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Abstract

This paper considers the planning problem arising in the maintenance
of a power distribution grid. Maintenance works require the corre-
sponding parts of the grid to be shut down for the entire duration of
maintenance which could range from one day to several weeks. The
planning specifies the starting times of the required outages for main-
tenance and should take into account the constrained resources as
well as the uncertainty involved in the maintenance works which is
characterized by the risk values provided by the grid operator. The
problem was presented by the French company Réseau de Transport
d’Electricité for the 2020 ROADEF /EURO challenge. Several approaches
were developed during the competition and all approaches are reported
in this paper. We evaluate our approaches on the benchmark instances
proposed for the competition. It is reported that the iterated local
search metaheuristic with self-adaptive perturbation performed the best.

Keywords: Iterated local search, Large neighborhood search, Quantile
minimization, Grid maintenance planning, 2020 ROADEF/EURO challenge

[14



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 TEX template

2 2020 ROADEF/EURO challenge

1 Introduction

This paper is concerned with the grid operation-based maintenance planning
problem introduced during the 2020 ROADEF /EURO challenge by the French
company Réseau de Transport d’Electricité (also known as RTE). The chal-
lenge consists of four separate phases, i.e. sprint, qualification, semi-final, and
final. The first set of instances (set A) was released at the beginning of the
challenge (April 1, 2020) for the sprint and qualification phases. The second
set of instances (set B) was published on January 15, 2021 for the semi-final
phase. For the ranking of the qualified teams in the final phase, two sets of
instances were used, namely sets C (published) and X (hidden). Set C was
made available to the participants on April 6, 2021 while the hidden instances
(set X) were published after the challenge ended.

RTE, Europe’s largest electricity transmission system operator, is respon-
sible for operating, maintaining and developing the electricity transmission
system that spans over 105,000 kilometers of lines. The voltages on RTE’s
electricity network range from 63kV to 400kV [1]. Due to the extreme hazards
involved when performing maintenance operations on the high-voltages lines,
individual transmission lines have to be shut down for the duration of main-
tenance. Given that RTE has to handle hundreds of maintenance operations
a year and that the maintenance of a transmission line is a long process, it is
among the operator’s highest priorities to carefully schedule the required out-
ages due to maintenance. In the context of this paper, maintenance work and
intervention have the same meaning. The two terms are used interchangeably.

Interventions are carried out by some workforce which is split into teams
(or resources), each of which has different sizes and skill sets. The skilled
workers are not available during weekends and public holidays. For this rea-
son, resources are not available all the time. Consequently, the duration of an
intervention is variable and depends on the time when it starts. Furthermore,
resources, e.g. equipment and materials, must be brought to the maintenance
site when the intervention commences and removed when it finishes. For this
reason, it is expected that the amount of resources required at the beginning
and the end of the intervention are higher. Therefore, the resource workload
of an intervention is also time-dependent. For every time period, the total
consumption of a resource is bounded from below and above.

Certain transmission lines are too close to each other and the corresponding
interventions should not take place at the same time. This is because the
system is unable to handle the electricity demand if an unexpected outage
occurs on another close line during the interventions.

Because the transmission lines must remain switched off for the entire
duration of maintenance which could range from one day to several weeks,
this causes the electricity system to be weakened and implies a certain risk
for RTE. For each intervention and each scenario of grid operation, RTE can
compute the risk. According to the energy usage in France, the risk values are
dependent on time, because it is less risky to perform interventions in summer
(when the demand for electricity is low) than in winter.
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The goal of the planning process is to determine a schedule that specifies
the starting times of all interventions. The presented optimization procedures
take into account the characteristics of the considered problem, including the
limitation of resources, and the parameters provided by RTE which reflect the
risk associated with maintenance works. RTE conducted studies and decided
that the objective function is a weighted sum of two components: the aver-
age risk (which is expressed as a monetary cost) related to performing the
interventions and the total cost for the deviation from the average risk.

The contributions of this research can be summarized as follows: (1) a
new mixed integer linear programming (MILP) formulation of the grid main-
tenance planning problem, that takes into consideration the risk associated
with maintenance works; (2) a new MILP that is based on approximating the
quantile term in the objective function; and (3) several solution approaches are
developed and compared by means of computational experimentation using
instances provided by the competition.

The remainder of this paper is organized as follows. Section 2 provides a
review of the related work. Section 3 presents a nonlinear mathematical pro-
gramming formulation, as well as its linearisation, of the considered problem.
In Section 4, we discuss an approximation of the quantile term in the objec-
tive function and derive a mixed integer linear programming formulation. In
Sections 5 and 6, several heuristic and meta-heuristic algorithms are developed
to solve the considered problem. Section 7 presents computational compar-
isons for the various proposed algorithms using data provided by the 2020
ROADEF/EURO Challenge. Finally, our conclusions are given in Section 8.

2 Related work

Maintenance management is an important function as energy industry orga-
nizations are making an effort to ensure the reliability of the electric power
system for meeting demand, and is therefore a focus of a large number of
scheduling studies [2]. Most of these studies deal with maintenance schedul-
ing of generation units (see, for example [3-5]), while some consider finding an
optimal outage schedules for both the generation units and the transmission
lines (see, for example [6-8]). For recent literature review on generation units
maintenance scheduling, see [9]. A thorough review of maintenance scheduling
in the electricity industry is provided in [2]. In this section, we focus on articles
that tackle only the transmission-line maintenance scheduling problem.

In [10], the authors present a bi-level outage scheduling model, where the
upper-level objective is to maximize the unused transmission capacity while the
lower-level objective is to minimize the impact on the functioning of the elec-
tricity market. Using equilibrium constraints, the problem is recast as a mixed
integer-linear program and solved with CPLEX. This approach schedules con-
sidered maintenance during time periods in which its effect on transmission
system adequacy is the least. [11] develops a short-term transmission main-
tenance scheduling model that minimizes the transmission line maintenance
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cost while satisfying hourly line maintenance constraints, line reservations and
system reliability. Using Benders decomposition, the authors decompose the
transmission maintenance problem into a maintenance master problem and
two types of sub-problems which include transmission sub-problems and volt-
age sub-problems. [12] formulates the short-term transmission maintenance
scheduling problem as a mixed-integer nonlinear program that aims to min-
imize the maintenance cost and the expected cost of lost load. The model
considers failures of transmission components and system reliability as con-
straints. More recently, [13] proposes a maintenance scheduling optimization
model that minimizes the equipment unavailability and avoids simultaneous
disconnection of equipment that generates insecure conditions for the operation
of the network. The uncertainty in both demand and wind-power generation for
transmission line maintenance in long-term horizon is considered in [14]. They
develop a two-stage stochastic program to minimize the total expected mainte-
nance cost and cost of lost load of an outage schedule for the transmission lines,
under different demand and wind scenarios. All five above-mentioned papers
address the transmission-line maintenance scheduling problem with the objec-
tive of minimizing maintenance costs subject to achieving a certain required
level of reliability, while our study aims at achieving the best level of reliability
subject to constraints on resources.

Models for scheduling planned outages for transmission lines that consider
the impact of a given outage schedule on maintenance costs and system relia-
bility are presented in [15] and [16]. In particulars, the authors of [15] and [16]
develop a machine learning tool for predicting power system operating con-
ditions during the maintenance of grid components. The supervised learning
model helps to identify the time periods during which a maintenance outage
can be safely accommodated. The approach of [15] and [16] differs from our
approach in that they use machine learning proxy for contingency analyses,
while we focus on identifying the best outage schedule, considering contingency
analyses as a preliminary stage.

In [17], the authors present a maintenance selection and scheduling
approach that considers the long-term risk caused by equipment failure and
outage consequence in term of overload and voltage security. Similarly, [18]
describes a mixed-integer linear formulation for the long-term maintenance
scheduling of distribution overhead lines based on the risk of equipment fail-
ure and its consequences on network reliability. More recently, [19] proposes
an outage scheduling model over mid-term horizon that minimizes the overall
risk of carrying out the maintenance over the set of scenarios of future oper-
ating conditions. As in our paper, manpower constraints are hard constraints,
which must not be violated for an outage schedule to be considered feasible.
To solve the problem, the authors design a greedy algorithm that schedules
outages one by one, starting from the one with the maximal (negative) impact
on system operation. The impact of an outage on system operation is evalu-
ated by Monte Carlo simulations. The proposed approach is able to optimally
solve a case study with five interventions and a scheduling horizon of 182 days.
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In contrast to [19], our paper focus on problems with up to 528 interventions
and a planning horizon of 300 days.

3 Mathematical programming formulation

In this section, we first introduce the notations and describe the objective
function. Next, we present a mixed integer linear programming model to find
a schedule of interventions, subject to available resources, non-overlapping
restrictions between some pairs of intervention, and risk associated with the
maintenance works.

