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Abstract
Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their 
key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than 
adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of 
diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part 
of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence 
of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to 
reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that 
most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can 
occur along a single major axis of variation defined by core ortholog expression comprising common metabolic path-
ways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. 
Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these path-
ways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If 
this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that 
capture suites of interacting transcriptional changes during diversification improve our understanding of both global 
patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.
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Introduction
Diatoms are among the most diverse and ubiquitous eukary-
otic microbes in aquatic environments (Field et al. 1998; 
Armbrust et al. 2004; Bowler et al. 2008). They play crucial 
roles in aquatic food webs and global nutrient cycling, yet 
our understanding of how genetic, environmental, and 
demographic factors can influence trait diversity in diatoms, 
or indeed the stability of diatom traits within lineages, re-
mains in its infancy. The ecological and biogeochemical roles 
of phytoplankton are often studied through their functional 
traits (e.g. cell size) or metabolic capabilities (e.g. nitrogen fix-
ation). Patterns of variation in diatom traits and metabolism 
underlie many differences in function, but our understand-
ing of rapid trait diversification is limited and often depend-
ent on linking differences in traits with environmental 
differences (Allen et al. 2008; Hennon et al. 2015; van de 

Waal and Litchman 2020; Wang et al. 2020). In particular, 
we lack an exploration of patterns of potential trait diversi-
fication in diatoms in the absence of environmental change, 
which is needed to establish expectations for the functional 
diversity in interrelated traits that can be accounted for by 
migration and mutation alone (Ward et al. 2021). This can 
be addressed experimentally by using chance events to drive 
rapid diversification in an unchanging laboratory environ-
ment. Diversification under these conditions gives us infor-
mation about potential trait variation available for natural 
selection or environmental sorting to act on when environ-
ments vary and could also inform studies of how dispersal 
affects diversity in phytoplankton.

Trait diversification and local adaptation depend on the 
interplay of deterministic selective forces and random events 
(Ward et al. 2021). One common type of chance event is an 
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extreme reduction in population size (a population bottle-
neck), where variation can be fixed by chance rather than 
by natural selection. As a result, when independent bottle-
necked populations are compared, they will often differ 
from each other in terms of the random mutations that 
have been fixed by chance. In addition, because most muta-
tions are deleterious, bottlenecked populations will, on aver-
age, have lower fitness than their own ancestors. Thus, 
parallel bottlenecks can produce populations with different 
genetic starting points for future evolution, and adaptation 
(as fitness recovery) can occur even in the absence of any en-
vironmental change. Following bottlenecks, populations can 
later be acted on by natural selection if population size re-
covers. During adaptation, different genetic starting points 
can drive adaptive differences between populations. This 
can be the case for populations that exist in different environ-
ments or be the basis for divergence when populations are 
separate but experience similar environments. Chance events 
are thus important in determining the heritable variation 
that natural selection has to act upon and can be used to ex-
plore different possible adaptive solutions to set growing con-
ditions (Salverda et al. 2017; Windels et al. 2021).

In addition, metabolic pathways that can accumulate 
more variants by chance may respond more rapidly to nat-
ural selection, simply because they will have more genetic 
variation on which natural selection can act. For example, 
nitrate metabolism is both modular and somewhat redun-
dant in marine diatoms (Smith et al. 2019), suggesting that 
variation in nitrate metabolism could build up by chance 
with little or no effect on fitness, and that a relatively 
high number of viable nitrate metabolism mutants could 
exist in bottlenecked populations. In this case, one would 
expect a range of solutions to functional nitrate usage 
across subpopulations, rather than “a” single solution, 
since a range of genetic starting points could exist for fit-
ness recovery after bottlenecks or for adaptation to 
changes in environmental nitrate concentrations. This 
would also mean that rapid genetic adaptation to changes 
in nitrate is possible. This expectation affects how we inter-
pret differences between populations in -omic and trait- 
based surveys, as well as our expectations about the gener-
ality of outcomes from laboratory evolution experiments.

Chance events, and the patterns of variation generated 
by them, are rarely used to generate variation during la-
boratory studies in marine phytoplankton, but these 
events are likely a common feature of evolving populations 
of marine microbes. In particular, open ocean and bloom-
ing phytoplankton can experience extreme fluctuations in 
population size, during which there is a transient increase 
in the role of chance events (such as population bottle-
necks) relative to natural selection (adaptation to new en-
vironments) in evolving populations. For example, diatom 
population sizes can fluctuate by orders of magnitude over 
the course of a bloom, and migration between ocean cur-
rents continually introduces small subpopulations into 
new environments (Ruggiero et al. 2017; Behrenfeld et al. 
2021). The potential for repeated founder events suggests 
that chance can play an important and relatively common 

role in the extent and nature of trait variation in natural 
populations.

We can experimentally investigate the contribution of 
chance events to molecular and trait variation in many mi-
crobes, including diatoms, with standard bottleneck experi-
ments. Here, we generated trait variation in globally 
distributed marine diatom strains as a function of chance 
events in a constant environment using population bottle-
necks (see Materials and Methods; samples from the same ex-
periment were also taken by Hinners et al. (2022) to measure 
whole-cell physiological traits only). Physiological assays for 
trait values reported in Hinners et al. (2022) were previously 
developed and published in Argyle et al. (2021a, 2021b). In 
this manuscript, we describe global shifts in transcript values 
and identify the expression of specific genes and pathways 
that drive most of the observed variation.

We selected strains of the order Thalassiosirales (Argyle 
et al. 2021b) as our model due to its well-studied global 
distribution with respect to environmental and ecological 
selection, particularly in pelagic environments where bot-
tlenecking events can regularly occur (Whittaker and 
Rynearson 2017) (see Alverson et al. 2011 for a detailed 
phylogeny of Thalassiosirales relative to other diatom 
taxa). Additionally, Thalassiosirales has one of the most 
well-characterized diatom genomes (Armbrust et al. 
2004) and is one of the most abundant and diverse diatom 
lineages worldwide relative to other model diatoms with 
well-characterized genomes like Phaeodactylum sp. 
(Malviya et al. 2016). Prior studies have focused on the in-
fluence of environmental and ecological selection, as well 
as biogeography on diatom evolution and biogeochem-
istry. This sets the stage for our work on the generation 
of diversity in the absence of environmental selection. 
Our work fills a critical knowledge gap in diatom research 
where population dynamics can generate diversity for nat-
ural selection to act upon. Using Thalassiosirales as our 
model both enables the results of this study to be contex-
tualized with extensive prior research examining environ-
mental selection while also exploring how population 
dynamics affect trait diversification in a way that is rele-
vant to other globally significant diatoms and microalgae.

