈{𝑑+ }∪N exp(< Enc(𝑞;𝜃 ), Enc(𝑑′;𝜃 ) >) ,

where ∀𝑑 ∈ {𝑑+} ∪N. Lastly, a contrastive learning loss to optimize
the encoder 𝜃 is

𝐿𝜃 = − log 𝑃 (d = 𝑑+ | 𝑞, {𝑑+}∪N;𝜃 ). (2)

3.2 Neural Encoder in Unifier
We present an encoder (see Figure 2) for Unifier for dense-vector
and lexicon-based retrieval.

Underlying-tied Contextualization. We first propose to share
the low-level textual feature extractor between both representing
paradigms. Although the two paradigms are focused on different
representation granularities, sharing their underlying contextu-
alization module can still facilitate semantic knowledge transfer
between the two paradigms. As such, they can learn consistent

semantic and syntactic knowledge towards the same retrieval tar-
gets, especially the salient lexicon-based features transferred to
dense vectors. Formally, we leverage a multi-layer Transformer
[49] encoder to produce word-level (token-level) contextualized
embeddings, i.e.,

𝑯 (𝑥 ) = Transfm-Enc([CLS]𝑥[SEP];𝜃 (𝑐𝑡𝑥 ) ) (3)

where ∀𝑥 ∈ {𝑞} ∪ {𝑑+} ∪N, and [CLS] & [SEP] are special tokens
by following PLMs [9, 30], 𝑯 (𝑥 ) = [𝒉(𝑥 )[CLS],𝒉

(𝑥 )
1 , . . . ,𝒉(𝑥 )𝑛 ,𝒉(𝑥 )[SEP]]

are resulting embeddings, and 𝑛 is the number of words in 𝑥 .

Local-enhanced Sequence Representation. On top of the embed-
dings with enhanced local contexts, we then present a representing
module to produce sequence-level dense vectors. For this purpose,
we apply another multi-layer Transformer encoder to 𝑯 (𝑥 ) , fol-
lowed by a pooler to derive a sequence-level vector. This can be
written as

𝒖 (𝑥 ) = Pool(Transfm-Enc(𝑯 (𝑥 ) ;𝜃 (𝑑𝑒𝑛) )), (4)

where this module is parameterized by 𝜃 (𝑑𝑒𝑛) untied with 𝜃 (𝑐𝑡𝑥 ) ,
Pool(·) gets a sequence-level dense vector by taking the embedding
of special token [CLS], and the resulting 𝒖 (𝑥 ) ∈ R𝑒 denotes a
global dense representation of the input text 𝑥 , which is used for
dense-vector retrieval.

Global-aware Lexicon Weighting. Lastly, to achieve lexicon-based
retrieval, we adapt a recent SParse Lexical AnD Expansion Model
(SPLADE) [10] into our neural encoder. SPLADE is a lexicon-weighting
retrieval model which learns sparse expansion for each word in
query/document 𝑥 via the MLM head of PLMs and sparse regu-
larization. Differing from the original SPLADE, our lexicon-based
representing module not only shares its underlying feature extrac-
tor with a dense model but strengthens its hidden states by the
global vector 𝒖 (𝑥 ) above. The intuition is that, similar to text de-
coding with a bottleneck hidden state, the global context serves as
high-level constraints (e.g., concepts/topics) to guide word-level
operations [13, 31, 47]. In particular, the word-level contextual-
ization embeddings passed into this module are manipulated as
�̂� (𝑥 ) = [𝒖 (𝑥 ) ,𝒉(𝑥 )1 , . . . ,𝒉(𝑥 )[SEP]]. Then, a lexicon-weighting repre-
sentation for 𝑥 can be derived by

𝒗 (𝑥 )= log(1+Max-Pool(ReLU( (5)

𝑾 (𝑒 ) Transfm-Enc(�̂� (𝑥 ) );𝜃 (𝑚𝑙𝑚) ))),

where, 𝜃 (𝑚𝑙𝑚) parameterizes a multi-layer Transformer encoder,
𝑾 (𝑒 ) ∈ R |V |×𝑒 denotes the transpose of word embedding ma-
trix as the MLM head, |V| denotes the vocabulary size, 𝜃 (𝑙𝑒𝑥 ) =

{𝑾 (𝑒 ) , 𝜃 (𝑚𝑙𝑚) } parameterizes this module, and 𝒗 (𝑥 ) ∈ R |V | is a
sparse lexicon-based representation of 𝑥 . And its sparsity is reg-
ularized by FLOPS [37] as in [10]. Here, the saturation function
log(1 + Max-Pool(·)) prevents some terms from dominating.

In summary, given a text 𝑥 , Unifier produces two embeddings
via its dual representing modules:

𝒖 (𝑥 ) B Uni-Den(𝑥 ;Θ(𝑑𝑒𝑛) ),

𝒗 (𝑥 ) B Uni-Lex(𝑥 ;Θ(𝑙𝑒𝑥 ) ), (6)
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Figure 3: The two-stage self-learning strategy for Unifier.

whereΘ(𝑑𝑒𝑛) = {𝜃 (𝑐𝑡𝑥 ) ,𝜃 (𝑑𝑒𝑛) } andΘ(𝑙𝑒𝑥 ) = {𝜃 (𝑐𝑡𝑥 ) ,𝜃 (𝑑𝑒𝑛) ,𝜃 (𝑙𝑒𝑥 ) }.
Hence, 𝒖 (𝑥 ) ∈ R𝑒 denotes a dense vector and 𝒗 (𝑥 ) ∈ R |V | denotes
a sparse lexicon-based embedding.

3.3 Dual-Consistency Learning for Unifier
To maximize our encoder’s representing capacity, we propose a self-
learning strategy, called dual-consistency learning (Figure 3). The
‘dual-consistency’ denotes learning the dual representing modules
to achieve consistency in a unified model via negative samples and
module predictions.