3.1 Notations

Planning horizon: The schedule has to be established over a one-year period.
The planning horizon is partitioned into intervals of equal length indexed
1,..., H and the set of all time periods is denoted by T" = {1, ..., H}. Depend-
ing on the required precision of the schedule, the time step of a schedule can
be either a day or a week.

Interventions: Consider a set of N interventions: I = {1, ..., N}, that have
to be planned in the coming year. Each intervention ¢ has a duration (4, 4)
which assumes integer values and depends on the period d at which it starts.
During its processing, at each period ¢, an intervention ¢ € I consumes rf’j

units of resource k if it starts in period d, where rk .4 is a non-negative integer
and will be referred to as the resource workload. For each intervention i, the
earliest starting period is 1 and the latest is t{"®*. Denote by T; = {1, ..., t?*

the list of allowed starting periods of intervention ¢. For any intervention 4,

any period t, let
Di,t:{did—f—Ai’dZt—i—l,dSt}ﬂ T‘z

denote the set of starting periods which makes intervention ¢ to be processed
during period t. The restriction on which interventions can be carried out
simultaneously is given by the set of exclusions, denoted by FE. It is a set of
triplets (i, j,t) designate that ¢ and j cannot be concurrently performed in
period t, where i,5 € [ and t € T.

Resources: The processing of each intervention requires M types of
resources with different sizes. The set of resources is denoted by K =
{1,..., M}. In each period t, the total consumption of resource k € K should
be at least [¥ and should not exceed uf, where both IF and uf are non-negative
integers.

3.2 Objective function

According to RTE, the objective function is a weighted sum of two components:
the average risk (which is expressed as a monetary cost) related to performing
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the interventions, and the total cost for the deviation from the average risk.
Both criteria are quantified in Euros.

For each intervention, the grid operator characterized the risk related to
performing the intervention by some risk values. These values are positive real
numbers and are given as input data. For each period ¢, we are given a set
Q; of grid operation scenarios. Let mskZ ,, denote the risk value for period ¢,
scenario w, and intervention ¢ when it starts at d. Also, let z; 4 € {0,1} to be
1if ¢ € I starts at d € T}, and 0 otherwise. Then, the first component of the
objective function, denoted by Z7, can be expressed as follows:

risk®?t = Z Z m’skzg Tidg, wely, teT (1)
i€l deD;
risk! = Z risk”t, teT (2)
wEQ

1
=g Z risk’ (3)
t=1

Alternatively, one could choose to express Z; based on T;, i € I:

N
risk;.q = Z Z msk:‘:dt, iel, deT,; (4)
t=d | t’wGQ
1 .
= i Z Z r18ki 4 T;q (5)
i€l deT;

For each period t, let |t = {risk”"",w € Q;}, where risk”"" is a sum of risk
values in scenario w of the interventions that are in process in period ¢, and
can be obtained according to (1). Then, the 7-quantile is given by

QL =min{g e R: IRCR |R|>7+|R| and forr e R,r < ¢}, t €T (6)

The second component of the objective function, denoted by Z5, can be
expressed as follows:

H
1 JR—
=T E max{0, Q% — risk'} (7)
t=1

Let « € [0, 1] denote the weight. The goal is to minimize

Z=aZ+(1—a)Z, (8)
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3.3 Mixed integer linear programming formulation

We can eliminate (6) by introducing binary variables ¢**, auxiliary variables
yt, together with Constraints (13) - (16) to give the mixed integer linear
program MILP. The resulting formulation is given as below.

. 1
(MILP) min : a X EZstkm Tig+ (1 —a)
el deT;

s.t. (1), (2), (4)
d wia=1, el (10)

HMm
©

deT;
lfSZer”jmi’dgu?, keK,teT (11)
i€l deD; ¢

Z -'L’i,d"i_ Z xj,dgla (i7j7t)€E7 Di,t%q)? Djvt%q)
deD; deDj ¢

(12)
risk®t — QL < Myq*', we, teT (13)
(=g > [rx|f], teT (14)
we

Qt —risk' <y, teT 15

y >0, teT 16

¢t e{0,1}, weQ, teT 17

(15)

(16)

(17)

xz;iq€{0,1}, i€l deT (18)
The objective function (9) is the weighted sum of two components: the aver-
age cost for performing the interventions and the total cost for the difference
between the 7-quantile and the average risk. Constraint (10) ensures that each
intervention must start within the planning horizon. Constraint (11) expresses
the requirement that the total resource consumption must be between the
limits [F and uf. Constraint (12) enforces that the pairwise exclusive inter-
ventions cannot be concurrently performed. Constraints (13) - (16) define the
T-quantile, where M; is a large number and [a] denotes the smallest integer
greater than or equal to a. In particulars, for any period ¢ and scenario w, if
risk®?! is larger than Q, Constraint (13) ensures that ¢*-* is 1, but arbitrary
otherwise. By Constraint (14), the total number of scenarios that have risks

below QY must be at least [7 x |Q|]. The term max{0, Q% — risk'} in (7) is
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substituted by a new decision variable (y;) together with Constraints (15) and
(16). Constraints (17) and (18) state the integrality restriction on the variables
¢“t and z; 4, respectively.

The exclusion representation in the form (12) is widely used in the schedul-
ing domain [20]. However, as the planning horizon and number of interventions
grow very large, the existence of a large number of exclusion constraints may
render the solution to the MILP model inefficient. By observing the triplets in
F, it is not uncommon to have several interventions that are pair-wise exclu-
sive. The exclusion constraints (12) can be accordingly modified to exclude
these exclusions together, which reduces the number of exclusion constraints
significantly. Formally, the set of pairwise exclusive interventions can be rep-
resented as a maximal clique on a undirected conflict graph Gy = (I, E),
where each vertex corresponds to one intervention in I and each edge between
vertices i and j, i.e. (i,j,t) € E, corresponds to the pairwise conflict rela-
tionship between interventions ¢ and j in period t. We denote the set of all
maximal cliques of Gy by Uy = {U : Uis a maximal clique of G;}. With the
cliques-based constraint, an alternative is to replace Constraint (12) with (19)
below.

Y wia<l, U€EU,teT (19)
i€U de€Dy ¢
Our experience with the instances proposed by the competition indi-
cates that the resulting problem with cliques-based constraint (19) has fewer
constraints.

4 Approximation of quantile term in objective
function and iterative updating algorithm

Although the MILP formulation is compact, solving it presents a formidable
computational challenge. During the development of solution methods for the
qualification phase, we conducted experiments on the MILP formulation and
observed that even for a small test instance with 12 scenarios (179 interven-
tions, 9 resources, and 90 time periods), it cannot be solved to optimality by
CPLEX in a 2-hour time limit.

Since the team rankings were determined based on the solution values
obtained within fifteen minutes execution (with weight 0.8) and one hour and
a half execution (with weight 0.2) per instance on the organizers’ computer,
it is critical that we develop an approximation of the the grid operation-based
outage maintenance planning problem that enables it to be solved in a rela-
tively short period of time (e.g. fifteen minutes). With this in mind, we propose
a new mixed-integer linear programming relaxation, denoted as A-MILP. The
key idea is to approximate the T-quantile Q% by the sum of T-quantile of the
individual interventions’ risk. The A-MILP can be solved to provide an initial
feasible solution for the heuristic and metaheuristic approaches in this paper.
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200 200
Intervention_1 === |ntervention_2
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Fig. 1 An example of the interventions having (left) positive and (right) negative slopes.
Given a time t and 7 = 0.8, in the left figure, we have QL =128 and QL = Q% _+ QL =
69-+59 = 128. In the right figure, we have Q¥ = 128 and Q\tT = ﬁ,_r —}—QE’T = 69-+59 = 128.