We subjected replicate populations of 6 diatom strains 
to a series of population bottlenecks during batch culture 
propagation (transfer size of <8 cells) (Fig. 1). Our ration-
ale for using bottlenecks to diversify populations is as fol-
lows. Experimental studies in microbial and viral 
populations have shown that regular population size fluc-
tuations can profoundly affect patterns of adaptation 
(LeClair and Wahl 2017). Population bottlenecks transient-
ly reduce the supply of beneficial mutations, which can re-
duce total fitness gain during adaptation (Schoustra et al. 
2009). However, bottlenecked populations can also better 
explore a higher number of alternate adaptive solutions in 
cases where several high-fitness phenotypes exist (Windels 
et al. 2021), which results in more genetic and phenotypic 
diversification over repeated rounds of adaptation. In our 
experiment, the growth rates of bottlenecked populations 
initially dropped as expected, most likely due to the 
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accumulation of deleterious mutations (Heilbron et al. 
2014; Kraemer et al. 2017), but then recovered once we re-
moved the bottleneck and grew large populations (min-
imum transfer size of 103) in standard batch cultures 
(Fig. S1). We then measured changes to biogeochemically 
important whole-cell trait values such as cell size, before, 
during, and after recovery of bottlenecks (Hinners et al. 
2022) (see overview for a synopsis of traits and findings 
in Hinners et al. 2022). This approach enabled the examin-
ation of trait divergence without relying on (or allowing) 
divergent selection because of environmental differences. 
During fitness recovery, these different genetic starting 
points increased the chance of seeing diverse trait changes 
associated with fitness recovery.

Patterns of trait diversity depend on the variation of 
organism-level traits that are the expression of a poorly an-
notated and interacting group of transcribed genes. This 
means that considerable transcriptomic variation may 
underlie a consistent trait value—e.g. there are many 

ways to have any given cell size. Because of this, measuring 
whole-cell trait values (as in Hinners et al. 2022), such as cell 
size or elemental composition, may underestimate the gen-
etic, epigenetic, or transcriptional variation present follow-
ing bottlenecks and recovery. It is also necessarily biased in 
that only a small number of possible functional traits can be 
assessed. However, by examining transcriptomic patterns 
directly, we can better understand the potential for vari-
ation in metabolic pathways, including those underlying 
functional traits, at least in cases where the link between 
transcripts and function is known and annotated.

In this study, we conducted RNA-Seq on sample popula-
tions in the absence of bottlenecks (control populations) 
and in populations subjected to bottlenecks and allowed 
to subsequently recover. This methodology allowed us to 
investigate general patterns of transcriptional diversifica-
tion in these marine diatom strains. We used a unique 
analytical approach to examine shifts across the pan- 
transcriptome in evolved populations relative to controls 
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that were maintained as large populations over the same 
time frame. We examined patterns of transcriptional diver-
gence within lineages in the absence of environmental 
selection, including whether global gene expression pat-
terns remained or returned to their ancestral (control) con-
figuration. Here, we seek to understand global shifts in 
transcription and identify the expression of specific genes 
and pathways that drive most of the observed variation. 
We find that many transcripts previously only associated 
with environmental change can be attributed to general 
demographic change due to population shifts alone, sug-
gesting them to play more universal roles in diatom 
evolution.

Results and Discussion
Overview
A detailed description of the experimental design (Fig. 1b) 
can be found in Hinners et al. (2022). The transcriptomics 
study here only analyzed populations full selected in the 
ancestral temperature of 20 °C following the bottleneck. 
In contrast, Hinners et al. (2022) subjected full-selected po-
pulations to 2 different temperatures (20 and 24 °C) and 
measured phenotypes when growth rates stabilized after 
fitness recovery. Six replicates of each of the 6 ancestral po-
pulations (n = 36 cultures) were subjected to this bottle-
neck phase at 20 °C followed by the full-selected phase 
also at 20 °C. Trait measurements (population growth 
rate, cell size, cell complexity, relative chlorophyll a con-
tent, particulate organic carbon and nitrogen, polar lipid 
content, silicic acid uptake, and relative reactive oxygen 
content) including growth rates were performed at the be-
ginning of the experiment (Fig. S1, filled gray circle), 
throughout the bottleneck if possible, and at the end of 
the full-selected phase. The experiment was divided into 
2 main phases where phase I consisted of an initial 3-mo- 
long reduced selection (RS) (i.e. bottleneck) phase (corre-
sponding to 70 to 200 generations, transfer size of up to 8 
cells) followed by an 8-mo full selection (FS) (i.e. full- 
selected) phase (200 to 500 generations, transfer size of 
1,000 to 2,000 cells); this full-selection phase was extended 
to 18 mo for the study described here. This extension was 
due to work restrictions during the covid pandemic, so 
RNA was extracted for this experiment approximately 10 
mo later than the trait measurements in Hinners et al. 
(2022) were made. Thus, while many of these transcrip-
tional changes in this study may be associated with ob-
served trait changes in the Hinners et al. (2022) study, 
we cannot directly link transcript values to trait values. 
Hence, we comment on commonalities in general patterns 
observed in both studies, and note where annotated tran-
scripts of known function cooccur with shifts to traits in-
volved in that function across the 2 studies, but do not tie 
transcription directly to function.

Whole-cell multitrait phenotypes were represented 
using reduced axes similarly to the transcripts here (see 
Hinners et al. 2022 and Argyle et al. 2021a, 2021b for 

detailed descriptions of trait assays). The main conclusions 
of the whole trait study are that both traits and trait cor-
relations evolve in the absence of environmental change, 
and that there is considerable variation among replicate 
populations in how this happens. We then show that des-
pite this variation, change in multiple related traits can be 
reliably captured using reduced axes to identify patterns 
and constraints in trait change in diatom populations, in-
cluding the evolution of novel multitrait phenotypes.

The experiment here captures patterns of viable tran-
scriptomic variation that are fixed by chance due to one 
type of random event and analyzes how variation in global 
transcription patterns can emerge after fitness recovery in 
the absence of environmental change.

