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A B S T R A C T   

Optimising the shape and size of large-scale truss frames is challenging because there is a nonlinear interaction 
between cross-sectional and nodal coordinate forces of structures. Meanwhile, combining the shape and bar size 
variables creates a multi-modal search space with dynamic constraints, making an expensive optimisation en
gineering problem. Besides, most of the real truss problems are large-scale, and optimisation algorithms are faced 
with the issue of scalability by increasing the size of the problem. This paper proposed a novel Cooperative 
Coevolutionary marine predators algorithm combined with a greedy search (CCMPA-GS) for truss optimisation 
on shape and sizing. The proposed algorithm used the divide-and-conquer technique to optimise the shape and 
size separately. Therefore, in each iteration, the CCMPA-GS focuses on shape optimisation initially and then 
switches to the size of bars and tries to find the best cooperative combination of the solutions in the current 
population using a context vector (CV). A greedy search is embedded in the following to fix the remaining vi
olations from the structure’s stress and displacement. This novel alternative optimisation strategy (CCMPA-GS) 
compared with 13 established genetic, evolutionary, swarm, and memetic meta-heuristic optimisation algo
rithms. The comparison is based on optimising two large-scale truss structures consisting of 260-bar and 314-bar 
configurations. Experimental results demonstrate that the proposed CCMPA-GS method consistently outperforms 
the other meta-heuristic methods, delivering optimal designs for the 314-bar and 260-bar truss structures that are 
superior by 52 % and 63.4 %, respectively. This signifies a substantial enhancement in optimisation performance, 
highlighting the potential of CCMPA-GS as a powerful alternative in the field of structural optimisation.   

1. Introduction 

A truss structure embodies an architectural framework crafted from 
interconnected bars or members. These frameworks, commonly found in 
civil and mechanical engineering, serve to stabilise and bolster a variety 
of applications, including bridges, roofs, and towers. The hallmark of 
truss structures lies in their innate ability to deftly bear and distribute 
loads by capitalising on the inherent strength exuded by their triangular 

or polygonal formations [1]. The artistry of designing truss structures 
entails identifying the most optimal alignment for the bars as well as 
their dimensions, all while ensuring ample strength, rigidity, and sta
bility while simultaneously minimising weight and cost. Engineers 
meticulously consider various factors, including material properties, 
geometric limitations, and the effects of loads, to fashion truss structures 
that withstand projected forces and retain structural integrity [2]. 

Truss structures boast a crucial advantage in their capacity to 
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disseminate and transfer loads efficiently. The triangular or polygonal 
configuration of bars in a truss serves to uniformly distribute forces, 
thereby curbing the presence of stress focal points and maximising 
structural stability. This unique attribute enables truss structures to 
achieve an exemplary strength-to-weight ratio, rendering them ideal for 
applications where weight reduction is of utmost importance [3]. In 
addition, truss structures offer unparalleled flexibility in both design and 
construction. These structures can be prefabricated and subsequently 
assembled on-site, facilitating efficient installation and minimising 
construction time. Furthermore, truss structures lend themselves to easy 
modification or expansion, allowing seamless adaptation to changing 
needs or load requirements [4]. Nevertheless, truss structures do present 
some inherent challenges. The design process entails meticulously 
analysing and forecasting the structure’s behaviour under various loads 
and environmental conditions. Engineers must account for factors such 
as material selection, geometric constraints, and safety regulations to 
ensure that the truss structure adheres to the prescribed performance 
standards. In essence, truss structures are architectural frameworks that 
deliver stability and support to many applications. Their capacity for 
efficient load distribution, remarkable strength-to-weight ratio, and 
adaptability in design render them indispensable in civil and mechanical 
engineering endeavours. However, the design of truss structures neces
sitates a reasonable consideration of factors such as material properties, 
geometric limitations, and the impact of loads to ensure optimal per
formance and structural integrity [5]. Because truss optimisation under 
multiple frequency constraints has led to greater dynamic performance 
and less mass-producing cost, this field has attracted many experts over 
the past decades [6,7]. With this in mind, how to acquire the minimal 
structural weight regarding frequency constraints is the main issue 
discussed in these research studies. In this case, the optimisation of truss 
design variables plays a significant role in obtaining the minimal weight. 

In a truss optimisation problem, truss sizing, shape, and topology are 
design variables. Considering this, there are three primary truss opti
misation problems, including size optimisation, shape optimisation, and 
topology optimisation. Nevertheless, for a design variable, the optimal 
values depend on other design variables. For instance, the optimal truss 
shape depends on its size and topology and vice versa. Thus, the optimal 
structural weight is affected by more than one design variable. As a 
result, the simultaneous optimisation of truss shape and sizing variables 
under frequency constraints has attracted many scholars recently. 

Coupling cross-sectional areas and nodal coordinate variables may 
cause such problems as mathematical difficulties, non-optimal solutions, 
and divergence problems. In addition, when considering design vari
ables, frequency constraints are extremely non-linear, non-convex, and 
implicit [8]. Therefore, many researchers have proposed new optimi
sation algorithms to figure out truss sizing and shape optimisation with 
frequency constraints. 

In recent years, various optimisation techniques have been devel
oped to optimise truss problems [9,10]. Generally speaking, these 
techniques can be categorized into two groups, namely gradient-based 
and gradient-free optimisation methods, or meta-heuristics. While 
gradient-based methods are fast, they depend on the initial design var
iables to begin the process or are faced with premature convergence. In 
other words, they can be simply trapped in non-optimal areas if the 
starting points are not set appropriately. Furthermore, it requires 
complicated mathematical analysis to adjust proper derivatives of the 
objective function with respect to design variables and constraints, 
increasing the computational cost of the algorithm [6,11]. 

In comparison with gradient-based methods, meta-heuristics do not 
require any primary knowledge about the problem and are able to 
escape from local areas via their exploration and exploitation abilities. 
Although they do not usually guarantee to find the absolute global op
timum, they can achieve desirable performance in a decent amount of 
time [8,12]. Additionally, in contrast to gradient-based methods, 
meta-heuristics are easy to implement, do not need complex mathe
matical analysis, and can support both discrete and continuous design 

variables. 
For these reasons, meta-heuristics have attracted more attention in 

the field of truss optimisation in recent years. Gholizadeh et al. [13] 
suggested a modified sequential harmony search (SHS) algorithm to 
optimise structural size and shape with multiple natural frequencies. 
Lotfi et al. [14] proposed a hybrid Big Bang-Big Crunch method for 
optimising two-dimensional truss structures. Kaveh et al. [15] suggested 
a new hybrid particle swarm optimiser for truss sizing and shape opti
misation with multiple frequency constraints. In order to enhance the 
efficiency of the particle swarm strategy, the authors embedded a ray 
optimiser and harmony search algorithm in the strategy. 

In another study, Altay et al. [16] proposed a modified salp swarm 
algorithm (MSSA) for truss shape and sizing optimisation. The authors 
tried to address the convergence difficulties of the classic SSA by 
adjusting a parameter β in the movement of the leader’s phase. Addi
tionally, they modified the movement formula in the followers’ phase to 
increase the exploration ability of SSA. The results showed that the 
MSSA outperformed SSA and remained competitive compared to the 
earlier results. Kaveh et al. [17] suggested an enhanced vibrating par
ticles system (EVPS) for layout optimisation of truss structure problems. 
The proposed algorithm improved the performance of the VPS by 
incorporating a novel way to update the positions of agents. The algo
rithm was applied to four truss structure problems for optimisation of a 
variety of discrete and continuous design variables with constraints. In 
order to evaluate the effectiveness level of optimisation method with 
chaotic parameters, Kaveh et al. [18] applied three chaotic 
meta-heuristic algorithms, chaotic water evaporation optimisation 
(CWEO), chaotic tug-of-war optimisation (CTWO), and chaotic thermal 
exchange optimisation (CTEO) to optimise truss structure problems with 
frequency constraint. The authors have concluded that the combination 
of the chaos functions with meta-heuristics can improve. 

In following the development of optimisation methods, Dede et al. 
[19] proposed a novel heuristic called teaching-learning-based optimi
sation (TLBO) was proposed for truss sizing and shape optimisation 
under multiple frequency constraints, such as allowable stress, 
displacement and the Euler buckling stress. A comparative study [20] 
consists of four popular optimisation methods: differential evolution 
(DE), improved differential evolution (IDE), LSHADE, and covariance 
matrix adaptation evolution strategy (CMAES) depicted that CMAES 
performed best in terms of convergence rate and quality of solutions 
proposed. Mortazavi et al. [21] proposed an integrated particle swarm 
optimiser to minimise the structural weight by simultaneous optimisa
tion of truss size, shape, and topology. Also, in this study, an ’improved 
fly-back’ strategy was suggested to deal with problem frequency con
straints. Furthermore, Jawad et al. [22] proposed a new artificial bee 
colony algorithm (ABC) was proposed for combined optimisation of 
truss size and layout with multiple frequencies. The results indicated the 
efficiency of the proposed optimisation method with regard to the 
optimal weight and robustness. A higher-level version of TLBO was 
suggested by Farshchin et al. [23], a collaborative optimisation algo
rithm called school-based optimisation (SBO) was proposed for struc
tural size and shape optimisation with frequency constraints. The 
proposed SBO enhanced the TLBO’s abilities in terms of exploration and 
exploitation. In another effective study, Schwarz et al. [24] suggested 
sequential linear programming (SLP) problem formulation was pro
posed to simultaneously optimise truss shape and sizing under local 
buckling constraints. The proposed SLP included a post-processing 
phase to generate sub-solutions for the exact local buckling constraint 
boundary. A modified simulated annealing algorithm (MSAA) was 
developed for truss shape and size optimisation with frequency con
straints. The suggested algorithm enhanced the simulated annealing 
algorithm’s search abilities. One of the most effective heuristics to 
optimise various real engineering problems like truss structure is the 
semi-independent variable (SIV) method [25]. The SIV considers a 
collection of expected or preferred relationships among the decision 
variables to boost the process of search efficiency by cutting the search 
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space and ignoring the infeasible solutions. The SIV could speed up the 
convergence rate considerably. Nguyen-Van et al. [6] proposed a new 
hybridization of differential evolution (DE) and symbiotic organisms 
search algorithm (SOS) named HDS for size and shape optimisation with 
frequency constraints. The proposed algorithm outshone other methods 
in terms of convergence speed and the problem solution quality. In the 
following, an improved version of SOS (MSOS) [26] was applied to boost 
the effectiveness of accuracy in the truss optimisation processes 
(exploitation and exploration) using proposing an adaptive benefit fac
tor and modified parasitism vector. 