Basic Training Objective. To learn the encoder, a straightforward
way is applying the contrastive learning loss defined in Eq.(1-2) to
our dual representing modules. That is,

𝐿(con) = − log 𝑃 (d = 𝑑+ |𝑞, {𝑑+}∪N;Θ(𝑑𝑒𝑛) )

− log 𝑃 (d=𝑑+ |𝑞, {𝑑+}∪N;Θ(𝑙𝑒𝑥 ) ), (7)

where the former is for dense-vector retrieval while the latter is
for lexicon-based retrieval. Towards the same retrieval target, the
model is prone to learn consistent semantic and syntactic features
via complementing the global-local granularity of the two retrieval
paradigms. Due to the non-differentiability of lexicon-basedmetrics,
we follow [12] to use dot-product of lexicon-weighting represen-
tation during training but resort to a lexicon matching system
[53] with quantization during indexing&retrieval. (see Appx. 3.4
for details) Note that 𝜃 (𝑑𝑒𝑛) would not be optimized w.r.t. the
losses on top of the lexicon-based module. As for the query’s
negatives N of in Eq.(7), they are initially sampled by a BM25 re-
trieval system at the warmup stage [14, 54], denoted as N(𝑏𝑚25) ={
𝑑 |𝑑 ∼ 𝑃 (d | 𝑞,D\{𝑑+ } ;BM25)

}
, where D\{𝑑+ } denotes all docu-

ments in the collection D except the positive 𝑑+ for query 𝑞.

Negative-bridged Self-Adversarial. However, it is verified that
learning a retriever based solely on BM25 negatives cannot perform
competitively [51, 54]. Thereby, previous works propose to sample
hard negatives by the best-so-far retriever for continual training [14,
54], a.k.a. self-adversarial learning [46]. In our pilot experiments,
we found the two retrieval paradigms can provide distinct hard
negatives (> 40% top-retrieved candidates are different) to ensure
diversity after a combination. This motivates us to make the best of
the hard negatives sampled by our dual representing modules: hard
negatives sampled from one module can be applied to both itself
and its counterpart in one unified framework. This can be regarded
as a sort of self-distillation as both distilling samples (i.e., document

mined from the collection) and distilling labels (i.e., negative label
only) are sourced from one unified model. So, we first sample two
sets of negatives from the dual-representing modules:

N(𝑑𝑒𝑛) =
{
𝑑 |𝑑 ∼ 𝑃 (d | 𝑞,D\{𝑑+ } ;Θ(𝑑𝑒𝑛) )

}
,

N(𝑙𝑒𝑥 ) =
{
𝑑 |𝑑 ∼ 𝑃 (d | 𝑞,D\{𝑑+ } ;Θ(𝑙𝑒𝑥 ) )

}
, (8)

where our Unifierwas trained withN(𝑏𝑚25) at warmup stage. Next,
we upgrade N in Eq.(7) from N(𝑏𝑚25) at warmup stage to N(𝑑𝑒𝑛) ∪
N(𝑙𝑒𝑥 ) , and then perform a continual learning stage.

Agreement-based Self-Regularization. We lastly present a self-
regularization method for Unifier. Its goal is to achieve an agree-
ment from different views through our dual representing modules.
Such an agreement-based self-regularization has been proven effec-
tive in both retrieval model training (via retriever-reranker agree-
ments for consistent results [41, 56]) and general representation
learning (via agreements from various perturbation-based views for
better generalization [4, 17, 27]). It is stronger than the contrastive
learning in Eq.(7) as the agreement is learned by a KL divergence,
i.e.,

𝐿(reg)=𝐷KL (𝑃 (d|𝑞,{𝑑+}∪N;Θ(𝑑𝑒𝑛) ) (9)

∥𝑃 (d|𝑞, {𝑑+}∪N;Θ(𝑙𝑒𝑥 ) )) .

Overall Training Pipeline. In line with [14], we lastly follow a
simple three-step pipeline to learn our retriever on the basis of the
proposed training objectives and hard negatives: (i)Warmup Stage:
Initialized by a pre-trained model, Unifier is updated w.r.t. Eq.(7)
+ 𝜆 FLOPS (by following [10] for sparsity), with BM25 negatives
N(𝑏𝑚25) . (ii) Hard Negative Mining: According to the warmup-
ed Unifier, static hard negatives, N(𝑑𝑒𝑛) and N(𝑙𝑒𝑥 ) , are sampled
by Eq.(8). (iii) Continual Learning Stage: Continual with the
warmup-ed Unifier, the model is finally optimized on N(𝑑𝑒𝑛) ∪
N(𝑙𝑒𝑥 ) w.r.t. a direct addition of Eq.(7&9)+𝜆 FLOPS.

3.4 Retrieval Schemes
Inference of Lexicon-based Retrieval. During the inference of

large-scale retrieval, there are some differences between dense-
vector and lexicon-based retrieval methods. As in Eq.(1), we use the
dot-product between the real-valved sparse lexicon-based represen-
tations as a relevance metric, where ‘real-valved’ is a prerequisite
of gradient back-propagation and end-to-end learning. However,
it is inefficient and infeasible to leverage the real-valved sparse
representations, especially for the open-source term-based retrieval
systems, e.g., LUCENE and Anserini [53]. Following Formal et al.
[10], we adopt ‘quantization’ and ‘term-based system’ to complete
our retrieval procedure. That is, to transfer the high-dimensional
sparse vectors back to the corresponding lexicons and their virtual
frequencies, the lexicons are first obtained by keeping the non-zero
elements in a high-dim sparse vector, and each virtual frequency
then is derived from a straightforward quantization (i.e., ⌊100× 𝒗⌋).
In summary, the overall procedure of our large-scale retrieval based
on a fine-tuned Unifier-lex is i) generating the high-dim sparse
vector for each document and transferring it to lexicons and fre-
quencies, ii) building a term-based inverted index via Anserini [53]
for all documents in a collection, iii) given a test query, generating
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Table 1: Passage retrieval results on MS-Marco Dev and TREC Deep Learning 2019. †Refer to Table 2. ‘coCon’: coCondenser that continually
pre-trained BERT in unsupervised manner. ‘Reranker taught’: distillation from a reranker (see §2).

