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Abstract 

COVID-19 pandemic prompted supply chain (SC) disruptions and heightened demand for crucial 

items like facemasks and ventilators. Lockdowns and border closures hindered raw material supply 

and manufacturing capacity expansion. Consequently, manufacturers faced challenges in 

inventory, transport, and delivery, resulting in higher shortage costs, elevated SC expenses, and 

reduced SC efficacy. Using an integrated agent-based model (ABM) and optimization, this paper 

examines COVID-19's multifaceted impacts on facemask SCs. It assesses four primary resilience 

strategies: enhancing manufacturing capacity, improving raw material supply, increasing 

transportation and distribution facilities, and maintaining dynamic inventory policy. Moreover, the 

mailto:Towfique.Rahman@uts.edu.au
mailto:Sanjoy.Paul@uts.edu.au
mailto:n.shukla@griffith.edu.au
mailto:Renu.Agarwal@uts.edu.au
mailto:Firouzeh.th@gmail.com
mailto:Towfique.Rahman@uts.edu.au


 

2 

model tested the proposed strategies under different scenarios by optimizing the inventory policy 

and transportation strategies, leading to improved facemask production and delivery during 

extreme events. Our study found that increased production capacity through an optimal inventory 

and transportation strategy for a long period reduced the multiple impacts of the pandemic on 

facemask SCs, resulting in diminished total SC costs and increased consumer access to finished 

products. Based on demand forecasts, maintaining dynamically optimal reordering points and 

order up to levels can help maximize raw material supply and inventory levels, thereby minimizing 

risks. Using these findings, future risks related to outbreaks and pandemics can be more effectively 

planned.  

Keywords: Risk management; supply chain; large-scale disruption; resilience; agent-based model.  

1. Introduction 

Global supply chains (SCs) have faced significant risks and uncertainties due to random and 

unpredictable disruptions during the last decade (Paul & Chowdhury, 2020a; Paul & Chowdhury, 

2020b; Furstenau et al., 2022). SC disruptions largely depend on the type of industry and the 

impacted geographical locations (Rahman et al., 2020). The recent COVID-19 pandemic has 

drastically imposed “unknown-unknown” risks and uncertainties in global SCs, the long-term 

impacts of which in post disruptive stage are yet to be ascertained (Ivanov, 2021b; Rahman et al., 

2021). In contrast to the known-known, known-unknown, and unknown-known risks, the 

unknown—unknown risks cannot be planned for similarly to the other three risk categories 

(Chowdhury et al., 2021). Currently, very little is known about the risks that might emerge post-

COVID-19 pandemic because of other uncertainties, such as the Russia-Ukraine war, and previous 

studies focused only on those three groups (Njomane & Telukdarie, 2022). The COVID-19 

pandemic can be considered a super disruption that has raised the importance of restructuring 

global SCs and business models to survive and sustain during and after such long-lasting 

disruptions (Ivanov, 2021c). Long-established efficient SCs cannot manage the simultaneous, 

dynamic, and multiple impacts of the disruptions (Cheramin et al., 2021). A paradigm shift is 

needed to transform the current efficient SC models into resilient SCs to make them viable and 

sustainable (Queiroz et al., 2020). This paradigm shift may raise the current level of SC costs to 

avoid bigger losses (Ivanov, 2021b).  
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During the COVID-19 pandemic, multiple region-based lockdowns and shutdowns hampered the 

operational process of SCs and businesses, hindering their revenue and goodwill (Ivanov & 

Dolgui, 2021). Most manufacturing companies, particularly those that manufacture essential items, 

faced extreme supply-demand fluctuation during the pandemic (Paul & Chowdhury, 2020a; 

Rahman et al., 2021). For example, the demand for essential healthcare items, such as facemasks 

and ventilators, increased when the rate of COVID-19-related infected cases increased (Coustasse 

et al., 2020). The manufacturers of facemasks and ventilators faced a stockout of raw materials 

and struggled to immediately ramp up their production capacity during the pandemic due to supply 

failure and shortage of production capacity (Mehrotra et al., 2020). Hence, significant attention 

should be paid to considering the underlying risks and vulnerabilities to adopt dynamic adaptation 

strategies to increase raw material supply and production rate. To date, most SC risk-related studies 

have focused on risk identification, assessment, and mitigation, with limited research focusing on 

risk recovery from the simultaneous, dynamic and multiple long-term impacts of disruptions 

(Chowdhury et al., 2021; Rahman et al., 2021). Most manufacturers of essential healthcare items 

struggled to predict the multiple impacts on SCs, and find the appropriate dynamic adaptation 

strategies to recover from the effects of the COVID-19 pandemic (Ivanov, 2021c). Hence, a 

dynamic SC model combined with adaptation strategies and a long-term plan that will ensure 

agility, resilience, and sustainability is needed to increase the viability of SCs (Govindan et al., 

2020; Bender et al., 2022). 

Due to the lack of research on the potential simultaneous, dynamic and multiple impacts of the 

COVID-19 pandemic on SCs, and dynamic and long-term plans to handle both the impacts, the 

present research investigates the following research questions:  

1. What are the likely simultaneous, dynamic, and multiple impacts of the COVID-19 

pandemic on the SC networks of manufacturers? 

2. What optimal combination of dynamic adaptive strategies and long-term plans can be used 

to manage the simultaneous, dynamic, and multiple impacts and make the SCs viable 

during and post the disruption era? 

3. What methods and techniques can be used as analytics tools to predict the impact of super 

disruptions and measure the effectiveness of the proposed adaptation strategies to manage 

multiple and long-term impacts in SC networks? 

The long-established and conventional capabilities of SCs—agility, efficiency, and 

effectiveness—are not sufficient for essential healthcare manufacturers to craft adaptive strategies 
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to recover from the long-term effects of SCs due to the super disruptions (Chowdhury et al., 2021; 

Bag et al., 2022; Hsu et al., 2022). Shifting toward adaptive, reconfigurable, resilient, and viable 

SCs could alleviate the impacts of the COVID-19 pandemic (Ivanov, 2021c; Sonar et al., 2022).  

The present study’s contribution is three-fold. First, we identify several dynamic adaptation 

strategies focusing on the essential healthcare product industry. The second contribution we make 

to the literature is an SC simulation model using an ABM to understand the simultaneous and 

dynamic impacts of the COVID-19 pandemic on facemask SCs, including multiple disruptions in 

supply, demand, manufacturing capacity, inventory management, transportation, and distribution. 

Rahman et al. (2021) used an ABM model to study a short-term disruption, i.e., a demand 

fluctuation; however, they did not optimize any parameters to maximize SC performance. The last 

contribution is to conduct an optimization experiment within an agent-based simulation model by 

optimizing inventory policies and transportation planning to justify dynamic strategies and plans 

to manage disruption impacts in the SCs, production, and delivery to sustain them during and after 

a disruption. This data-driven model can be used to predict and reconfigure SCs when super 

disruptions, such as the COVID-19 pandemic, occur.  

The rest of the paper is organized as follows. Section 2 reviews the literature on large-scale SC 

disruptions, such as COVID-19, adaptation strategies, mitigation methods, and research gaps. 

Section 3 presents the problem statement, while Section 4 describes the proposed adaptation 

strategies, recovery plans, and model formulation. The results, scenario analysis, and discussions 

are elaborated in Section 5. Section 6 describes the managerial implications and theoretical 

contributions, while Section 7 concludes the research by providing future research directions. 

2. Literature Review 

This section conducts a literature review on the simultaneous and dynamic impacts of large-scale 

SC disruptions. It also explores dynamic adaptation strategies to manage disruptions, in addition 

to stating the potential research gaps.  

2.1. Large-scale SC disruptions 

SC risks and disruptions have been studied extensively (Ivanov, 2021a). The recent COVID-19 

pandemic, classified as a super disruption, has drastically disrupted global SCs, imposing a series 

of unknown risks and uncertainties in global SC networks (Ivanov, 2021c). The adaptation 
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strategies to manage disruptions in SCs depend on the merit of the disruptions (Bianco et al., 2023). 

Ivanov (2020a) recently opined that manufacturers need to shift their long-established efficient 

model of SCs to more resilient models, if SC networks are to become more viable and sustainable. 

The COVID-19 pandemic has shown that survivability and adaptability are the main concerns in 

sustaining the current level of SCs in the future (Ivanov, 2021c). A complex combination of agility, 

resilience, and sustainability-based SC model is needed to survive future pandemics or climate 

change-related disruptions (Chowdhury et al., 2021).  

SC disruptions can be caused by micro-events, such as fire, natural disasters, and cyber-attacks. 

Such SC disruptions can be short-term and sometimes lead to large-scale disruptions (Dolgui et 

al., 2020). The tsunami in Japan in 2011 was a short-term micro disruption, but it impacted global 

SCs on a large scale (Pettit et al., 2013). Increasing a firm’s recovery and resilience can help 

alleviate such micro-level SC disruptions (Kumar & Anbanandam, 2020). Major large-scale SC 

disruptions can be caused by either meso-events, such as the COVID-19 pandemic, which can be 

medium-term or long-term; or by macro-events, such as climate change, which are long-term 

disruptions (Adobor & McMullen, 2018). The global semiconductor shortage is one example of 

the many impacts of the COVID-19 pandemic (Ivanov, 2019; Ivanov & Dolgui, 2021). Similarly, 

the Spanish flu in 1918 was the reason behind a worldwide coal shortage (Rahman et al., 2021). 

The impact of macro events, such as climate change, on global SCs is futuristic. However, global 

SCs need to be ready to adopt multi-structural transformation in their current SC structure to 

improve their viability to sustain in such future catastrophic events (de Vargas Mores et al., 2018; 

Ivanov & Keskin, 2023).  

Our study focuses on the impacts of large-scale disruptions, such as the COVID-19 pandemic. 

During the COVID-19 pandemic, most countries initiated several regional lockdowns to stop the 

spread of the COVID-19 virus, causing simultaneous and multiple impacts on SC networks (Raj 

et al., 2022). Multiple disruptions, such as supplier failure for a long-term, manufacturing unit 

shutdown, restrictions in movement (fewer transportations), increased demand for certain essential 

products, decreased demand of low-demand products (i.e., apparel and automotive products), and 

inventory shortage, have caused long-term effects on SCs (Ivanov & Dolgui, 2021; Choi, 2021). 

The impacts of the pandemic on SCs are unpredictable and relatively long-term. The unknown-

unknown risks and uncertainties that global SCs face due to the recent pandemic have raised the 
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importance of studying the types of impacts in various SC echelons and designing adaptive, 

reconfigurable, and dynamic strategies to manage those impacts to survive (Chowdhury et al., 

2021; Ivanov & Keskin, 2023). 

2.2. Simultaneous and dynamic impacts of the COVID-19 pandemic in SCs 

Global SCs have faced various simultaneous and dynamic impacts of mild, moderate, and extreme 

SC disruptions occurring in parallel and/or sequentially during the COVID-19 pandemic (Dolgui 

et al., 2018; Ivanov, 2020b; Ivanov & Sokolov, 2019). For example, when a manufacturing facility 

in one region was partially shut down due to the emergence of COVID-19 cases, the production 

capacity decreased, and the situation continued for three weeks. The suppliers of the manufacturing 

unit located in other regions provided full support due to the normal situation in those regions. 

During the second week of the manufacturing facility’s partial shutdown, one of the suppliers in 

another region was required to stop its operations due to a full emergency shutdown. At that point, 

the manufacturing facility faced a parallel disruption that triggered significantly heavier ongoing 

disruptions. If this situation continued for a further five weeks and then improved, the 

manufacturing facility could have reopened fully, and the suppliers would have started to operate 

fully. As such, the SC network of the manufacturing unit would have recovered gradually. 