In order to set the initial geometry parameters of the truss structure, 
Mandhyan et al. [27] proposed a predictor algorithm that is able to 
estimate the initial locations of joints, approximate cross-sectional areas 
and the connectivity of members. Recently, Tejani et al. [28] proposed 
the application of a modern multi-objective algorithm (Multi-objective 
heat transfer search algorithm) for optimising the conventional truss 
structures, which are discrete with two objectives, including truss 
weight minimisation and nodal displacement maximisation. 

Solving truss structure problems using multi-objective insights have 
been extended during the last decade [29,30]. Most recently, Eid et al. 
[31] proposed a multi-objective water cycle algorithm (MOWCA) for 
optimising three truss problems. A spiral movement was incorporated 
into the proposed algorithm to enhance its local search capabilities. The 
results showed that the algorithm had an outstanding performance on 
various truss problems. Liu et al. [32] embedded a deep neural network 
is embedded into the genetic algorithm to improve its exploitation and 
exploration for truss sizing and layout optimisation. The algorithm 
performed best in terms of efficiency and applicability. Khodadi et al. 
[33] proposed a dynamic arithmetic optimisation algorithm (DAOA) for 
structural truss optimisation problems under natural frequencies. The 
proposed algorithm used two dynamic strategies in order to adjust 
exploitation and exploration efficiently. The results showed that the 
DAOA had excellent performance in terms of convergence speed and 
precision. In their other work [34], they applied generalized normal 
distribution optimisation (GNDO) to optimise structural problems. It 
presented that the GNDO performance was considered in terms of 
effectiveness and robustness. To deal with the high dimensionality of 
real engineering problems, recently, Gandomi et al. [35] proposed a 
concept-based technique (variable functioning Fx) consisting of PSO and 
various differential evolution algorithms regarding the relationships 
among variables and the effectiveness of the suggested optimisation 
method improved using Fx technique compared with an original idea. 

Recently, a new technique for optimising the layout of truss struc
tures was proposed [36] using isogeometric analysis (IGA) and stiffness 
spreading. The IGA-based stiffness spreading method simultaneously 
optimised truss elements’ topology, geometry, and cross-sectional areas. 
The method employed energy conservation to obtain spreading stiffness 
matrices for truss elements embedded in weak IGA background grids. 
High-order continuous isogeometric elements were used to construct the 
IGA background grids, overcoming the discontinuous sensitivity limi
tation derived from traditional elements. The method could provide a 
continuous and smooth sensitivity field, making it easy to implement 
gradient-based optimisation algorithms. The effectiveness of the 
IGA-based stiffness spreading method was verified using illustrative 
examples, and the results show that the proposed method could provide 
a clear layout for different initial layouts. Associated with topology 
optimisation, an effective method proposed called quantile-based to
pology optimisation (QBTO) [37] as an alternative to reliability-based 
topology optimisation (RBTO) which faces issues with Monte Carlo 
simulation (MCS). The proposed QBTO method transforms the RBTO 
model into an equivalent quantile-based formulation, which addresses 
the problems with near-zero sensitivities of probabilistic constraint with 
respect to element densities and the computational cost of calculating 
sensitivities. In QBTO, the sensitivity calculation was limited to the 
sample corresponding to the quantile, which reduced the computational 
effort. Furthermore, a Kriging metamodel with a sequential update 

strategy was developed to efficiently calculate the quantile by evalu
ating the true constraint at fewer samples rather than all MCS samples. 
The effectiveness of the QBTO method was demonstrated through truss, 
beam, and bridge problems, which validated its high accuracy and 
efficiency. 

One of the challenging aspects of large-scale structure optimisation is 
consuming considerable computational runtime. Lin et al. [38] proposed 
a parallel parameterised level set topology optimisation framework was 
proposed to handle this challenge with unstructured meshes that can 
handle arbitrary geometries and complex boundary conditions. The 
framework achieves full-scale optimisation through distributed memory 
parallel computing technology and utilizes unstructured meshes to 
handle complex geometries and boundary conditions. Several measures 
are employed to combine distributed memory parallel computing 
technology and parameterised level set topology optimisation with un
structured meshes. Firstly, shape functions in finite element analysis 
were used to parameterise the level set function. Secondly, a data 
structure called a directed acyclic graph was adopted to represent the 
unstructured mesh. Thirdly, passive domain and boundary conditions 
were imposed directly on the geometry entities of the structures. Finally, 
a multiple averaging filter was introduced to reduce tiny structural 
members in the optimised results for manufacturability. Several 
computing tests were presented to verify the framework’s stability, ef
ficiency, and scalability. 

The marine predators algorithm (MPA) proposed by Faramarzi et al. 
[39] is a new and effective meta-heuristic technique inspired by marine 
predators’ foraging behaviour. MPA’s optimisation process contains 
three phases, imitating predator and prey behaviour through various 
velocity ratios. The algorithm adjusts exploration and exploitation 
depending on the phase where the optimisation takes place. Since 2020, 
many researchers have applied the MPA or its modified versions to 
several engineering problems, including forecasting COVID-19 positive 
cases [40], medical image segmentation [41], electrical modelling of 
photovoltaic (PV) [42–44], tackling the task scheduling in fog 
computing (TSFC) [45], feature selection [46], obtaining optimal reac
tive power dispatch (ORPD) problem [47], shape optimisation of 
developable ball surfaces [48], and product design [49] to name but a 
few. The research results showed that MPA had effective performance to 
solve engineering problems. Recently, Etaati et al. [50] conducted 
comparative research to apply 12 modern bio-inspired methods to two 
large-scale truss optimisation problems. The results showed that MPA 
outperformed other algorithms with regard to convergence rate and 
efficiency. 

Among techniques applied to solve complex large-scale optimisation 
problems, decomposition-based, or divide-and-conquer methods have 
achieved widespread popularity in recent years [51–55]. In this method, 
a grouping strategy is used to split a large-dimensional search space into 
multiple smaller subspaces, each of which is optimised individually. 
Cooperative Coevolution (CC) was suggested by Potter and De Jong in 
1994, and since then, many scholars have successfully applied the 
strategy to a wide range of real-world optimisation problems. Research 
on CC evolutionary algorithms (CCEA) has gained much attraction over 
the past two decades, evidenced by the continuous rise in annual pub
lications and citations of Potter and De Jong’s paper [56]. CCEA has four 
primary benefits over traditional EAs, mainly stemming from its 
divide-and-conquer decomposition technique [51]. Firstly, the problem 
decomposition enables parallelism, accelerating the optimisation pro
cess. Secondly, each subproblem is addressed with a distinct subpopu
lation, ensuring the maintenance of a diverse set of solutions [57]. 
Thirdly, breaking down a system into submodules not only enhances 
robustness against module errors and failures but also contributes to an 
overall increase in system robustness [58], consequently improving 
reusability in dynamic environments [59]. Lastly, proper problem 
decomposition can mitigate the” curse of dimensionality,” addressing 
the decline in performance associated with increased decision variables 
[51]. This method is a decomposition-based technique and one of the 
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subjects of interest in evolutionary computing to solve large-scale 
problems. In this approach, each subproblem is responsible for opti
mising particular components of a vector called Context Vector (CV) and 
evaluated in the context of the CV. In recent years, many CC algorithms 
have been developed for large-scale optimisation problems [52,55]. 

In this study, we integrated the CC strategy into the MPA to harness 
the advantages of both techniques. These results in three decomposition- 
based marine predator algorithms are proposed for the optimisation of 
two 260-bar and 314-bar truss problems on shape and sizing with 
multiple natural frequencies. All three proposed algorithms optimise 
structural shape and size independently. The first algorithm is called an 
Improved Marine Predators Algorithm (IMPA). In IMPA, the size and 
shaping are optimised separately for each individual. It helps the algo
rithm explore each decision variable space effectively and thus increases 
population diversity. In the second proposed algorithm, we adopted the 
cooperative coevolution strategy in the MPA to divide the whole pop
ulation into several sub-populations with smaller dimensions. This 
decomposition-based method assists diversity maintenance in each sub- 
population and global search in the entire population, preventing pre
mature convergence [57]. Furthermore, the decision variables are 
assigned to different numbers of groups to find a more efficient group 
size to put more interactive variables in the same group. Thus, the al
gorithm is less likely to be trapped in a local optimum, leading to better 
exploitation. 