Fig. 2 An example of the 120

interventions having both posi- X

tive and negative slopes. Given

a time t and 7 = 0.8, we have

Q% = 107 but QL = Qf _ +
b, =59+73=132.

t
Qz,‘r |

Intervention_1

t
Ql,r

Risk Value

=== |ntervention_2

40
Xe==Sum

20

Scenarios

For each intervention ¢ that starts in d, and for any period ¢, denote by

¢t . _the T-quantile of the risk values in period ¢ when when 4 starts in d. The

i,d,T
parameter Q; 4 can be precalculated from the data. Then, for each period ¢,

the approximation of the T-quantile Q% is given by

QL=> > Qs wia teT (20)
i€l deD;

A plot of the risk value versus scenario can help to visualize the relationship
between QY and Q. Consider the simple case with two interventions whose
risk values are a linear function of scenarios (see Figure 1). The horizontal
axis represents scenarios, and the vertical axis represents the risk values. The
total risk values (green line) is the sum of the individual risk values for the
ten scenarios. When both interventions have positive (negative) slopes, the 7-
quantile of the total risk and the sum of the 7-quantile of the individual risk
are the same, i.e. Q% and Q% (= Qi , + Q5 ) are the same. However, for the
combination of interventions with both positive and negative slopes (see Figure
2), the value of @’; will likely be an overestimation or underestimation of Q<.
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With the above illustrations and discussions, consider a positive scaling
factor B;,t € T, as the parameter compensating for the difference between Q%
and Q%. This leads to the following approximation of Z, in (8)

H

3 max{0, Q% — risk') (21)

With this approximation and a linearisation of (21) in the same way as
with (7), we introduce formulation A-MILP as follows:

H
(A-MILP) min : o X —Zstkzd zia+ (1 —a) Z (22)
i€l deT; =1
subject to (1), (2), (4), (10) — (12), (20)
BiQL —risk' <y, teT (23)
ye >0, teT (24)
ziqa€{0,1}, i€l, deT; (25)

For problem with only one scenario, model A-MILP with g, = 1,t € T
is equivalent to the original model MILP. In other words, solving A-MILP
to optimality leads to the optimal solution to the considered problem. For
problem with more than one scenario, an optimal solution to A-MILP given
some vector 5 = (f,...0m) is a feasible solution to the original model MILP.
The advantage of having A-MILP is that optimal solution is significantly easier
to find as the omission of binary variables ¢*>' and constraints (13) and (14)
leads to a model containing fewer variables and constraints.

A question of interest is, which values of 5;,¢ € T in (23) should we use
to have a good approximation of the 7-quantile. To answer this question, an
iterative procedure is proposed to update [ iteratively. Assume g = " at the
7 iteration and o is the schedule obtained by solving A-MILP with 7. Given
o, for each period ¢, we can calculate Q% and Qi Based on the difference
between (3’ QtT and riskt, and the difference between Q! and riskt, B is updated
according to (26)

(57 if B/QL < risk?, and Q' < risk!
riskt /Qt if B7QL > riskt, and QL < riskt
P =S (1= )B +4QL/QL  if BQL < risk!, and QL > risk!  (26)
QL/Q" if B/QL > QL > risk?
(1= 98] +1QL/Q%  if QL > BIQL > risk!,

For any iteration 7 and any period ¢, when both Q% and B/QL are less
than risk® (line 1 in (26)), both max{0, Q% — risk'} and max{0, 8,QL — risk'}
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are equal to 0, and it is therefore not necessary to adjust the value of ;.
When B/Q% is an overestimation of Q% (lines 2 and 4 in (26)), the value of
B7 must be reduced. When 7Q! is an underestimate of Q% (lines 3 and 5 in
(26)), By must be increased. A new value at the (n + 1)th iteration can be
obtained by 87T = (1 — )8! + vQL/QL, where v € (0,1]. Given the values
of BTt ..., 81T, the resulting A-MILP model is solved to produce a feasible
solution. We terminate the updating procedure when the estimation error (A")
drops below a threshold € > 0. That is,

n _ n+l _ on <
A r?e@}(ﬂﬁt B} <e (27)

The proposed iterative updating approach, which will be referred to as
IterUpdate, does not guarantee to yield an optimal solution to the considered
problem since the updating rule for 5;,¢t € T in (26) only considers the esti-
mation errors for the quantile term in the objective function. In other words,
the solution with the smallest estimation error does not necessarily be the
solution with the smallest value of the objective function. However, the IterUp-
date algorithm (see Algorithm 1) will always yield a feasible solution to the
considered problem.

Algorithm 1 Iterative Updating Algorithm (IterUpdate)
1: Input: A problem instance
Output: A feasible schedule o
Step 1: Select the initial values for 3?,Vt € T
Step 2: Solve A-MILP using Y, Vt € T, resulting in a solution o.
Set n=1
while stopping criterion (27) is not satisfied and n < mazimum number
of iterations do
Update §/,t € T according to (26)
Solve A-MILP using 8/,t € T
Setn=n+1
10: end while
11: return the best feasible schedule o

S -

® 3

5 Confidence method approaches

The guaranteeing (confidence) approach [21] is a method for solving stochastic
optimization problem in which the quantile of the distribution of an objec-
tive function is the criterion to be optimized. The problem is known by the
name “Quantile Optimization Problem” in the literature. In this section,
we develop two heuristic approaches which utilize the idea of confidence
approach. The heuristics will be referred to as confidence-method heuristic and
critical-scenario confidence-method heuristic, respectively.
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In the confidence-method heuristic, we determine which values will be
assigned to the binary variables ¢**t, w € Q;, t € T in the original model
MILP, using information from an initial solution, which can be obtained using
the IterUpdate algorithm described in Section 4. For any solution o, denote by
Grr(0) ={w: risk?! < QL, w € Q} the confidence set in period ¢. Then, the
corresponding ¢¥-* variable in (13) is set to 0 if the scenario belongs to ;.. (o),
and to 1 otherwise. The process of finding the confidence sets is applied iter-
atively. When the confidence-method heuristic reaches the time limit or when
it cannot find an improved solution after a maximal permissible number of
consecutive iterations, the procedure is terminated and the solution from the
last iteration is returned. To simplify notation, we suppress dependence on
the given solution o and simply use 6, ; instead of €, (o). The MILP model,
subject to the imposed confidence sets, is as follows:

(C-MILP) min : a x _ZZMSkld ziqa+ (1 —a)
i€l deT;

subject to (1), (2), (4), (10) — (12),
risk*' <Qt, we€., teT (29)

Qb —risk' <y, teT (30)

(31)

(32)

(28)

HMm

y >0, teT 31
ziq€{0,1}, i€l, deT; 32

where (29) imposes the requirements that the risk values corresponding to
the scenarios in 6} , must be less than or equal to the 7-quantile. For each
period ¢, the set €, is split into two sets €, , and 2 \ 6, and the Constraint
(13) is replaced by (29). At each iteration of the confidence-method heuristic,
we solve the subproblem C-MILP. Since the solution at iteration 7 is feasible at
iteration n+1, it can be provided to the IP solver as a “warm start”. Naturally,
each iteration therefore results in a solution no worse than the previous. The
confidence-method heuristic is summarized below.

Confidence-method heuristic

Step 0. (Initialization) Generate an initial solution o by the IterUpdate
algorithm described in Section 4.

Step 1. Set = 1, construct the confidence sets ¢’ (c), t € T for the initial
solution o.

Step 2. Using ¢, = €},
solution o”.

Step 3. If stopping criterion is satisfied, then go to Step 5.

Step 4. Set n =7+ 1 and 0 = o', construct the confidence sets ¢,” (o), t € T
and return Step 2.

Step 5. Output solution o”.

(o), t € T, solve the C-MILP to obtain a new
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Another heuristic based on the confidence approach is the critical-scenario
confidence-method heuristic. In the critical-scenario confidence-method heuris-
tic, inequality in the form of (29) is only added to the problem when it is
necessary. The reason is because having too many variables fixed as with the
confidence-method heuristic, the opportunity for finding an improved solution
can be low. Moreover, the resulting C-MILP model is still too large to be
solved to optimality in a reasonable time given the large instances.

Given an initial solution o, one can find the confidence sets €; - (o), t € T
The scenario in the confidence set with largest risk“ ! value will be used to
generate a constraint (29) that is added to the reduced problem. We refer to
this scenario as critical scenario. The process of finding the critical scenarios is
applied iteratively. The constraints in (29) are incrementally added based on
critical scenario at each iteration in an attempt to improve the lower approx-
imation to the 7-quantile Q%. Let risk“!:' denote the risk value for period ¢
and critical scenario w; at iteration 7, the reduced problem can be written as

(reduced-MILP)

H
min : ax—Zstkld%d—i— 1—a) 1Zyt (33)
t=1

i€l deT;
subject to (1), (2), (4), (10) —(12), (30), (31), (32)
risk“tt < QL. i=1,.mteT (34)

The critical-scenario confidence-method heuristic is summarized below.

Critical-scenario confidence-method heuristic

Step 0. (Initialization) Generate an initial solution o by the IterUpdate
algorithm described in Section 4.

Step 1. Set n = 1, construct the conﬁdence sets €, (o), t € T for the initial
solution o, and ﬁnd the critical scenarios wy, t € T.

Step 2. Solve the reduced-MILP to obtain a new solution o’.

Step 3. If stopping criterion is satisfied, then go to Step 5.

Step 4. Set n = n+1 and o = ¢’, construct the confidence sets ;" (), t € T,
find the critical scenarios w;', t € T and return to Step 2.

Step 5. Output solution o”’.