However, another wave of virus emergence after a few weeks meant that the manufacturing facility 

faced a surge in demand for the product. At the same time, another lockdown stopped its regular 

operations for two consecutive weeks. This type of disruption can be termed sequential disruption. 

Both parallel and/or sequential dynamic disruptions have severely impacted SC networks (Paul et 

al., 2017; Rahman et al., 2021; Rozhkov et al., 2022).  

The COVID-19 pandemic has disrupted the SCs of various industries (Rahman et al., 2021). Both 

high-demand essential and low-demand luxury products industries faced demand disruptions 

(Chowdhury et al., 2021; Paul & Chowdhury, 2020b). Due to continuous lockdowns and border 

closures in many countries, suppliers could not provide raw materials to manufacturers in other 

countries (Hall et al., 2020). As a result, manufacturers of essential products (i.e., food and 

healthcare) could not increase their production and failed to meet the demand surge (Fernandes, 

2020; Nayeri et al., 2022). Manufacturers lacked transportation capabilities to deliver large 

quantities of products to retailers (Ivanov, 2020b). Further, the low inventory capacity to 

accommodate huge amounts of products in manufacturing warehouses was evident (Dolgui et al., 
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2018). Thus, simultaneous supply failure, production capacity degradation, transportation 

shortage, inventory shortage, and demand surge of essential products caused heavy and long-term 

impacts on the SC networks of manufacturers of essential products (Aldrighetti et al., 2021).  

Conversely, the manufacturers of low-demand products (i.e., apparel, automotive, etc.) faced a 

demand decrease during the pandemic (Chowdhury et al., 2021; Ivanov, 2020a). It was also very 

challenging for manufacturers to shift their production to other relevant essential items to sustain 

their revenue (Wang & Yao, 2021). After the emergence of the COVID-19 pandemic and due to 

the series of lockdowns and border closures, the continuous/scheduled delivery of raw materials 

to manufacturers was lacking (Ivanov, 2021c). The global shortage of electronic devices and 

automobile parts due to the shortage of semiconductors is an example of such a supply-side 

disruption during the pandemic (Dolgui et al., 2018; Ivanov, 2021c). Emergency healthcare 

products such as ventilators were essential for COVID-19-affected patients (Ivanov, 2021b). Due 

to the scarcity of ventilators, some suppliers in the automotive sector began producing respirator 

valves to meet the growing healthcare demand, which is a good example of repurposing business 

capabilities (Ivanov, 2021a; Mehrotra et al., 2020). Essential product manufacturers continue to 

struggle to find adaptive strategies to ramp up their production capacities amid this global 

pandemic due to a series of simultaneous and dynamic disruptions (Chowdhury et al., 2021; 

Ivanov, 2021a). Hence, this study proposes dynamic adaptation strategies and long-term plans to 

manage such large-scale SC disruptions.  

2.3. Adaptation strategies and methods to manage simultaneous disruptions in SCs 

To address the issues of simultaneous and dynamic impacts of the COVID-19 pandemic, the 

“viable supply chain” (VSC) model was proposed by Ivanov (2021b). The objectives of VSC 

models are to:  (i) react agilely to positive changes, (ii) be resilient to absorb negative events and 

recover after the disruptions, and (iii) survive during long-term and global disruptions by capacity 

utilizations and their allocations to demands in response to internal and external changes in line 

with the sustainable developments to secure the provision of society and markets with goods and 

services in long-term perspective (Ivanov, 2021b).  

Adaptation and survivability are the main themes that drove the creation of this model (Ivanov, 

2020a; Ivanov & Dolgui, 2021; Li et al., 2021). The VSC model’s layers comprise three concerns: 

SC ecosystems, reconfigurable SC network systems, and firm’s resources capabilities. Across 
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these three concerns, the VSC is based on three cycles: lean and agile (i.e., “leagility”), resilience, 

and survivability (Ivanov, 2021c). Furthermore, four types of related adaptation strategies aid the 

SC’s cycles: intertwining, substitution, scalability, and re-purposing (Ivanov, 2021c). SC risk 

levels vary across different areas, such as manufacturing, supply of raw materials, transportation, 

uncertain demand, and inadequate inventory management, all of which pose potential risks (Wang 

& Yao, 2021). Manufacturing disruptions can significantly impact production processes, while the 

supply of raw materials may experience shortages or delays. Transportation disruptions can have 

a significant impact on logistics networks. Uncertain demand and inadequate inventory 

management further compound these risks (Chowdhury et al., 2021; Paul & Chowdhury, 2020b). 

To effectively manage these risks, adaptation strategies such as diversifying suppliers, maintaining 

alternative sources, optimizing logistics routes, enhancing forecasting capabilities, and 

implementing agile inventory systems are crucial in ensuring the resilience and stability of supply 

chains (Rahman et al., 2021). Adaptation strategies (detailed in Table 2) aim to create some system 

preparedness (i.e., redundancy of resources), system flexibility related to operations, and resources 

to improve new network reconfiguration under changing characteristics of disruptions (Ivanov, 

2019, 2020b, 2021b; Li et al., 2021).  

During the COVID-19 pandemic, the automotive and electronic industries faced a severe shortage 

of semiconductors due to consumers’ initial low demand (Ivanov, 2021c; Wang & Yao, 2021). 

Electronic companies collaborated with related industries and intertwined their supply chains when 

the disruptions subsided and semiconductor supplies improved gradually in order to obtain enough 

semiconductors to increase production (Ivanov, 2021b; Li et al., 2021). AGCO Corporation, an 

agricultural equipment manufacturer, searched for alternative suppliers in China for substitution 

and assessed the vulnerabilities promptly (Ivanov, 2021c, 2021b). Raw materials were strategically 

moved to European markets where businesses ran smoothly (Ivanov, 2021b), and shipments were 

sent via rail rather than through conventional means. For these substitutions, lockdown in 

suppliers’ countries did not hamper AGCO’s business (Ivanov, 2021c). Healthcare company 

Johnson and Johnson faced a 100% increase in demand for essential healthcare products during 

the COVID-19 pandemic (Ivanov, 2021c). To respond to the increasing demand, the company 

scaled up production using its backup facilities as a part of its scalability adaptation strategy 

(Chowdhury et al., 2021; Dolgui & Ivanov, 2020; Ivanov, 2019). Ford Motor Company faced a 

severely low demand for automotive parts and strategically repurposed its production line to 
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manufacture personal protective equipment, such as face shields, to meet the demand surge during 

the pandemic (Aldrighetti et al., 2021; Bals & Tate, 2018; Ivanov, 2021b). 

Based on the above literature review, Table 1 summarizes studies on SC risk management, Table 

2 presents adaptation strategies, and Table 3 shows  modeling methods to manage SC disruptions.  

Table 1: Studies on risk management in SCs 

References  Contributions/findings   
(Wang & Yao, 2021) This study reveals that collaborating (intertwining adaptation strategy) with 

other industries’ transportation facilities will help fulfill delivery demands in 

an emergency and reduce transportation related risks.  

(Papadopoulos et al., 2017) Aid from the government can support the manufacturers in scaling up and 

repurposing production capabilities and reduce financial risks.  

(Ivanov, 2020) As an intertwining adaptation strategy, resource sharing can be easily done by 

horizontal and vertical collaboration to enhance sourcing and production to 

meet consumers' demands during a pandemic and reduce manufacturing related 

risks. 

(Ivanov, 2019) This research finds that sub-contracting (substitution adaptation) helps to 

continue production in the time of primary manufacturing facility disruption to 

reduce manufacturing facilities related risks.  

(Ivanov, 2021b) Robot-enabled manufacturing can be adopted in collaboration with human 

skills and intelligence to enhance production capacity even in times of super 

disruptions. Further, to make the delivery smooth during disruption, 

multimodal and multi-route shipments allow changes to transportation plans 

with alternative routes or modes of transport.  

(Durach et al., 2021) Major findings of this study reveal that blockchain and advanced tracking 

technology help to create SC visibility, disruption identification, and recovery 

support. This reduces information related risks in SCs. 

(Paul et al., 2017) More collaborative distribution centers close to customer zones help to increase 

resilience in logistics and ensure smooth delivery during a disruptive situation.  

(Dolgui & Ivanov, 2021) By having multiple suppliers as part of a substitution strategy, manufacturers 

can replace their suppliers in case of extraordinary disruptions and recover from 

supply related risks.   

(Dolgui et al., 2018) Backup sourcing as a substitution adaptation strategy helps to continue supply 

in case of a primary supplier failure. 

(Ivanov, 2021c) Local sourcing helps to enhance higher supply flexibility at lower 

transportation costs which may create robust redundancy in the case of the 

COVID-19 pandemic. 

(Dolgui & Ivanov, 2020) As part of the repurposing adaptation strategy, reshoring and back-shoring are 

used to reduce vulnerabilities and increase robustness, which helps when a 

super disruption such as the COVID-19 pandemic exists.  

(Chowdhury et al., 2021) Nearshoring and domestic production help to reduce production vulnerability 

and increase robustness during disruptions. Strategic stock/risk inventory may 

aid in meeting fluctuating demand and eliminate stockout. 

(Paul & Chowdhury, 2020a) Producing adequate alternative items may aid to fulfill the extra demand during 

any disruption. This is a good example of a substitution adaptation strategy to 

reduce production related risks.  
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(Aldrighetti et al., 2021) Backup facilities (substitution adaptation strategy) help the distribution process 

even after the primary warehouse disruption recovery from distribution related 

risks. 

(Tarafdar & Qrunfleh, 2017) The findings reveal that postponement helps manufacturers to respond quickly 

to unpredictable customer demand and improve inventory efficiency. 

(Manuj et al., 2014) Product line flexibility and modularization help respond to the fluctuation of 

consumers’ demand during disruptions.  

(Ivanov & Sokolov, 2019) Keeping reserve liquidity allows the business to continue chain activities even 

during a pandemic and reduces financial risks. 

(Pavlov et al., 2019) This study suggests that decentralized manufacturing facilities increase 

robustness during super disruptions and reduce manufacturing related risks.  

(Ivanov, 2021a) Increasing and decreasing inventory policy during and post-disruptions will 

help maintain a sustainable inventory level to meet the demand that surges or 

decreases.  

(Furstenau et al., 2022) This study examines the impact of digital technologies on the resilience of 

healthcare supply chains and offers guidance for decision-makers. 

(Bender et al., 2022) This research examines how households have adapted to the COVID-19 

pandemic by increasing food prepared at home and identifying strategies that 

align with practices that enhance resilience in the food supply chain. 

(Bag et al., 2022) It examines how big data and predictive analytics can improve supply chain 

visibility and resilience in the South African mining industry under extreme 

weather conditions. 

(Ivanov & Keskin, 2023) The study contributes by presenting new research on efficient, resilient supply 

chains in long-term crises, such as the COVID-19 pandemic. 

(Bastas & Garza-Reyes, 

2022) 

This paper investigates the impact of COVID-19 on manufacturing 

organizations in Northern Cyprus and presents strategies used to respond to the 

pandemic, contributing to knowledge on manufacturing management and 

resilience. 

(Longo et al., 2022) This article presents a simulation-based framework for manufacturing design 

and resilience assessment, which is demonstrated through a case study in the 

wood sector, showing that preparedness can limit damage and increase 

productivity in the face of disruptions. 

 

Table 2: Adaptation strategies for supply chain risk management 

SC risk level  Sub-strategies Purposes References  

Manufacturing  Ramp-up emergency 

production  

To meet the demand surge to avoid high 

shortage costs. 