The proposed framework is named Cooperative Coevolutionary 
Marine Predators Algorithm (CCMPA). The final algorithm is a combi
nation of the CCMPA and a greedy search to boost the CCMPA exploi
tation abilities and convergence speed. In the proposed frameworks, the 
subpopulation of n sizing variables is grouped into m smaller cross- 
sectional areas with the same size, each of which is optimised inde
pendently. Therefore, instead of having n sizing variables for optimisa
tion, there are only m decision variables where m < n. Moreover, a 
complete design vector (CV) is used to optimise each set of design var
iables independently. The CV holds the best-found configuration of the 
sizing and shape values. In each iteration, at first, the CCMPA optimises 
the subpopulation of shape variables, and then, it switches to optimise 
each subpopulation of sizing variables and tries to find the best coop
erative combination of the solutions in the current population using the 
CV. This alternative optimisation strategy is compared with ten well- 
known meta-heuristics using two large-scale 260-bard and 314-bar 
truss structures. 

To sum up, the primary contributions of this study are as follows.  

1. Proposing two novel Cooperative Coevolutionary marine predators 
algorithms (IMPA and CCMPA) for largescale truss optimisation 
problems.  

2. Combining the CCMPA with a greedy search to reduce the stress and 
displacement violations and improve the convergence rate.  

3. Investigating to find the optimal number of clusters in improving the 
performance of the Cooperative Coevolutionary method. 

4. Developing a comprehensive comparative truss optimisation frame
work, including ten modern meta-heuristic algorithms, Genetic al
gorithm (GA), particle swarm optimisation (PSO), Memetic 
algorithm (Shuffled Frog Leaping Algorithm, SFLA) [56] and three 
novel hybrid algorithms. 

Our research endeavours represent the pioneering application of 
decomposition techniques to enhance the performance of the MPA 
(Modified Particle Algorithm). We introduce a novel approach by 
decomposing the sizing variables into distinct groups and evaluating 
each group independently. This decomposition strategy enables the al
gorithm to explore diverse regions within the sizing design variables 
more effectively. Notably, this approach proves advantageous when 
dealing with discrete design variables where finding the optimal vector 
becomes exceedingly challenging. By leveraging decomposition tech
niques, we aim to unlock new possibilities for optimising complex 

systems that involve discrete design variables, paving the way for 
improved algorithmic performance and enhanced search capabilities. 

The paper’s structure is as follows. Section 2 represents the formu
lation of two large-scale truss problems. Section 3 explains the basic 
MPA initially, and then it describes the proposed IMPA, CCMPA, and 
hybridization of the CCMPA with a greedy search in more detail. The 
numerical results are discussed in Section 4. Ultimately, Section 5 draws 
a conclusion from the research findings and results. 

2. Truss problem formulation 

The structural shape and sizing are formed through the optimisation 
process by finding the lightest structure, while the violation of stress and 
displacement of the truss structure is consequently minimized. The truss 
structural optimisation problem aims to identify optimal cross-sectional 
areas and nodal positions of the truss ground elements to attain mini
mum weight in the search domain as the objective function. Practicality, 
structural optimisation problems are subject to some structural con
straints on compliance, including but not limited to element stress, joint 
deflection, critical buckling load, and natural frequencies. Furthermore, 
the objective function takes into account the nodal mass and the 
elemental mass. 

Having checked the validity and kinematic stability of the structure, 
the general deterministic optimisation problem of truss structure can be 
formulated as the below objective function: 

Find: 

X ={B1,B2,…,Bm,A1,A2,…,AN ,C1,C2,…,CM , ξ1, ξ2,…, ξn} (1) 

to minimise: 

F(X) =
∑m,N

i=1
BiAiρiLi +

∑n

j=1
bj

ωmin
j ≤ ωj ≤ ωmax

j

Amin
i ≤ Ai ≤ Amax

i

ξmin
i ≤ ξi ≤ ξmax

i  

where i and j are used to index truss elements and nodes, respectively. 
Hence, Bi is a binary element representing deletion or retention of the ith 
element (all Bi = 1 in this study), A and C are the cross-sectional area and 
nodal coordinate design variables, ξj is the positional value of the jth 
node, ρi is the mass density of the ith element, Li is the length of the ith 
element and bj is mass at the jth node. ωj denotes the jth natural fre
quency constraint restricted to the lower and upper bounds ωmin

j and 
ωmax

j . Also, the cross-sectional area of each element and the position of 
each node are limited between the lower and upper bounds [Amin

i , Amax
i ] 

and [ξi
min,ξi

max], respectively. 
Additionally, there are four structural constraints that need to have 

complied. The stress constraints can be explained as: 

|Biσi| − σmax
i ≤ 0 (2)  

where σi and σmax
i are stress and maximum allowable stress in the ith 

element, respectively. Likewise, displacement constraints can be 
formulated as: 
⃒
⃒δj

⃒
⃒ − δmax

j ≤ 0 (3)  

where δj and δmax
i represent the values of nodal displacement and 

maximum allowable nodal displacement, respectively. Another 
constraint that needs to be met is related to Euler buckling, which is 
expressed as: 

|Biσcomp
i | − σcr

i ≤ 0; σcr
i =

kiAiEi

L2
i

(4)  

where σcomp
i and σcr

i are compressive stress and critical buckling stress of 
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the i th element, respectively while ki, Ai, and Ei represent Euler’s 
buckling coefficient, cross-section area, and Young modulus of elasticity 
of the i th element, respectively. Finally, the constraint relating to the 
first few natural frequencies is formulated as: 

f min
r ≤ fr ≤ f max

r (5)  

where fr is rth natural frequency of the structure with frmin and frmin as its 
lower and upper bounds. A penalty function has been added to the 
objective function in 1 in order to transform the above-mentioned 
constrained optimisation problem into an unconstrained one. There
fore, the new objective function FPenalty(X) is recalculated as follows: 

to minimize : FPenalty (X)=F(X) + Γ × PF (6)  

where: Γ =
∑k

i=1 Vioi. 
where Γ, PF, and Vioi are the total value of constraint violations, 

penalty factor, and the amount of violation for the i th constraint, 
respectively. It is worth mentioning that the penalty factor is used to 
convert the constrained problem into an unconstrained one by penal
ising those design variables with a higher constraint violation. Here, the 

penalty factor is set to 1000. 

2.1. Truss structure problem 

In this section, we illustrate the technical details of the sizing and 
shape optimisation of the truss structure with fixed topology. Two case 
studies proposed by Bright Optimiser ISCSO 2018 and 2019 [60]. We 
have specifically chosen these two truss problems due to their unique 
characteristics and the limited amount of existing research [50,61] 
conducted on them. Both problems exhibit non-linearity, non-convexity, 
complexity, and multimodality, which distinguishes them from the 
commonly studied truss structures [13–15,21]. Furthermore, the design 
variables’ discrete nature transforms the problems into NP-hard, intro
ducing an additional layer of complexity compared to continuous vari
ables [62]. Considering their role as essential components in bridges, 
these problems hold significant importance in the field of engineering 
optimisation. Moreover, the inherent heterogeneity in the parameters of 
these problems presents intriguing optimisation challenges, contrib
uting to a more comprehensive exploration of this domain. Besides, the 
number of decision variables is, at most, the average count found in 

Fig. 1. a) A landscape of the truss structure with 314-bar and 84-node. The number of shape variables is 14 (C), and 314 is the number of sizings (A) elements. Ci is 
shape variables, b) 260-bar truss structure with 76-node. The shape and sizing elements’ variable numbers are 10 and 260, respectively. 
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traditional truss structure problems, posing a significant hurdle for the 
majority of optimisation methods. In these examples, all members have 
a unified density of the material, yield stress and elastic modulus equal 
to 7.85ton/m3,248.2MPa, and 200GPa, respectively. Since the design of 
these truss structures was conducted according to AISC-LRFD 1994, 
members are checked for the restriction states of tensile yielding and 
compressive buckling. The aim of the optimisation procedure is to 
discover design variable values that minimise structural weight while 
adhering to the constraints. 

2.1.1. 314-Bar truss 
The first case study is a three-dimensional steel truss structure con

sisting of 314 members and 84 nodes (Fig. 1 part a). The three inde
pendent load cases used to design this structure were similarly applied 
on all unsupported nodes and include two horizontal loads of 12 kN and 
6 kN respectively in positive X and Y directions and a vertical load of 48 
kN in the negative Z direction. All nodal displacements are capped at 
±50 mm. There are 328 design variables in total, with 314 sizing vari
ables representing the cross-sections of the truss elements and 14 shape 
variables reflecting the z-coordinates of the top nodes of the structure. 
Each couple of upper nodes with a similar X-coordinate have identical 
heights. The sizing variable is chosen from a database of 37 pipe sections 
while the shape variable may take any integer value between +9000 mm 
and +20000 mm. 

2.1.2. 260-Bar truss 
A three-dimensional steel truss structure with 260 members and 76 

nodes is the subject of the second case study (Fig. 1 part b). Three in
dependent load cases applying on all unsupported nodes were consid
ered to design the structure, which includes two horizontal loads of 5 kN 
and 1 kN, respectively, in positive X and Y directions and a vertical load 
of 5 kN in the negative Z direction. Furthermore, all nodal displacements 
in the X, Y, and Z directions are restricted to a maximum of ±25 mm. 
There are 270 design variables in this problem, including 260 sizing 
variables representing the cross-sections of the truss members and 10 
shape variables reflecting the z-coordinates of all bottom nodes of the 
structure. These bottom nodes are symmetrically grouped about the 
mid-span, with identical heights for each pair with the same X- 

coordinate. The sizing variable is selected from a database of 37 pipe 
sections, while the shape variable may take any integer value between 
− 25000 mm to +3500 mm. 