6 Iterated local search

Iterated Local Search (ILS) [22] has been widely applied to solve a variety of
combinatorial optimization problems and has delivered high-quality solutions
(see, for example, [23-26]). In this section, we propose an ILS algorithm for the
grid operation-based outage maintenance planning problem. The key idea of
the proposed ILS is the self adaptive perturbation strategy, which dynamically
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modifies the perturbation strength based on the evaluation of the neighbor-
hoods around the local optimum. Failure to improve the local optimum after
a certain number of iterations is an indication that the perturbation strength
should be amplified. Additionally, a restart strategy is incorporated into the
ILS framework, which permits the algorithm to restart the search from the
current best solution. This restart strategy can prevent the algorithm from
spending too much time in an unpromising region of the search space and help
find better solutions for some hard instances. In what follows, whenever this
restart strategy is invoked, a new “path” is created.

The general framework of the proposed ILS is outlined in Algorithm 2.
In this pseudocode, Z is the objective function (8), and A and Ay are the
notations for perturbation strength. Additionally, the parameter W is the time
limit imposed on the algorithm, Y specifies the maximum permissible number
of consecutive unsuccessful attempts to improve the current best solution ¢*,
and A is the upper bound for the perturbation strength.

The proposed ILS starts with the subroutine INITIAL (line 1) which gen-
erates a high-quality feasible solution to the original problem. This initial
solution is considered as the current best solution. In the pseudocode below,
the current best solution of a particular path and over all paths is denoted by
6* and o*, respectively.

The parameter W (line 8) specifies the time limit for the ILS procedure
to find a better solution with respect to the value of the objective function
(9) (WHILE loop lines 8 - 33). Each iteration of the WHILE loop starts with
a solution o obtained by applying a perturbation on either 6* or o*. The
perturbed solutions are always produced by a sequential application of two
types of perturbation moves (a call of the subroutines PERTURB_SHIFT and
PERTURB_SWAP). If, however, a new “path” is invoked as the perturbation
strength exceeds the given permissible number A, then the perturbed solution
is produced by the subroutine PERTURB_SWAP (line 24) only.

Given the perturbed solution, the ILS algorithm attempts to find a better
solution using the subroutine SEARCH, which is a sequence of local search pro-
cedures. Three neighborhood operators will be used for this purpose: one-shift,
two-swap, and clique based large neighborhood search (C-LNS). Each iteration
of the selected operator performs an exhaustive search in the corresponding
neighborhood, and selects the solution with the smallest value of the objective
function (8).

6.1 Subroutine INITIAL

The subroutine INITTAL for constructing an initial solution required in step
1 of Algorithms 2 includes the following steps. First, a feasible solution is
obtained by solving the MILP model or the A-MILP model. The former
is always used, except if the problem has a maximum number of scenarios
(max;er ;) more than six. If this happens, the feasible solution is obtained
using the A-MILP model. Next, the quality of the solution should be improved
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Algorithm 2 Iterated local search
1: 0 < INITIAL

2: 0¥ 0o > o* is the global optimum
3: 0" o > ¢* is the local optimum
4: A, )\big «— X0

5.1+ 0

6: 0 < PERTURB_SHIFT(c*, 3))

7. 0 + PERTURB_SWAP(o, %A)

8: while time < W do

9 o + SEARCH(o0)

10: if Z(0) < Z(6*) then

11: 0" o

12: end if

13: if Z(0) < Z(0*) then

14: o*, 0% +— 0o

15: 140

16: )\, )\big — )\0

17: o + PERTURB_SHIFT(c*, +))

18: o + PERTURB_SWAP (o, %)\)

19: else

20: if © > Y then

21: A A > increase perturbation strength
22: end if

23: if A > A then

24: o < PERTURB_SWAP(c*, Apig) > start a new “path”
25: A\

26: )\big — )\big +1

27: else

28: o < PERTURB_SHIFT(6*, %)\)

29: o + PERTURB_SWAP (o, %A)

30: end if

31: end if

32: 14 1+1

33: end while
34: return o*

whenever possible before entering the ILS procedure. For this reason, the confi-
dence method described in Section 5 is used, followed by a further improvement
from applying the local search with one-shift and two-swap.

In our implementation of the subroutine INITIAL, we solve the A-MILP
model in two stages. The first stage aims to find a feasible solution with high
probability in a short time. This can be achieved by solving the model without
an objective function. In the second stage, the populate function of CPLEX is
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used to generate a pool of solutions. Each solution in the pool is examined and
the one with the smallest value of the objective function (8) will be selected.

6.2 Subroutine SEARCH

The big challenge for applying local search idea to the considered problem
is the extensive computational effort for assessing the quality of candidate
solutions with a large number of scenarios. This is due to the quantile term in
the objective function. We tested the sample average approximation method
commonly used in the literature, but found that it is not competitive in terms
of solution quality. We believe it is important for the local search operators that
we can efficiently calculate for a given solution the exact objective function
value. Therefore, we propose three simple local search operators: (i) clique
based large neighborhood search (C-LNS), (ii) one-shift, and (iii) two-swap.

Clique based large meighborhood search (C-LNS) - The basic idea
of large neighborhood search is to explore a complex neighborhood, aiming to
travel across promising search path and find better solutions at each iteration
[27]. In the case of C-LNS, a move consists of deleting some non-overlapping
interventions from the current solution ¢ and then finding the new starting
times for these interventions by solving an integer program where the starting
times of the remaining interventions are fixed. CPLEX might be able to find
better solution than &, and if this happens, the move is immediately executed
and the search goes on. We discuss how to formulate the integer programming
model below.

Let 6 be the current solution. Denote by U the list of selected non-
overlapping interventions. The starting time of the remaining interventions
will be fixed, i.e. z;; = &;+,Vi € I \ U. The resources consumed by this fixed
partial solution is

=Y > riixdia keK tel (35)
i€I\U deD; 4

Given that the interventions in U are non-overlapping, i.e. cannot be
processed concurrently, one can determine the set of allowed starting times
T;, i € U such that the resource constraints and disjunctive constraints are
satisfied with respect to the fixed partial solution. That is,

T,={deT;| tedd+Aiqg—1], k€K, if +riy < uf,
(iajat)EE7j¢U7 te[d7d+Ai,d_1]a (36)
j does not overlap with [d,d + A, 4 — 1]}
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Let Di,t ={d e T, : d+ A;g—1>t,d<t}, fori € U. The cumulative
planning risk risk‘f{ie 4 of the fixed partial solution can be computed as:

. g w,t o . 78,1 ~
ikl peq = g E risk;y X Tid (37)
i€I\U deD; ¢

The mean cumulative planning risk at ¢ of the fixed partial solution will be:

_ 1
risk}imd = m Z risk‘}’zfied (38)
wey

The 7 quantile of the risk profile of the fixed partial solution at ¢, denoted by
Qtﬂ fized> 18 computed according to (6). The objective value at ¢ resulting from
the fixed partial solution is:

f]t‘i:ced = TiSk;ixed + (1 - a) maX{O? Qi,fimed - Tis}f}ixed} (39)

Assigning intervention i € U to a starting time d € T} leads to changes in
the values of riskj}med, Qi’fixed, and therefore f}med. Equation (40) calculates
the change in the objective value, denoted by +; 4, for starting intervention ¢

at time d € T;.
d+Ai7d—1

Yi,d = Z (f]tfia:ed—l—i - f]t”ixed)v (40)

t=d
where f}imd +; denote the objective value at ¢ as a result of including 7 to
the fixed partial solution. The discussion above leads to the following integer
programming model:

Model (LNS-IP) :

min Z Z Yi.d Ti.d (41)

e’ dETi

subject to (35), (36)

d mia=1, Q€U (42)

tETi

<> N riiwatif, keK tel (43)
€U dGDi,t

> Y wia<l, teT (44)

i€U 4D, ,
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zi,€{0,1}, €U teT; (45)

At each iteration of (C-LNS), our procedure for selecting the interventions
to free includes the following steps. First, the current list (1) of interventions
contains all interventions and the list (U) of selected non-overlapping interven-
tions is empty. One intervention from I will be chosen at random and inserted
to U. Then, the procedure scans the list I and attempts to remove the inter-
ventions which overlap with the intervention just added to U. This procedure
terminates when list I becomes empty, i.e. each intervention is either added
to U or removed from I (because it overlaps with some interventions in U), or
when the list U reaches the required size.

As might be expected, the more interventions whose starting times are
fixed, the faster the (LNS-IP) model can be solved, but it is more likely that
no improvement could be made in term of the objective function value. On
the other hand, the fewer interventions whose starting times are fixed, there is
greater opportunity for finding a solution with an improved value of the objec-
tive function, but significantly more computational effort might be required
for solving the (LNS-IP) model. We propose not to impose a restriction on the
size of U so that we can free as many non-overlapping interventions as possi-
ble. At the beginning of the first iteration of (C-LNS), the input solution can
be provided to the IP solver as a “warm start”. In the subsequent iterations,
the current best solution can be provided to the IP solver as a “warm start”.

