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Abstract. Canonical Correlation Analysis (CCA) has been widely used
in Steady-State Visually Evoked Potential (SSVEP) analysis, but there
are still challenges in this research area, specifically regarding data qual-
ity and insufficiency. In contrast to most previous studies that primar-
ily concentrate on the development of spatial or spectral templates for
SSVEP data, this paper proposes a novel temporal filtering method based
on a reinforcement learning (RL) algorithm for CCA on SSVEP data.
The proposed method leverages RL to automatically and precisely detect
and filter low-quality segments in the SSVEP data, thereby improving
the accuracy of CCA. Additionally, the proposed RL-based Temporal
Filtering is algorithm-independent and compatible with various CCA al-
gorithms. The RL-based Temporal Filtering is evaluated using a wearable
dataset consisting of 102 subjects. The experimental results demonstrate
significant advancements in CCA accuracy, particularly when combined
with the extended CCA (ECCA) algorithm. In addition to performance
enhancement, the RL-based Temporal Filtering method provides visual-
izable filters, which can ensure the transparency of the filtering process
and the reliability of the obtained results. By addressing data quality
and insufficiency concerns, this novel RL-based Temporal Filtering ap-
proach demonstrates promise in advancing SSVEP analysis for various
applications.
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1 Introduction

Steady-State Visually Evoked Potential (SSVEP) is an electrophysiological brain
response to visual stimuli presented at a constant frequency, often involving
flickering or flashing stimuli. The main objective of SSVEP studies is to iden-
tify targets by representing them as various flickering stimuli. Using Canonical
Correlation Analysis (CCA) [1] for SSVEP signals analysis has enjoyed major
attention for researchers working on SSVEP data processing. CCA considers the
frequency and phase of the flickering stimuli as reference signals and computes
the correlation between the subject’s EEG signal when they focus on a partic-
ular flickering stimulus and the reference signal associated with that stimulus.
Although traditional CCA takes advantage of EEG’s high-temporal resolution,
leading to the high classification accuracy of above 90% [1], it is still limited by
its sensitivity to signal noise ratio (SNR) and biases associated with subjects and
sensor spatial positions. In attempts to improve CCA classification accuracy and
minimize the duration of flickering stimuli, several studies have explored solu-
tions focusing on (1) enhancing the SNR of EEG signals through various signal
processing and filtering techniques, (2) improving EEG signal spatial accuracy
via spatial filtering methods, and (3) employing individual templates as calibra-
tion data to mitigate subject-related biases in the EEG signals.

In [2], Poryzala utilizes the cluster analysis of CCA coefficients (CACC)
method, which enables asynchronous SSVEP-based target identification through
k-means cluster analysis to distinguish detection and idle states. On the other
hand, the multi-way CCA approach [3] enhances target identification accuracy
by utilizing optimization mathematics to correlate stimulus reference signals and
the subject’s EEG data. Similarly, in [4], the authors further optimize the cor-
relation between reference and EEG signals by applying L1-regularization to
penalize the correlation in incorrect trials. To address the limitation concern-
ing EEG spatial accuracy, Zhang [5] proposed multi-set CCA methods, which
utilize joint spatial filtering of multiple subject EEG training sets to derive an
optimization function that maximizes the correlation among these sets. Addi-
tionally, to mitigate personally biased EEG signals, the Individual Template
Based CCA (IT-CCA) [6] approach replaces the reference signals used in tra-
ditional CCA with individual templates. These templates are obtained by aver-
aging subject EEG signals during multiple training trials with various flickering
stimuli. Nakanishi [7] conducted a comprehensive comparison of various CCA
methods, assessing target classification accuracy using different evaluation met-
rics, including stimuli duration, number of EEG channels, and number of trials.
The study found that CCA performance stabilizes after 3 seconds of stimuli du-
ration. Moreover, increasing the number of EEG channels and trials positively
impacts CCA classification performance, and the individual template approach
demonstrated notable advantages in enhancing CCA performance.

Researchers have made significant efforts to improve the performance of
CCA by incorporating spatial filters. One typical example is the extended CCA
(ECCA) [8], which defines three types of spatial filters for each trial. Addition-
ally, the Sum of Squared Correlations (SSCOR) and ensemble sum of Squared
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Correlations (eSSCOR) methods [9] adopt spatial filters but break them down
into stimulus levels. Recent research [10-14] continues to focus on defining bet-
ter spatial filters to enhance CCA accuracy, with some novel attempts emerg-
ing. For instance, the Spatio-Spectral CCA (SS-CCA) [15] includes both spa-
tial and spectral filters, broadening the scope of improvements. Similarly, the
Time-Weighting Canonical Correlation Analysis (TWCCA) [16] introduces a
time-dimension weight to differentiate time periods during the analysis. In our
research, we address data quality enhancement through the inclusion of a tempo-
ral filter. This idea arises from the observation that CCA tends to favor temporal
aspects over spectral ones. To implement this temporal filtering, we employ a
Reinforcement Learning (RL) agent, allowing the filter to learn and adapt to the
unique characteristics of the data. The advantage of using RL is that it enables
collaboration with any CCA algorithm, making our proposed method applicable
and compatible with various CCA algorithms.