3. Methodology 

Developing a well-established structure needs an iterative strategy 
using the experience and knowledge of designers to improve the struc
ture’s performance. The iterative strategies strive to evaluate a large 
number of experimental systems successively before proposing an 
optimal design. An optimal design should be cost-efficient, effective and 
more robust than other models. In truss optimisation proposing an 
optimal design result in saving the cost of material and construction 
considerably. Due to a high level of complexity in the truss optimisation 
problem, meta-heuristic optimisation algorithms [63] are widely used. 
This is mainly because these algorithms need no prior understanding of 
the technical context, such as search space characteristics or constraints, 
and follow just some heuristic and stochastic rules. This allows them to 
exploit and explore the search space more efficiently, being applicable 
for the optimisation of a wide range of problems, especially those 
optimisation challenges where detailed prior knowledge might be un
available or impractical. The present study focuses on the shape and size 
optimisation of large-scale truss structures through an extensive number 
of state-of-the-art optimisation algorithms, which represent a high per
formance in real engineering problems [64]. Ten recently developed 
meta-heuristics (See Table 1) are systematically considered and 
compared in the first step. The optimisation methods’ control parame
ters and population size are listed in Table 1. 

In the following subsections, we initially give a brief explanation of 
other meta-heuristic algorithms listed in Table 1. Then, we explain the 
basic Marin Predators Algorithm (MPA) in more detail, and, conse
quently, we propose three MPA-based algorithms that enhance the ef
ficiency of the basic MPA. 

3.1. Applied meta-heuristic algorithms 

Mirjalili et al. [71] proposed the Multi-Verse Optimiser (MVO) 
inspired by the parallel universes theory. It employs a population-based 

Table 1 
The setting details of meta-heuristic algorithms employed the truss shape and sizing problem. Npop is the first population size.   

Abbreviation full name Npop Pre-defined Settings 

1 MVO [65] Multi Verse Opti-
miser 

50 Wormhole existence probabil-
ity maximum and minimum :

WEPMax = 1,WEPMin = 0.2,
ρ = 6.

2 DA [60] Dragonfly Algorithm 50 w = 0.9 − 0.2, s = 0.1, a = 0.1,
c = 0.7, f = 1, e = 1.

3 HGSO [61] Henry Gas Solubility
optimisation 

50 Ng = 5, l1 = 0.05, l2 = 100, l3 =

0.01, α = 1, β = 1, c1 = 0.1, c2 =

0.2 
4 AOA[63] Arithmetic optimisa-

tion Algorithm 
50 MOPMax = 1,MOPMin = 0.2,

Citer = 1, α = 5, μ = 0.499 
5 GNDO [63] Generalized Normal

Distribution 
50 applied the default settings. 

6 SSA [64] Salp Swarm Algo-
rithm 

50 c1 decreased from 2 to zero. c2 =

rand and c3 = rand 
7 MPA [39] Marine Predators Al-

gorithm 
50 p = 0.5,FAD = 0.2 

8 NNA [66] Neural Network Al-
gorithm 

50 pre-defined settings 

9 WCA [67] Water Cycle Algo-
rithm 

50 Nsr = 4,Dmax = 10− 5 

10 GTO [68] Artificial Gorilla
Troops Optimiser 

50 p = 0.03,β = 3,ω = 0.8 

11 SFLA [56] Shuffled frog-leaping
algorithm 

50 Memeplex pop = 10, Memeplex n =

5, α = 3, β = 5, σ = 1.2; 
12 PSO [69] Particle Swarm Opti-

misation 
50 w = 1,wdamp = 0.99, c1 = 2, c2 =

2; 
13 GA [70] Genetic Algorithm 50 pc = 0.7, γ = 0.4, pm = 0.3, μ =

0.1,Roulette-Wheel selection;
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approach where multiple solutions, representing different universes, 
evolve over iterations using quantum-inspired operators to explore and 
exploit the search space efficiently. Mirjalili et al. [67] innovated the 
Dragonfly Algorithm, a nature-inspired optimisation algorithm based on 
the collective behaviour of dragonflies. It mimics dragonfly swarms’ 
swarming and hunting patterns to efficiently explore and converge on 
optimal solutions in complex search spaces. Hashim et al. [68] initiated 
Henry Gas Solubility Optimisation (HGSO) algorithm that mimics the 
behaviour governed by Henry’s law to solve challenging optimisation 
problems. Abualigah et al. [69] proposed an Arithmetic Optimisation 
Algorithm (AOA) that utilizes the distribution behaviour of the main 
arithmetic operators in mathematics. Zhang et al. [70] introduced a 
Generalized Normal Distribution (GNDO) based on the Gaussian distri
bution model, where each individual makes use of this curve to improve 
their positions. Mirjalili et al. [72] suggested a Salp Swarm Algorithm 
inspired by the swarming behaviour of salps, marine invertebrates. SSA 
mimics the collective movement of salps in searching for optimal solu
tions by iteratively adjusting candidate solutions based on their fitness 
values. It combines exploration and exploitation strategies to efficiently 
navigate complex search spaces, making it applicable to various opti
misation problems. Eskandar et al. [73] developed a Water Cycle Al
gorithm that mimics the flow of rivers and streams toward the sea and 
was derived by observing the water cycle process. Abdollahzadeh et al. 
[74] suggested an Artificial Gorilla Troops Optimiser (GTO) inspired by 
gorilla troops’ social intelligence in nature. In this algorithm, gorillas’ 
collective life is mathematically formulated, and new mechanisms are 
designed to perform exploration and exploitation. Eusuff et al. [65] 
implemented a Shuffled frogleaping algorithm (SFLA) combining the 
benefits of memetics with particle swarm optimisation. It has been used 
in various areas, especially engineering problems, owing to its easy 
implementation and limited variables. Kennedy et al. [75] presented a 
Particle Swarm Optimisation (PSO) inspired by the social behaviour of 
birds, where particles adjust their positions in a search space based on 
personal and global best solutions. Lastly, Holland et al. [76] proposed 
the well-known Genetic Algorithm (GA) that mimics natural selection 
processes, using crossover and mutation operations to evolve a popu
lation of potential solutions toward optimal ones. 

3.2. Marine predators algorithm (MPA) 

Faramarzi et al. [39] have just proposed the Marine Predator 
Method, a novel and effective meta-heuristic method. The algorithm 
simulates the behaviour of marine predators who pursue their prey using 
Brownian and Levy motion as their greatest foraging techniques. The 
predator’s foraging strategy is separated into three stages based on the 
varying velocity rate between both the predator and the prey, with 
Brownian or Levy motion alternating in each stage. Whenever the ve
locity rate v among both predator and prey is negligible, less than 0.1, 
the best losing plan for a predator is Levy movement, irrespective of 
whether the prey is Levy or Brownian at the time. The algorithm’s 
exploration phase is at this point. When v approaches 1, the predator’s 
and prey’s speeds are equivalent, and if the prey moves in a Levy step, 
the predator moves in a Brownian step. Where the velocity rate v > 10, 
the predator’s best hunting approach is to stay still, irrespective of the 
step size of the prey. The following is a more in-depth explanation of 
MPA. 

3.2.1. Initialization 
The algorithm’s first stage is to initialise the population. In most 

population-based meta-heuristic algorithms, this phase spreads the 
initial answer uniformly across the search space, and MPA is no 

exception. The following is the initialization formula: 

X→0 = X→min + r→
(

X→max − X→min

)
(7)  

where r→ notifies a vector with random values between 0 to 1, X→min and 
X→max show the lower and upper boundaries, and the initial solution 
shows by X→0. 

According to the fittest principle of survival, the top predator is 
related to the most powerful individual in a species. The top predators 
are being employed to build an Elite matrix in which each array delivers 
present prey position details to each predator within the next hunting 
period. 

Elite=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

XI
1,1 XI

1,2 … XI
1,d

XI
2,1 XI

2,2 … XI
2,d

⋮ ⋮ ⋮ ⋮
XI

n,1 XI
n,2 … XI

n,d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×d

(8)  

where n denotes the size of the initial population and d denotes the 
variable’s dimension, the best predator vector, XI symbolizes the best 
predator and is replicated multiple times to build the matrix of Elite. If a 
predator with superior predation potential emerges throughout the 
iteration, it will replace the top predator, and the Elite matrix will be 
modified. 

The second matrix is related to the Prey matrix indeed, which has a 
similar dimension as the matrix of Elite and is used by the predator to 
keep updating its position. 

Prey=

⎡

⎢
⎢
⎣

X1,1 X1,2 … X1,d
X2,1 X2,2 … X2,d
⋮ ⋮ ⋮ ⋮

Xn,1 .Xn,2 … Xn,d

⎤

⎥
⎥
⎦

n×d

(9)  

where Xi,j indicates the jth dimension of the ith prey. The optimisation of 
MPA relies primarily upon these two equations. 