(Ivanov, 

2021a; Pavlov 

et al., 2019; 

Rahman et al., 

2021; Choi et 

al., 2021; 

Bastas & 

Garza-Reyes, 

2022)  

Decentralizing 

manufacturing facilities  

To increase the production capacity 

during an emergency. 

Sub-contracting facilities 

and backup factory  

To continue production in the time of 

failure of the primary manufacturing 

facility due to uncertain disruption. 
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Human-robot collaboration  To maintain social distancing to stop the 

spread of the virus and to continue 

production during a pandemic. 

Reshoring and nearshoring  To reduce the dependencies on 

manufacturing facilities in other 

countries 

Product diversification and 

substitution  

A large number of alternative items may 

aid to fulfill the extra demand of 

essential items. 

Re-purposing production 

capability  

To unlock opportunities to increase 

production of other/similar items to 

meet the extra demand.  

Supply of raw 

material  

 

Alternative supplier or 

backup sourcing 

To manage sudden supply-side 

disruptions in existing suppliers to 

sustain production during disruptions 

(Chowdhury 

et al., 2021; 

Ivanov & 

Sokolov, 

2019; 

Rahman et al., 

2021; Wang 

& Yao, 2021; 

Choi, 2019; 

Bender et al., 

2022) 

Multiple suppliers If there is any disruption in one or some 

of the suppliers, other active suppliers 

can help supply raw materials.  

Local sourcing  To enhance supply flexibility at lower 

transportation costs, which may create 

robust redundancy during a pandemic.  

Emergency sourcing from 

other relevant industry  

To increase raw material supply to meet 

the demand surge. In an emergency like 

COVID-19, facemask manufacturers can 

get raw materials from the garment 

industry.  

Transportation  Collaboration with other 

transporters  

Collaborating with other industries’ 

transportation facilities will help fulfill 

the emergency delivery demand. 

(Aldrighetti et 

al., 2021; Li 

et al., 2021; 

Xiaoyan Xu 

et al., 2021; 

Raj et al., 

2022) 

Multimodal and multi-

route shipment  

To reduce the risks and uncertainties in 

fulfilling deliveries to the retailers and 

consumers during the lockdowns in a 

pandemic.  

Establishing more 

collaborative distribution 

centers  

More collaborative distribution centers 

close to customer zones help increase 

logistics resilience and ensure smooth 

delivery in times of disruptive situations. 

Omni-channel  It provides a seamless customer 

experience to get their deliveries by 

using online platforms during a strict 

lockdown. 
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Demand and 

inventory  

Strategic stock, risk 

inventory, and redundancy  

Manufacturers with a large inventory 

can withstand a long period of scarcity 

caused by a natural disaster or strike 

action. 

(Liu et al., 

2016; Wang 

& Yao, 2021; 

Furstenau et 

al., 2022) 
Maintaining minimum 

inventory policy  

To have optimal inventory by increasing 

the frequency of orders to the suppliers. 

Virtual stockpile pooling 

(VSP) system 

To improve delivery in times of 

emergency. 

 

Researchers have used various modeling techniques to justify strategies for making SC networks 

more robust, resilient, and viable. According to Ivanov & Dolgui (2021), modeling methodologies 

are used in literature to make network-wise assessments, plan choices, manage processes, and 

justify measures that make supply chains more resilient (please refer to Table 3). Bayesian 

networks, Complexity theory, Reliability theory, Petri nets, and Markov chains can be used to 

identify bottlenecks in supply chain networks. Mathematical optimization is a superior modeling 

tool for planning choices (Chowdhury et al., 2021). Meanwhile, several simulation methodologies 

are used for process control analysis (Longo et al., 2022). By combining mathematical 

optimization with simulation methods, models and strategies can be developed to evaluate process 

decision-making strategies to better understand the consequences of large-scale disruptions in 

supply chains (Paul & Chowdhury, 2020b). The ABM is a data analytics tool for understanding 

the behavioral elements of SC digital manufacturing (Rahman et al., 2021). Using a system 

dynamics simulation, Chen et al. (2020) studied the resiliency of oil imports under shock. An 

agent-based simulation model without capability optimization was developed by Rahman et al. 

(2021) to predict and manage the impacts of COVID-19 based on short-term and single disruption. 

On the other hand, Tan, Cai, and Zhang (2020) used a discrete event model and ABM to analyze 

the strategies for SC resilience in an SC network. Nevertheless, there is a gap in the literature 

regarding establishing an ABM-based simulation-optimization data analytics model that can 

accurately predict the effects of long-term and large-scale SC disruptions and provide a better 

recovery strategy. 

Table 3: Modelling methods to manage SC disruptions (Ivanov & Dolgui, 2021) 

Network and complexity theories Mathematical optimization Simulation 
Bayesian networks 

 

  

Agent-based simulation 
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Complexity theory 

 

Reliability theory 

 

Petri Nets 

 

Markov Chains 

Mixed-integer linear 

programming 

 

Robust optimization 

 

Stochastic optimization 

 

Discrete-event simulation 

 

System dynamics 

Network-wise analysis  Planning decisions  Process control  

 

2.4. Research gaps 

There is a lack of research in addressing the simultaneous and dynamic impacts of the COVID-19 

pandemic on the SC networks of essential product manufacturers (i.e., facemasks, ventilators, etc.) 

and dynamic adaptative strategies and plans to manage these. Therefore, studying the impacts of 

simultaneous and dynamic disruptions in SC performances and evaluating the dynamic adaptive 

strategies to manage such long-term disruptions is crucial (Mitręga & Choi, 2021; Rahman et al., 

2022). This evaluation framework would help essential product manufacturers adopt timely 

strategies to survive disruptions. A smooth flow of raw materials from suppliers, smooth 

operations in the manufacturing facility, available transportation and delivery systems, and a 

dynamic inventory policy are all needed to ensure essential product manufacturers’ survivability 

during any pandemic or climate change-related meso- and micro-level disruption (Paul, Moktadir, 

et al., 2021; Ambrogio et al., 2022). These adaptation strategies may not aid all disruptions for all 

types of products, but they can be adopted by other manufacturers to survive any future disruptions. 

The previous literature indicates significant research on evaluating SC disruptions and mitigation 

strategies using mathematical modeling and optimization methods, multicriteria decision-making 

methods, structural equation models, and other structural network analysis and optimization 

methods (Chowdhury et al., 2021; Rahman et al., 2022). Nevertheless, few studies have attempted 

to predict the simultaneous and dynamic impacts of the COVID-19 pandemic in SC networks, 

evaluate dynamic adaptation strategies, and plan to manage such long-term disruptions using 

agent-based simulation and optimization modeling approach (Rahman et al., 2021). Rahman et al. 

(2021) developed an ABM model in their research into a single short-term disruption, such as 

demand fluctuation, which did not optimize any parameters to maximize SC performance. No 

significant research has been conducted on the simultaneous and dynamic long-term impacts of 

the COVID-19 pandemic in SC networks of essential healthcare product manufacturers (i.e., 

facemasks, ventilators, etc.), and none has evaluated the dynamic adaptation strategies to improve 
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the conditions for survivability. This study observes the impacts of long-term simultaneous 

disruptions in SCs and evaluates dynamic adaptation strategies to manage them over a period by 

developing an integrated ABM and optimization method.  

3. Problem Statement  

The current SC disruptions caused by the COVID-19 pandemic can be classified under 

unidentified risks, known as unknown-unknown types of risks (Chowdhury et al., 2021; Ivanov & 

Dolgui, 2021; Bastas & Garza-Reyes, 2022). These types of risks are unpredictable in terms of 

their complexity, timing, and location of occurrence. They simultaneously occur as businesses are 

challenged to operate in a volatile, uncertain, complex, and ambiguous environment (Pettit et al., 

2019; Vegter et al., 2020). The COVID-19 outbreak is an example of a large-scale unknown-

unknown risk that has significantly affected national and international SC operations (Cai & Luo, 

2020). During the outbreak, most manufacturers’ production capacity reduced significantly due to 

restrictions to maintain social distancing and lockdowns, disruption of transportation and 

distribution systems, and disruption of the supply of essential products, which affected social and 

environmental sustainability practices and significantly reduced financial performance 

(Chowdhury et al., 2021; Ivanov, 2021c; Rahman et al., 2021). Most decision-makers design cost-

efficient SCs and compromise resiliency, sustainability, and other risk management practices 

(Dolgui et al., 2018; Ivanov, 2021b; Wang & Yao, 2021). A cost-efficient SC is considered a 

lucrative option in the short term; however, such an SC may not survive in the longer term if 

decision-makers mostly focus on saving money and maximizing profit (Dolgui & Ivanov, 2020; 

Ivanov & Dolgui, 2021; Wang & Yao, 2021; Xiaoping Xu & Choi, 2021).  

Exploring the facemask SCs provides an example in evaluating the simultaneously occurring 

supply failure, production capacity degradation, restrictions in transportation, and demand spikes 

of essential healthcare items during the COVID-19 pandemic in Australia. The demand for 

facemasks increased daily as the coronavirus infection rate increased (Rahman et al., 2021; Wu et 

al., 2020). Since the beginning of the pandemic, several states in Australia have faced several 

lockdowns (Chowdhury et al., 2021; Rahman et al., 2021; Zhou, 2020). Melbourne, Victoria’s 

capital, has had more than eight lockdowns to stop the spread of the virus (Chowdhury et al., 2021). 

In addition, Australia closed its borders for about two years to most countries during the pandemic 

and subsequently faced severe supply-side disruptions (Paul et al., 2021). Due to lockdowns and 
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border closures, most facilities’ manufacturing capacities decreased to stop the virus from 

spreading among workers. Transporters could not deliver items to the retailers promptly. Thus, 

Australian manufacturers of essential products faced simultaneous and dynamic disruptions across 

their SCs. When the situation improved slightly, other disruptions, such as demand spikes or 

supply failure, hit the recovery progress (Rahman et al., 2021). Since July 2021, the COVID-19 

Delta strain has halted the SC recovery progress in Australia (Chowdhury et al., 2021). Health 

researchers and policymakers were unsure when this COVID-19 pandemic would end (Chowdhury 

et al., 2021; Sharma et al., 2020). In 2023, COVID-19 has emerged severely in China that can 

increase the demand of facemask usage to stop the spread of the virus (Ivanov & Keskin, 2023). 

The Disease Control and Prevention (CDC) recommends wearing masks in public places and 

practicing other preventive measures such as frequent hand washing, social distancing, and staying 

home when unwell (Fernandes, 2020; Nayeri et al., 2022). The emergence of new variants of the 

coronavirus has the potential to increase the need for the use of facemask, which could lead to an 

increase in demand for them in the market in future. Hence, it is crucial to identify possible 

dynamic adaptation strategies and ensure long-term planning to manage the simultaneous and 

dynamic impacts of the COVID-19 pandemic on SCs and to regulate the flow of products in the 

market. This paper aims to develop an integrated ABM and optimization model to predict the 

impacts of the COVID-19 pandemic on essential product SCs. This paper also proposes adaptation 

strategies to manage the extreme impacts on SCs. These adaptation strategies are tested in different 

scenarios via the proposed model to observe the effectiveness of improving SC performance.  

4. Proposed Dynamic Adaptation Strategies and Model Formulation 

This section discusses the proposed dynamic adaptation strategies and model formulation for 

solving the stated problem using an integrated ABM and optimization model.  

4.1. Proposed dynamic adaptation strategies  

This present research proposes the following four main dynamic adaptation strategies to manage 

the simultaneous and dynamic impacts of the COVID-19 pandemic in SCs.  