Method Pre-trained
model

Reranker
taught

Hard
negs

Mul
Repr

MS-Marco Dev TREC DL 19

MRR@10 R@100 R@1k R@100 nDCG@10
Dense-vector Retriever

ANCE [51] RoBERTabase 33.8 86.2 96.0 44.5 65.4
ADORE [54] RoBERTabase ✓ 34.7 87.6 - 47.3 68.3
TAS-B [20] DistilBERT ✓ 34.7 - 97.8 - 71.2
TCT [29] BERTbase ✓ 33.5 - 96.4 - 67.0
TCT-ColBERT [29] BERTbase ✓ ✓ 35.9 - 97.0 - 71.9
Condenser [13] Condenserbase ✓ 36.6 - 97.4 - -
coCondenser [14] coConbase ✓ 38.2 - 98.4 - -
ColBERTv1 [24] BERTbase ✓ 36.0 - 96.8 - -
ColBERTv2 [43] BERTbase ✓ ✓ ✓ 39.7 - 98.4 - -
PAIR [40] ERNIEbase ✓ 37.9 - -† - -
RocketQA [38] ERNIEbase ✓ 37.0 - -† - -
RocketQAv2 [41] ERNIEbase ✓ ✓ 38.8 - -† - -
AR2 [56] coConbase ✓ ✓ 39.5 - -† - -
Lexicon-base or Sparse Retriever

DeepCT [8] BERTbase 24.3 - 91.3 - 55.1
RepCONC [55] RoBERTabase ✓ 34.0 86.4 - 49.2 66.8
SPLADE-max [10] DistilBERT 34.0 - 96.5 - 68.4
SPLADE-doc [10] DistilBERT 32.2 - 94.6 - 66.7
DistilSPLADE-max [10] DistilBERT ✓ 36.8 - 97.9 - 72.9
SelfDistil [11] DistilBERT ✓ ✓ 36.8 - 98.0 - 72.3
EnsembleDistil [11] DistilBERT ✓ ✓ 36.9 - 97.9 - 72.1
Co-SelfDistil [11] coConbase ✓ ✓ 37.5 - 98.4 - 73.0
Co-EnsembleDistil [11] coConbase ✓ ✓ ✓ 38.0 - 98.2 - 73.2
Hybrid Retriever

CLEAR [16] BERTbase ✓ 33.8 - 96.9 - 69.9
COIL-full [15] BERTbase ✓ 35.5 - 96.3 - 70.4
Unifierlexicon (warmup) coConbase 37.2 90.1 97.8 50.1 69.7
Unifierdense (warmup) coConbase 36.1 87.7 96.6 44.6 63.9
Unifieruni-retrieval (warmup) coConbase ✓ 38.3 90.8 98.0 50.6 70.2
Unifierlexicon coConbase ✓ 39.7 91.2 98.1 53.2 73.3
Unifierdense coConbase ✓ 38.8 90.3 97.6 50.2 71.1
Unifieruni-retrieval coConbase ✓ ✓ 40.7 92.0 98.4 53.8 73.8

the lexicons and frequencies, in the same way, and iv) querying the
built index to get top document candidates.

Uni-retrieval Scheme. As in Figure 2, our model is fully compat-
ible with the previous two retrieval paradigms. In addition, we
present a uni-retrieval scheme for fast yet effective large-scale re-
trieval. Instead of adding their scores [11, 25] from twice-retrieval
with heavy overheads, we pipelinelize the retrieval procedure: given
𝑞, our lexicon-based retrieval under an inverted file system is to
retrieve top-K documents from D. Then, our dense-vector retrieval
is then applied to the constrained candidates for dense scores. The
final retrieval results are according to a simple addition of the two
scores. We use ‘addition’ as our combination baseline for its gener-
ality and explore more advanced methods in §4.4. And, due to fast
dense-vector dot-product calculations on top-K documents, uni-
retrieval’s latency is almost equal to single lexicon-based retrieval.

Table 2: MS-Marco retrieval on one-positive-enough recall.

Method M@10 R@50 R@1K

RocketQA [38] 37.0 85.5 97.9
PAIR [40] 37.9 86.4 98.2
RocketQAv2 38.8 86.2 98.1
AR2 39.5 87.8 98.6
Unifierlexicon 39.7 87.6 98.2
Unifierdense 38.8 86.3 97.8
Unifieruni-retrieval 40.7 88.2 98.5

4 EXPERIMENT
Datasets & Metrics. In line with [10], we use popular passage

retrieval datasets, MS-Marco [34], with official queries (no aug-
mentations [41]), and report for MS-Marco Dev set and TREC
Deep Learning 2019 set [7]. Following previous works, we report



Shen et al.

MRR@10 (M@10) and Recall@1/50/100/1K2 for MS-Marco Dev, and
report nDCG@10 and R@100 for TREC Deep Learning 2019. Be-
sides, we also transfer our model trained on MS-Marco to the BEIR
benchmark [48] to evaluate its generalizability, where nDCG@10
is reported. We take 12 datasets (i.e., TREC-COVID, NFCorpus, NQ,
HotpotQA, FiQA, ArguAna, Tóuche-2020, DBPedia, Scidocs, Fever,
Climate-FEVER, and SciFact) in the BEIR benchmark as they are
widely-used across most previous papers.

Experimental Setups. As stated in §3.3, we take a 2-stage learn-
ing scheme [14]. We use coCondenser-marco [14] (unsupervised
continual pre-training from BERT-base [9]) as our initialization as
it shares a similar neural structure and has potential for promising
performance [11, 14, 56]. 𝜃 (𝑐𝑡𝑥 ) , 𝜃 (𝑑𝑒𝑛) , and 𝜃 (𝑙𝑒𝑥 ) correspond to
Transformer layers of 6, 6, and 2, respectively, where max length is
128 and warmup ratio is 5%. At warmup stage, batch size of queries
is 16, each with 1 positive document and 15 negatives, learning
rate is 2×10−5, the random seed is fixed to 42. And loss weight of
FLOPS [37] is set to 0.0016 since we want make the model sparser
than SPLADE [10] (0.0008). At continual learning stage, batch size
is 12 to enable each module with 15 negatives. And learning rate is
reduced to 1/3 of the original, and the random seed is changed to 22
for a new data feeding order. And the loss weight of FLOPS is lifted
to 0.0024. We did not tune the hyperparameters. In retrieval phase,
we set K=2048 in our uni-retrieval, and also compare other choices
in our analysis. All experiments are run on a single A100 GPU. Our
codes are released at https://github.com/taoshen58/UnifieR.