Growth Rates
During the bottleneck phase, or RS, population growth 
rates decreased as expected due to the accumulation of 
deleterious mutations (Kraemer et al. 2017). This decline 
in growth rates is consistent with that seen in other micro-
bial experiments that use bottleneck transfers. Summaries 
of how population bottlenecks, mutation accumulation, 
and fitness are linked in microbial evolution experiments 
can be found in Estes and Lynch (2003) and Halligan and 
Keightley (2009). At the end of the RS phase, population 
growth rates of viable populations were reduced by an 
average of 45% compared to ancestral population growth 
rates (Fig. S1). Following the RS phase, populations were 
then propagated in batch culture with large transfer sizes 
in the same environment, until postbottleneck population 
growth rates had stabilized (Fig. S2); these are referred to as 
“full-selected” populations. In the FS phase of the experi-
ments, populations adapt and partially or completely re-
cover fitness. Because replicate populations accumulate 
different mutations during the RS phase, they adapt from 
different genetic starting points during the FS phase. This 
increases the chance of divergence between populations 
of the same initial genotype relative to cases where no 
population bottlenecks occurred. Because adaptation (in-
crease in fitness) occurs mainly in response to the loss in fit-
ness during the RS phase rather than due to a drop in fitness 
as a result of an environmental change, we can attribute di-
vergence between populations of the same initial genotype 
to chance events alone rather than to selection imposed by 
environmental change. Control populations were main-
tained as large populations through the entire experiment. 
Transcriptomes were then generated across control popu-
lations and in populations after FS at 20 °C (see Materials 
and Methods for full experimental design and Hinners 
et al. 2022 for whole-cell level trait measurements).

Strain Phylogeny and Orthology
To assess the relatedness of the strains used in this study, 
we conducted phylogenomic analysis using a set of highly 
conserved diatom proteins (e.g. Keeling et al. 2014). Our 
phylogeny (Fig. 1c; Fig. S3) generally agrees with the ITS2 
phylogeny in Argyle et al. (2021b) demonstrating 
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concordance between ITS2 and multiprotein sequence 
conservation. It is worth noting that strain CCMP1059 ob-
tained from the Provasoli-Guillard National Centre of 
Marine Phytoplankton is classified as Thalassiosira sp. 
(NCMA, https://ncma.bigelow.org/CCMP1059). However, 
upon sequence analysis of the ITS2 region by Argyle et al. 
(2021b), it mapped most closely to Cyclotella striata 
(94.17% identity; Table S1). Since C. striata is still closely re-
lated to the other strains and within the order 
Thalassiosirales, this updated classification does not change 
the interpretations or general conclusions of this manu-
script. We next identified global orthologs across publicly 
available diatom genomes and our transcriptomes, which 
showed that unique ortholog abundance scaled linearly 
with unique transcript abundance (R2 = 0.95; Fig. S4). 
Hierarchical clustering based on the presence/absence of 
global orthologs, resulted in 2 main clusters with one clus-
ter composed of the Thalassiosira weissflogii strains and the 
other of Thalassiosira pseudonana and C. striata (Fig. 1d). 
Hence, TP3367 and CS1059 share more similar numbers 
of global orthologs and are more phylogenetically related 
to each other than the TW strains, although they were iso-
lated from different locations (Fig. 1a). These phylogenetic 
and ortholog differences may have ancient origins, which 
could have been followed by subsequent ortholog and pro-
tein sequence divergence driven by environmental diver-
gence among these diatom taxa. For example, this 
similarity could be driven by adaptation to warm tempera-
ture by TP3367 and CS1059 following the evolutionary di-
vergence of TP3367 from TW strains. However, further 
research is needed to understand potential reasons for dif-
ferences across strains. In summary, these data from our 
globally distributed diatom isolates reveal the diatoms in 
this study to be diverse both in phylogeny and genome 
characteristics. The different strains represent different 
high-fitness phenotypes in that they were sufficiently abun-
dant in situ at time of sampling to have been sampled, have 
growth rates comparable to other temperate diatoms un-
der similar culturing conditions, and have reasonably stable 
growth rates and phenotypes in the laboratory when pro-
pagated as large populations (see Hinners et al. 2022). It is 
thus unlikely that these phenotypes represent fundamen-
tally maladaptive trait combinations or are less informative 
than other phenotypes evolved in laboratory experiments, 
even though it is entirely possible that they do not re-
present the most fit phenotype possible under laboratory 
or field conditions.

Transcriptome Landscapes
To understand the genetic variation produced in our ex-
periment, we consider the integrated phenotype com-
posed of many interdependent genetic relationships 
(Malcom et al. 2014). Here, we use transcriptome data to 
assess how global transcriptional relationships shift in re-
sponse to fitness recovery in a constant environment. We 
define a transcriptome landscape (from here t-scape) 
which is similar to a trait-scape used in previous studies 

(Walworth et al. 2021; Argyle et al. 2021b, 2021a). The 
t-scape uses principal coordinate analysis (PCoA) of center 
log-ratio (CLR) transformed expression values to collapse 
global transcript levels onto several axes of variation to re-
veal those transcripts that drive most of the global tran-
scriptional variation. Using this approach, t-scapes can 
reveal expression patterns across metabolic pathways 
that are associated with population diversification. 
Furthermore, location in the t-scape (i.e. PCoA plot) can 
be affected by both transcript levels and correlations be-
tween transcripts. Accordingly, Fig. 2a and b show 3 differ-
ent high-fitness regions in the t-scape based on core 
ortholog expression from diverse diatom strains. To ro-
bustly assess the prevalence of orthogroups across the dif-
ferent strains at a range of stringency levels, we chose 2 
cutoffs using orthogroups detected in at least 3 samples. 
The rationale for this was to both minimize the influence 
of singletons and/or sequencing artifacts and to examine 
how strain relationships changed across orthogroup 
thresholds in PCoA space. We first only considered 
orthogroups in at least 3 samples with minimum N = 10 
counts as our relaxed threshold. Then, we increased strin-
gency by considering orthogroups in at least 3 samples with 
minimum N = 300 counts as our strict threshold. A lower 
bound of 10 counts and upper bound of 300 counts 
were chosen because this is when strains began to segre-
gate and converge in PCoA space, respectively. The key 
finding here was that the overall ordination (strain cluster-
ing and their relative positions [i.e. relationships] in PCoA 
space) remained conserved across orthogroup thresholds 
demonstrating widespread orthogroup expression, and 
thus core metabolic pathways, to be underlying strain- 
specific divergence.