Strategy 1: Enhancing manufacturing capacity  

The first strategy aims to streamline and ramp up manufacturing capacity to meet the demand 

surge for essential healthcare items during the COVID-19 pandemic.  
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Strategy 2: Improving raw material supply  

This strategy aims to improve the supply flow of raw materials to manufacturers to scale up the 

production rate to meet the increasing demand for highly sought-after essential healthcare items 

during the COVID-19 pandemic.  

Strategy 3: Increasing transportation and distribution facilities 

This strategy aims to smoothen and improve the timely delivery of items to retailers and consumers 

during emergencies.  

Strategy 4: Maintaining dynamic inventory policy 

This strategy aims to maintain optimal inventory by means of “s, S” inventory policy in 

manufacturing facilities to continue extended production during extreme disruptions. These main 

strategies are all part of the scalability-adaptation strategy.  

4.2. Proposed recovery plans 

Based on the adaptation strategies, we have considered six scenarios, including long-, medium-, 

and short-term recovery plans for low, medium, and high levels of production capacity increases 

for adopting strategy 1 – “enhancing manufacturing capacity”. Each scenario is optimized with 

decision variables—re-order point, order up to level, number of transports (trucks), raw material 

supply, production quantity, inventory level, and delivery quantity—to function dynamically to 

mitigate the simultaneous and dynamic impacts. Optimal re-order point and order up to level 

increase raw material supply and inventory level, as the “s, S” inventory policy is considered in 

the model for adopting strategies 2 and 4 – “improving raw material supply” and “maintaining 

dynamic inventory policy”. The optimal number of trucks at manufacturing facilities is also 

obtained to maximize the delivery capacity and minimize total supply chain costs for adopting 

strategy 3 – “increasing transportation and distribution facilities”. Table 4 and Figures 1-3 

summarize the scenarios considered for analysis in this study. 
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 Table 4: Scenarios considered for analysis in this study 

 

 

 

Figure 1: Long-term recovery plans for scenarios 1 (S1) and 2 (S2) for manufacturing capacity 

increase 

 

Scenarios Recovery 

period 

Increase in 

production 

capacity  

Decision variables for single objective optimization (Min-

Max) 

ROP (𝑠𝑗) Order up to level (𝑆𝑗) Trucks (𝑙) 

Scenario 1 Long High (+100%) Min (+50%): 1500 – 

Max (+100%): 2000  

Min (+50%): 4500 – Max 

(+100%): 6000 

Min (+50%): 15 – 

Max (+100%): 20 

Scenario 2 Long Low (+50%) Min (+25%): 1250 – 

Max (+50%): 1500 

Min (+25%): 3750 – Max 

(+50%): 4500 

Min (+25): 13 – 

Max (+50%): 15 

Scenario 3 Medium High (+100%) Min (+40%): 1400 – 

Max (+80%): 1800 

Min (+40%): 4200 – Max 

(+80%): 5400 

Min (+40%): 14 – 

Max (+80%): 18 

Scenario 4 Medium Low (+50%) Min (+20%): 1200 – 

Max (+40%): 1400 

Min (+20%): 3600 – Max 

(+40%): 4200 

Min (+20%): 12 – 

Max (+40%): 14 

Scenario 5 Short High (+100%) Min (+30%): 1300 – 

Max (+60%): 1600 

Min (+30%): 3900 – Max 

(+60%): 4800 

Min (+30%): 13 – 

Max (+60%): 16 

Scenario 6 Short Low (+50%) Min (+15%): 1150 – 

Max (+30%): 1300 

Min (+15%): 3450 – Max 

(+30%): 3900 

Min (+15%): 11 – 

Max (+30%): 13 
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Figure 2: Medium-term recovery plans for scenarios 3 (S3) and 4 (S4) for manufacturing 

capacity increase 

 

Figure 3: Short-term recovery plans for scenarios 5 (S5) and 6 (S6) for manufacturing capacity 

increase 

4.3. An integrated ABM and optimization model formulation 

In this section, we propose an ABM for simulating and optimizing a typical SC for facemasks to 

compare and mitigate risks. Please refer to Figure 4 for proposed research methodology. 
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Figure 4: Proposed research methodology 

In the proposed model, a set of agents represents SC entities in the real world. By coordinating SC 

entities and determining the decision variables’ optimized values for the best outcome, they 

simulate specific functions to fulfill retail orders (Ivanov, 2017). To fulfill incoming orders for the 

finished products and raw materials, we considered the typical SC network of a facemask 

manufacturing company, which would involve a set of suppliers, manufacturers, and retailers, and 

a set of transport trucks for suppliers and manufacturers (Mizgier et al., 2012; Zhang et al., 2017). 

Our model used hypothetical data derived from secondary data. Please refer to Tables 5 and 6 for 

agent descriptions, model parameters, and Table A1 in Appendix for manufacturing agents’ 

parameters, respectively, in Appendix A in the supplementary material. We evaluate the SC 

performance using the following measures: 

Backorder level: Undelivered products to the retailer within a week by the manufacturer in time 

window 𝑡 = 𝑑𝑗
𝑡 

Financial performances: The costs considered to evaluate financial performances in the analysis 

framework include,  

a. total supply chain costs (TSCCs) 

b. manufacturing costs (MCs, including the raw material costs from suppliers)  

c. inventory costs (ICs) for manufacturers and retailers 

d. transportation costs (TCs) for suppliers and manufacturers 

e. shortage costs (ShCs) at the manufacturing stage 

Problem statement 

Developing SC agents in ABM 

Establishing agent functions 

Developing simulation model 

Setting constraints for optimization 

Data collection and input 

Scanario analaysis and discussions 
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f. discount costs (DisCs) at the manufacturing stage. Table 7 lists the cost metric equations 

used by the agents.  

 

Manufacturing performance: Based on the number of products manufactured by the 𝑗𝑡ℎ 

manufacturer in time window 𝑡 = 𝑝𝑗
𝑡  

Table 5: Description of agents of the proposed model (Rahman et al., 2021) 

Agent Name Functions 

Retailer agents Orders (represented as order agents) are created continuously by retail agents to meet 

customer demand. When an order is created at a given time, it is assigned to the most 

preferred manufacturer.  

Manufacturer agents Once a manufacturing agent receives an order from a retailer agent, the agent tries to 

meet the order using its make-to-stock inventory of finished products (Qj
t) and a set of 

available trucks. A request is sent to the suppliers if the inventory level drops below the 

reordering level (sj), requesting a fixed amount of raw material and/or components (Sj) 

to replenish the stock of finished goods.  

 

Supplier agents This agent’s role is to produce the components (in a make-to-order setting) and transport 

them to the respective manufacturer through trucks.  

Order agents Order agents are created stochastically by retail agents with predefined order size 

distributions and at predefined arrival times. They represent retail demand in the 

simulation model. For order fulfillment, order agents pass orders to relevant 

manufacturers. 

 

Truck agent at 

manufacturers 

Manufacturer trucks transport finished goods to retail agents through these agents. 

 

Order supplier 

agent 

These agents are part of the simulation model as an entity that represents the orders from 

manufacturers to suppliers for components and raw materials needed to manufacture 

finished products. 

 

Truck agents at 

suppliers  

 

Suppliers use these agents to ship components or raw materials to the manufacturers.  

 

Evaluation agent This agent communicates with all the other agents in the system to maintain track of the 

current SC’s key performance indicators. They look at MCs, sourcing costs, TCs at the 

manufacturing and supplier stages, ICs at the supplier, manufacturer, and retail stages, 

ShCs, DisCs, and products/components produced/shipped/received at the various SC 

stages. 

 

Table 6: Model parameters (Rahman et al., 2021) 

Notations Descriptions 

𝒊 Retailers 

𝒋 Manufacturers 

𝒌 Suppliers 

𝒍 Manufacturer trucks 
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𝒎 Supplier trucks 

D Demand  

𝑪𝒊 𝑖𝑡ℎ Supplier’s capacity  

𝑰𝑹𝒊 Holding costs for inventories for 𝑖𝑡ℎ retailer (each item, per day)  

𝝋𝒋 Fixed operating cost for 𝑗𝑡ℎ manufacturer 

𝝑𝒋 Manufacturing cost per unit of 𝑗𝑡ℎ manufacturer 

𝑰𝑴𝒋 Inventory holding cost for 𝑗𝑡ℎ manufacturer (each item, per day) 

𝝍𝒋 Fixed cost associated with managing transport services at 𝑗𝑡ℎ manufacturer 

𝝎𝒋 Variable transportation cost at 𝑗𝑡ℎ manufacturer (per unit item per unit time)  

𝜼𝒋 Shortage cost for 𝑗𝑡ℎ manufacturer (per unit item) 

ℷ𝐣 Discount cost for 𝑗𝑡ℎ manufacturer (per unit item) 

𝝆𝒌 Cost of manufacturing raw materials supplied by 𝑘𝑡ℎ supplier  

𝜽𝒌 Fixed cost associated with managing transport services at 𝑘𝑡ℎ supplier 

𝝊𝒌 Variable transportation cost 𝑘𝑡ℎ supplier (per unit item per unit time)  

𝒔𝒋 ROP at 𝑗𝑡ℎ manufacturer 

𝑺𝒋 Order up to level at 𝑗𝑡ℎ manufacturer  

𝒂𝒋 Per unit manufacturing time at 𝑗𝑡ℎ manufacturer  

𝒃𝒌 Per unit manufacturing time at 𝑘𝑡ℎ supplier  

𝒑𝒋
𝒕 Manufactured item by the 𝑗𝑡ℎ manufacturer 

𝜶𝒊𝒋𝒍
𝒕  Transport time by truck 𝑙 to carry items 𝑥𝑗𝑘

𝑡  from 𝑗𝑡ℎ manufacturer to 𝑖𝑡ℎ retailer in time window 𝑡 

𝜷𝒋𝒌𝒎
𝒕  Transport time for supplier truck 𝑚 to carry items 𝑦𝑗𝑘

𝑡  from 𝑘𝑡ℎ supplier to 𝑗𝑡ℎ manufacturer in 

time window 𝑡 

𝒙𝒊𝒋
𝒕  Items transported from 𝑗𝑡ℎ manufacturer to 𝑖𝑡ℎ retailer in time window 𝑡 

𝒚𝒋𝒌
𝒕  Items transported from 𝑘𝑡ℎ supplier to 𝑗𝑡ℎ manufacturer in time window 𝑡 

𝝉 Time window 

𝑸𝒋
𝒕 Inventory level on average at 𝑗𝑡ℎ manufacturer in time window 𝑡 

𝑹𝒊
𝒕 Inventory level on average at 𝑖𝑡ℎ retailer in time window 𝑡 

𝒅𝒋
𝒕 Undelivered items to retailer within a week at 𝑗𝑡ℎ manufacturer in time window 𝑡  

𝒘𝒋
𝒕 Undelivered items to retailer within a specified time at 𝑗𝑡ℎ manufacturer in time window 𝑡 (for the 

consideration of discount cost) 

∑ 𝒙𝒋𝒌
𝒕

𝒋

 Items supplied to the 𝑖𝑡ℎ retailer 

∑ 𝒚𝒋𝒌
𝒕

𝒋

 Raw materials supplied by the 𝑘𝑡ℎ supplier 

 