4.1 Main Evaluation
MS-Marco Dev. As in Table 1&2, our framework achieves new

state-of-the-art metrics on most metrics. Our dense-vector retrieval
surpasses previous methods without distillations from rerankers,
while our lexicon-based retrieval pushes the best sparse method to a
new level, especially inMRR@10 (+1.4%). Empowered by our unified
structure, the uni-retrieval scheme can achieve 40.7% MRR@10.
Although R@1K is approaching its ceiling across recent works, we
notice Unifier is less competitive than AR2 (-0.2%) in Table 2, as the
latter involves a costly reranker in training for better generalization.
And please see §4.4 for our rerank-taught results.

TREC Deep Learning 2019. As listed in Table 1, our retrieval
method, with either single (dese/lexicon) or unified representation,
achieves a state-the-of-art or competitive retrieval quality. Specif-
ically, compared to the previous best method, called TAS-B, our
model lifts MRR@10 and nDCG@10 by 6.9% and 2.6%, respectively.

BEIR Benchmark. Table 3 shows in-domain evaluation and zero-
shot transfer on BEIR (see §B.1). It is observed that, with outstanding
in-domain inference ability, our model also delivers comparable
transferability among the retrievers with similar training settings
(i.e., comparable models o/w reranker distillations). But, we found
our model suffers from inferior generalization ability compared to
the models with MSE-based reranker distillation [10, 43]. And a
small model with distillation (e.g., DistilSPLADE) even beats the

2We follow official evaluation metrics at https://github.com/castorini/anserini. But, we
found 2 kinds of Recall@N onMS-Marco in recent papers, i.e., official all-positive-macro

recall and one-positive-enough recall (see §A for details). Thereby, we report the former
by default but list the latter separately for fair comparisons.

Table 3: Retrieval nDCG@10 results on BEIRwith 12 out-of-domain
datasets, and 1 in-domain dataset. Avg ismean nDCGover 12 datasets
and Best is how many datasets a method achieves best. DocT5Query
[36], ColBERT [24], ColBERT-v2 [43], DistilSPLADE [10].

Method Avg Best In-Dm

Lexicon
-based

BM25 [48] 41.1 1 22.8
DocT5Query 42.4 0 33.8
UniCOIL [28] 40.0 0 -

Dense
-vector

ColBERT 41.8 2 40.8
ANCE [51] 37.7 0 38.8
GenQ [48] 39.8 1 40.8
TAS-B [20] 40.4 0 40.8
Contriever [21] 44.3 4 -

Unifieruni-retrieval 44.5 4 47.1
Reranker
taught

ColBERT-v2 47.0 N/A 42.5
DistilSPLADE 47.0 N/A 43.3

Huge
models

GTR-XXL [35] 45.9 N/A 44.2
SGPT-5.8B [33] 49.4 N/A 39.9

Table 4: Comparison with ensemble and hybrid retrievers. 1We
operate on the best SPLADE model (MRR@10=38.5) with the best co-
Condenser (MRR@10=38.2). 2An ensemble of four SPLADE models.

Method M@10 R@1
Unifieruni-retrieval 40.7 26.9
Uni-scheme of Best1 40.3 26.1
Ensemble of Best1 40.4 26.5
Ensemble of SPLADE2 40.0 -
COIL-full (hybrid) 35.5 -

Table 5: Ablation of the encoder on MS-Marco Dev.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
Unifier (warmup) 37.2 90.1 36.1 87.7
^ w/o sharing Global 36.1 89.8 35.2 87.2
^ w/o in-depth Interact 36.1 89.3 35.7 89.7

models with billions of parameters (e.g., GTR-XXL). The potential
reasons are two-fold: i) distilling a reranker to the retriever has
been proven to produce more generalizable scores than a bi-encoder
[32] and ii) the initialization of Unifier, coCondenser, has been pre-
trained on Marco collection, reducing its generalization.

4.2 Further Analysis
Comparison to Ensemble Models. As in Table 4, we report the

numbers to compare our uni-retrieval scheme with ensemble mod-
els. Even if we only need once large-scale retrieval followed by a
small amount of dot-product calculation, the model still surpasses
its competitors. Meantime, we found both uni-retrieval and ensem-
ble are bounded by the worse participant. For example, even if we
use a SPLADE with MRR@10 of 39.3 for ‘Ensemble/Uni-scheme
of Best’, the performance did not show a remarkable gain. This
suggests us to look for a better aggregation method in the future.

https://github.com/taoshen58/UnifieR
https://github.com/castorini/anserini
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Table 6: Learning strategy for continual training on MS-Marco Dev.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
Unifier 39.7 91.2 38.8 90.3
^ w/o Self-adv 39.6 91.5 38.2 90.3
^ w/o Self-adv&-reg 39.5 91.3 37.9 90.1

Ablation of Neural Structure. To verify the correctness of each
module design, we conduct an ablation study on the neural struc-
ture of the encoder (§3.2) in Table 5. This must be performed at the
warmup step as the second stage is continual from the warmup.
It is observed that, either removing the global information from
the lexicon-based module or discarding in-depth inter-paradigm
interactions (i.e., learning independently) degrades the model dra-
matically. Surprisingly, removing the global also diminishes dense
performance. A potential reason is that, such a change makes the
fine-tuning inconsistent with its initializing pre-trained model, co-
Condenser, leading to corrupted representing capability.