3.2.2. Optimisation process 
The MPA optimisation mechanism can also be separated into three 

phases depending on the predator and prey velocity ratios, including 
maximum velocity, unit velocity, and minimum velocity rate. The 
following is a synopsis of these three stages: 

Phase1: In the case of a large velocity rate (v > 10), the predator 
proceeds slower than the prey, and the predator’s optimum hunting 
technique is just not to move in whatsoever. This stage is in charge of 
algorithm exploration, and it is mathematically formulated as follows: 

Iter <
1
3

Max Iter

stepsize i

̅̅̅̅̅ →
= R→B ⊗

(
Elite i
̅̅̅→

− R→B ⊗ Pray i
̅̅̅→

)

Pray i
̅̅̅→

i = Pray̅̅̅→
i + P.R ⊗

stepsize
̅̅̅̅̅→

i

(10)  

where Iter represents the current generation number and Max-Iter rep
resents the maximum generation number, Brownian motion is repre
sented as R→B, a vector carrying a sequence of randomly generated 
numbers depending on a normal distribution. ⊗ symbolizes entry-wise 

multiplications, and stepsize
̅̅̅̅̅̅→

i is the step size vector that indicates the 
i th predator’s next step. P = 0.5 is a fixed value. R→ is a vector of evenly 
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produced random numbers ranging from 0 to 1. 
Phase2: The prey and predator proceed simultaneously at the same 

velocity in the unit velocity ratio, and exploration progressively shifts to 
exploitation. The following is the formula: 

while
1
3

Max Iter < Iter <
2
3

Max Iter (11) 

In the case of the first half of the population (exploration), 

stepsize i

̅̅̅̅̅ →
= R→L ⊗

(

Elite i
̅̅̅→

− R→L ⊗ Pray i
̅̅̅→

)

⟶ Pray i
̅̅̅→

= Pray i
̅̅̅→

P.R ⊗
stepsize i

̅̅̅̅̅ →

(12) 

In the case of the second half of the population (exploitation), 

stepsize i

̅̅̅̅̅ →
= R→B ⊗

(

R→B ⊗ Elite i
̅̅̅→

− Prey̅̅̅→
i

)

⟶ Pray i
̅̅̅→

= Elite i
̅̅̅→

ii +P.CF

⊗
stepsize
̅̅̅̅̅→

i (13)  

where R→L is a Levy distribution-based random number vector that 
reflects Levy movement. CF is an adaptive coefficient that determines 
the predator’s step size, and it is formulated as described in the 
following: 

CF=

(

1 −
Iter

Max Iter

)

(

2 Iter
Max Iter

)

(14)  

In this step, the initial half of the population takes a Levy step (exploi
tation), while the second half takes a Brownian step (exploration). The 
transformation from exploration to exploitation using a combination of 
Levy and Brownian techniques. 

Phase3: where the low-velocity rate is (v = 0.1), the predator out
paces the prey, and exploration gives way to exploitation. A predator’s 
ideal hunting approach is a Levy movement, and the formula expression 
can be seen in the following: 

While Iter > 2
3 Max iter (15) 

stepsize
̅̅̅̅̅→

i = R→L ⊗

⎛

⎜
⎝R→L ⊗ Elite i

̅̅̅→
− Pray̅→

i

⎞

⎟
⎠ (16)  

Pray i
̅̅̅→

= Elite i
̅̅̅→

i + P.CF ⊗
stepsize i

̅̅̅̅̅ → (17) 

The fish-gathering devices (FADs) in nature can indeed shape the 
behaviour of marine predators. FADs’ impacts are regarded as local 
optimum traps in MPA, and their formula is mathematically developed 
as described in the following: 

Pray̅̅ →
i =

⎧
⎪⎨

⎪⎩

Prayi
̅̅→

+ CF
[

X→min + R ⊗
(

X→max − X→min

)]
⊗ U→ if r < FADs

Pray̅̅ →
i + [ FADs (1 − r) + r]

(

Pray̅̅ →
r1 − Pray̅̅ →

r2

)

if r > FADs

(18)  

where FADS is equal to 0.2 and indicates the likelihood of FADS influ
encing the optimisation phase. X→min and X→max are vectors that define the 

dimension’s lower and upper boundaries. r is a random number vector 
produced in the range of 0 and 1.U→ is a vector of binary values, with its 
array assigned to 0 when r is greater than 0.2 and to 1 when r is less than 
0.2. Prey̅̅̅ →

i and Prey̅̅̅ →
r2 are two randomly generated variables of the prey 

matrix. R→ is a random number vector containing produced numbers 
ranging from 0 to 1. 

r is less than 0.2. Preyi and Preyr2 are two randomly generated var
iables of the prey matrix. R→ is a random number vector containing 
produced numbers ranging from 0 to 1. 

Marine predators also have remarkable memory that enables them to 
recall the place of each successful predation. This is accomplished by 
storing the data in MPA. Each answer is assessed to the existing optimal 
solution every iteration, and if a superior solution arises, it is swapped 
with the actual best solution. MPA showed in several studies a 
competitive performance for optimising large-scale optimisation prob
lems [61,77]. 

3.3. Improved marine predators algorithm (IMPA) 

In this section, an improved marine predators algorithm named 
IMPA is proposed for the optimisation of shape and sizing variables of 
the large-scale truss structures with frequency constraints discussed in 
Section 2. The main idea of the IMPA is to evaluate cross-sectional areas 
and nodal coordinates independently. First, we decompose the entire n- 
dimensional design vector into two parts, namely sizing variables and 
shape variables, respectively. Second, we split the sizing variables into 
groups. Thus, each design vector has multiple smaller groups, including 
several sizing variable vectors and a shape variable vector as the last 
group. Then, we evaluate each group separately. The proposed algo
rithm is described in more detail in the following subsections. 

3.3.1. Divide-and-conquer technique 
Solving a large-scale optimisation problem is difficult because of the 

high dimensionality of the landscape. Indeed, the efficiency of an opti
miser reduces dramatically as the dimensionality of the landscape in
creases. Because of this, many well-known state-of-the-art optimisation 
algorithms have not been able to do well on large-scale landscapes un
less they have been modified to suit these problems. As a result, in recent 
years, new algorithms have been proposed to solve high-dimensional 
problems. One idea is a grouping strategy in which the large-scale 
problem is divided into multiple smaller sub-problems, which are 
solved separately in order to solve the entire problem. Firstly, suggested 
by Potter et al. [56], this idea called Cooperative Co-evolution (CC) was 
incorporated into the basic GA. The algorithm partitioned an n-dimen
sional individual into n one-dimensional sub-components and evaluated 
each component using a complete solution vector named context vector 
(CV). Thus, instead of having n variables, we have a smaller number of 
decision variables for optimisation. This resulted in a considerable 
improvement in the GA performance. Since then, many researchers have 
applied this idea to a variety of optimisation algorithms, including PSO 
[53,78,79], GA [80,81], DE [82,83], ABC [84], and AIS [85]. Recently, 
Cooperative Co-evolution (CC) techniques have been used in various 
engineering applications such as renewable energy optimisations [86, 
87], large water distribution networks [88], large-scale supply chain 

Fig. 2. The ith individual’s structure in the IMPA.  
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network design [89], etc. 
In this paper, we incorporate this cooperative strategy of CC into the 

evaluation stage of the basic MPA for evaluating individuals. Algorithm 
1 shows the framework of IMPA. The proposed IMPA is different from 
the basic MPA in the following ways. First, the algorithm partitions all 
individuals in the Prey matrix into two vectors, namely cross-sectional 
areas and nodal coordinates. Second, it decomposes the cross-sectional 
areas into multiple same-sized smaller areas named clusters, or 
groups. Fig. 2 shows ith individual’s (Xi) structure in more detail. Third, 

in each iteration, in the evaluation stage, for each individual, the algo
rithm evaluates each part of the sizing variables in the context of a 
complete design vector so-called CV at the first step. Then, it evaluates 
the last part of the individual, including shape variables. It is worth 
mentioning that, similar to cooperative co-evolution, at each step, if the 
current CV is better than the previous one, it replaces the previous CV. 

Otherwise, the algorithm dismisses the current CV. By decomposing the 
sizing variables into different groups and evaluating each one sepa
rately, the algorithm is better able to search various areas within the 
sizing design variables. It can especially be more effective when the 
design variables are discrete and finding the optimal vector is too 
difficult. Here, CV maintains the best cooperative combination of sizing 
and shape variables found so far. The evaluation process of IMPA is 
shown in Algorithm 2. 

.   

Additionally, when memory saving, IMPA considers the sizing and 
shape variables of each individual independently. It depends on whether 
the current variable vectors are better than the previous ones. For each 
individual, IMPA saves the best partitions. Thus, an individual can be 
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modified in three ways its sizing variable vector, shape variable vector, 
or both can be modified.   

3.4. Cooperative Co-evolutionary marine predators algorithm (CCMPA) 

In this section, we propose a cooperative co-evolutionary MPA 
named CCMPA. Like the IMPA, the new proposed algorithm evaluates 
the sizing and shape variables independently. However, in the CCMPA, 
we incorporate the CC concept into the whole structure of the basic 
MPA. Indeed, while the IMPA applies the decomposition-based method 
to each individual only during the evaluation process, the CCMPA’s 
framework is completely based on the cooperative co-evolutionary idea. 
While CC strategies maintain good solution diversity in sub-populations 
and thus prevent premature convergence [51,57], they are prone to 
being trapped in pseudo-minima, local minima created by inappropriate 
division of the search space [78]. With this in mind, in this paper, the 
objective is to combine the CC 

and MPA exploration and exploitation abilities to create a more 
robust and powerful algorithm, as we explained how the basic MPA can 
create a good balance between exploration and exploitation through its 
three phases. Thus, this hybridisation can lead to better exploitation of 
CC and avoidance of premature convergence [90]. For this purpose, the 

whole population is divided into various sub-populations, each opti
mised independently. 

The objective is to help MPA overcome its exploration and exploi

tation incapabilities by dividing the whole population into various sub- 
populations and optimising each sub-population independently. Addi
tionally, this strategy helps MPA to escape from local optima, prevent 
premature convergence, and increase its global search abilities. As a 
result, in the CCMPA, we have two main populations, including a l −
dimensional population of c nodal coordinate individuals PreyC and a m 
− dimensional population of section individuals PreyS (c + s = n). Then, 
we split the PreyS population into several clusters of the same size. Fig. 3 
shows the structure of the CCMPA in more detail. Also, because the 
population of coordinates has a lower number of dimensions, we eval
uate and optimise PreyC before the section population in the CCMPA. 

In this case, we assume that the complexity of the PreyC is much 
smaller than that of PreyS due to their lowdimensional space. Thus, by 
the early optimisation of coordinates, at each iteration, we can put aside 
a lot of fitness evaluations for the optimisation of sections, which can 
lead to better results. Algorithm 3 shows the pseudo-code of the CCMPA. 
First, the populations of sections and coordinates and the CV are 
initialized. Second, the population of sections is decomposed into 
several subpopulations or clusters. Thus, the procedure of clustering in 
the CCMPA is as follows.  