4.4. Optimization within the simulation model  

The optimal value of the following decision variables by optimization experiments is obtained 

using AnyLogic’s (simulation software) in-built optimization algorithm within the simulation 

model: 1. Reordering point (𝑠𝑗), 2. Order up to level (𝑆𝑗), and 3. Number of trucks (𝑙) used in 

manufacturing units using the upper bound and lower bound of the decision variables mentioned 

in Table 4 for each of the six scenarios considered in this study. The objective function is to 

minimize the TSCCs, as presented in Equation (1).  
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Min (TSCCs in time window 𝒕)  =  ∑ 𝜑𝑗 . 𝜏𝑗 +  ∑ 𝜗𝑗 . 𝑝𝑗
𝑡

𝑗 + ∑ ∑ 𝜌𝑘. 𝑦𝑗𝑘
𝑡

𝑘𝑗 + ∑ 𝐼𝑀𝑗 . 𝑄𝑗
𝑡

𝑗 +

∑ 𝐼𝑅𝑖 . 𝑅𝑖
𝑡

𝑖 + ∑ 𝜓𝑗 . 𝜏𝑗 + ∑ ∑ ∑ 𝜔𝑗 . 𝑥𝑖𝑗
𝑡 . 𝛼𝑖𝑗𝑙

𝑡
𝑗𝑖𝑙 + ∑ 𝜃𝑘. 𝜏𝑘 +  ∑ ∑ ∑ 𝜐𝑘. 𝑦𝑗𝑘

𝑡 . 𝛽𝑗𝑘𝑚
𝑡

𝑘𝑗𝑚 + ∑ 𝑑𝑗
𝑡 . 𝜂𝑗 +𝑗

 ∑ 𝑤𝑗
𝑡 . ℷ𝑗𝑗                                (1) 

Subject to:  ∑ 𝑦𝑗𝑘
𝑡

𝑗  =  𝑆𝑗                                                                                                                              (2) 

                      ∑ 𝑦𝑗𝑘
𝑡

𝑗  ≤  𝑄𝑗
𝑡                                                                                                                             (3) 

                      ∑ 𝑥𝑗𝑘
𝑡

𝑗  ≤  𝐷                                                                                                                               (4) 

                   𝑦𝑗𝑘
𝑡  ≤  𝐶𝑖 ;  ∀𝑖                                                                                                              (5) 

                   𝑦𝑗𝑘
𝑡  ≥   𝑠𝑗;  ∀𝑖                                                                                                              (6) 

Equation (1) is derived from the summation of manufacturing costs (MCs), inventory costs (ICs), 

transportation costs (TCs), shortage costs (ShCs), and discount costs (DisCs) mentioned in Table 

7. Order constraint is mentioned in Equation (2), where total raw material supply (∑ 𝑦𝑗𝑘
𝑡

𝑗 ) is equal 

to the order up to level (𝑆𝑗) and must be less than the inventory capacity (𝑄𝑗
𝑡) of the facility 

(inventory capacity constraint in Equation [3]). Demand constraint is mentioned in Equation 4, 

where the number of products  (∑ 𝑥𝑗𝑘
𝑡

𝑗  ) supplied to the retailers by the manufacturers must be less 

than or equal to the demand (𝐷). Supplier’s capacity constraint is mentioned in Equation (5), 

where raw material supply (𝑦𝑗𝑘
𝑡 ) by the supplier must be less than the supplier’s capacity (𝐶𝑖). The 

constraint for the reordering point is mentioned in Equation (6).  

Our model minimizes the backorder along with TSCCs by optimizing 𝑠𝑗 and 𝑆𝑗 over time as this 

model has used ‘s, S’ inventory policy to increase raw material supply and inventory level. 

Optimizing 𝑠𝑗 and 𝑆𝑗 dynamically optimizes raw material supply ( ∑ 𝑦𝑗𝑘
𝑡

𝑗  ), production quantities 

(𝑝𝑗
𝑡), inventory level (𝑄𝑗

𝑡 ), and delivery quantities (∑ 𝑥𝑗𝑘
𝑡

𝑗 ) over time 𝑡 to meet consumers’ demand 

to reduce the simultaneous and dynamic impacts of the disruptions. The model assumes that one-

unit raw material is required for one-unit finished good for formulation simplicity. The optimized 

number of trucks (𝑙) carry the goods to the retailer. Therefore, the proposed optimization model 

within the simulation maximizes production capacity by increasing the optimal level of the 

following decision variables to meet the unmet demand and demand surge over time dynamically: 

1. Raw material from the suppliers ( ∑ 𝑦𝑗𝑘
𝑡

𝑗  ) 

2. Amount to produce in the manufacturing units (𝑝𝑗
𝑡) 
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3. Amount available in the inventory (𝑄𝑗
𝑡 ) 

4. Number of products to deliver to the retailers (∑ 𝑥𝑗𝑘
𝑡

𝑗 ).  

Please see the optimal values obtained for 𝑠𝑗, 𝑆𝑗, and 𝑙 from the optimization experiments for the 

six considered scenarios in Table 9.  

According to the current model, seven suppliers, three manufacturers, and 18 retailers are included 

in the study. To satisfy incoming orders from retailers, the agents collaborate to meet various 

performance objectives (such as lead times and total SC costs). Table A1 in Appendix A provides 

manufacturer details. Rahman et al. (2021) developed an ABM to simulate the SC of an essential 

product manufacturer. They included temporary, short-term fluctuations in demand and only used 

simulation capability. The significance of the present study lies in the fact that it extends the model 

and utilizes optimization experiments within the simulation in extended scenarios to find the 

optimal values of decision variables for managing the simultaneous and dynamic impacts of the 

COVID-19 pandemic over an extended period. We have built the ABM model and run the 

simulation and optimization in AnyLogic (version 8.3.2) simulation software for this study. 

Table 7: Cost metrics assessed by agents in each of the periods (Rahman et al., 2021) 

SC costs Equation  

Manufacturing cost in time window 𝑡 ∑ 𝜑𝑗 . 𝜏𝑗 +  ∑ 𝜗𝑗 . 𝑝𝑗
𝑡

𝑗 + ∑ ∑ 𝜌𝑘. 𝑦𝑗𝑘
𝑡

𝑘𝑗   

Manufacturing inventory cost in time window 𝑡 ∑ 𝐼𝑀𝑗 . 𝑄𝑗
𝑡

𝑗   

Retailer inventory cost in time window 𝑡 ∑ 𝐼𝑅𝑖 . 𝑅𝑖
𝑡

𝑖   

Transport cost at the manufacturing stage in 

time window 𝑡 

∑ 𝜓𝑗 . 𝜏𝑗 +  ∑ ∑ ∑ 𝜔𝑗 . 𝑥𝑖𝑗
𝑡 . 𝛼𝑖𝑗𝑙

𝑡
𝑗𝑖𝑙   

Transport cost at the supplier stage in time 

window 𝑡 

∑ 𝜃𝑘. 𝜏𝑘 +  ∑ ∑ ∑ 𝜐𝑘. 𝑦𝑗𝑘
𝑡 . 𝛽𝑗𝑘𝑚

𝑡
𝑘𝑗𝑚   

Shortage cost at the manufacturing stage in time 

window 𝑡 

∑ 𝑑𝑗
𝑡 . 𝜂𝑗𝑗   

Discount cost at the manufacturing stage in time 

window 𝑡 

∑ 𝑤𝑗
𝑡 . ℷ𝑗𝑗   

Total supply chain cost in time window 𝑡 ∑ 𝜑𝑗 . 𝜏𝑗 +  ∑ 𝜗𝑗 . 𝑝𝑗
𝑡

𝑗 + ∑ ∑ 𝜌𝑘. 𝑦𝑗𝑘
𝑡

𝑘𝑗 + ∑ 𝐼𝑀𝑗 . 𝑄𝑗
𝑡

𝑗 +

∑ 𝐼𝑅𝑖 . 𝑅𝑖
𝑡

𝑖 + ∑ 𝜓𝑗 . 𝜏𝑗 + ∑ ∑ ∑ 𝜔𝑗 . 𝑥𝑖𝑗
𝑡 . 𝛼𝑖𝑗𝑙

𝑡
𝑗𝑖𝑙 + ∑ 𝜃𝑘. 𝜏𝑘 +

 ∑ ∑ ∑ 𝜐𝑘. 𝑦𝑗𝑘
𝑡 . 𝛽𝑗𝑘𝑚

𝑡
𝑘𝑗𝑚 + ∑ 𝑑𝑗

𝑡 . 𝜂𝑗 + ∑ 𝑤𝑗
𝑡 . ℷ𝑗𝑗𝑗   

 

5. Results, Scenario Analysis, and Discussions 

5.1. Baseline scenario analysis  
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In the proposed ABM model, we evaluated the performances of facemask manufacturers’ SC 

under the business-as-usual situation and disrupted situation caused by the COVID-19 pandemic. 

We ran the simulation and optimization for a maximum of five years for better anticipation. 

Business-as-usual situation (normal baseline situation): The SC of facemask manufacturers had 

no disruption. We simulated the ABM with all normal parameters in a business-as-usual or normal 

baseline situation. The simulated results (see Figure 6) indicate that the facemask manufacturer’s 

SC was normal. There were no significant backorder-related (unmet demand) shortages and 

discount costs. The manufacturing units produced adequate finished goods with their capacity, 

maintained an optimal inventory, and arranged transportation for smooth delivery to retailers. The 

TSCCs were normal in the business-as-usual situation. Hence, the existing SCs for facemask 

manufacturers ran their production effectively and fulfilled demand smoothly. 

COVID-19 pandemic-related disruptive situation (disrupted baseline situation): In the disruptive 

situation caused by the COVID-19 pandemic, the facemask SCs faced mild (single disruption, 

such as a demand spike), moderate (parallel disruptions due to several lockdowns), and extreme 

(parallel and/or sequential disruptions due to lockdowns and border closure) simultaneous 

disruptions. Our model assumed that the demand, manufacturing capacity disruptions, and supply 

delay due to lockdown and shutdown began after a couple of weeks (i.e., ten weeks) of the 

simulation run, as presented in Figure 5.       

 

 

 

 

 

 

Figure 5: Changes in demand, manufacturing capacity, and supply delay 

Demand initially peaked for several months and stayed very high, increasing by 15% to 400% 

during the five years in the simulation run. It is assumed that the increased demand for facemasks 
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is 150% on average during the disruption in the simulation model. Essentially, one of the major 

issues of a sudden increase in demand, such as 400% in a certain period, was irrational 

consumption of products during the pandemic due to panic-purchasing. Our model considered 

irrational consumption as a demand spike that gradually becomes rational over time. Similarly, 

manufacturing capacity disruption occurs in parallel and/or one after another, along with demand 

disruption. From Week 10, the manufacturing capacity is disrupted to varying extents due to 

location-based lockdowns. The manufacturing capacity decreased in the 5% to 100% range, with 

an average decrease of 15% at different times, mimicking the shutdown of manufacturing units 

during the pandemic. Similarly, the supply delay is assumed to be in a range of 10% to 75%, and 

an average delay of 25% at different times, mimicking the delay of raw material supply due to the 

temporary shutdown of local suppliers and borders being closed to overseas suppliers. Also, in the 

simulation, we assumed there was no strategy adopted in this disruptive circumstance. To assess 

how simultaneous disruptions affect the performance of facemask SCs, we assumed a disruption 

scenario (refer to Figure 5) into our ABM framework. This scenario closely resembles the demand, 

manufacturing, and supply disruptions observed during the COVID-19 pandemic and its aftermath. 

By simulating these disruptions, we obtained valuable insights into their impact on the overall 

performance of the facemask supply chain.  