Study on Learning Strategy. Furthermore, we conduct another
study on the learning strategies (§3.3) in Table 6. This is performed
at the continual training stage. The table shows that, ablating
the negative-bridged self-adversarial (self-adv) and the agreement-
based self-regularization (self-reg) has a minor effect on lexicon-
based retrieval but is remarkable on dense-vector one. This is be-
cause the former is already far stronger than the latter. Thereby,
both self-adv and self-reg can be regarded as a sort of (self-)distillation
from lexicon knowledge from a well-trained language model to
dense semantic representation. We will dive into the self-reg in
the following to seek for a better learning strategy, especially
for the lexicon-based retrieval. In addition, we also observed that
the proposed self-learning strategies (i.e., self-adversarial and self-
regularization) mainly contribute to dense-vector retrieval (+0.6%
and 0.3% MRR@10, respectively) but only bring limited perfor-
mance improvement for lexicon-based method (+0.1% and 0.1%
MRR@10, respectively). The main reasons are two-fold: i) Veri-
fied in [10, 20], lexicon-based methods consistently outperform
dense-vector methods in ad-hoc retrieval as lexicon-overlap serves
as an important feature in relevance calculations. Therefore, the
improvement mainly falls into the dense-vector part via knowl-
edge distillation from the lexicon-based part. ii) Meantime, the
common knowledge distillation schema is from a strong teacher
to a weak student, e.g., cross-encoder reranker v.s. bi-encoder re-
triever with a 5∼10% performance gap in ad-hoc retrieval scenarios
[41, 56]. In contrast, the participants (Unifier-dense & -lexicon) of
our self-learning have similar performance (gap <1%), making the
improvement limited.

Narrowing Self-regularization Targets. By default, we apply the
self-reg to hard negatives from both representing modules, which
intuitively is a compromise choice for both. To explore if the self-
reg can push one of them to an extreme, we conduct exploratory
settings for the self-reg in Table 7. First, applying self-reg to the
negatives from dense-vector module even makes the whole frame-
work degenerate. It is likely attributed to the dense-vector receiving
less supervisions from the lexicon part, which supports the above

Table 7: Effect of our self-regularization’s targets on MS-Marco.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
Unifier 39.7 91.2 38.8 90.3
^ Self-reg on N(𝑑𝑒𝑛) only 39.5 91.0 38.3 90.0
^ Self-reg on N(𝑙𝑒𝑥 ) only 39.9 91.4 38.5 90.3

Table 8: UnifieR-lex v.s. QPS by Top-N lexicon sparsifying. The QPS
is calculated on a CPU machine with pre-embedded queries, and
ORG denotes non-sparsified Unifier.

Top-N QPS M@10 R@100 Remark
BM25 449 19.3 69.0
ORG 50 41.3 92.3 Not sparsified
75 129 40.8 91.5 ↓ Index as Sparse as BM25
50 188 40.4 91.1
25 343 38.4 89.0
20 446 37.5 87.6 ↓ Infer as Faster than BM25
15 537 36.2 86.0
10 693 33.6 82.2
8 911 31.9 79.8
4 954 25.5 70.0 ↑ Better than BM25
2 1144 16.2 53.2
1 1376 1.8 22.3

claim that the self-reg can be seen as a distillation from lexicons
to dense embedding. On the other hand, when applying self-reg
only to the negatives by the lexicon part, the lexicon-based model
achieves a new level with 39.9% MRR@10, which is superior to a
single-representing retriever. This supports the idea of instance-
dependent prompt learning, where all modules work together for
better lexicon-weighting representations.

Evaluation of Learning Consistency. To verify if the dual repre-
senting modules depend on consistent semantic/syntactic features
for the common target, we conduct an experiment to train one
of the dual modules but leave the other unchanged at continual
training stage. As in Figure 4, the leftmost one is warmup-ed Unifer
(warmup), whereas the rightmost one is the full Unifer (dual-trn) as
an upper bound of performance. Interestingly, optimizing for each
of the representing modules can improve both retrieval paradigms
(i.e., lexicon and dense). This confirms that optimizing one module
can benefit the other, attributed to complementary representations
and the consistent learning target.

4.3 Efficiency Analysis
FLOPS analysis. To view sparsity-efficacy trade-off, we vary the

loss weight 𝜆 for FLOPS sparse regularization [37]. As in Figure 5,
with 𝜆 exponentially increasing, document FLOPS decreases lin-
early, improving the efficiency of our framework. The descending of
lexicon-based efficacy is not remarkable when FLOPS > 4 and then
becomes notable with the growth of 𝜆. Fortunately, this will not
affect the dense representation in terms of dense-vector retrieval.
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Figure 4:Verifying consistency of dual rep-
resenting modules. ‘trn’ denotes ‘training’.

Figure 5: Effects of the loss weight 𝜆 of FLOPS
sparse regularization on the our performance.

Figure 6: Effects of the hyperparam K in
our uni-retrieval scheme onMS-Marco Dev.

Table 9: Stage 1 of Unifier with query-side gating.

Method M@10 R@100
Unifier-uni (warmup) 38.3 90.8
+ query-side gating 39.2 91.2

Table 10: Reranker-taught Unifier v.s. previous state-of-the-art
(SoTA) models (i.e., Dense [56], Lexicon[11], Multi-Vec [43]).

Methods Dense-vector Lexicon-based Uni/Multi-Vec

M@10 R@100 M@10 R@100 M@10 R@100
Previous SoTA 39.5 - 37.5 - 39.7 -
Unifier 38.8 90.3 39.7 91.2 40.7 92.0
Unifier (distill) 40.5 91.6 41.3 92.3 42.0 93.0

Uni-Retrieval Hyperparameter. In uni-retrieval scheme, a hyper-
param K is used to control computation overheads of dense dot-
product. As illustrated in Figure 6, ‘K=0’ denotes lexicon-only re-
trieval in Unifier. The table shows that Unifier reaches an MRR@10
ceiling when K is set to a de facto number, i.e., 1000. Then, the up-
per bound of R@1000 is reached when K=2048. After that, the two
metrics cannot be observed with any changes.