Another recent trend in SSVEP classification involves the adoption of ma-
chine learning methods for direct flicker class prediction. There are three major
types of machine learning models commonly used for SSVEP classification. The
first type is LSTM/RNN [17, 18], which effectively encodes temporal correlations
of SSVEP signals. The second type, also the most popular one, is CNN [19-21],
particularly EEGNet-based models. This method uses convolutional kernels to
extract both spatial and temporal information. The last type, and the newest
one, is the transformer-based method [22,23]. This approach leverages the self-
attention mechanism to extract correlations from both the temporal and spatial
domains of SSVEP data. In this paper, our RL agent is built upon an EEGNet-
based deep model, following the results of our experiments. In contrast to the
aforementioned deep models, our proposed method combines deep learning with
CCA algorithms to leverage information from the reference signal of CCAs. This
design is also found in CCA-CWT-SVM [24] and [25]. While CCA-CWT-SVM
combines a support vector machine (SVM) with CCA, [25] models both the refer-
ence signal and SSVEP data with CNN models. However, our proposed method
is independent of CCA, allowing the RL-based Temporal filter to collaborate
with any CCA algorithm, potentially enhancing their classification accuracy.

In summary, our contributions are as follows:

1. We introduce a unique filtering method that treats EEG data segments as
an RL environment. By allowing an RL agent to explore this environment,
we can intelligently determine the quality of each segment, making informed
decisions about retaining or discarding specific parts of the data.

2. Compared to other deep CCA methods, our proposed approach is more
explainable, providing a meaningful filter that can be reviewed, understood,
and validated by domain experts, thus promoting reliability in the results.

3. To address the subject difference problem, we propose an EEGNet-based
quality classifier. This classifier can accurately identify whether a subject’s
data quality is potentially risky or not, allowing us to decide whether data
filtering is necessary for each individual subject.
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Fig. 1: The workflow of the proposed method. The "EEGNet-based quality clas-
sifier” and the "RIL-based Temporal Filtering” components work together to
enhance the classification accuracy of SSVEP signals.

4. Through our proposed method, we significantly enhance the tolerance of
SSVEP data quality. Even with low-quality data, our advanced data filtering
process ensures that the remaining information is sufficient for generating
reliable outcomes, thus reducing data waste and increasing the efficiency of
data analysis.

2 Method

Our proposed method consists of two major components: the EEGNet [26]-
based quality classifier and the RL-based Temporal filtering (see Fig. 1). These
components work in synergy to ensure that only high-quality data is fed into the
subsequent CCA matching process.

In the initial step, the subject’s SSVEP data is passed through the EEGNet-
based quality classifier. This classifier evaluates the data quality and determines
if it meets the required standards. If the data is deemed of good quality, it is
directly used for CCA matching. However, if the quality is suboptimal, the RL-
based Temporal filtering process is activated to identify and exclude problematic
segments in the time domain. The filtered data is then used for CCA matching,
ensuring that only relevant and high-quality information is considered.
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2.1 RL-based Temporal Filtering

The RL-based Temporal Filtering component is at the core of our proposed
method, aiming to enhance SSVEP data quality. We assume that during the
experiment, subjects may get distracted or focus on the wrong flicker, leading
to the inclusion of irrelevant segments in the recorded data. The RL agent is de-
signed to explore the SSVEP data as a RL environment, deciding which segments
to retain and which to discard, based on their contribution to CCA accuracy.

For each SSVEP data trial, represented as a 2D matrix with channel and time
sample dimensions, the RL agent begins exploration at the first time sample and
examines a window of time samples (state s). The agent then takes actions a
(filtering options) at each step, determining whether to retain or drop segments.
After fully exploring the training environment, the remaining parts of the data
trail, combined with a reference signal under the same filter, are fed to the CCA
algorithm. The agent’s performance is evaluated based on CCA accuracy, and a
reward 7, is calculated accordingly.

To prevent overfitting, we introduce a validating reward r,,, which minimizes
the difference between training and validation accuracies:

ro = [Ar = A, (1)

where A; is the training accuracy, and A, is the validation accuracy.
The final reward for the RL episode is computed as:

r="rq+ Ty (2)

The Proximal Policy Optimization (PPO) [27] framework is utilized to op-
timize the agent’s policy based on the reward r. After several rounds of RL
training, the final workable model is saved.