One-shift - The neighborhood explored by the operator one-shift is com-
prised of all feasible solutions that can be obtained from a solution o by
assigning a different starting time to a single intervention. A total of n(H — 1)
possible solutions can be produced. The benefit of using one-shift is in the
fast evaluation of each solution in the neighborhood. For example, we change
the starting time of intervention 3 from time 6 to 1 in Figure 3. The objective
value of the time periods marked in the boxes are the same, so we just need
to consider the changed objective value for the affected periods, i.e. 1, 2, 3, 6,
7, and 8.

Resource A

3
5
2 3
S | . £
1 2 % = 4
1 2 3|4 5|6 7 8|9 10 11 12 Time

Fig. 3 one-shift evaluation.



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 TEX template

2020 ROADEF/EURO challenge 19

Two-swap - The two-swap is motivated by the classic 2-Opt approach
known from the traveling salesman literature [28]. It consists of exchanging the
starting times of two interventions ¢ and j, which generates a total of n(n—1)/2
possible solutions, where n is the number of interventions. As in one-shift,
each neighbor solution obtained by two-swap can be evaluated efficiently. For
example, we swap the starting times of interventions 1 and 5 in Figure 4. The
objective value of the time periods marked in the boxes are the same, so we
just need to consider the changed objective value for the affected periods, i.e.
1,2, 3,9, 10, and 11.

y
Resource

1 2 3|4 5 6 7 89 10 11|12 Time

A
Resource

1 2 3|4 5 6 7 8|9 10 11|12 Time

Fig. 4 two-swap evaluation.

Let Ny, N1, Ny denote the three operators C-LNS, one-shift, two-swap,
respectively. For a current solution o, let N;(o) denote the output solution pro-
duced by the operator N;, + = 0,1,2. Let & be a solution in the neighborhood
of o with the smallest value of the objective function, then & = N;(o). If such
a solution does not exist in the current neighborhood, then ¢ = N;(o). The
algorithm 3 below outlines the subroutine SEARCH for an input solution o.
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Algorithm 3 SEARCH(o)
1: repeat
o=0
o = Ny(o)
until termination condition met
repeat
o=o0
for i from 1 to 2 do
repeat
6=0
o = N;(0)
until Z(o) = Z(5)
end for
cuntil Z(o) = Z(0)
: return o

© % TR L

e e e = T
Ll A

The subroutine SEARCH starts with an iterative local search optimization
procedure with operator Ny (REPEAT loop lines 1 - 4). This loop repeats until
the permissible number of iterations is reached. The local optimum found by
the local search with operator Ny is used as an input to the composite local
search with operators Ny and No (REPEAT loop lines 5 - 13). When the local
search with the operator Ny (REPEAT loop lines 8 - 11) finds a local minimum,
this local minimum is used as an input to the local search with operator Ns.
The subroutine SEARCH terminates if the composite local search algorithm
is unable to improve the solution.

6.3 Subroutines PERTURB_SHIFT and
PERTURB _SWAP

The perturbation mechanism is responsible for providing a new starting solu-
tion for the next iteration of the subroutine SEARCH. It is a crucial component
of the ILS procedure as it controls the diversification aspect of ILS. If the
amount of perturbation is too large, the algorithm may behave as a random
restart method, resulting in much worse local optimal solutions. Conversely,
if the perturbations are too small, it may prevent the algorithm to escape
from the local optimum. For this reason, the characteristics of the pertur-
bation operator and perturbation strength (i.e. the number of components
that are modified in a solution) must be carefully controlled in order to avoid
over-disturbance and/or under-disturbance. In this work, we propose an adap-
tive perturbation mechanism that changes the perturbation strength as the
algorithm progresses, and two types of perturbation operators.

The adaptive perturbation mechanism dynamically tunes the perturbation
strength using the information about the quality of the neighbor solutions.
In the case that the local optimum sits among many good possible solutions
and the subroutine SEARCH can progressively find solution with an improved



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 TEX template

2020 ROADEF/EURO challenge 21

value of the objective function, then the perturbation strength A remains
unchanged to allow for more detailed exploration of the current neighborhood
of the search space. In the case that the subroutine SEARCH fails to improve
the local optimum after a certain number of consecutive iterations (specified
by the parameter Y in line 20 of Algorithm 2), then the perturbation strength
A is increased to yA, where v > 1. This increment will enable new areas of the
search space to be explored. When the value of A\ reaches the upper bound
A, further searches becomes unnecessary, so the restart strategy is invoked to
replace the current best solution o* by a new “path”. This “path” concept can
enlarge the search space and help find better solution for some hard instances.

The subroutine PERTURB_SHIFT uses the one-shift operator, which ran-
domly selects an intervention i, determines all feasible starting times for this
intervention in the existing solution, and randomly chooses from this list a new
starting time to assign to . If there are no feasible starting times available, then
no change will be made to intervention i. The subroutine PERTURB_SHIFT
is terminated when the total number of operations equals to %)\, where A is
the perturbation strength.

The subroutine PERTURB_SWAP uses the two-swap operator, which ran-
domly selects a pair of interventions, and examines whether the two may
overlap with one another. If they are non-overlapping and swapping the start-
ing times of these two interventions results in a feasible solution, then the swap
is applied. The number of swaps depends on the perturbation strength. When
the total number of swaps equals to %A, the subroutine PERTURB_SWAP is
terminated.

In the proposed ILS, whenever a new path is created (line 24 in Algorithm
2), the perturbed solution is produced by the subroutine PERTURB_SWAP.
Otherwise, the perturbation mechanism consists of the subroutine PER-
TURB_SHIFT, followed by subroutine PERTURB_SWAP. The perturbation
with one-shift operator is not as strong as the perturbation with two-swap
operator. It is evident that a combination of these two types of perturbations
introduces increasingly larger degrees of diversification to the search space.

7 Computational results

In this section, we apply the developed heuristic and meta-heuristic algo-
rithms to the four sets of instances used during the ROADEF /EURO challenge
2020. Each set includes 15 test instances. These instances can be downloaded
from the Github repository of the competition https://github.com/rte-france/
challenge-roadef-2020/. The Roadef 2020 also provided a solution checker -
developed in Python3 - that allows the participants to check whether or not
a solution is feasible. More about the format of the instances and solution
checker can be found on [29].

The code is implemented in cython [30] with C++ STL. IBM ILOG CPLEX
12.10.0 was used to solve the mathematical programming models. The testing
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Instance N M H avg. Q) E avg. A T «
Sprint and Qualification phases
A 01 18T 9 90 1 81 5.5 0.95 0.5
A_02 89 9 90 120 32 4.6 0.95 0.5
A_03 91 10 90 1 12 4.6 0.95 0.5
A 04 706 9 365 1 1377 8.6 0.95 0.5
A_05 180 9 182 120 87 4.9 0.95 0.5
A_06 180 10 182 1 87 4.9 0.95 0.5
A 07 36 9 17 6 3 1.4 0.50 0.5
A_08 18 9 17 646 4 1.2 0.95 0.5
A_09 18 10 17 6 0 1.8 0.50 0.5
A_10 108 9 53 6 40 1.8 0.50 0.5
A1l 54 9 53 640 4 1.2 0.95 0.5
A_12 54 10 53 6 0 1.1 0.50 0.5
A_13 179 9 90 12 136 5.2 0.50 0.5
A_14 108 10 53 160 22 1.7 0.95 0.5
A_15 108 10 53 320 22 1.7 0.95 0.5
Semi-final phase
B_01 100 9 53 191 26 10.6 0.90 0.5
B_02 100 9 53 191 19 11.7 0.90 0.5
B_03 706 9 53 63 1192 11.0 0.90 0.5
B.04 706 9 53 63 1192 11.0 0.90 0.5
B_05 706 9 53 63 1377 1.7 0.90 0.5
B_06 100 9 53 255 19 11.7 0.90 0.5
B.07 250 9 53 191 186 10.8 0.80 0.5
B_08 119 9 42 254 37 8.8 0.95 0.5
B_09 120 9 42 127 44 7.5 0.95 0.5
B_10 398 9 25 192 344 5.1 0.80 0.5
B_11 100 9 53 191 34 11.1 0.90 0.5
B_12 495 9 102 63 570 24.8 0.95 0.5
B_13 99 9 102 159 4 24.6 0.90 0.5
B_14 297 9 191 95 207 47.1 0.80 0.5
B_15 495 9 250 63 665 52.2 0.80 0.5
Final phases
C.01 120 9 53 191 54 11.1 0.95 0.5
C_02 120 9 53 191 43 114 0.80 0.5
C-03 706 9 53 63 1223 10.9 0.85 0.5
C.04 706 9 53 63 1194 11.0 0.90 0.5
C-05 706 9 53 63 1377 1.7 0.95 0.5
C_06 280 9 53 191 183 11.1 0.80 0.5
C.07 120 9 42 126 38 7.7 0.95 0.5
C_08 426 9 25 192 340 5.0 0.80 0.5
C_09 110 9 53 191 38 11.7 0.90 0.5
C-10 522 9 102 63 705 24.9 0.95 0.5
C_11 89 9 102 191 35 27.0 0.90 0.5
C_12 298 9 191 95 195 47.0 0.80 0.5
C.13 505 9 230 63 53 58.9 0.95 0.5
C.14 465 9 220 95 620 54.5 0.85 0.5
C_15 528 9 300 51 624 4.7 0.95 0.5
X.01 120 9 53 191 48 10.9 0.80 0.5
X.02 706 9 53 63 1234 11.0 0.85 0.5
X.03 280 9 53 191 162 10.7 0.80 0.5
X.04 426 9 25 188 490 5.1 0.80 0.5
X.05 467 9 220 95 604 55.3 0.85 0.5
X_06 528 9 300 50 703 777 0.95 0.5
X.07 209 9 300 63 80 74.9 0.90 0.5
X_08 209 9 300 63 57 75.0 0.90 0.5
X_09 548 9 30 156 820 6.5 0.80 0.5
X_10 460 9 35 159 527 7.3 0.95 0.5
X 11 521 9 131 63 725 324 0.95 0.5
X-12 522 9 131 63 723 33.1 0.95 0.5
X_13 336 9 212 95 248 54.7 0.90 0.5
X.14 613 9 180 63 951 47.3 0.95 0.5
X_15 613 9 180 63 917 45.8 0.95 0.5