Latency Analysis. Besides the un-intuitive FLOPS numbers, we
also exhibit the latency (measured by ‘query-per-second’ – QPS)
of Unifier. Basically, our Unifier is bottlenecked by its lexicon
head in terms of inference speed as aforementioned, so we would
like to dive into the controllable sparsity of Unifier-lex. Note that,
to reserve a large room for further sparsifying, we leverage the
reranker-taught Unifier-lex as shown in Table 10, whose MRR@10
is 41.3%. Then, we adopt a simple but effective sparsifying method –
top-N [52] – but in the index-building process only. As a result, we
show the performance of our UnifieR-lexicon with N decreasing
in Table 8. It is shown only the Top-4 tokens kept for each passage
can deliver very competitive results with faster speed than BM25.

4.4 Exploration of Advanced Architecture
Query-side Gating Mechanism. As it is too rough to directly add

the scores of the two retrieval paradigms, we incorporate a recent
inspiration of mix-of-expert (MoE) to enhance the combination
of the two paradigms. As in illustrated in §B.2, we leveraged a
gating mechanism to switch Unifier between dense and lexicon,

based solely on the semantics of queries. The reasons for “solely on
queries” are two-fold: i) the analyses in §4.5 show that the type of
queries affects models a lot and ii) the dependency on queries only
will not affect the indexing procedure for large-scale collections,
leading to zero extra inference overheads. After this gating mech-
anism in the warmup stage of Unifier training where the gate’s
optimization is based on the relevance score of uni-retrieval. As
listed in Table 9, a remarkable improvement is observed with such a
query-side gating mechanism (+0.9% MRR@10 and +0.4% R@100).

Reranker-taught Unifier. Although the Unifier in Table 1 & 2
seems significant in terms of performance improvement, it’s note-
worthy that the comparisons are unfair because Unifier didn’t use
a re-ranker (a strong but heavy cross-encoder) as a teacher for
knowledge distillation (see ‘Reranker taught’ in Table 1). To make
the comparisons fairer, we first trained a re-ranker based on Uni-
fier’s hard negatives and then used a KL loss for distillation in the
Continual Training Stage (as illustrated in Figure 8 of §B.3). As
listed in Table 10, it is shown that i) our proposed Unifier is com-
patible with ‘Reranker taught’ scheme and consistently brings 1%+
improvement, and ii) Unifier outperforms its strong competitors
by large margins (2.0%+).

4.5 Qualitative Analysis
Case Study. As shown in Table 11, we list two queries coupled

with the ranking results from five retrieval systems. Those are
from three groups, i.e., i) previous state-of-the-art dense-vector and
lexicon-based retrieval models, ii) the dense-vector and lexicon-
based retrieval modules from our Unifier, and iii) uni-retrieval
scheme by our Unifier. As demonstrated in the first query of the
table, ‘Indep-lex’ achieves a very poor performance, where the pos-
itive passage is ranked as 94. Via exhibiting its top-1 passage, the
error is possibly caused by the confusion between the ‘weather’
for a specific day and ‘weather’ for a period (i.e., climate). This is
because the ‘weather’ as a pivot word in both contexts receives
large weights, making the distinguishment very hard. Although
our Unifierlex can lift the positive from 94 to 3 by our carefully
designed unified model, it still suffers from confusion. Meantime,
it is observed that both dense-vector methods perform well since
they rely on latent semantic contextualization, less focusing on
a specific word. As shown in the second query of the table, the
strange word, ‘idiotsguides’ makes both dense-vector models less
competent. On the contrary, the lexicon-based method can handle
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Table 11: Case study on MS-Marco Dev set. ‘Passage+’ denotes positive passage of the corresponding query. ‘Indep-den’ denotes a well-trained
state-of-the-art dense-vector retrieval model with static hard negatives (i.e., coCondenser [14], M@10=38.2) while ‘Indep-lex’ denotes a well-
trained state-of-the-art lexicon-based retrieval model with static hard negatives (i.e., SPLADE [11], M@10=38.5).

Query ID:1088347// weather in new york city ny
Passage+ ID:7094280// Title: - Body: New York, NY - Weather forecast from Theweather.com. Weather conditions with updates on temperature, humidity,

wind speed, snow, pressure, etc. for New York, New York Today: Cloudy skies with light rain, with a maximum temperature of 72C and a
minimum temperature of 52C.

Rank Indep-den: 1; Indep-lex: 94; Unifierden: 1; Unifierlex: 3; Unifieruni: 1
Retrieved Indep-lex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in New York City is the best time to be

in the city, without doubt. Spring usually means less humidity and temps between 50-80 degrees, though June occasionally sees a 90 degree day.
An occasional humidity soaked heat wave can strike, but it usually feels nice the first time around.
Indep-lex’s 2nd. ID:4835773// Title: Climate of New York Body: Weather: Unlike the vast majority of the state, New York City features a humid
subtropical climate (Koppen Cfa). New York City is an urban heat island, with temperatures 5-7 degrees Fahrenheit (3-4 degrees Celsius) warmer
overnight than surrounding areas. In an effort to fight this warming, roofs of buildings are being painted white across the city in an effort to
increase the reflection of solar energy, or albedo.
Unifierlex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in New York City is the best time to
be in the city, without doubt. Spring usually means less humidity and temps between 50-80 degrees, though June occasionally sees a 90 degree
day. An occasional humidity soaked heat wave can strike, but it usually feels nice the first time around.
Unifierlex’s 2nd. ID:8819213// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in New York City is the best time
to be in the city, without doubt. Spring usually means less humidity and temps between 50-80 degrees, though June occasionally sees a 90
degree day.