In general, the clustering of strains based on core ortho-
log expression was consistent with both the phylogenetic 
and global ortholog abundance clusters (Fig. 1c and d). For 
example, strains TW1050, TW2929, TW1587, and TW1010 
core ortholog expression converge into a single region 
(Fig. 2a and b). One full-selected population, CS1059-4 
(Fig. 2a and b—blue triangle in lower left quadrant), 
evolved a strategy where the evolved population occupied 
an area of t-scape near the TW strains, rather than near its 
own ancestor. Interestingly, Hinners et al. (2022) found 
that most phenotypic outlier populations originated 
from CS1059, suggesting that this strain may have more 
flexibility in trait values or correlations than other strains, 
at least for whole organism traits. The transcriptional di-
vergence of CS1059-4 (Fig. 2) may indicate early molecular 
divergence from CS1059 replicate populations prior to 
more pronounced trait divergence. Next, we analyzed 
each strain-specific cluster to explore transcripts driving 
intraspecific variation at each peak.

Strain-Specific Transcriptional Landscapes
We then assessed whether populations returned to the an-
cestral location in the t-scape (Fig. 3, circles) or if they moved 
to another location during the backselection phase of the 
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experiment. In each strain, at least one backselected popula-
tion moved to a new location in the t-scape. This is useful for 
assessing whether most mutations change transcriptional re-
lationships, once fitness is allowed to recover. This affects 
whether we expect the transcriptional relationships of strains 
to diversify rapidly over relatively short timescales (months) 
even in the absence of environmental drivers, or whether an-
cestral transcript relationships are essentially stable on short 
timescales in constant environments. More importantly, this 
approach investigates which transcripts and transcript rela-
tionships diversify following periods when the action of nat-
ural selection may be reduced.

The strain-specific PCoA plots capture between 49% and 
99% of total transcriptional variance. Figure 3 shows strain- 
specific t-scapes constructed from the global transcription 
of each replicate population within each strain. Control po-
pulations (circles) formed clusters reflecting minimal 
movement on the t-scape when populations were not sub-
jected to bottlenecks or to environmental change; this sup-
ports the assumption that most of the control populations 

were already well adapted to the laboratory environment, 
and that transcriptomes for these strains were stable 
when the cultures were maintained as large populations. 
This is consistent with expecting that culture collection 
strains of a given genotype have broadly similar phenotypes 
over time and across laboratories under standard condi-
tions and is the basis for the use of reference strains. 
However, TP3367 control populations exhibited more 
movement in the t-scape than other strains suggesting 
that this strain may have been adapting to some aspect 
of the laboratory environment. While this TP3367 trend 
is interesting, it is out of scope for this study, which focused 
on evaluating the generation of variation in strains where 
the assumption that that particular strain is already well 
adapted to the laboratory environment is met. While the 
data from TP3367 are included for completeness, we do 
not expect it to show the same pattern of changes as the 
other strains where control populations clustered.

Across all strains, at least one full-selected population 
(triangles) found another transcriptional peak in a region 
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of the t-scape not occupied by the control populations of 
that strain, indicated by movement along PCO1 (Fig. 3). 
The fact that at least one full-selected population per lin-
eage (>17% of populations) moved to a new location in 
the t-scape demonstrates that changes to global transcrip-
tional circuitry are common in the order, Thalassiosirales, 
even in constant environments. Most of the new peaks 
were differentiated along PCO1—the axis which captured 
the majority of the variance in the ancestral populations. 
While most of the movement and explained variance oc-
curred along PCO1, transcripts driving differentiation 
along PCO2 could have biological significance in generat-
ing phenotypic differences, but they explain less variance 
and are not explored further in this study.

Some strains produced more variation in transcriptional 
patterns between replicate populations than did others. 
Specifically, most full-selected populations from strains 
CS1059, TW1587, and TW1010 returned to the ancestral 
region of the t-scape. Conversely, all full-selected popula-
tions from strain TW1050 migrated to an alternative re-
gion in the t-scape. This suggests that transcriptional 
diversification in the face of population size fluctuations 
varies between genotypes. An alternate explanation is 

that the culture collection isolate of TW1050 is less well 
adapted to laboratory conditions than the other strains. 
However, there was no significant mean increase in growth 
rate of TW1050 populations that were bottlenecked and 
recovered relative to the ancestor in this experiment 
(Hinners et al. 2022). This suggests that the control popu-
lations did not have significantly lower fitness under our 
laboratory conditions than the full-selected populations 
for the genotype. For all strains, more high-fitness regions 
of the t-scape may be identified if more replicate popula-
tions were generated and sequenced. As noted previously, 
TP3367 control populations exhibited intraspecific tran-
scriptional variation without bottlenecking (Fig. 3f, circles), 
which could indicate that TP3367 was still adapting to 
general lab conditions. Additionally, less variation overall 
was associated with the PCO axes of this strain. Hence, 
we cannot be sure that diversification of full-selected po-
pulations was only due to bottlenecks. So, while TP3367 
full-selected populations did seem to find 2 new defined 
peaks with TP3367-4 residing in one and TP3367-2, 
TP3367-3, and TP3367-5 residing in the other along 
PCO2 (22% explained variance), we are cautious in our in-
terpretation due to the variability in control populations.
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We next investigated if movement in the t-scape was 
driven primarily by expression of genes shared among 
strains (i.e. global orthologs). To do this, we reconstructed 
the t-scapes using only the global orthologs (Fig. S5), which 
showed similar relationships between controls (circles) 
and full-selected populations (triangles) as was found be-
tween controls and full-selected populations in t-scapes 
constructed from all transcripts (Fig. 3). In line with 
this, Fig. S5 demonstrates that diatoms in the order, 
Thalassiosirales, can rearrange transcriptional relationships 
among core diatom genes (i.e. orthologs) following bottle-
neck events. We next investigated what transcripts and 
pathways strains explained movement on the trait-scape.

Identifying Transcripts Associated with New 
Expression Patterns
We first used pathway enrichment analysis (Materials and 
Methods) on transcripts loaded onto respective strain- 
level PC axes to identify significantly overrepresented 
pathways (File S1). These analyses revealed enrichment 
in numerous central metabolic pathways such as carbon 
fixation, pyruvate metabolism, glycolysis/gluconeogenesis, 
amino acid metabolism, porphyrin and chlorophyll metab-
olism, and pentose phosphate metabolism. The over-
representation of these pathways is consistent with the 
observation that orthologs drove the majority of transcrip-
tional variation in t-scapes (Fig. S6). Next, we identified 
specific transcripts in these pathways.