Table 1 Instances characteristics in ROADEF/EURO 2020 Challenge.
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system was a cluster with Intel Xeon E-2288G 3.7GHz 8 cores CPU with 64GB
RAM, running Red Hat Enterprise Linux.

Table 1 summarizes the main characteristics of the 60 instances. In Table
1, N is the number of interventions, M is the number of resources, H is the
length of planning horizon, avg. ) is the average number of scenarios, F is
the number of exclusions, avg. A is the average duration of interventions in
all allowed starting times, 7 is the quantile level for the planning risk, and «
is the weight of the first objective (Z1). avg. {2 is calculated as 1/H Zi1mt|>
while avg. A is calculated as 1/N zg\;l(l/t?‘a" Zf:x Aiy).

For the parameter M;,t € T in (13), a choice of very large M can lead to
slow progress in solving the MILP due to weak relaxation. On the other hand,
if M is too small, a valid choice of risk“ ! may violate the constraint even when
q*'* = 1. With this in mind, in our implementation, we use one M parameter
for each time ¢ and compute the values using the data for risk and resources.

7.1 Model MILP vs. Model A-MILP

We first evaluate the proposed models MILP and A-MILP, by solving the
instances in dataset A by CPLEX. Table 2 summarizes the outcomes. The
columns ‘Time (s)’, ‘UB’, ‘LB’, and ‘Gap (%)’ report the running time (in
seconds), upper bounds, lower bounds, and gaps obtained by CPLEX, respec-
tively. For model A-MILP, parameter 5;, Vt € T was fixed at 1; the objective
values of the solutions are computed according to (8) and reported under the
column titled ‘Z’; the last column ‘Gap (%)’ reports the deviation of the objec-
tive value from LB and is calculated as Gap (%) = (Z—LB)/LB=*100. For both
models, CPLEX stopped after reaching a 2 hours limit or when an optimal
solution was found.

MILP A-MILP
Instance
Time (s) UB LB Gap (%) Time (s) z Gap (%)

A_01 2 1767.81561 1767.81561 0 2 1767.81561 0
A_02 7200 4673.95911 2112.63630 54.80 4 4736.84755 124
A_03 1 848.17861 848.17861 0 0.4 848.17861 0
A_04 74 2085.87605 2085.87605 0 68 2085.87605 0
A_05 7200 638.44659 594.46740 6.89 4 645.42793 8.57
A_06 4 590.62359 590.62359 0 3 590.62359 0
A_07 0.3 2272.78227 2272.78227 0 0.5 2280.60656 0.34
A_08 7200 744.70441 692.65000 6.99 0.2 749.95088 8.27
A_09 0.2 1507.28478 1507.28478 0 0.1 1525.64978 1.21
A_10 4 2994.84873 2994.84873 0 0.3 3016.16708 0.71
A1l 7200 495.86537 461.75280 6.88 2 504.78716 9.31
A_12 2 789.63492 789.63492 0 0.7 789.78896 0.02
A_13 7200 1998.90557 1998.84030 0.003 12 2004.39403 0.28
A_14 7200 2275.50198 2085.27950 8.35 3 2295.81830 10.10
A_15 7200 2290.71433 2072.28270 9.53 4 2302.47084 11.11

Table 2 Comparison of models MILP and A-MILP on dataset A instances.

The results in Table 2 show that CPLEX obtained optimal solutions to
MILP when avg. 2 < 6. The smallest instance A_09 is solved to optimality
in less than 1 second while the largest instance A_04 requires approximately
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74 seconds. As the number of scenarios in an instance increases, the required
computational effort for a solution of MILP grows rapidly. For the instances
where CPLEX could not produce an optimal solution in 2 hours, the average
gap was 13.35%. A_02 has the largest gap of 54.8% among the instances in
dataset A. Further investigation into the characteristics of A_02 suggests that
the difficulty of this instance is due to its high risk values. When A-MILP is
used, CPLEX can solve all instances to optimality in less than 100 seconds.
The times taken to solve A-MILP is on average 71% less than MILP, but
solution quality is on average 0.59% worse than MILP.

7.2 Evaluation of the IterUpdate algorithm

We conduct an experiment to assess the effect of the initial values 89, t € T
(in line 3 of Algorithm 1) on solution quality of the IterUpdate algorithm.
We initialized the parameter 37, t € T with three different settings, i.e. 1,
0.01, and U0, 1]. For all instances, the parameter v in (26) was set to 0.6.
Termination criteria is a 900 second time limit (excluding the time to read the
data file) or the smallest estimation error of less than 1 x 1075 or the number of
iterations without improvement of no more than 20. For each iteration within
the heuristic, CPLEX stopped after reaching a 500 seconds limit or when the
problem is solved to within 1%-optimality.

We use two criteria of “Number of best obtained solutions (Npes:)” and
“Average relative percentage time (ARPT)” to compare the results obtained
for different settings of 8Y. The metric ARPT is obtained as follows: first,
we compute the average computation time, denoted by ACT, for all three
settings on the same instance; then, for each instance, we find the relative
percentage computation time of a setting, denoted by RPT', using the formula
RPT = (Time(s) — ACT)/ACT x 100; and finally, ARPT can be obtained by
averaging the RPT of all instances in one dataset. It is possible that CPLEX
cannot find a solution in 500 seconds for some large instances (e.g. dataset X).
If this happens, the instance is excluded from the comparison.

A summary of the parameters tuning for the IterUpdate algorithm can be
found in Table 3. The highlighted numbers denote the outperforming values.
For dataset A, the random initialization obtains better solutions than the
other two settings at a cost of longer computing time. For dataset B, both
settings of 1 and 0.01 achieve the same number of best obtained solution of
7 but the computing time of the former is significantly shorter. 37 = 1 is the
superior setting for instances of dataset C, while 8 = 0.01 is more suitable
for dataset X instances. Overall, 5 = 0.01 is the best setting in term of Npeg,
and 3 = 1 is the second best. However, the latter takes nearly a hundredfold
less in computing time. To conclude, in terms of solution quality and time,
B9 = 1 is the preferred setting for the IterUpdate algorithm. Therefore, the
IterUpdate algorithm with 32 = 1,Vt € T is used to generate initial solutions
in the remainder of this study.

We conclude this section with Figure 5 illustrating the convergence of the
approximate Z, to the true Zy for instances A_02 and A_11.
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Metric  Dataset ,6’0 1 6020.01 50:random

A 4 8 10
B 7 7 3
N,
best C 8 4 4
X 1 9 4
Sum 20 30 19
A -17.45 6.77 10.68
ARPT B -64.00 76.02 -12.02
C -51.28 39.44 11.84
X -45.05 26.45 18.60
Average -44.44 37.17 7.27

Table 3 Summary of ,8t07Vt € T for the IterUpdate algorithm on four datasets.

nstance A_02 Instance A_11

B a0

g W

v AR R B e
£ o

10 0 30 40 50 o 10 20 30 40

6000

=B—True 72

Approximate Z2

[terations Iterations

Fig. 5 Convergence of the approximate Zs to the true Zs.