Query ID:391101// idiotsguides tai chi
Passage+ ID:7668258// Title: - Body: Bill is the author of The Complete Idiot’s Guide to T’ai Chi & Qigong (4th edition), and his newest upcoming books,

The Tao of Tai Chi, and The Gospel of Science, in which he paints a vision of vast global benefit as mind-body sciences spread across the planet.
Rank Indep-den: 41; Indep-lex: 1; Unifierden: 10; Unifierlex: 1; Unifieruni: 1
Retrieved Indep-den’s 1st. ID:1603205// Title: - Body: Tai chi. Tai chi (simplified Chinese: ; traditional Chinese: ; pinyin: chi, an abbreviation of ;is an

internal Chinese martial art (Chinese: ; pinyin: ) practiced for both its defense training and its health benefits.
Indep-den’s 2nd. ID:3449438// Title: Tai chi: A gentle way to fight stress Body: Tai chi is an ancient Chinese tradition that, today, is practiced as
a graceful form of exercise. It involves a series of movements performed in a slow, focused manner and accompanied by deep breathing. Tai chi,
also called tai chi chuan, is a noncompetitive, self-paced system of gentle physical exercise and stretching.
Unifierden’s 1st. ID:2294942// Title: WHAT IS TAI CHI? Body: The Chinese characters for Tai Chi Chuan can be translated as the ‘Supreme
Ultimate Force’. The notion of ‘supreme ultimate’ is often associated with the Chinese concept of yin-yang, the notion that one can see a
dynamic duality (male/female, active/passive, dark/light, forceful/yielding, etc.) in all things.
Unifierden’s 2nd. ID:3449442// Title: What is Tai Chi? Body: What is Tai Chi? In China, and increasingly throughout the rest of the world, tai
chi is recognized for its power to instill and maintain good health and fitness in people of all ages. Tai chi aims to bring balance to body, mind
and spirit through specifically designed movements, natural breathing and a calm state of mind. It is easily recognized by its slow, captivating
and mesmerizing movements. It represents a way of life, helping people meet day to day challenges while remaining calm and relaxed.

this case perfectly. It is still noteworthy that our Unifierden can
also outperform the vanilla one, ‘Indep-den’, by lifting 31 (41→10)
ranking position. This is attributed to our consistent feature learn-
ing, which bridges the gap of heterogeneity between dense-vector
and lexicon-based retrieval. These two cases also support the pre-
vious claim that the two representing ways can provide distinct
views of query-document relevance. Furthermore, despite varying
performance across different paradigms, our uni-retrieval scheme
consistently performs well as it is an aggregation of both. Please
see §B.4 for our further case study on error analysis.

Limitation. The main limitations of this work are i) PLM Com-

patibility: due to the special encoder design, Unifier can only be
initialized from a limited number of pre-trained models, and ii)
Additional Infrastructure: in spite of the almost same retriever la-
tency as traditional lexicon-based retrieval, Unifier requires extra
computation infrastructure for indexing and storing both dense
and sparse embeddings of all documents in the collection.

5 CONCLUSION
We present a brand-new learning framework, dubbed Unifier, to
unify dense-vector and lexicon-based representing paradigms for
large-scale retrieval. It improves the two paradigms by a care-
fully designed neural encoder to fully exploit the representing
capability of pre-trained language models. Its capability is further
strengthened by our proposed dual-consistency learning with self-
adversarial and -regularization. Moreover, the uni-retrieval scheme
and the advanced architectures upon our encoder are presented
to achieve more. Experiments on several benchmarks verify the
effectiveness and versatility of our framework.
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A EXPLANATION OF TWO RECALL METRICS
Regarding R@Nmetric, we found there are two kinds of calculating
ways, and we strictly follow the official evaluation one at https:
//github.com/usnistgov/trec_eval and https://github.com/castorini/
anserini, which is defined as

Marco-Recall@N =
1
|Q|

∑︁
𝑞∈Q

∑
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min(𝑁, |D+ |)
, (10)

where there may be multiple positive documents D+ ∈ D, Q de-
notes the test queries and D̄ denotes top-K document candidates
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Table 12: Detailed results (NDCG@10) on BEIR benchmark.

Methods Sparse Dense

BM25 DT5Q UniCOIL ColBERT DPR ANCE GenQ TAS-B Contriever Ours

TREC-COVID 65.6 71.3 59.7 67.7 33.2 65.4 61.9 48.1 59.6 71.5
NFCorpus 32.5 32.8 32.5 30.5 18.9 23.7 31.9 31.9 32.8 32.9
NQ 32.9 39.9 36.2 52.4 47.4 44.6 35.8 46.3 49.8 51.4
HotpotQA 60.3 58.0 64.0 59.3 39.1 45.6 53.4 58.4 63.8 66.1
FiQA 23.6 29.1 27.0 31.7 11.2 29.5 30.8 30.0 32.9 31.1
ArguAna 31.5 34.9 35.5 23.3 17.5 41.5 49.3 42.9 44.6 39.0
Tóuche-2020 36.7 34.7 25.9 20.2 13.1 24.0 18.2 16.2 23.0 30.2
DBPedia 31.3 33.1 30.2 39.2 26.3 28.1 32.8 38.4 41.3 40.6
Scidocs 15.8 16.2 13.9 14.5 7.7 12.2 14.3 14.9 16.5 15.0
Fever 75.3 71.4 72.3 77.1 56.2 66.9 66.9 70.0 75.8 69.6
Climate-FEVER 21.3 20.1 15.0 18.4 14.8 19.8 17.5 22.8 23.7 17.5
SciFact 66.5 67.5 67.4 67.1 31.8 50.7 64.4 64.3 67.7 68.6

BEST ON 1 0 0 2 0 0 1 0 4 4
AVERAGE 41.1 42.4 40.0 41.8 26.4 37.7 39.8 40.4 44.3 44.5

by a retrieval system. We also call this metric all-positive-macro

Recall@N. On the other hand, another recall calculation method
following DPR [23] is defined as

DPR-Recall@N =
1
|Q|

∑︁
𝑞∈Q

1∃𝑑∈D̄∧𝑑∈D+ . (11)

which we call one-positive-enough Recall@N. Therefore, The official
(all-positive-macro) Recall@N is usually less than DPR (one-positive-
enough) Recall@N, and the smaller N, the more obvious.