To examine which transcripts were most associated 
with the movement of full-selected strains within the 
t-scape through the discovery of new peaks (Fig. 3), we 
analyzed transcripts harboring the largest PCoA loading 
values (both positive and negative) on PCO1 and PCO2 
axes, respectively. Each transcript loading value reflects 
how much a particular transcript contributes to that prin-
cipal coordinate axis such that transcripts with large load-
ing values are important for explaining the observed 
variance in the data set. To do this, we identified highly 
up- and downregulated transcripts driving the clustering 
patterns in the t-scapes.

Specifically, for PCO1, we first tested different numbers 
of transcripts harboring the most positive loading values 
(e.g. n = 500, n = 1,000, and n = 1,500) for each strain. We 
then conducted hierarchical clustering of the Euclidean dis-
tance among their transcript values. We did the same for 
genes with the most negative loading values. We then se-
lected the number of transcripts where at least one of these 
smaller hierarchical dendrograms maintained the same 
clustering pattern as the global t-scape containing all tran-
scripts in Fig. 3. Of these transcripts with the most extreme 
loading values, the majority represented global orthologs 
(Fig. S6). Other than universally expressed core orthologs 
across all diatoms (e.g. Fig. 2), many of these orthologous 
sequences are not shared by all diatom strains. This demon-
strates that most changes associated with transcriptome 
diversification within an environment are components of 
the diatom pangenome. Taken together, these data show 

that exploration of the t-scape in a stable environment is 
not primarily driven by strain-specific transcripts but by 
changes in widely shared pathways.

Below, we outline the details of how we defined the 
transcripts included in this analysis. In Fig. 4a, TW1010-6 
is replicate population number 6 of the full-selected 
TW1010 strain. TW1010-6 moved to a new location in 
the TW1010 t-scape (Fig. 4a, top panel) and formed its 
own expression cluster relative to the other replicate po-
pulations (Fig. 4a, bottom panel). Upon clustering different 
amounts of transcripts harboring the most negative 
(Fig. 4b, upper left plot) and most positive (Fig. 4b, upper 
right plot) loading values on PCO1, we observed that at 
2,000 transcripts (n = 4,000 total transcripts analyzed for 
PCO1), at least one of the dendrograms (Fig. 4b, upper pa-
nels) had a clustering pattern consistent with the pattern 
seen in the case with all transcripts (Fig. 4a, bottom panel). 
Observing consistent clustering patterns between the 
smaller dendrograms and the global dendrograms in 
Fig. 4a (bottom panel) indicates that the subset of tran-
scripts in the former dendrogram is those primarily driving 
the clustering pattern in the global one. In this case, the 
2,000 most positive loading values (Fig. 4b, upper right 
plot) reflected the most similar pattern to the global 
t-scape pattern (Fig. 4a, bottom plot) followed by the 
2,000 most negative loading values (Fig. 4b, upper left 
plot). Clustering beyond 2,000 transcripts introduced less 
consistent clustering patterns relative to the global tran-
scriptional plots indicating a greater inclusion of tran-
scripts that did not strongly contribute to the clustering 
of TW1010-6 in its strain-specific t-scape. The strong con-
trast in expression values observed in the transcriptional 
dendrograms (Fig. 4b, purple = higher relative expression 
and blue = lower relative expression) is consistent with 
their corresponding, extreme loading values. Here, the 
most negative loading values correspond to reduced tran-
script levels in TW1010-6 relative to other TW1010 popu-
lations while the most positive loading values correspond 
to greater relative transcription.

To identify metabolic pathways potentially involved in 
movement on the t-scape, we tested the 2,000 most posi-
tive and negative loading values for all other strains for 
PCO1, using the same method as above (e.g. Fig. 4c 
and d). We conducted the same analyses for PCO2 for all 
strains and found that the 1,000 most positive and negative 
loading values (n = 2,000 total) yielded clustering consist-
ent with the strain-specific, global t-scape along PCO2 
(e.g. Fig. 4b and d, bottom 2 plots). This reduced number 
of transcripts is consistent with less variance being ex-
plained on PCO2 than on PCO1, such that departures 
from control expression values or patterns may not re-
present transcriptional patterns that differ very much 
from the ancestral one. All CLR-transformed transcripts 
harboring the most extreme loading values per PCO per 
strain can be found in File S2.

Figure 4 shows 2 different representative cases. In one in-
stance, the TW1010-6 full-selected population moved to a 
new location in the t-scape whereas all other full-selected 
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populations returned or remained in the region occupied 
by the TW1010 controls. While TW1010-1, TW1010-3, 
TW1010-4, and TW1010-5 formed a cluster along PCO2 
(Fig. 4a, PCoA plot; Fig. 4b, bottom right plot), it is unclear 
if this is a clearly defined cluster distinct from the controls 
due to the low variance explained on PCO2. In the other 
case, all full-selected replicates of strain TW1050 migrated 
to a single new location along PCO1, which explains >93% 
of the variance (Fig. 4c and d). Hence, the TW1050 control 
populations may have more options for diversification, at 
least in this standard laboratory environment. Due to the 
low amount of explained variance on the TW1050 PCO2 
axis, no new locations were obviously occupied along 
PCO2 following backselection.

Metabolic Transcripts Associated with New Peak 
Discovery
To examine the most influential metabolic transcripts driving 
movement on the t-scape in this experiment, we focused on 
transcripts harboring the most positive loading values across 
PCO1 for all strains (e.g. Fig. 4b and d, upper right plots). 
These positive loading values reflect transcripts with higher 
expression values in the full-selected replicates that moved 
to new locations following bottlenecking and FS (e.g. 
TW1010-6, TW1050-1, TW1050-2, and TW1050-3). Taken to-
gether, these transcripts represent those that uniquely in-
creased in the replicates that found a peak that differed 
from the control populations of the same genotype.