7.3 CM-heuristic vs. cs-CM heuristic

In the following, we compare the performance of CM-heuristic and cs-CM
heuristic on the four datasets, the results of which are provided in Tables 4 -
7. We report the change in objective value which is given by subtracting the
objective value of the final solution from the objective value of the initial solu-
tion; the total time (in seconds) which includes time for running the methods
but does not include time for generating the initial solution; the average time
spent by CPLEX (in seconds); the average MIP relative gap by CPLEX (%);
the average number of constraints of the MIP models over all iterations; and
total number of iterations the procedure took to terminate.

For the sake of brevity, these tables do not present results of the instances,
where both CM and cs-CM fail to improve the initial solutions. To ensure fair
comparisons, we initialize both methods with the same initial solution, i.e. we
use the solution obtained by CPLEX for the IterUpdate algorithm with 80 = 1.
The CM-heuristic terminates when the solution has converged, whereas the
¢s-CM heuristic is to stop after 10 iterations. For both approaches, CPLEX
is used to solve the resulting mixed integer linear programming models and
a time limit of 100 seconds is imposed on CPLEX. For the first iteration of
both methods, we use the initial solution to warm start CPLEX. For iteration
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Change in . Average Average Total
Instance Method objectivge value Total time solution %ilne Average gap constraignts Iterations
A_02 CM 57.45 408 100 0.073% 13468 4
cs-CM 58.94 320 32 0.001% 2964 10
A_05 CcM 6.89 230 100 0.775% 28980 2
cs-CM 3.75 842 84 0.334% 7560 10
A_07 CcM 5.43 0.5 0.2 0.000% 348 2
cs-CM 5.43 0.3 0.0 0.000% 254 10
A_08 CM 0.14 2.9 0.7 0.000% 11192 2
cs-CM 0.00 1.5 0.1 0.000% 250 10
A_09 CM 18.02 0.1 0.0 0.000% 318 2
cs-CM 18.02 0.2 0.0 0.000% 223 10
A_10 CM 16.83 1.2 0.3 0.001% 1685 3
cs-CM 16.15 1.8 0.1 0.001% 1394 10
A1l CM 1.52 146 34 0.001% 34628 4
cs-CM 0.00 6.2 1 0.001% 818 10
A_12 CM 0.34 0.5 0.1 0.000% 991 2
cs-CM 0.00 1.2 0.1 0.000% 707 10
A_13 CM 1.76 47 15 0.001% 7198 3
cs-CM 2.04 68 7 0.001% 6162 10
A_14 CM 29.47 403 100 0.230% 9672 4
cs-CM 1.65 367 36 0.001% 1344 10
A_15 CcM 19.99 508 100 0.350% 18139 5
cs-CM 0.00 434 43 0.001% 1340 10

Table 4 Results obtained by CM-heuristic and cs-CM heuristics for instances in dataset A.

n > 1, we use both the current best solution and the solution from iteration
1 — 1 to warm start CPLEX.

Results in Table 4 indicate that the CM-heuristic works well on small
instances, quickly finding a better solution and exiting in a few iterations.
This is because CPLEX can easily solve these small problems to optimality in
100 seconds. With cs-CM, at the early iterations of this method, the solutions
are often of poor quality because the estimation of the quantile term in the
objective function is not accurate. As more constraints are added to the model
in consecutive iterations, the discrepancy between the actual objective value
of model objective value reduces, and therefore, CPLEX can start to improve
the initial solution.

Results in Table 5 - 7 indicate that, for the large instances in dataset B,
C, and X, cs-CM outperform CM-heuristic in terms of solution quality. For
example, for X_07, cs-CM yields an improvement of about 0.05% as compared
to the initial solution, whereas CM-heuristic is not able to give any improve-
ment on this instance. Solution time can grow with the number of iterations,
and so cs-CM, which could stop only after a predetermined number of itera-
tions, i.e. 10 iterations, can require more computational effort. However, note
that, for example, for X_07, the number of iterations of c¢s-CM is 10 times
that of CM, yet the solution time only grew 4 times. This is because solving
10 smaller problems (cs-CM with 11002 constraints on average) can be more
efficient than solving one large problem (CM with 29633 constraints).

7.4 Comparison of the ILS with benchmark results

We test the proposed ILS algorithm and compare its performance with the
best known results from other participants. As in the competition, we run the
proposed ILS with a time limit of 15 minutes and another one of one hour and
a half. Tables 8 - 11 report the results on the four datasets, respectively. The
highlighted numbers denote the outperforming values. In these tables, ‘Best’
is the best known results from other participants; ‘ILS’ is the results from our
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Change in . Average Average Total
Instance Method objectivi value Total time solution %ime Average gap constraignts Iterations
B_02 CM 0.86 214 101 0.430% 11186 2
cs-CM 0.00 908 90 1.370% 1256 10
B_03 CcM 9.67 324 100 0.060% 22799 3
cs-CM 15.81 1022 100 0.053% 19592 10
B_04 CM 19.92 324 100 0.008% 22799 3
cs-CM 16.91 923 91 0.005% 19589 10
B_05 CM 4.27 412 100 0.103% 25542 4
cs-CM 3.29 923 91 0.055% 22351 10
B_09 CM 1.34 41 18 0.000% 6442 2
cs-CM 1.33 28 3 0.001% 1096 10
B_12 CM 0.00 157 101 100% 23257 1
cs-CM 18.79 962 92 0.009% 17001 10

Table 5 Results obtained by CM-heuristic and cs-CM heuristics for instances in dataset B.

Change in . Average Average Total
Instance Method objective value Total time solution time Average gap constraints Iterations
C_03 CM 17.77 416 100 0.070% 22735 4
cs-CM 18.06 1011 100 0.040% 19533 10
C_04 CM 27.75 715 100 0.013% 23299 7
cs-CM 22.06 914 90 0.007% 10107 10
C.05 CM 4.55 807 100 0.110% 25542 8
cs-CM 1.22 1004 100 0.137% 22320 10
C_10 CcM 0.00 145 100 100% 27071 1
cs-CM 25.74 964 94 0.005% 20817 10
C_11 CM 0.00 86 63 0.001% 22015 1
cs-CM 0.44 26 2 0.001% 2730 10

Table 6 Results obtained by CM-heuristic and cs-CM heuristics for instances in dataset C.

Change in . Average Average Total
Instance Method objective value Total time solution time Average gap constraints Iterations
X-02 CM 6.48 217 100 0.088% 23715 2
cs-CM 0.00 1012 100 0.113% 20472 10
X_07 CM 0.00 268 124 100% 29633 1
cs-CM 7.04 1051 99 0.032% 11002 10
X-11 CM 0.00 165 101 100% 34672 1
cs-CM 20.51 1029 99 0.030% 26643 10

Table 7 Results obtained by CM-heuristic and c¢s-CM heuristics for instances in dataset X.

proposed ILS algorithm; and ‘%Diff’ is the percentage difference calculated as
%Diff = (ILS — Best) /Best x 100.

For the instances with avg. € < 6, initial solution to the iterated local
search in Algorithm 2 is obtained by solving the (MILP). For all other
instances, the IterUpdate algorithm with 3 = 1 is used to provide the initial
solution. A time limit of 500 seconds is given to the IterUpdate algorithm. At
each iteration of the local search LS(C-LNS), the set of non-overlapping tasks
U is formed in the following way: a task u is chosen at random from the set I;
The remaining tasks are removed from I if they overlap with u; the procedure
continues until set I is empty. At each iteration, the model (LNS-IP) is solved
by CPLEX with a time limit of 100 seconds.

The parameters of ILS are set as follows. The value of W is calculated using
the formula W =T — Tr — 77, where T is either 15 minutes or 1.5 hours, 7r
is the amount of time it takes to read the instance, and 77 is the time used for
obtaining the initial solution. The initial value of perturbation strength (\) is
3. Weset A =12, v =12, and Y = 10 + N/250, where N is the number of
interventions. Note that Y will be rounded to the nearest integer if the division
N/250 gives a non-integer value.
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15 minutes 1.5 hours

Instance

Best ILS %Diff Best ILS %Diff
A_01 1767.81561 1767.81561 0.00% 1767.81560 1767.81561 0.00%
A_02 4671.37661 4671.37661 0.00% 4671.37660 4671.37661 0.00%
A_03 848.17861 848.17861 0.00% 848.17861 848.17861 0.00%
A_04 2085.87605 2085.87605 0.00% 2085.87605 2085.87605 0.00%
A_05 635.22178 635.59898 0.06% 635.22178 635.298076 0.01%
A_06 590.62359 590.62359 0.00% 590.62359 590.62359 0.00%
A_07 2272.78227 2272.78227 0.00% 2272.78227 2272.78227 0.00%
A_08 744.29323 744.29323 0.00% 744.29323 744.29323 0.00%
A_09 1507.28478 1507.28478 0.00% 1507.28478 1507.28478 0.00%
A_10 2994.84873 2994.84873 0.00% 2994.84873 2994.84873 0.00%
A1l 495.25577 495.32171 0.01% 495.25577 495.25577 0.00%
A_12 789.63492 789.63492 0.00% 789.63492 789.63492 0.00%
A_13 1998.66216 1999.62679 0.05% 1998.66216 1998.79003 0.01%
A_14 2264.12432 2264.12432 0.00% 2264.12432 2264.12432 0.00%
A_15 2268.56915 2268.56915 0.00% 2268.56915 2269.54047 0.04%

Table 8 Performance of ILS on dataset A instances.