Fig. 3. The structure of the CCMPA.  
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In the CCMPA, the procedure of grouping is as follows.  

1. The population of coordinates (PreyC) is considered as the first group.  
2. The population of sections (PreyS) is divided into K number of 

groups. 

Hence, the total number of groups equals K + 1. Also, because the 
sub-population of coordinates has a lower number of dimensions 
compared to that of sections, we evaluate and optimise the coordinates 
before the sections in the CCMPA. In this case, we assume that the 
complexity of the coordinates is much smaller than that of sections due 
to their low-dimensional space. Thus, by the early optimisation of co
ordinates, at each iteration, we can put aside a lot of fitness evaluations 
for the optimisation of sections, which can lead to better results. 

3.5. Cooperative co-evolutionary marine predators algorithm + greedy 
search (CCMPA-GS) 

Despite all the positive attributes of CCMPA, sometimes its suggested 

designs need modifications due to complex and nonlinear constraints of 
large-scale truss problems. In the meantime, the bar sizes yielded by 
optimal designs of CCMPA search are not guaranteed to provide the 
required minimum allowable stress and nodal displacement for each 
problem. Furthermore, in some cases, there is scope in the CCMPA re
sults to reduce the sizes of some bars. To handle these matters, we 
propose a downward greedy search algorithm (Algorithm 4) combined 
with the CCMPA search (CCMPA-GS) to reinforce the exploitation ability 
and performance of the proposed truss optimisation framework. 

The primary objective of the GS is smoothing the bar size concerning 
the constraints by decreasing the size of the bars one by one. In other 
words, GS is looking for modifications that give us the most negligible 
reduction in both stress and nodal displacement violations for the most 
significant decrease in the bar size. Therefore, the purpose is to maxi
mize the improvement rate according to Equation (19). 

Fig. 4. Comparison between CCMPA and IMPA with different numbers of clusters a) on 314-bar truss problem b) on 260-bar truss problem.  
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Sum PVt =
∑N

i=1

( ⃒
⃒σmax

i − σi
⃒
⃒
)
+
∑M

j=1

(⃒
⃒
⃒δmax

j − δj

⃒
⃒
⃒

)

Argmax →f (Θ) =

(∑N
t=1 Δ barWeight t

ΔS um PV

)

Subject − to : ΔSum PV ≥ 0,Δ barWeight t ≥ 0

(19) 

As the sections’ scale and nodal displacement are different, two 
search step size variables (Steps, Stepc) are defined. Both step sizes are 
linearly decreased due to speeding up the convergence rate and 
improving exploitation capacity. Practically, GS is so fast and effective 
to attain the near best lowest weight solutions. The improvement rate is 
a coefficient of weight reduction over the violation smoothness. This 
rate shows which solution can produce a more competitive design 
compared with all solutions evaluated.   

4. Numerical results and discussions 

In order to assess the performance of the proposed novel optimisa
tion methods in this study and develop a proper comparative frame
work, we designed and applied the developed procedures to two 
different large-scale truss problems described in section 2.1. Meanwhile, 
we attempted to investigate the various pros and cons of these 15 
optimisation methods to solve large-scale structures with nonlinear 
constraints. In order to provide a fair comparison for all optimisation 
methods, we set the same population size (50) for population-based 
methods and an equal evaluation number at 105. Additionally, in the 
CCMPA and CCMPA-GS, the population size for the PreyC and PreyS is set 
to 10 and 40, respectively. These values are obtained after a few initial 
experiments. The reason that the PreyC is smaller in size is probably due 
to its smaller number of dimensions. Indeed, in the two truss structure 

problems, the number of sizing variables is much larger than that of the 
shape variables. Thus, more fitness evaluations are needed to optimise 
sizing variables, and the optimal design vector is more dependent on 
finding the optimal sizing variable vector. 

It is worth mentioning that in this study, our primary objective is not 
to directly compare the results obtained by our proposed algorithms 
with the most recent MPAs available. Instead, our focus is to advance 
beyond the achievements of our previous research [50] by introducing 
novel MPAs designed to excel in addressing the challenges posed by the 
two truss problems. Eventually, we compare the results obtained by the 
proposed MPAs with our recently proposed adaptive chaotic MPA [61]. 

In the first step, to find the best-performed approach, we developed a 
comparative optimisation study consisting of 10 popular recently pub
lished meta-heuristics (Table 1). According to the optimisation results 

from both case studies, MPA performed best compared with the other 
nine meta-heuristics. However, we can see that MPA performance was 
reduced after consuming 25 % of the computational budget and 
encountering stagnation issues. A stagnation problem is when searching 
for an optimum process stagnates prior to discovering a globally optimal 
design. To address this issue and improve the convergence rate, three 
novel cooperative co-evolutionary MPAs were proposed, including 
IMPA, CCMPA and CCMPA + Greedy Search (CCMPA-GS). 

4.1. Comparison between CCMPA and IMPA with different number of 
clusters 

As in both novel cooperative optimisation methods, the cluster 
number plays a significant role in improving the performance of the 
proposed designs, we investigate this matter to find the optimal initial. 
Fig. 4 shows the comparison between CCMPA and IMPA with a different 
number of clusters on 314-bar and 260-bar truss problems. We can see 
that CCMPA outperforms the IMPA in both cases. This is because of the 
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higher convergence speed and lower computational cost of CCMPA. 
Also, both algorithms represent poor performance for the largest and 
smallest number of clusters. When clusters are too large, cooperation 
between clusters and diversity increases. Thus, both algorithms have 
stronger global searches. On the other hand, the local search ability 
within each cluster decreases due to the smaller number of fitness 
evaluations for each cluster. Hence, it leads to poor convergence speed 
and nonoptimal solutions. We can see that both algorithms have a poor 
performance when Cluster no ≥ 30 and the worst performance when 
Cluster -no = 80. While, when the number of clusters is too small (Cluster 
no = 1), the whole search space is considered a huge cluster. In this case, 
each individual within the cluster can have a larger number of fitness 
evaluations to improve itself, leading to a stronger local search. 

Nonetheless, the global search and population diversity deteriorate due 
to the lack of other clusters to cover the entire design variable. As a 
result, it will lead to being trapped in local optima. Overall, the algo
rithms have a good performance when 10 ≤ Cluster no ≤ 15 and 5 ≤
Cluster no ≤ 20 on 314-bar and 260-bar truss problems, respectively. 
Also, both algorithms perform best when Cluster no = 10 on both case 
studies. 

4.2. 314-Bar truss optimisation results 

In Fig. 5 each curve visualises the evolution of weight plus penalty 
factor for the 314-bar truss problem and is specified by the average of 
the best-found design per each iteration (population) for each meta- 
heuristic over 105 evaluation number. The control parameters applied 
by all methods are based on the original work recommended. In terms of 
convergence rate, the highest rank is related to CCMPA in the initial 20 
% runtime. The reason is the high exploration and exploitation abilities 
of decomposition-based methods, where multiple sub-populations 
search simultaneously for different locations in the search space. In 
other words, while multiple sub-populations are responsible for 

Fig. 7. Best-found designs of 314-bar truss per each experiment using 15 
optimisation methods. The total evaluation number of is 105. The total number 
of decision variables is 328. 

Fig. 8. Convergence behaviour comparison between 10 popular optimisation 
algorithms, GA, PSO, Memetic algorithm (SFLA), and five hybrid proposed 
methods on the 260-bar truss problem. Each curve shows the average of best- 
found solutions of 10 independent runs and the total evaluation number is 105. 

Fig. 5. Convergence behaviour comparison between 10 state-of-the-art meta- 
heuristic algorithms, two popular optimisation methods, GA and PSO, and one 
memetic algorithm (SLFA), and five proposed hybrid cooperative algorithms on 
the 314-bar truss problem. Each curve shows the average of best-found solu
tions of 10 independent runs. 

Fig. 6. Convergence behaviour comparison between the proposed cooperative 
optimisation algorithms (IMPA, CCMPA and CCMPA-GS) with one and ten 
clusters on the 314-bar truss problem. Each curve shows the average of best- 
found solutions of 10 independent runs. 
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searching multiple regions of search space, each sub-population esca
lates local search in its region. This searching ability also helps the al
gorithm to escape from local optima and prevent premature 
convergence. However, CCMPA-GS could considerably outperform 
CCMPA and other meta-heuristics in terms of convergence rate in a 
large-scale truss (314-bar+ 14 shape variables) with several natural 
frequency constraints. This is because the greedy search in later gener
ations helps CCMPA-GS to exploit the promising regions effectively. 
Among the other optimisation methods in Fig. 5, it can be seen that NNA 
and GTO converged to reasonable solutions faster than others in a very 
similar time; however, DA could exploit a better local optimum finally. 

Fig. 6 shows a close-up of the convergence rate for four meta- 
heuristics, including original MPA, two proposed cooperative MPAs 
and hybrid cooperative MPA with a local search (GS). This plot shows a 
sharp decline in minimising the weight of the 314-bar truss by CCMPA- 
GS and the best-found design is 18470 kg, which can be shown in Fig. 11 
(a). The stepped shape of CCMPA-GS convergence is related to the 
successful performance of the greedy search (GS) that is adequately 
tuned to work with the CCMPA. In both CCMPA and IMPA with ten 
clusters, optimising the structure’s weight performed better than with 
one cluster. However, CCMPA with ten clusters surpassed IMPA with the 
same cluster number in terms of quality of solutions and speed. 