5.2. Analyzing impacts of simultaneous disruptions in SC performances 

The simultaneous and dynamic impact of the pandemic on SCs when no strategy is adopted to 

manage ethe situation is presented in Figure 6 and Table 8, and described in the following texts:  

Impact on backorder level: In the baseline disrupted scenario, facemask demand increased up to 

400%, with an average increase of 150% during the five years in simulation. The manufacturing 

capacity decreased up to 100%, with an average decrease of 15% at different times. Similarly, the 

delayed supply was up to 75%, with an average delay of 25%. Manufacturers had to shut down 

their facilities temporarily and could not receive raw materials from suppliers due to strict 

lockdowns and the emergence of infected cases. As such, the manufacturing capacity decreased 

over time in the baseline scenario, and facemask SCs could not meet demand in time as a result. 

Due to the high unmet demand in this situation for over five years, the backorder level increased 

significantly compared to the normal situation, as seen in Table 8. In the disrupted simulation, the 

absence of an adaptation strategy, specifically increasing production capacity, has led to a high 
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backorder level. The manufacturers, therefore, need to implement proposed strategies to boost 

production, penetrate the market, and reduce the impacts.  

 

Table 8: SC performances in disruption compared to the normal situation  

 

Impact on SC’s financial performances: As demand surged, production capacity decreased, and 

raw materials supply decreased, facemask SCs faced a high number of backorders due to unmet 

demand, resulting in high ShCs (A$ 44.43M approximately). This high shortage cost due to high 

backorder level happened because no adaptation strategy was adopted in the simulation in 

disrupted situation. The estimated discount cost increased to A$ 4.66M approximately for delivery 

delay-related discounts. The TSCCs increased to A$ 51.79M approximately compared to the 

normal situation. The MCs increased only 37%, so the SC could barely ramp up its manufacturing 

capacity due to lockdowns in several locations during the simulation run. The manufacturing units 

could not receive raw materials from suppliers smoothly. When raw materials arrived, sudden 

shutdowns prevented production capacity from increasing, leading to a higher inventory level. This 

led facemask manufacturers’ ICs to increase to 93%. Another important observation is that TCs 

decreased to 25%, compared to the normal situation. Due to lockdown and transportation 

restrictions, suppliers and manufacturers could not utilize their transports to send raw materials 

and finished goods to manufacturers and retailers, respectively. Thus, the facemask SC could not 

fulfill the huge demand that increased TSCCs and degraded overall SC performance (see Figures 

6 and Table 8).  

 SC performances in disruptions compared to the normal situation 

Backorder 

level 

(Avg 

units/Week) 

Financial performances (Avg A$/Week) Manufacturing 

performance 

(Avg 

units/Week) 
Demand 

unmet  

TSCC MC IC TC ShC DisC Products 

manufactured 

Normal 

situation 

921.16 1978582.28 1754319.50 120291.73 93139.61 3684.65 7146.78 12560.17 

Disrupted 

situation 

11109043.64 51793633.86 2396618.26 232554.43 69527.48 44436174.56 4658759.13 17589.21 
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Figure 6: Multiple impacts of disruption in TSCCs 

 

Impact on manufacturing performances: Table 8 shows that the number of products 

manufactured increased to only 40% in the disrupted situation, which is below the required number 

to meet the huge market demand during the pandemic. The manufacturing facilities could not ramp 

up production capacity due to raw material shortages, several shutdowns, and transportation 

restrictions during the pandemic. This resulted in a huge increase in unmet demand. Thus, ShCs, 

DisCs, and, eventually, TSCCs increased, and the SC performance degraded significantly. The 

disruption has had a huge impact on SCs because no strategy was adopted in the simulation of 

disrupted situation. 

Therefore, this study found that high demand, decreased production capacity, and limited raw 

materials supply led to a significant number of backorders and high shortage costs for facemask 

SCs, resulting in increased total supply chain costs and degraded overall SC performance. 

5.3. Recovery plan implementation, scenario analysis, and evaluation of SC performance  

We implemented the proposed recovery plans based on adaptation strategies in six scenarios (see 

Section 4.2 for details) to improve the performance of the facemask SC. The recovery plans in the 

six scenarios are summarized as follows:  

Scenario 1 (S1) increased the production capacity up to 100% for a long period of 50 months. 

Scenario 2 (S2) increased the production capacity up to 50% for a long period of 50 months. 

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

C
o

st
 (

A
$

)

Week

Impact in total supply chain costs (TSCCs)

 TSCC (Baseline Normal)  TSCC (Baseline Disrupted)



 

28 

Scenario 3 (S3) increased the production capacity up to 100% for medium periods of 18 months. 

Scenario 4 (S4) increased the production capacity up to 50% for medium periods of 18 months. 

Scenario 5 (S5) increased the production capacity up to 100% for short periods of 6 months. 

Scenario 6 (S6) increased the production capacity up to 50% for short-term periods of 6 months. 

In each scenario, we ran the optimization experiment with the parameters listed in Table 4 to 

optimize ROP (𝑠𝑗), order up to level (𝑆𝑗), and truck (𝑙) to maximize manufacturing capacity in 

order to meet the maximum level of demand and minimize TSCCs. With an optimal ROP and 

order up to level, raw materials will be delivered to manufacturers from suppliers, which in turn 

will maintain an optimal inventory. Meanwhile, optimal trucks will improve transportation and 

distribution. Table 9 shows the scenarios’ optimal values of the decision variables. 

Table: 9: Optimal value for decision variables by optimization experiment 

 

 

 

 

 

Evaluation of backorder level: In the disrupted situation, backorder levels started to increase from 

Week 17 (refer to Fig. 7 of the evaluation of TSCCs) and remained at very high levels. We 

increased the manufacturing capacity (Strategy 1) by 100% for a long time with optimal 𝑠𝑗 (1567), 

𝑆𝑗 (6000), and 𝑙 (15) in S1. In S1, the backorder level decreased to 95% compared to the disrupted 

situation. S1 revealed the best result compared to the other scenarios. Notably, optimal ROP and 

order up to level to suppliers improved raw material supply from the supplier (Strategy 2) and 

maintained an optimal inventory (Strategy 4). The second-best scenario was S3. In S3, we 

increased the production capacity up to 100% for medium-term periods with an optimal value of 

𝑠𝑗 (1457), 𝑆𝑗 (4628) and 𝑙 (14). S3 decreased the backorder level to 84% compared to the disrupted 

situation. In S2, we increased production capacity up to 50% for a long time with optimal 𝑠𝑗 (1441), 

𝑆𝑗 (4457), and 𝑙 (14), while increasing production capacity up to 100% for short-term periods with 

optimal 𝑠𝑗 (1314), 𝑆𝑗 (4634), and 𝑙 (14) in S5. In S2 and S5, the backorder level is decreased to 

82% and 81%, respectively. In fifth and sixth place are S4 and S6, respectively. Production 

Scenarios Optimal value for decision variables  

ROP (𝒔𝒋) 

(Units) 

Order up to level (𝑺𝒋) 

(Units) 

Trucks (𝒍) 

(Numbers) 

Normal situation  1000 3000 10 

Scenario 1 1567  6000 15 

Scenario 2 1441  4457 14 

Scenario 3 1457  4628 14 

Scenario 4 1243  3757 13 

Scenario 5 1314  4634 14 

Scenario 6 1206  3484 11 
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capacity increased to 50% for medium-term periods in S4 with optimal 𝑠𝑗 (1243), 𝑆𝑗 (3757), and 𝑙 

(13); and for short-term periods in S6 with optimal 𝑠𝑗 (1206), 𝑆𝑗 (3484), and 𝑙 (11). S1, S3, S2, and 

S5 showed better results as production capacities were increased and steps were taken to increase 

raw material supply (Strategy 2) and inventory level (Strategy 4) by increasing ROP and order up 

to level dynamically, and the optimal increased level of transportation (Strategy 3) was used for 

smooth delivery.  

Evaluation of financial performances 

Total supply chain costs (TSCCs):  TSCCs started to increase from Week 17 in the disrupted 

situation (see Figure 7). When we increased production capacity, optimized raw material supply, 

inventory capacity, and transportation capacity in S1, the TSCCs decreased to 86%, which is lower 

than all other scenarios. In S1, SC manufacturers could meet huge demand due to adaptation 

strategies, which reduced the backorder level and associated ShCs and DisCs. Inventory holding 

costs were lowest in S1, as an optimal level of inventory could be maintained due to optimal ROP 

and order up to level. MCs and TCs were not too high. The second, third, and fourth positions are 

S3, S2, and S5, respectively, where TSCCs decreased to 74%, 71%, and 70%, respectively. Like 

S1, 100% production with optimal raw materials, inventory, and transportation for medium-term 

periods also showed good results. Suppose raw materials are scarce and there are obstacles in 

manufacturing units due to lockdowns and shutdowns. In that case, production can be increased 

50% for a very long time, or production can be increased 100% for short-term periods to reduce 

TSCCs and maximize production capabilities to meet the huge demand. S4 and S6 are in the fifth 

and sixth positions, respectively, where TSCCs are reduced to 53% and 31%, respectively. When 

there is a huge scarcity of resources (i.e., raw materials), 50% production capacity with optimal 

ROP and order up to level can be increased for medium-term periods rather than short-term periods 

for better SC performances.  
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Figure 7: Evaluation of TSCCs from the scenarios 

Manufacturing costs (MCs): It is noted from the previous section that S1, S3, S2, and S5 

improved the SC better than the other strategies in other scenarios. S1, S3, S2, and S5 increased 

MCs to 12%, 13%, 12%, and 17%, respectively, compared to the disrupted situation. After 

implementing the adaptation strategies and recovery plans, the manufacturing capabilities 

increased in all four scenarios, which helped reduce backorder levels and TSCCs. Compared to 

long-term recovery plans, a 100% increase in production for a medium-term period in S3 and a 

short-term period in S5 spiked the production costs very quickly in weeks 89 (S5), 130 (S3), and 

168 (S5). The MCs in S4 and S6 increased to 8% and 5%, respectively. These findings highlight 

that the lack of increased manufacturing capacity to meet higher demand and insufficient efforts 

to enhance raw material supply for optimal inventory levels were the factors behind the limited 

manufacturing capabilities observed in S4 and S6, as depicted in Figure 8. 

Figure 8: Evaluation of MCs from the scenarios 
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Inventory costs (ICs): In S1, the ICs only increased to 3% compared to the disrupted situation—

the lowest among other scenarios. Although the order up to level was increased to 100% and ROP 

also increased to 57%, the manufacturing units in S1 could increase their production capacity to 

meet the extra demand, and there were fewer backorders (see Table 9 for optimal values of ROP 

and order up to level, and Table 10 for improvement of SC performance). Companies could utilize 

their inventory properly, reducing ICs both for manufacturers and retailers. In S3, S2, and S5, the 

ICs increased to 32%, 12%, and 53%, respectively. Similar to S1 and S2, the production capacity 

is increased for a long time to properly use inventory to meet the extra demand, reducing their IC 

compared to other scenarios. The TSCCs indeed decreased in other scenarios, such as S3 and S5, 

but it is also true that production capacity did not increase for a long time, leading to an increased 

inventory level and thus an increase in inventory costs (ICs) in weeks 90 (S5), 130 (S3), and 165 

(S5). In cases of recovery plans in medium- and short-term periods, there should be a more 

dynamic inventory policy to avoid increased inventory holding costs. As production capacity was 

not increased significantly in S4 and S6, ICs slightly decreased (3% and 22%, respectively) 

compared to the other scenarios. Consequently, backorder levels and TSCCs increased in S4 and 

S6, as depicted in Figure 9.  