15 minutes 1.5 hours

Instance

Best ILS % Diff Best ILS %Diff
B.0O1 3986.20283 3986.20283 0.00% 3986.20283 3986.20283 0.00%
B_.02 4302.77452 4300.05660 -0.06% 4301.65660 4299.00566 -0.06%
B_03 35279.53018 35284.81226 0.01% 35277.22830 35281.73773 0.01%
B_04 34827.86981 34828.87547 0.00% 34826.94622 34828.84056 0.01%
B_.05 2397.09905 2396.70660 -0.02% 2397.10094 2397.18301 0.00%
B_06 4287.89434 4283.36320 -0.11% 4284.67169 4284.73867 0.00%
B.07 7564.03490 7555.35566 -0.11% 7555.95000 7551.01792 -0.07%
B_08 7435.71904 7435.71904 0.00% 7435.71904 7435.71904 0.00%
B_09 7491.75357 7493.61666 0.02% 7491.75357 7496.87857 0.07%
B_-10 10637.62000 10602.87600 -0.33% 10633.01600 10611.42199 -0.20%
B-11 3626.27169 3629.57735 0.09% 3626.03490 3623.07452 -0.08%
B-12 37602.96666 37600.49166 -0.01% 37601.38382 37601.55637 0.00%
B_13 5024.49264 5024.96813 0.01% 5024.49264 5024.49264 0.00%
B-14 11905.10994 11915.00471 0.08% 11901.76858 11908.87356 0.06%
B_15 22566.00340 22564.34420 -0.01% 22563.53880 22563.64279 0.00%

Table 9 Performance of ILS on dataset B instances.

Tables 8 - 9 indicate that the proposed ILS performs very well on dataset
A and B which contain mostly small and medium instances. The algorithm
obtains better solution than the best known result for some instances in dataset
B. Comparing the results of 15 minutes and 1.5 hours, it is noted that the
improvement in solution quality is not significant.

Tables 10 - 11 indicate that the proposed ILS is less effective on the large
instances of dataset C and X. This is not surprising since increasing the size
of the instances will increase the computational burden of model (A-MILP).
Hence, achieving an initial solution takes too much time because we rely on
CPLEX. Another possible reason is that the subroutine SEARCH in the ILS,
which involves exhaustive search on the neighborhood by one-shift and two-
swap, become time consuming for large instances. This significantly reduces
the number of perturbation in the ILS procedure due to the imposed time
limits. For a few instances, e.g. C_14 and X_02, running the algorithm for 1.5
hours leads to a worse solution than the result obtained in 15 minutes.
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15 minutes 1.5 hours

Instance

Best ILS %Diff Best ILS %Diff
C_01 8515.90377 8517.58301 0.02% 8515.90377 8515.90377 0.00%
C-02 3541.65377 3548.55471 0.19% 3539.80377 3541.53301 0.05%
C_03 33511.70000 33517.10094 0.02% 33512.25660 33519.07261 0.02%
C_04 37585.73113 37589.06981 0.01% 37586.30849 37588.03867 0.00%
C_.05 3166.88962 3167.43773 0.02% 3166.18207 3167.00000 0.03%
C_06 8396.00094 8418.44245 0.27% 8394.48301 8411.25943 0.20%
Cc._07 6083.27023 6083.60000 0.01% 6083.04404 6083.60000 0.01%
C_08 11162.83600 11193.16198 0.27% 11155.64000 11191.93800 0.33%
C_09 5586.97924 5598.36037 0.20% 5585.65188 5595.71037 0.18%
C-10 43342.48872 43343.28235 0.00% 43341.83676 43344.15490 0.01%
C_11 5749.95735 5749.95735 0.00% 5749.95735 5749.95735 0.00%
Cc_12 12721.13324 12735.89214 0.12% 12718.79057 12730.73507 0.09%
C.13 42487.99282 42489.57130 0.00% 42484.56065 42485.73760 0.00%
C_14 26467.22113 26467.73954 0.00% 26457.11454 26479.44295 0.08%
C-15 39758.02750 39759.60233 0.00% 39757.54750 39759.35333 0.00%

Table 10 Performance of ILS on dataset C instances.

15 minutes 1.5 hours

Instance

Best ILS %Diff Best ILS %Diff
X_01 4014.37075 4020.20377 0.15% 4011.37641 4018.60849 0.18%
X_02 32231.43867 32237.97075 0.02% 32228.63679 32238.56698 0.03%
X_03 8104.53773 8126.47075 0.27% 8102.58962 8118.05283 0.19%
X_04 11315.94600 11354.26599 0.34% 11303.40000 11335.16399 0.28%
X_05 22858.11477 22872.21181 0.06% 22837.42068 22857.14295 0.09%
X_06 47032.95633 47035.15216 0.00% 47032.16366 47033.91750 0.00%
X_07 13221.61783 13222.48349 0.00% 13221.35849 13222.34350 0.00%
X_08 13717.37033 13726.39583 0.07% 13707.28500 13724.84233 0.13%
X_09 20195.40500 20195.99833 0.00% 20180.45000 20196.45833 0.08%
X_10 17289.31571 17302.40000 0.08% 17267.81857 17269.86714 0.01%
X-11 39121.52404 39121.53206 0.00% 39115.26526 39119.86755 0.01%
X_12 47502.80992 47582.45305 0.17% 47441.36908 47462.10419 0.04%
X_13 15784.25141 15794.64339 0.07% 15784.16933 15788.57924 0.03%
X_14 79417.02750 79416.08194 0.00% 79416.86527 79414.84444 0.00%
X_15 45491.80749 45493.04388 0.00% 45422.28999 45426.09194 0.00%

Table 11 Performance of ILS on dataset X instances.

8 Conclusion

In this paper, we studied the grid operation-based outage maintenance plan-
ning problem which was proposed for the 2020 ROADEF/EURO Challenge.
The problem possesses several unique features and is fundamentally different
from the typical stochastic programming problems due to the quantile criterion
in the objective function. Several mixed integer linear programming (MILP)
models were derived and three heuristic algorithms were developed for the
considered problem.

The first MILP formulation uses binary variables as indicators to model
quantile. The advantage of this model is that we can obtain exact solutions to
problem instances with up to 6 scenarios in less than 100 seconds. However, the
MILP becomes intractable as the number of scenarios grow very large, such as
the test cases considered in this study. This is because the size of the first model
is dependent on the total number of scenarios as well as the planning horizon.
The second MILP formulation uses general variables to model quantile, owing
to the assumption that the quantile of the sum of distributions is proportional
by a fixed parameter to the sum of quantile of the individual distribution.
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Solving this model provides a good feasible solution which is important for the
proposed heuristics and metaheuristic.

We apply the confidence (guaranteeing) approach for solving stochastic pro-
gram with quantile objective function and discrete distribution of the random
parameters. The confidence approach leads to two solution methods: (i) confi-
dence method (CM) which uses the confidence sets to measure quantile; and (ii)
critical-scenario confidence method (cs-CM) which uses the critical scenarios
of the confidence sets. In our experiments, CM works well on dataset A which
contains mostly small-to-medium instances but is less effective as the prob-
lem size grows much larger. On the other hand, cs-CM produces poor-quality
solution in the first few iterations due to the large differences between the
approximate objective function and the true objective function. As a result, cs-
CM requires more iterations to improve the initial solution but each iteration
needs less time than that of CM.

An iterated local search algorithm was developed for solving the mainte-
nance planning problem. The performance of ILS on the four given datasets
was compared with the best known results from the other participants. Based
on the computational results, we observed that our ILS performed very well
on the instances of datasets A, giving an average relative percentage difference
of about 0.004% for both 15 minutes and 1.5 hours tests. The effectiveness of
our ILS was more profound for instances in dataset B where we obtained bet-
ter solution for 50% of instances. As the problem size increases, the growth in
computation time for executing the local search procedures is significant. This,
in turn, substantially reduces the number of perturbation in the ILS proce-
dure due to the imposed time limit. As a consequence, ILS could not escape
the local optimum and find high-quality solutions to the large instances in
datasets C and X.
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