Fig. 7 illustrates a box-and-whiskers plot that includes the median, 
mean, minimum, maximum, first quartile, and third quartile of the best- 
achieved 314-bar designs for 15 optimisation search algorithms. The 
novel approaches expressed in this article are given in the last five col
umns of the Figure. These optimisation outcomes are reflected in the 
precise margin between the performance of the proposed methods and 
the other methods. 

At first glance, it is crystal clear that the highest-ranked methods are 
related to the hybrid and cooperative MPA with ten clusters with a bit of 
variance for ten independent runs. Meanwhile, except for the proposed 
framework based on MPA, we can see that the DA can be an effective 
technique for optimising such large-scale problems. Furthermore, both 
IMPA and CCMPA with ten clusters could perform somewhat the same; 
however, the average performance of CCMPA was better than IMPA in 
terms of the best-found design per experiment. Finally, it can be 
observed that the highest execution was related to CCMPA-GS, which 
could propose the cheapest truss designs. This perhaps reflects the 
usefulness of a fast greedy decision among the feasible solutions (a 
trade-off between the weight of the structure and its total violations). 

4.3. 260-Bar truss optimisation results 

In order to evaluate the performance of the proposed optimisation 
framework, we applied the second large-scale truss structure with 260 
bars and ten z-coordinates of the top nodes. Fig. 8 shows the conver
gence rate of 15 optimisation algorithms on the 260-bar truss problem. 
Each curve shows the average of the best-achieved designs of ten 

Fig. 10. Best-found designs of 260-bar truss per each experiment using 15 optimisation methods. The total evaluation number is 105. The total number of decision 
variables is 270. 

Fig. 9. Convergence behaviour comparison between 10 optimisation algo
rithms on the 260-bar truss problem. Each curve shows the average of best- 
found solutions of 10 independent runs and the total evaluation number of 
is 105. 
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independent runs. From these results, we can observe that the most 
effective performing methods for truss design optimisation are the var
iants of MPA. These algorithms demonstrate robustness as they exhibit 
consistently strong performance across different problems. The best 
leading performance is related to CCMPA combined with greedy search 
with a minimum truss weight of 16173 kg (can be seen in Fig. 11(b)). 
The GTO was able to explore the search space appropriately with several 
local optimal configurations; however, it had a tendency to get stuck in 

local optima in the initial 20 % of the runtime, similar to WCA, SSA, and 
GNDO. Although the convergence speed of NNA was lower than MPA, 
GTO and AOA, it could effectively handle the nonlinear constraints, 
avoid falling into the traps (local minima) and obtain a fair balance 
between exploration and exploitation. It is noted that some of the pop
ular meta-heuristics could not optimise this large structure with a 
complex search space such as HGSO, DA and MVO. The main reasons 
may come from the scalability attribute to handle the optimisation 

Fig. 11. Best-found feasible (a)314-bar truss design with a total weight at 18470.7932 (Kg), (b) 260-bar truss design with a total weight at 16173.6689 (Kg).  
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problems with many decision variables and apply smart strategies to 
face the constraints. 

As Fig. 8 cannot provide a high-resolution comparison of the land
scape for the proposed methods, especially for the last iterations, Fig. 9 
is plotted and shows a clear understanding of MPA, cooperative MPA 
(IMPA and CCMPA) and hybrid CCMPA’s performance. From this plot, it 
is indicated that the average optimisation result of CCMPA-GS was 
considerably above all other variants of MPA. Furthermore, using ten 
clusters for both IMPA and CCMPA performed better than one, similar to 
the 314-bar case study. 

The second significant observation from Fig. 9 is that both IMPA and 
CCMPA convergence slop with one cluster is sharper than using ten 
clusters. Its primary reason is that applying several clusters decreases the 
exploitation ability and on other hand, it improves the exploration 
strategies for the initial iteration of the optimisation process. To 

reinforce the progress rate of the CCMPA, we proposed a greedy local 
search to assist the process of the global search. 

Fig. 10 demonstrates the best-achieved solutions for the 260-bar 
truss case study received by ten popular meta-heuristics plus five pro
posed cooperative MPAs. Concerning these experiments, the hybrid 
cooperative MPA (CCMPA-GS) could beat the other competitors with the 
minimum structure weight. 

Moreover, the searchability of AOA and NNA is considerable to 
propose acceptable designs with a high level of reliability. As can be seen 
in Fig. 10, DA, HGSO, MFO, and MVO proposed various design solutions 
with a wide variance and applied them for such large-scale structures 
with complex constraints that cannot be appropriate. 

The statistical analysis metrics (Minimum, maximum, mean, median, 
and STD) of the optimisation methods performance are listed in Tables 2 
and 3. In both large-scale case studies, the optimal designs were found 

Table 2 
The statistical performance criteria for the three proposed optimisation frameworks compared with other 15 modern search algorithms for 314-bar truss.  

Metric DA GNDO AOA HGSO MFO MVO SSA MPA NNA 

Min 39336 103096 122254 231501 326890 408869 210731 38885 87685 
Max 45982 272333 140836 386397 1184149 928578 288499 44300 114471 
Median 41924 165280 127870 287456 908014 516050 258967 41211 99055 
Mean 42170 179515 128341 288184 892475 546289 253553 41446 100648 
STD 1647 53755 5298 48962 238876 160152 27844 1697 8896 
Friedman Test 6.6 12.4 10.7 15.3 17.8 17.1 14.9 6.4 8.3 
Metric WCA PSO GA SFLA IMPA IMPA-10C CCMPA CCMPA-10c CCMPA-GS 
Min 125435 107225 88886 205554 34191 22714 32020 21047 18512 
Max 251538 134067 167457 271075 36720 24749 37566 24685 21190 
Median 204808 120603 123787 224063 36261 23251 34848 22570 20177 
Mean 197520 121419 124658 229473 35936 23543 34603 22772 20014 
STD 45330 8487 25372 18852 999 737 1750 1220 881 
Friedman Test 12.5 9.9 10.1 14.0 4.8 2.7 4.2 2.3 1.0  

Table 3 
The statistical performance criteria for the three proposed optimisation frameworks compared with other 15 modern search algorithms for 260-bar truss.  

Metric DA GNDO AOA HGSO MFO MVO SSA MPA NNA 

Min 279327 131850 120427 1141198 1873686 775263 509119 44524 55371 
Max 4336301 866948 180133 4181235 4555126 2842608 721205 70314 102519 
Median 1352414 392953 139926 1545486 2463511 1515654 614567 58363 69727 
Mean 1756475 422380 142272 1861821 2843644 1632285 618163 57767 73054 
STD 1482007 237157 18115 921701 1001899 652826 63015 7729 13059 
Friedman Test 15.2 11.5 8.5 16.6 17.2 16.3 13.9 6.2 6.8 
Metric WCA PSO GA SFLA IMPA IMPA-10C CCMPA CCMPA-10c CCMPA-GS 

Min 308566 140205 114496 278954 24643 17579 23842 17610 16302 
Max 929709 330014 323663 451211 25678 19006 25717 18889 17981 
Median 509055 214639 201222 371047 25216 18410 24665 18304 17230 
Mean 548484 223832 195501 367637 25164 18321 24791 18303 17197 
STD 178114 61887 63179 56838 388 494 606 451 509 
Friedman Test 13.3 9.7 9.3 11.5 4.8 2.4 4.2 2.5 1.1  

Table 4 
A comparison between the three proposed optimisation algorithms with other state-of-the-art improved MPA algorithms. 
314-bar Truss.  

Metric MPA [39] HNMPA [61,91] HNCMPA [61] IMPA IMPA-10c CCMPA CCMPA-10C CCMPA-GS 

Min 44524 19857 19398 24643 17579 23842 17610 16302 
Max 70314 21589 29146 25678 19006 25717 18889 17981 
Mean 57767 20559 21515 25164 18321 24791 18303 17197 
Median 58363 20570 20619 25216 18410 24665 18303 17213 
STD 7728.5 494.1 2839.3 388.2 493.7 605.8 398.2 479.5  

Metric MPA [39] HNMPA [61,91] HNCMPA [61] IMPA IMPA-10c CCMPA CCMPA-10C CCMPA-GS 

Min 44524 20639 20966 34191 22714 32020 21047 18512 
Max 70314 24593 27423 36720 24749 37566 24685 21190 
Mean 57767 22656 24129 35936 23543 34603 22772 20014 
Median 58363 22394 24164 35936 23251 34848 22570 20177 
STD 7728.5 1481.3 1982.7 666.1 737.0 1749.9 1220.4 881.3 

260-bar Truss. 
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by CCMPA-GS. Moreover, IMPA and CCMPA with ten clusters could 
propose considerable solutions for truss problems in this study as well. 
Undoubtedly, the most interesting outlook of these findings is the high 
level of robustness of the proposed truss optimisation framework. 
Furthermore, Table 4 shows a comparison between the Cooperative 
MPA with other modified MPA in order to minimise the weight of the 
truss. 

4.4. Hyper-parameters analysis of CCMPA-GS 

Some environmental parameters are considered in the simulation of 
marine predators (MPA), such as Eddy formation and Fish Aggregating 
Devices (FADs) effects. Fish are captivated by hovering objects and 
utilise them to keep sites for social interactions (mating movements and 
finding foods). For example, marine investigations [87] show that 
sharks would like mostly to concentrate near FADs (roughly 80 %) and 

set their motion with our other team members. However, sometimes 
they prefer exploring other areas to find prey groups (a random jump 
with a wider search step). The FADs effect is simulated (See Equation 
(18)) in MPA as a control parameter of 0.2 and plays the role of local 
optima to speed up the convergence rate or escape the optimisation 
process from stagnation issues. 