B SUPPLEMENTARY EXPERIMENT SUPPORTS
B.1 BEIR Details
Please refer to Table 12 for detailed results on BEIR benchmark
with 12 datasets. It is noteworthy that applying a retriever trained
on legacy data (e.g., MS-MARCO labeled in 2016) to the latest topics
(e.g., TREC-COVID after 2020) will likely be vulnerable to distri-
bution shifts over time. Because rare or/and brand-new words are
usually present over time, we argue that the proposed UnifieR
would suffer less from the out-of-vocab (OOV) problem during
the distribution shifts. Basically, as we adopted the BERT tokenizer
withWordPiece techniques [45], our neural retriever can still model
the input text without any interference: Consistent with BERT [9]
and coCondender [14] pre-training, some rare words will be split
into smaller units (e.g., word "idiotsguide" split into ‘idiots’ and
‘##guide’) before being fed into the Transformer architecture, so ob-
vious OOV problemwill not arise. In addition, many previous works
[10–12, 19, 48, 57] found that lexicon-based methods can achieve
better zero-shot retrieval performance because “lexicon overlap”
is an essential feature for them to calculate query-document rele-
vance scores, aligning closely with the goal of first-stage retrieval.
Therefore, inheriting the advantages from previous lexicon-based
methods, our lexicon retrieval head could alleviate the distribution
shifts over time.

Figure 7: Equipping Unifier with query-side gating.

B.2 Illustration of Query-side Gating
We illustrate the query-side gating mechanism in Figure 7, which
leverages a gating mechanism to dynamically combine lexicon and
dense embeddings only at the query side.

B.3 Reranker-taught Pipeline
In contrast to the normal two-stage training pipeline in Figure 3,
we present our reranker-taught pipeline in Figure 8.

B.4 Error Cases
As shown in Table 13, we show two representative cases which our
proposed method cannot handle.

i) query hubness: The first case shows a query that cannot be
tackled by our Unifier in any retrieval paradigm. However, it is
observed that the top-1 passage retrieved by our model can also
be considered as a positive passage, which can answer the query
‘what is a dvt’. These negative passages for the query are false
negatives, which are brought by the limited crowd-sourcing labeling
procedure. Therefore, the poor performance of our model instead
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Table 13: Error analysis on MS-Marco Dev set.

Query ID:682365// what is a dvt?
Passage+ ID:7544458// Title: Deep vein thrombosis Body: For other uses, see DVT (disambiguation). Deep vein thrombosis, or deep venous thrombosis

(DVT), is the formation of a blood clot (thrombus) within a deep vein, most commonly the legs. Nonspecific signs may include pain,
swelling, redness, warmness, and engorged superficial veins.

Rank Indep-den: 3; Indep-lex: 2; Unifierden: 12; Unifierlex: 11; Unifieruni: 9
Retrieved Unifierden’s 1st. ID:5404002// Title: Definition of ‘DVT’ Body: Definition of ‘DVT’. DVT is a serious medical condition caused by blood

clots in the legs moving up to the lungs. DVT is an abbreviation for ’deep vein thrombosis’. The results from one of the largest studies yet
carried out leave little doubt that DVT is caused by flying.
Unifierlex’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot that forms inside a vein,
usually deep within your leg. About half a million Americans every year get one, and up to 100,000 die because of it. The danger is that
part of the clot can break off and travel through your bloodstream.
Unifieruni’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot that forms inside a vein,
usually deep within your leg. About half a million Americans every year get one, and up to 100,000 die because of it. The danger is that
part of the clot can break off and travel through your bloodstream.

Query ID:1029124// what is upsell
Passage+ ID:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed at persuading customers to purchase a more

expensive, upgraded or premium version of the chosen item or other add-ons for the purpose of making a larger sale. eCommerce
businesses often combine upselling and cross-selling techniques in an attempt to increase order value and maximize profit.

Rank Indep-den: 3; Indep-lex: 1; Unifierden: 11; Unifierlex: 9; Unifieruni: 8
Retrieved Indep-den’s 1st. ID:6288350// Title: - Body: If you improve inventory turn but pay more. in freight costs for multiple shipments or your

warehouse has to increase their variable costs. to process the additional shipments, the net result may be a loss. 4. An upsell feature on
the web is a visual reminder of how much money a customer can. spend before the next shipping & handling threshold is met. King
Arthur Flour is an. excellent example of how to improve upsell and increase items per order. Showing the. amount available, relevant.
choices within the price.
Indep-lex’s 1st. ID:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed at persuading customers to
purchase a more expensive, upgraded or premium version of the chosen item or other add-ons for the purpose of making a larger sale.
eCommerce businesses often combine upselling and cross-selling techniques in an attempt to increase order value and maximize profit.
Unifierden’s 1st. ID:8487388// Title: Acronyms &Abbreviations Body: Ups is an open source source-level debugger developed in the late
1980s for Unix and Unix-like systems, originally developed at the University of Kent by Mark Russell. It supports C and C++, and Fortran
on some platforms. The last beta release was in 2003.
Unifierlex’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip Campaign to upsell B2B/Saas solutions.
What is it? The upsell for B2B/Saas solutions email is meant to add to the services. These emails offer premium services or upgrades
for users on paying, free or trial accounts. When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and
functionality of the software.
Unifieruni’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip Campaign to upsell B2B/Saas solutions.
What is it? The upsell for B2B/Saas solutions email is meant to add to the services. These emails offer premium services or upgrades
for users on paying, free or trial accounts. When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and
functionality of the software.

Figure 8: Reranker-taught Unifier by knowledge distillation.

proves that our model is more robust, whereas the independent
learning model is overfitting to its false negatives, resulting in
seemingly good outputs.

ii) Insufficient representation ability: The second case lists the
top-retrieved passages for all five retrieval systems. It is shown that
compared to independently learned retrieval models (i.e., ‘Indep-
den’ and ‘Indep-lex’), our unified models even perform worse and
retrieve less relevant passages (refer to Unifierden’s 1st). An inter-
esting point is that the ‘Ups’-related passage is retrieved by our
Unifierden since ‘upsell’ is tokenized as ‘ups’ and ‘##ell’. This is
highly likely since one single model is required to serve dual repre-
senting modules, compromising its representation ability.

Meantime, our uni-retrieval can still improve the ranking per-
formance by combining both of the representing worlds.
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