Figure 9: Evaluation of ICs from the scenarios 

Transportation costs (TCs): Compared to the disrupted situation, the TCs for S1, S3, S2, and S5 

increased to 35%, 30%, 36%, and 34%, respectively, (see Figure 10). The main reason for this 

increase is that 50%, 40%, 40%, and 40% transportation capacities increased (Strategy 3) in S1, 
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S3, S2, and S5, respectively (see Table 9 for the optimal value of transports), as the production 

capacities were boosted to manufacture and deliver more products to retailers to meet consumers’ 

extra demand. Though there were small increases in the TCs in those scenarios, the extra 

transportation and delivery capacity helped manufacturers deliver the extra items produced to meet 

high demand, eventually helping them reduce TSCCs and increase SC performances. In weeks 89 

(S5), 130 (S3), and 168 (S5), the TCs spiked extremely fast due to the 100% increase in production 

for the medium-term in S3 and for the short-term in S5. In these weeks, TCs spiked sharply, 

probably due to manufacturers acting quickly to increase trucks to meet increased retailer delivery. 

Conversely, TCs in S4 and S6 increased at a slower rate (22% and 12%, respectively) than in the 

other scenarios. The limited ability to increase raw material supply and production capacity had a 

detrimental impact on TSCCs, leading to decreased supply chain performance. Specifically, in S4 

and S6, the number of trucks only saw marginal increases of 30% and 10% respectively, further 

exacerbating the challenges faced. 

Figure 10: Evaluation of TCs from the scenarios 

Shortage costs (ShCs): In the disrupted situation, ShCs started to increase from Week 17 and 

remained at very high levels (see Figure 11). In S1, ShCs decreased to 95% compared to the 

disrupted situation. This is because there were significantly fewer backorders due to increases in 

raw materials, production capacity, and delivery facilities. S1 reduced the backorders and TSCCs 

better than all the other scenarios (see Figure 7). S3 was second in improving SC; it decreased the 

ShCs to 84% compared to the disrupted situation. S2 and S5 follow, with ShCs decreasing to 82% 
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and 81%, respectively. S4 and S6 are in fifth and sixth place, respectively. S1, S3, S2, and S5 

improved the SC as production capacities were increased, and steps were taken to increase the raw 

material supply and inventory level by increasing ROP and order up to level and the optimal level 

of transport used for smooth delivery. A 100% production with optimal raw materials, inventory, 

and transports could reduce ShCs in all terms of recovery periods. However, a 50% production 

increase could reduce backorders if continued for a very long period. Conversely, a 50% 

production capacity increase with optimal ROP, order up to level, and delivery system in medium- 

and short-term periods cannot comparatively and significantly reduce ShCs.  

Figure 11: Evaluation of ShCs from the scenarios 

Discount costs (DisCs): In the disrupted situation, DisCs for late delivery to retailers started to 

increase from Week 15 and remained at very high levels (see Figure 12). Unmet demand is 

included in the backorder level, delivered later with discounts to retailers to sustain goodwill and 

avoid lost sales. In S1, the DisCs decreased to 58% compared to the disrupted situation, as there 

was less unmet demand due to increased raw materials, production capacity, and delivery facilities. 

S1 reduced the DisCs and TSCCs better than all the other scenarios, as shown in Figures 7 and 12. 

S3 and S5 are in the second and third positions, respectively. This decreased the DisCs to 24% and 

21%, respectively, compared to the disrupted situation. Next, S2, S4, and S6 decreased DisCs to 

16%, 17% and 17%, respectively. S1, S3, and S5 decreased DisCs, as production capacity 

increased to 100% with optimal ROP, order up to level, and the number of transports in long-, 

medium- and short-term periods. However, 50% production, raw materials, and transportation 
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increases across periods but barely reduced DisCs comparatively. An important observation across 

all scenarios is the presence of high DisCs, highlighting the significant occurrence of unmet 

demands or backorders and emphasizing the initiative to restore customer goodwill.  

Figure 12: Evaluation of DisCs from the scenarios  

Evaluation of manufacturing performances: The products manufactured in the manufacturing 

units significantly improved after adopting the strategies in the scenarios in Table 10. Specifically, 

the production rate increased to 66%, 64%, 59%, and 62% in S1, S2, S3, and S5, respectively. 

Notably, a 100% production increase (Strategy 1) with optimal raw materials (Strategy 2), 

inventory policy (Strategy 4), and transports (Strategy 3) for the long term, increases the 

production performances compared to other strategies. It is also imperative to increase the 

production capacity with optimal inventory policy up to 100% for medium-terms and short-terms 

for better manufacturing performances. Conversely, manufacturing performances did not improve 

in S4 and S6. They only increased the number of products manufactured by 43% and 22%, 

respectively. Finally, a 50% production increase with fewer raw materials in medium-term and 

short-term periods could not improve manufacturing and overall SC performances.  

Table 10: SC performances’ improvement analysis compared to the disrupted situation  

Variatio

n in 

scenarios  

SC performances’ improvement analysis compared to the disrupted situation 
Backorder 

level 

Financial performances Manufacturing 

performance 

Demand 

unmet  

TSCCs MCs ICs TCs ShCs DisCs Products 

manufactured 

S1 -95% -86% +12% +3% +35% -95% -58% +66% 

S2 -82% -71% +12% +12% +36% -82% -16% +64% 

S3 -84% -74% +13% +32% +30% -84% -24% +59% 
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S4 -61% -53% +8% -3% +22% -61% -17% +43% 

S5 -81% -70% +17% +53% +34% -81% -21% +62% 

S6 -35% -31% +5% -22% +12% -35% -17% +22% 

 

5.4. Sensitivity analysis 

We used a one-variable-at-a-time method. This is the variation (±20%) of several parameters of 

the base case values of demand, ROP (𝑠𝑗), order up to level (𝑆𝑗), and trucks (𝑙) at a time to evaluate 

the validity and sensitivity of the model.  

Variation in backorder level: Backorder levels are more sensitive to demand changes than other 

parameters, such as 𝑠𝑗, 𝑆𝑗, and 𝑙. A 20% decrease in demand decreased the backorder level to 23% 

and a 20% increase in demand increased it to 24%. Manufacturers of essential products need to 

increase raw material from suppliers and production capacity during disruptions to avoid huge 

backorders. The other changes in the backorder level are reported in Table 11.  

Variation in financial performances: The analysis highlighted that the model is most sensitive to 

demand changes, as it significantly varies TSCCs, ShCs, and DisCs. TSCCs, ShCs, and DisCs 

decrease to 22%, 23%, and 21% for a 20% demand decrease and increased to 22%, 24%, and 15% 

for a 20% demand increase. When demand increases and manufacturing units cannot ramp up 

production capacity due to supply shortage and COVID-19 lockdown, the TSCCs, ShCs, and 

DisCs increase. Considering the same capacity, the manufacturing units could fulfill more demand 

when the demand decreased, decreasing their TSCCs, ShCs, and DisCs. Without ramping up 

production capacity or raw material supply, changes in ROP, order up to level, or number of 

transports cannot significantly alter costs or performance. MCs and TCs were not significantly 

altered for changes in parameters. Conversely, ICs changed significantly with changes in each 

parameter. As such, manufacturers need to minimize TSCCs, ShCs, DisCs, and ICs by optimizing 

ROP, order up to level, and transports to increase SC performances to meet consumers’ demands. 

This will help manufacturers increase production capacity, maintain an optimal inventory, and 

avoid backorders.  

Variation in manufacturing performances: Manufacturing performances were not significantly 

affected by changes in parameters such as demand, ROP, order up to level, and number of 

transports, as manufacturing performance (number of products produced weekly) is more related 
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to production capacity. During disruptions, manufacturing performance significantly decreases. 

Adopting strategies such as increasing raw material supply and the inventory level to increase 

production capacity can significantly enhance manufacturing performances. Table 11 summarizes 

the changes in manufacturing performances. The sensitivity analysis reveals that the model outputs 

are robust, and can provide insights into the dynamics of SC performances. By varying the 

parameters, it is evident that the model is validated and robust. 

Table 11: Synopsys of sensitivity analysis 

 

6. Managerial Implications 

Our findings show that dynamic adaptation strategies and long-term plans to increase optimal raw 

material supply and production capacity, arrange optimal transports, and maintain an optimal 

inventory increase the resilience of essential products’ SC and significantly reduce the 

simultaneous impacts of long-term disruptions. This study has several managerial implications, as 

discussed below.  

Managerial insight 1: When we evaluated the recovery plans associated with production capacity 

increases (Strategy 1), the recovery plan in scenario 1 (S1) performed best. We increased 100% 

production capacity with optimal ROP, order up to level, and transports for a very long time in S1 

during the disruption, which significantly improved the SCs and recovery from simultaneous and 

Parameters Rate of 

change 

Variation 

in 

backorde

r level 

Variation in financial performances Variation in 

the number 

of products 

produced 
  Unmet 

demand 

TSCCs MCs ICs TCs ShCs DiCs Number of 

products 

manufactured 

Demand -20% -23% -22% -3% -30% +4% -23% -21% -8% 

+20% +24% +22% +2% -36% -3% +24% +15% 0% 

ROP (𝒔𝒋) -20% +1% 0% -6% -35% -1% +1% -4% -6% 

+20% +1% +1% +1% +24% 0% +1% -2% 0% 

Order up to 

level (𝑺𝒋) 

-20% +1% 0% -11% -19% 0% +1% 0% -5% 

+20% +2% +2% +7% +24% 0% +2% -3% 0% 

Trucks (𝒍) -20% +1% +1% -2% +26% -1% +1% -2% -1% 

+20% +1% +1% -2% +18% 0% +1% -1% 0% 



 

37 

dynamic impacts. A 100% production increase with optimal ROP, order up to level, and transports 

for medium-term periods (Scenario 3) is similarly a beneficial recovery plan (see Table 10).  

Thus, during large-scale disruptions, adopting dynamic strategies and plans for long-term or 

medium-term periods helps manage simultaneous and multiple SC disruptions and makes essential 

products such as facemasks available to the market. This works best if sufficient resources (i.e., 

raw materials, production capacity and transportation) are available through adaptation strategies 

during disruptions.  

Managerial insight 2: When it comes to improving SCs, the recovery plans in scenario 2 (S2) and 

scenario 5 (S5) are ranked next. In S2, 50% production capacity is increased with optimal ROP 

and order up to level to increase raw materials from suppliers (Strategy 2), inventory level 

(Strategy 4), and the number of transports (Strategy 3) for a long-term period. Furthermore, 100% 

production capacity is increased in S5 with optimal ROP, order up to level, inventory level, and 

the number of transports for short-term periods. Both strategies improved the facemask SCs.  

The recovery plans in S2 and S5 reveal that when there is less possibility of having sufficient 

resources or capacity, it is imperative that decision-makers either increase 50% of their raw 

material supply, production capacity, and delivery capacity by optimal ROP and order up to level 

for long-term periods or increase the capacities to 100% for short-term periods to reduce TSCCs 

and improve SC resilience. Decision-makers need to evaluate the situation and their capabilities 

to implement timely adaptive strategies to make their SCs resilient.  

Managerial insight 3: Although 50% production capacity and raw material increases for a long-

term period improved the SCs, a 50% increase in raw material supply, production capacity, and 

transports by optimal ROP and order up to level for medium- and short-term periods did not 

significantly improve the SCs. This can be seen in the recovery plans in S4 and S6 in Table 10.  

When there is a very low possibility of increasing raw material and production capacity within 

limited resources, it is imperative to continue increasing production capacity (i.e., 50%) with 

optimal raw material order and transports for a long-term period rather than medium- and short-

term periods.  