In this study, we consider tuning the FADs control parameter and 
setting various values at [0.1,0.6]. Fig. 12 shows the CCMPA-GS 
convergence histories with different FADs parameters in order to opti
mise the 314-bar truss problem. The most interesting observation is that 
there is a direct relationship between the FADs coefficient and conver
gence rate. For example, we can see the highest convergence behaviour 
is related to FADs = 0.6 for the initial evaluations. However, the ex
periments with large FADs (such as 0.5 and 0.4) cannot escape the local 
optima effectively. From Fig. 12, the minimum structures’ weight pro
posed by FADs = 0.3 which is performed better than the pre-defined 
value (FADs = 0.2) at 2.5 %. 

The second control parameter is P which is a constant and assists in 
reducing or elaborating the search step sizes carried by predators. Thus, 
we kept FADs fixed and evaluated the effect of various P values at 
[0.1,0.9]. As illustrated in Fig. 13, The behaviour of the P value is 
complex, and there is not a linear relationship between the P value and 
CCMPA-GS performance. We can see that the best results were proposed 
by P = 0.1 with 6.3 % improvement compared with the recommended 
value (P = 0.5). 

4.5. Shape variables analysis 

As the shape variables play a significant role in optimising truss 
structures, we develop a more apparent observation of the shape opti
misation process in both case studies. In this way, a parallel coordinated 
plot can be seen in Fig. 14. This parallel coordinated plot is used to 
visualise high dimensional shape data, where the series of its coordinate 
values describe each statement devised against their coordinate indices. 

Fig. 14(a) shows the best experiment of CCMPA-GS for the 314-bar 
truss problem. Each line represents the configuration of 14 shape vari
ables and total weight (weight + penalty). Furthermore, the colour line 
is related to the fitness level, where dark red shows the minimum 
weight. To have a wide landscape, we can see that the best configura
tions (dark red) have a complex combination of various 14-shape values; 
for instance, the best range of first and second shape variables (C1 and 
C2) are [9060–9080], and [11000–11100], respectively. 

The behaviour of shape variables in the 260-bar truss problem differs 
from the previous case study and can be seen in Fig. 14(b). From this 
parallel plot, we can consider that the initial six optimal shape setups 
were concentrated on the range lower than zero; however, the last four 
shape coordination mostly focus on the positive values. 

4.6. Technical benefits of CCMPA-GS 

According to the results obtained from the rigorous experimental and 
statistical analysis it demonstrated that the optimiser proposed in this 
study, which encompasses a fusion of the Marine Predators Optimisation 
Algorithm (MPA) with cooperative coevolutionary (CC) algorithms and 
the incorporation of a greedy search mechanism, exhibits the potential 
to elicit substantial enhancements across a multitude of performance 
measures. Specifically, this amalgamation has been shown to yield sig
nificant improvements in terms of overall performance, exploration and 
exploitation capabilities, convergence rate, and mitigation of the 
occurrence of local optima. The rationale behind these advancements 
can be attributed to various factors as follows.  

• Enhanced exploration: By incorporating the MPA concept with the 
Cooperative Coevolution (CC) strategy, which entails the utilisation 
of multiple subpopulations to optimise distinct segments of the 
problem’s search space, the exploration process can be significantly 

Fig. 12. A convergence rate comparison of various fish aggregating devices 
(FADs) effects on the proposed hybrid MPA (CCMPA-GS) applied for the large- 
scale 314-bar truss problem. The total evaluation number of is 105. The total 
number of decision variables is 328. All configurations are run with the same 
random seed. 

Fig. 13. A convergence rate comparison of various P (exploration coefficient) 
with the best-found value of FADs = 0.3 effects on the proposed hybrid MPA 
(CCMPA-GS) applied for the large-scale 314-bar truss problem. The total 
evaluation number is 105. The total number of decision variables is 328. All 
configurations are run with the same random seed. 
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enhanced. The primary reason behind this assertion is that each 
subpopulation can effectively explore a specific region within the 
solution space, thereby emulating the varied hunting behaviours 
exhibited by marine predators. Consequently, this approach allows 
for a much more comprehensive exploration, ultimately leading to 
an increased likelihood of unearthing diverse and potentially supe
rior solutions.  

• Improved exploitation: Cooperative coevolutionary (CC) algorithms 
have shown remarkable proficiency in capitalising on sub
components’ intricate interplay and interconnectedness within a 
given problem. The algorithm’s exploitation capabilities are signifi
cantly enhanced when the CC approach is augmented with MPA. 
With its unique ability to emulate predatory behaviour, such as the 
skilful manoeuvring and capture of prey, MPA continuously com
plements the CC framework. This combination of MPA, CC strategy 
and greedy search results in a synergistic effect that amplifies the 
algorithm’s capacity to exploit the intricate interactions between 

subcomponents. Consequently, this heightened exploitation fosters 
more refined and optimally tailored solutions.  

• Accelerated Convergence: The collaborative utilisation of the MPA in 
conjunction with cooperative coevolution has the potential to 
expedite the rate of convergence in the optimisation process. MPA’s 
adeptness at efficiently exploring and adapting, inspired by the 
hunting behaviours of marine predators, when coupled with the CC 
approach’s ability to decompose and coordinate subpopulations, can 
result in an accelerated convergence towards the most optimal so
lutions. These two methodologies harness the combined algorithm’s 
parallel exploration and exploitation capabilities, enabling a more 
practical and resourceful search process and reducing the time 
required to find optimal solutions. 

• Preventing local optima: MPA, like many other optimisation algo
rithms, can be vulnerable to local optima in various case studies. 
However, the integration of MPA with cooperative coevolution (CC) 
can significantly enhance its ability to overcome this limitation. By 

Fig. 14. Parallel plot for 14 shapes (C) variables (a) and 10 shape variables (b) of 314-bar and 260-bar truss problems obtained by CCMPA-GS. The dark pink colour 
shows the best configurations of shape variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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leveraging CC, MPA gains the advantage of exploring diverse regions 
of the problem space simultaneously. This parallel exploration en
ables MPA to effectively navigate away from local optima that may 
impede its progress. Moreover, MPA’s inherent hunting behaviours 
further strengthen its search capabilities by encouraging a compre
hensive and exhaustive exploration for potential prey, or in this case, 
solutions. By combining these two approaches, the optimisation al
gorithm becomes more resilient against the trap of local optima, 
thereby facilitating the discovery of optimal or near-optimal solu
tions on a global scale. The synergy between MPA and cooperative 
coevolution not only mitigates the risk of stagnation but also am
plifies the algorithm’s potential to unearth the most favourable so
lutions within the given problem domain. 

5. Conclusions and future scope 

Shape and sizing optimisation of large-scale truss structures with 
considerable natural frequency constraints is a challenging problem due 
to a highly nonlinear interaction among cross-sectional and nodal co
ordinate forces, their various order of magnitude, and the natural fre
quencies’ sensitivity to shape modifications. 

To address the issues listed, this paper proposes two decomposition- 
based marine predators algorithms and a new hybrid Cooperative Co- 
evolutionary marine predators algorithm combined with a greedy 
search (CCMPA-GS) framework to effectively figure out this large-scale 
and nonlinear optimisation problem. 

The proposed algorithms used two different decomposition tech
niques (divide-and-conquer) to optimise the shape and size variables 
separately. An improved marine predators algorithm (IMPA) has been 
proposed that evaluates an individual’s shape and sizing variable vec
tors independently. The results showed how it can enhance the global 
search of the basic MPA. Then, we incorporated cooperative coevolu
tionary strategy into the basic MPA that blends the exploration and 
exploitation abilities of CC and MPA to overcome the CC’s premature 
convergence and stagnation. The proposed method is called CCMPA. 
Lastly, we showed that mixing a tuned local search (GS) with global 
optimisation can be helpful in terms of convergence speed and quality of 
the proposed designs. 

A comprehensive comparative framework was developed, including 
ten popular meta-heuristic methods, GA, PSO, Memetic algorithm 
(SFLA) and three novel cooperative optimisation strategies. Comparing 
the optimisation results of two extensive case studies demonstrates that 
the proposed hybrid algorithm (CCMPA-GS) performed best in terms of 
computational cost and best-found designs’ weight. It should be 
emphasised that the two proposed cooperative techniques reached 
better solutions with less computational cost than the other ten modern 
optimisation algorithms. Additionally, the proposed algorithms out
performed our recently proposed adaptive chaotic MPA [61]. Further
more, the results showed that the CCMPAs performed well on the 
problems in terms of robustness and consistency. 

The experimental findings demonstrated that the CCMPA-GS algo
rithm outperformed the conventional MPA method in the 314-bar and 
260-bar problems, achieving a significant improvement of 52 % and 63 
%, respectively. Furthermore, when compared to the latest variant, 
HNMPA, as proposed in Refs. [61,91], the CCMPA-GS algorithm 
exhibited even better performance with a superior improvement of 7 % 
and 21 % in the respective case studies. 

In the future, this proposed optimisation framework can be extended 
in several ways. First, despite significant improvements in CCs, they still 
suffer from being trapped in pseudo-minima and search stagnation [51, 
78] caused by the improper decomposition of the decision variables. 
While numerous approaches to variable grouping have been suggested 
[92–100], effective strategies for variable grouping remain limited [51]. 
Regarding this, incorporating an adaptive variable grouping strategy 
putting interactive design variables in the same group could be inves
tigated further. Second, according to the investigation results for 

adjusting control parameters, developing a self-adaptive strategy to tune 
the hyper-parameters would be the next step. In addition, considering 
more large-scale truss problems with various features and constraints 
will clarify the pros and cons of the proposed hybrid cooperative 
framework. Finally, evaluating the performance of more modern 
meta-heuristics and implementing novel cooperative techniques will 
help develop the optimisation results. 
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