Across all strains, numerous transcripts related to dele-
terious physiological changes, reactive oxygen species 
(ROS), carbon metabolism, and nitrogen metabolism ex-
hibited consistently increased relative expression levels. 
This suggests that variation in these gene expression pat-
terns may have a fundamental role in generating diatom 
transcriptome diversity. These transcriptional changes are 
consistent with trait observations from Hinners et al. 
(2022) where the largest overall differences between full- 
selected populations relative to their ancestors and con-
trols were in levels of ROS, particulate organic carbon 
(POC), particulate organic nitrogen (PON), and lipid con-
tent. For example, in the study here, increased expression 
of numerous heat shock proteins (HSPs), aldehyde dehy-
drogenases (ALDHs), superoxide dismutases (SOD), aconi-
tases, and glutathione-related transcripts was observed 
across strains (File S2). These changes are consistent with 
prior studies in diatoms that detected upregulation of 
these transcripts during deleterious physiological changes 
(Allen et al. 2008; Lauritano et al. 2015; Wang et al. 
2020). Increased transcripts of trehalose 6-phosphate syn-
thase were detected in TW1010, TW1050, CS1059, and 
TW1587. Trehalose is an intermediate, disaccharide sugar 
that can aid in osmotic adjustment through protein stabil-
ization. Trehalose accumulation has been observed under 
iron limitation in diatoms (Allen et al. 2008) and osmotic 
stress in red algae (Cao et al. 2020) and can signal changes 
in glycolytic activity. Here, we observed these shifts not as a 
result of environmental change but by selecting variation 

initially fixed by chance events in a constant environment. 
It is also plausible that general deleterious physiological 
changes are associated with this decline in organismal func-
tion commonly associated with passage through repeated 
bottlenecks, where deleterious mutations tend to be fixed.

All strains also exhibited increased expression of numer-
ous nitrogen transporters involved in nitrogen acquisition 
but not the reductases and hydrolases involved in nitrogen 
assimilation. Increased expression of only various nitrate 
transporters was detected in strains TW1010, TW1050, 
and TW1587, while only elevated transcription of 
ammonium transporters was observed in CS1059 and 
TW2929. TP3367 highly expressed both nitrate and ammo-
nium transporters. Furthermore, numerous glutamine 
fructose-6-phosphate transaminases had increased expres-
sion across all strains. This enzyme is responsible for the 
metabolic transfer of nitrogenous groups and is involved 
in glutamate and amino sugar metabolism. Collectively, in-
creased transcription of core nitrogen metabolism genes, 
transporters of different nitrogen species, and significant 
differences in particulate organic nitrogen (Hinners et al. 
2022) between full-selected and control populations sug-
gests nitrogen metabolism to be a core pathway involved 
in diatom diversification, even in the absence of changes to 
nitrogen availability. The modularity of core nitrogen me-
tabolism pathways (Smith et al. 2019) and redundancy 
(e.g. urea, aminos, nitrate, and ammonia) can aid in the 
sustained viability of a handful of cells exploring phenotyp-
ic space following chance events or during subsequent 
adaptation from slower-growing starting points. For ex-
ample, the key enzymes involved in ammonium metabol-
ism, glutamine synthetase and glutamate synthase 
(GS-GOGAT), are located in both mitochondria and 
chloroplast in diatoms (Smith et al. 2019). One testable hy-
pothesis that follows from this work is whether high near- 
neutral diversity exists in nitrogen-related traits in natural 
diatom populations. In our experiments, shifts in nitrogen 
metabolism are not indicative of adaptation to any change 
in the availability of nitrogen from the environment but 
could instead be a fundamental adaptive strategy asso-
ciated with fitness recovery. Additionally, this modularity 
and redundancy may enable nitrogen metabolism in dia-
toms to change and still produce viable cells, such that 
changes to transcripts associated with nitrogen metabol-
ism are associated with movement in the t-scape. As 
such, fitness recovery may often involve reevolving nitro-
gen metabolism that allows faster growth from slower- 
growing but viable intermediates that emerge from chance 
events. One interesting possibility is thus that nitrogen 
metabolism is especially prone to diversification in the 
face of bottlenecks, which is consistent with the unique, 
flexible nitrogen metabolism observed in diatoms relative 
to other green lineages (Smith et al. 2019).

In terms of carbon, energy, and core metabolic path-
ways, numerous carbonic anhydrase (CA) and thioredoxin 
transcripts also exhibited elevated expression in TW1010, 
TW1050, TW1587, and TP3367 indicating potential shifts 
in equilibrium between intracellular CO2 and HCO3

−. CAs 
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can catalyze the reversible interconversion of CO2 and 
water into HCO3

− and protons and play a central role in car-
bon acquisition (Clement et al. 2016), though the exact role 
is localization dependent (Hopkinson et al. 2016). As with 
nitrogen acquisition described above, the modularity and 
redundancy of carbon acquisition through numerous types 
of CAs may also enable certain carbon acquisition path-
ways to be compromised during population bottlenecks 
while still producing viable cells. Concurrent transcription-
al changes to different CAs following bottlenecks suggest 
flexibility of CA-associated carbon acquisition is associated 
with the generation of transcriptional diversity, and that 
there is scope for divergence during fitness recovery alone. 
Increased transcription of cytosolic malate dehydrogenase 
was observed in TW1010, TW1050, CS1059, TW1587, and 
TP2929 and is central to both the tricarboxylic acid cycle 
and gluconeogenesis. Numerous transcripts of clathrin sub-
units also increased expression. Clathrin is a structural pro-
tein that helps deform membranes to facilitate 
invagination of molecules into vesicles (i.e. clathrin- 
mediated endocytosis). Although not highly expressed in 
other eukaryotes, it was found to be the sixth most abun-
dant protein in the T. pseudonana proteome and plays cen-
tral roles in nutrient acquisition, vesicle transport, and 
segregation of organelles (Nunn et al. 2009). Finally, ele-
vated transcripts of fucoxanthin chlorophyll proteins 
(FCPs) and other light-harvesting photosystem genes 
were observed (File S2). FCPs make up the key molecular 
complex performing light harvesting in diatoms (Gelzinis 
et al. 2015) and may be fundamental to light-derived en-
ergy generation in response to significant demographic 
change. Changes in expression and trait values of these crit-
ical pathways have been primarily observed as a result of 
environmental change (e.g. Allen et al. 2008; Bertrand 
et al. 2012; Mock et al. 2017; Bender et al. 2018; Smith 
et al. 2019). Here, we observe collective shifts in expression 
across strains that were allowed to diversify in a constant 
environment, indicating that variation in these transcripts 
is readily generated during chance events and suggests that 
these pathways can rapidly diversify during subsequent fit-
ness recovery. The fact that we observe these common 
shifts across globally distributed, disparate diatom strains 
in the order, Thalassiosirales, suggests these pathways 
may be key, conserved players in diatom transcriptomic di-
versification more broadly. Hence, these transcripts may 
underlie fundamental axes of variation along which natural 
selection can act.