In summary, by adopting strategy 1 – “enhancing manufacturing capacity”, manufacturers can 

ramp-up emergency production capacity by decentralizing their manufacturing capacity (Rahman 
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et al., 2022), sub-contracting facilities (Vecchi et al., 2020) and keeping backup factory (Nayeri et 

al., 2022). The decision-makers can adopt human-robot collaboration in their manufacturing 

facilities to boost production capacity during the COVID-19 pandemic (Choi et al., 2021). The 

decision-makers need to understand the importance of nearshoring their manufacturing facilities 

to nearby places or countries to avoid the impact of extreme situations like lockdowns caused by 

the COVID-19 pandemic (Fernández-Miguel et al., 2022). They even can repurpose their 

production to boost the production of emergency products such as facemasks and ventilators 

(Ivanov, 2021c). The decision-makers can also diversify their product ranges to boost production 

and penetrate the market (Rahman et al., 2022).     

Managerial insight 4: The production increase in manufacturing units needs a dynamic inventory 

policy (Strategy 4) for smooth raw material supply and cost-effective inventory levels. In S1, a 

production capacity increase of 100% for a very long-term provided the best result. This needed a 

100% increase to get up to level and a 57% increase in ROP, which we obtained by running 

optimization experiments.  

In summary, in the case of a significant increase in production capacity for a long-term period, 

increasing order up to a level more than ROP is crucial for better raw material supply and 

inventory. Similarly, optimization experiments obtained the optimal ROP and order up to level in 

all the scenarios (see Table 9). Decision-makers need to implement their optimization capability 

to determine the optimal level of ROP and order up to the level to maintain an optimal inventory 

that would not increase their inventory holding costs even after the disruption ends (Paul et al., 

2017). Therefore, by adopting strategy 4 – “maintaining dynamic inventory policy”, decision-

makers of the manufacturing facilities can keep strategic stock, risk inventory, and redundancy to 

maintain optimal inventory in their facilities. Virtual stockpile pooling system can be used among 

their retailers to maintain the inventory smoothly (Rahman et al., 2022).    

Managerial insight 5: In all the scenarios reported in Table 9, the number of transports (trucks) 

for smooth delivery was obtained by optimization experiments. The experiment revealed that 50%, 

40%, 40%, 30%, 40%, and 10% increases in the number of transports (Strategy 3) helped 

manufacturers in S1–S6 to deliver products to retailers smoothly, which reduced TSCCs and 

improved SCs.  
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When the raw material and production capacities are increased to improve SC resilience, it is 

imperative to identify the optimal level of transportation number for smooth delivery to consumers 

and retailers to reduce further TSCCs and improve SCs. Otherwise, prompt failure to deliver to 

the consumers would increase backorder levels (Mehrotra et al., 2020). Therefore, by adopting 

strategy 3 – “ increasing transportation and distribution facilities”, the decision-makers can 

collaborate with other transporters to improve delivery support during the COVID-19 pandemic, 

if more goods are needed to be delivered (Wang & Yao, 2021). They can also adopt multimodal 

and multi-route shipments for smooth delivery (Kumar et al., 2014). Decision-makers of 

manufacturers can establish more collaborative distribution centers for enhanced delivery of 

products to customers in times of emergency (Rahman et al., 2022). Utilizing omni-channel and 

e-commerce can be of great use during the pandemic for smooth ordering and delivery (Zhang et 

al., 2021).    

Managerial insight 6: As “s, S” inventory is assumed in the current integrated ABM and 

optimization model, it is noted that increasing optimal ROP and order up to level in all the 

scenarios can significantly increase raw material supply (Strategy 2) to manufacturers so they can 

produce adequate finished goods (see Table 10). For 100% production increase in long-, medium-

, and short-term periods in S1, S3, and S5, the ROP increased to 57%, 46%, and 31%, and order 

up to level increased to 100%, 54%, and 54%, respectively. However, 50% production increases 

in long-, medium-, and short-term periods in S2, S4, and S6 saw ROP increases of 44%, 24%, and 

21%, and order up to level increases of 49%, 25%, and 16%, respectively (see Table 9 for optimal 

values of ROP, and order up to level). Dynamic ROP and order up to level in the scenario by 

optimization in our model significantly improved the SC’s raw material supply.   

Therefore, manufacturing facilities’ managers need to be strategic and quickly determine the 

dynamically optimal ROP and order up to level increase to increase raw material supply to produce 

finished goods. Incorrect and static ROP and order up to level may decrease or increase raw 

material supply, which may hamper production or cause more inventory holding costs (Ivanov, 

2017). Therefore, by adopting strategy 2 – “improving raw material supply”, decision-makers of 

manufacturers can arrange alternative or backup sourcing for getting raw material smoothly. 

Having multiple suppliers can also help get raw materials in an emergency and reduce the risk of 

supply failure (Rehman & Ali, 2021). During pandemics like the COVID-19 outbreak, local 
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sourcing of raw materials can be beneficial as it can help to ensure a seamless supply of raw 

materials even when global supply chains are disrupted (Remko, 2020). When extreme disruption 

occurs, such as during the COVID-19 pandemic, manufacturers can arrange emergency sourcing 

from other similar industries to get raw materials in time (Rahman et al., 2021).    

Managerial insight 7: The current model is more sensitive to consumer demand (see Table 11). 

Essential product manufacturers’ managers need to determine the demand fluctuation earlier and 

increase their production capacity using adaptation strategies as soon as possible to meet the 

demand. Based on the demand, managers must dynamically determine the frequency of ordering 

to suppliers to avoid further backorder-related ShCs. This can significantly improve the SCs.  

Managerial insight 8: The findings of this study reveal that long-term adaptive recovery strategy 

and dynamic plans can significantly reduce the simultaneous impacts of the COVID-19 pandemic. 

Short-term recovery plans barely improve SC performances and can leave some after-disruption 

effects called disruption tails (Ivanov, 2019). Decision-makers must adopt long-term recovery 

plans to reduce the impacts of extreme disruptions.  

However, the proposed strategies and recovery plans are well suited to manage extreme 

disruptions, such as the COVID-19 pandemic, and the model shows dynamism in formulating the 

strategy based on demand. It is imperative to revise the recovery plans when the disruption 

gradually ends; otherwise, SC may face further disruptions. Decision-makers of essential 

healthcare product manufacturers can consider this study’s findings and adopt timely adaptation 

strategies to manage the impacts of large-scale disruptions to make their SCs much more resilient 

and viable. 

7. Conclusions and Future Research Directions 

Researchers and practitioners have recently focused on resilient and viable SC practices, 

particularly in light of the COVID-19 pandemic's impact. SCs across industries require survival 

and adaptation guidelines to maintain sustainability and robustness. Decision-makers must 

promptly choose adaptation strategies such as re-purposing, scaling up, substituting, and 

intertwining SCs to effectively face disruptions. Essential healthcare product manufacturers, like 

facemask producers, faced severe challenges during the pandemic, exemplified by Australia's 

prolonged lockdown and closed borders. Our study developed an integrated ABM and 
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optimization SC model to evaluate proposed strategies such as “enhancing manufacturing 

capacity”, “improving raw material supply”, “increasing transportation and distribution facilities”, 

“maintaining dynamic inventory policy” for mitigating the pandemic's impact on essential product 

SCs. Results showed that without adaptable measures to increase production capacity, ensure raw 

material supply, and maintain optimal inventory, SC performance suffered from high shortage 

costs, highlighting the need for proactive measures during disruptions.  

This study makes three significant contributions. Firstly, it proposes dynamic adaptive strategies 

to enhance the resilience of healthcare product SCs. Secondly, it extensively examines the COVID-

19 pandemic's simultaneous and dynamic impacts on SCs, aiding in understanding vulnerabilities 

and developing adaptive strategies. Finally, it conducts an SC optimization using agent-based 

modeling method to justify proposed strategies and recovery plans, aiming to minimize total 

supply chain costs and improve performance and resilience. Overall, the study provides valuable 

insights for managing pandemic impacts on essential healthcare SCs. 

Furthermore, this study proposes several recommendations for essential product manufacturers to 

enhance their production capacity during crises like the COVID-19 pandemic. These include 

increasing production through ramping up production, subcontracting facilities, utilizing backup 

facilities, and diversifying products in the long term. In preparation for future disruptions, 

decentralizing manufacturing capacity, leveraging human-robot collaboration, and considering 

reshoring and nearshoring can be effective strategies to scale up production capacity. 

Manufacturers can also adopt adaptation strategies such as alternative or switching to backup 

supplier, having multiple suppliers, and localizing sourcing to mitigate supply disruptions. 

Optimizing strategic stock management, implementing minimum inventory policies, and making 

dynamic adjustments in the inventory can improve inventory levels in the face of disruptions. To 

ensure swift delivery during lockdowns, decision-makers should identify optimal transportation 

options, foster collaboration with other transporters, and employ multimodal and multi-route 

shipment methods. Retailers can utilize omni-channels to facilitate smooth delivery during 

lockdown periods. Given the prolonged nature of the COVID-19 pandemic, long-term dynamic 

planning is essential for optimal outcomes. The study emphasizes the need for manufacturers to 

utilize data analytics tools to dynamically determine optimal raw material quantities, inventory 

levels, and number of transportations, as demonstrated by the ABM and optimization methodology 



 

42 

employed in the research, in order to effectively mitigate the simultaneous impacts of the large-

scale SC disruption caused by pandemic. The proposed adaptation strategies and recovery plans, 

facilitated through a simulation and optimization model, provide valuable insights for facemask 

manufacturers to effectively manage concurrent supply chain disruptions. 

However, this study is not without limitations. Theoretically, a few adaptation strategies were 

considered for the simulation and parameters for optimization to understand the multiple impacts 

on SCs focusing on the healthcare product industry. In future studies, it would be beneficial to take 

into account other industry-specific (such as the semiconductor industry) strategies, as different 

industries may have distinct features and difficulties that necessitate tailored strategies. To predict 

impacts and improve SCs, the present study used hypothetical data based on secondary data. 

During the COVID-19 pandemic, primary data collection was challenging as industries had to 

spend time collecting it. A future empirical study can compare the results based on primary data. 

Future studies could explore strategies to minimize instability in SCs during disruptions caused by 

war and other global events. Another important avenue in making SCs more resilient could be 

evaluating SCs’ sustainability performances after implementing the resilient strategies. Future 

research also needs to identify and manage capability types, such as people, skills, systems, and 

processes, alongside adaptation strategies to manage large-scale SC disruptions. The present study 

is the first of its kind to predict the simultaneous and dynamic impacts of the COVID-19 pandemic 

and assess adaptation strategies to manage them. This study sets a benchmark and provides 

practical implications for future research.  
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Appendix 

 

Table A1: Parameters for manufacturing agents (Rahman et al., 2021) 

 

 

 

Manufacturer 

name 

Latitude Longitu

de 

Tru

cks 

Manufact

uring 

capacity 

(Units) 

State Manufactur

ing fixed 

cost (A$) 

Manufactu

ring item 

cost (A$ 

per unit) 

Holding 

cost (A$ 

per unit 

per day) 

Shorta

ge cost 

(A$ 

per 

unit 

per 

day) 

Transpor

tation 

cost to 

retailer 

(A$) 

ROP 

(s) 

Order up 

to level 

(S) 

Melbourne -37.7459 144.77 10 90 VIC 50000 5 0.75 4 500 1000 3000 

Sydney -33.8688 151.209 10 80 NSW 51000 5 0.75 4 550 1000 3000 

Brisbane -27.4698 153.025 10 100 QLD 53000 5 0.75 4 520 1000 3000 