Conclusion
Here, we investigate patterns of transcriptional variation in 
a constant environment in a model diatom genus by using 
an integrated approach that pairs generating divergent po-
pulations with examining underlying global transcription. 
Our data reveal that variation generated using population 
bottlenecks in a constant environment can allow popula-
tions to find new metabolic configurations following fit-
ness recovery. This informs our understanding of the 

variation that natural selection may have to act upon follow-
ing chance events that are relatively common in open ocean 
diatoms, such as extreme reduction in population size during 
migration, or between diatom blooms. It is worth noting 
that chance bottleneck events can be common for other mi-
crobial populations in environments such as the human 
body. For example, Badrane et al. (2023) observed the emer-
gence of mixed populations from clonal but genetically di-
verse strains of the opportunistic yeast pathogen, Candida 
glabrata bloodstream infection, following bottleneck events. 
Particularly, they observed emergent, diverse phenotypes in-
cluding antifungal resistance, which could help explain 
broader patterns of genetic variation and inform the usage 
of antimicrobials (Badrane et al. 2023).

Despite the time elapsed between the whole cell mea-
surements (Hinners et al. 2022) and RNA extraction, there 
were several consistent changes in both whole-cell traits 
and transcripts across carbon, nitrogen, energy, and oxida-
tive stress pathways indicating that these pathways can 
shift to produce viable variation during population bottle-
necks, although these changes are sometimes also asso-
ciated with lower population growth. In particular, the 
Hinners et al. (2022) study identified that in the popula-
tions later used for the transcriptomics study here, trait 
correlations departed most strongly from ancestral values 
for populations with high particulate carbon (POC) and ni-
trogen (PON) content. Overall, the strongest departure 
from ancestral trait correlations was related to large shifts 
in correlation due to changes in a single trait, often reactive 
oxygen. While the timing of sampling means that we can-
not directly connect transcriptional changes and whole- 
cell trait values, the concordance between changes in traits 
and changes in annotated transcripts is striking.

During fitness recovery, some populations evolve tran-
scriptional patterns that differ from control populations 
consistently propagated without population bottlenecks 
in the same environment, suggesting that multiple solu-
tions for adaptive trait values and trait combinations exist. 
Even though many of these changes are also associated with 
environmental adaptation in other studies, chance events 
alone are sufficient here to provide starting points from 
which diverse rapid growth populations evolve. Since a 
common set of transcripts was involved in diversification 
across the genus, we suggest that these transcripts, and 
the relationships between them, are especially likely to be 
involved in diversification. Given that these transcriptional 
changes were captured using demographic fluctuations 
that are likely common in evolving diatom populations, 
there is also the intriguing possibility that this variation 
could also be acted on by natural selection in the event 
of environmental change following a population bottle-
neck. Plausible scenarios where this might occur are popu-
lation subdivision and migration into a new environment or 
environmental change between diatom blooms. We sug-
gest that these patterns of transcriptional change may iden-
tify metabolic pathways commonly used during trait 
diversification. Future studies using more distantly related 
ancestral diatom strains harboring different transcriptional 
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circuitry would shed further light on the generality of the 
reduced axes, and the variation in transcript levels and re-
lationships, identified here. It is worth noting that our ex-
periment used nutrient-replete, benign conditions, which 
revealed the fundamental flexibility of certain metabolic 
pathways. Future studies could explore the conservation 
of these trends using more stressful or variable conditions, 
where viability selection may be more stringent and, at a 
certain point, may inhibit diversification.

We identified a particular set of pathways associated 
with rapid diatom diversification in a constant environ-
ment. Investigation of reduced axes in other phytoplankton 
taxa could tease out changes to general transcriptional pat-
terns associated with the generation of diversity versus 
adaptation, as well as those changes that occur broadly 
across taxa versus those that are functional group, geno-
type, or environment specific. Overall, identifying general 
patterns and transcriptional relationships associated with 
diversification adds critical knowledge to genotypic and 
phenotypic limits of phytoplankton diversity and highlights 
the potential role of common chance events for evolving 
phytoplankton populations.

Materials and Methods
Diatom Cultures
Six strains of Thalassiosira sp. from the Provasoli-Guillard 
National Center of Marine Phytoplankton (NCMA, former-
ly known as the CCMP, https://ncma.bigelow.org/) culture 
collection were used: CCMP 1010, 1050, 1059, 1587, 2929, 
and 3367 (Table S1). Extensive trait and phenotypic charac-
terization of these strains are described in Argyle et al. 
(2021a, 2021b) and Hinners et al. (2022). Cultures were 
grown in sterile f/2 media (Guillard 1975) made from natural 
seawater (collected in St Abbs, United Kingdom), at 20 °C 
and approximately 60 μmol photons/m2/s (measured with 
a 4-pi sensor) at a 12-h:12-h light:dark cycle. Our rationale 
for using this light level is that mutation accumulation dur-
ing bottlenecks can lead to changes in traits including light 
optima; at this light level, ancestral population growth is 
within the normally reported range for these species or 
strains, but high extinction rates in the RS phase of the ex-
periment can be avoided. For the evolution experiment, cul-
tures were maintained in transparent 48-well plates covered 
with Breathe-Easy breathable plate seals (Sigma-Aldrich). 
Larger additional cultures (1.5 L) were grown for RNA extrac-
tion so that sufficient biomass could be obtained at low cell 
densities to ensure that harvested cells were not light or nu-
trient limited.

Evolution Experiment
RS Phase
During the RS phase, bottlenecks were induced every 7 d by 
transferring ∼8 cells per replicate to new medium to fix var-
iants mainly by chance between growth cycles. As growth 
rates decreased through time, we extended the bottleneck 
period to every 14 d toward the end of this phase resulting 

in an average of 18 generations. All populations were bottle-
necked at the same time as long as replicates had reached a 
minimum cell concentration of 2,000 cell/mL. If cell concen-
trations were lower, cultures were instead diluted to 500 cell/ 
mL to allow for population recovery before a new bottleneck. 
Bottlenecks were repeated 5 to 9 times depending on the 
genotype corresponding to a total RS phase length of 3 mo 
(70 to 200 generations), depending on population growth 
rates. Toward the end of this phase, some population growth 
rates decreased to a degree where growth was no longer ob-
served. In these cases, previously saved transfers were used to 
induce a new bottleneck. Growth rates were monitored via in 
vivo fluorescence, and at the end of this phase, fluorescence- 
based population growth rates were reduced by an average of 
45% compared to ancestral growth rates (Fig. S1).

FS Phase
During the FS phase, full-selected populations were propa-
gated in batch culture with transfer sizes of 1,000 cells every 
7 d in the ancestral environment. Populations were trans-
ferred ∼25 times corresponding to 200 to 500 generations. 
At this point, whole-cell traits were measured (Hinners 
et al. 2022). Populations were grown under the same FS con-
ditions for a subsequent 10 mo, after which biomass was har-
vested for RNA extraction. Maximum growth rates were 
measured every 5 to 10 transfers to monitor fitness recovery, 
and before termination of this phase, growth rates were mea-
sured over 4 transfers (4 wk) to ensure population growth 
rates had stabilized, indicating populations were on or near 
a high-fitness peak (Fig. S2).

Growth Rate
Growth rates were measured through daily in vivo fluores-
cence with a Tecan Spark plate reader (excitation: 455 nm, 
emission: 620 nm) (Hinners et al. 2022). Exponential 
growth rates were calculated for each time step as follows:

μ =
ln(x2)–ln(x1)

t2–t1
(1) 

Measurements were carried out at the same time each day; 
some of the assays take more than 1 h. Methodology was 
tested and peer reviewed for Argyle et al. (2021a, 2021b). 
Maximum growth rates were determined over 4 consecutive 
time steps. During the bottleneck phase, growth rates were 
determined on single replicates per population. Final growth 
rates were determined from 3 replicates per population. 
Other traits, as well as bacterial counts, were measured via 
flow cytometry as described in Hinners et al. (2022). 
Bacterial counts showed no substantial changes over time. 
Cells for the transcriptomic analysis were harvested at ap-
proximately half the maximum cell density attainable and 
so were not light or nutrient limited during harvest.

Phylogenomics and Geographic Visualization
Phylogenomic trees were inferred with IQTREE2 (Minh 
et al. 2020) using concatenated protein alignments 
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constructed via hmmsearch for marker detection, MUSCLE 
(Edgar 2004) for marker protein alignment, and ClipKIT 
(Steenwyk et al. 2020) for alignment trimming. The 
concatenated alignments were based on the BUSCO 
Protista_83.hmm (Simão et al. 2015) marker set avail-
able through Anvi’o (Eren et al. 2015) using the suggested 
E-value noise cutoff of 1e−25. Phylogenomic trees were 
analyzed and visualized using ETE 3 (Huerta-Cepas et al. 
2016) in Python. This was performed using the phylogen-
y.py module of VEBA (Espinoza and Dupont 2022).

Geographic coordinates in relation to strain origin 
were processed using GeoPandas (https://github.com/ 
geopandas/geopandas), GeoPy (https://github.com/geopy/ 
geopy), and Matplotlib (https://github.com/matplotlib/ 
matplotlib).

Transcriptome Assembly, Gene Modeling, and 
Orthology
Sequence reads were quality controlled using KneadData 
(Beghini et al. 2021) with the GRCh38.p13 human genome 
as a reference for potential decontamination. This method-
ology yielded transcriptomes with depths between 
3,433,160 and 26,023,146 reads mapping between 14,761 
and 55,849 unique transcripts (refer to File S1 for richness 
and depth statistics per strain). De novo transcriptomes 
were grouped by strain (e.g. TW1010 ancestors and bottle-
necks) and coassembled using rnaSPAdes (Bushmanova 
et al. 2019).

Following the protocol detailed in Santoro et al. (2021), we 
used TransDecoder (https://github.com/TransDecoder/ 
TransDecoder) for gene modeling in a multistep process to 
minimize false positives. In particular, we used the following 
procedure: (i) TransDecoder.LongOrfs, with transcript-to- 
gene mappings assigned by rnaSPAdes, to generate putative 
open reading frames (ORFs); (ii) hmmsearch (Eddy 2011) to 
identify protein domains using the PFAM v33.1 and 
TIGRFAM v15.0 databases; (iii) Diamond blastp (Buchfink 
et al. 2021) against all Bacillariophyceae (diatoms) genomes 
available in NCBI (GCA_000149405.2, GCA_000150955.2, 
GCA_000296195.2, GCA_001750085.1, GCA_002217885.1, 
and GCA_900660405.1); and (iv) TransDecoder.Predict with 
the putative ORFs from (i), the protein domains from (ii), 
and the alignments from (iii) using the --single_best_only ar-
gument; this was implemented using the transdecoder_wrap-
per.py script of VEBA. Genes were annotated by best-hit 
Diamond blastp alignment to NCBI’s nonredundant protein 
database (accessed on v2021.08.03) using the annotate.py 
module of VEBA.

Orthogroups were identified using OrthoFinder (Emms 
and Kelly 2019) with the high-quality proteins generated 
from our TransDecoder procedure and all of the 
Bacillariophyceae proteins listed previously. Consensus 
annotations for orthogroups were assigned by using 
the most common organism-agnostic annotation within 
the grouping using UniFunc, a natural language process-
ing software developed for bioinformatics (Queirós et al. 
2021).

Pathway Enrichment Analysis
We performed KEGG pathway enrichment analysis on 
each strain using the GSEA’s Prerank rank module 
(Subramanian et al. 2005) via the GSEApy Python package 
(Fang et al. 2022). To prepare the data for pathway enrich-
ment, we aggregated the counts for transcripts by their 
BRENDA enzyme representative (e.g. EC:1.1.1.1) and iden-
tified conserved enzymes that had at least 300 counts in 
each sample which were later used for pathway enrich-
ment. The enzyme count matrix (i.e. sample vs. enzymes) 
was CLR transformed followed by Euclidean distance (i.e. 
Aitchison distance), and PCoA was performed. The 
PCoA loadings of the conserved enzymes were used as fea-
ture ranks (e.g. weights) in the Prerank module using 
min_size = 5 and permutation_num = 1,000 parameters. 
Enriched pathways were considered significant if false dis-
covery rate < 0.25 which is recommended by the GSEA 
documentation.

Transcript Analysis
Taking a compositional approach, we used the CLR trans-
formation on raw transcript counts by taking the log of 
each count and dividing by the geometric mean using 
the compositional Python package (Espinoza et al. 2020). 
Hierarchical clustering and PCoA ordinations were per-
formed using SciPy (Virtanen et al. 2020) and Soothsayer 
(Espinoza et al. 2021) Python packages. PCoA analyses 
were conducted in the same manner for all PCoA plots 
where all axes represent collapsed variance of 
CLR-transformed transcripts. Heatmaps were generated 
using the heatmap function in the R stats package 
(https://www.R-project.org/).

Supplementary material
Supplementary material is available at Molecular Biology 
and Evolution online.
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