2.2 EEGNet-Based Quality Classifier

During the experiment, we observed that subject differences could influence the
effectiveness of RL-based Temporal filtering. While some subjects’ data quality
can be substantially improved through RL-based Temporal Filtering, others al-
ready exhibit good enough quality without requiring such filtering. To address
this variability and ensure CCA accuracy across all subjects, we introduce an
EEGNet-based quality classifier.

The EEGNet-based quality classifier is a binary classifier, fed with one SSVEP
data trail at a time, producing a binary decision of good or bad quality. We em-
ploy the EEGNet architecture for this classifier and train it using the results from
the RL agent’s performance. subjects whose data can be effectively improved by
the RL method are labeled as "bad,” while others are labeled as ”good.” After
several epochs of training, the classifier achieves an accuracy of over 99%, al-
lowing us to make informed decisions about whether data filtering is necessary
for each subject. This approach ensures that the method generalizes well across
diverse datasets and guarantees the quality of data delivered to the subsequent
CCA analysis.
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Algorithm 1 (Learning Scheme)

Input: 7 (all subjects trails data), N (number of subjects).
for i <~ 1 to N do

Step 1: select t; from T; € T, train a RL agent on ¢;
Step 2: l; < q (q is the subject quality found from RL agent)
L + l;, store subject label in L
end for

Step 3: Train the EEGNet-based classifier H with 7" and L
Step 4: for i <+ 1to N do
if [;="Bad” then
Train a RL agent A; on T;
A + A;, save agent
end if
end for
Step 5: Combine saved models: {H, A}

2.3 Learning Scheme

In our proposed method, both major components rely on deep models that
require training, and the classification head depends on the labeling results from
RL-based Temporal Filtering. To facilitate this process, we have defined a 5-step
learning scheme outlined in Algorithm 1.

The learning process begins with labeling the data quality of subjects. We
achieve this by running agents in RL environments with a small amount (10%)
of trial data, which provides an overview of subjects’ data quality. This overview
is then used to label the subjects in the second step. In the third step, we
train a reliable distinguisher, an EEGNet-based quality classifier, for subjects’
data quality. Our experiments show that this classifier can easily achieve 99%
accuracy with just a few epochs of training. With the help of the pre-trained
quality classifier, we can now use all data trials for those labeled as ”Bad” quality
to train dedicated RL agents in step four. This approach avoids unnecessary
training for subjects who are already determined to have good data quality,
which provides a solution for subject difference issue in SSVEP experiments.
Once all RL agents are optimized, we integrate the entire architecture of the
method, comprising one shareable classifier and multiple RL agents dedicated
to different subjects. This integrated model can then be used for unseen data.

3 Experiment Results

To evaluate and demonstrate the advantages of our proposed method, we con-
ducted experiments using a wet wearable dataset kindly provided by 2020 In-
ternational brain—computer interface competition [28]. This dataset comprises
SSVEP data from 102 subjects, each recorded with 8 EEG channels: POz, PO3,
PO4, PO5, PO6, Oz, O1, and O2. The data was recorded with a sampling rate of
1000 Hz and then down-sampled to 250 Hz without any other processing. Each
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Table 1: Network Architecture Summary and Learning Settings of PPO.
Architecture/Settings

EEGNet CNN kernel size 1 x 8,2 x 1,1 x 15

Activation: Exponential Linear Unit (ELU)

PPO settings| Total learning step: 10000

Steps of update: 128

Feature extractor: EEGNet (with 128 latent dimension)
Policy network: 2 layers of FFN

Critic network: 1 layers of FFN

subject’s data consists of 120 trials, with 12 targets/classes and 10 blocks. For
each trial, we collected 500 time samples, which were treated as individual runs
of the RL environment. To process the data and facilitate RL exploration, we
set the RL agent with a window size of 50 time samples. In other words, the
input provided to the RL agent’s EEGNet-based deep model is an 8 x 50 matrix,
representing the 8 EEG channels over a segment of 50 time samples.”

To clarity our experimental settings and the design of EEGNet, which was
utilized both as the Quality Classifier and the PPO feature extractor, we have
meticulously outlined all relevant configurations in Table 1. To tailor the EEG-
Net architecture to our wearable dataset, we made adjustments to the kernel size
and activation functions. It’s important to emphasize that these modifications
were guided by empirical findings. Furthermore, we imposed specific constraints
on the PPO training process: the total training steps were capped at 10,000, and
updates were performed every 128 steps. This deliberate approach was chosen
to ensure a swift and efficient learning trajectory for the PPO agent. In the
subsequent subsection, we include discussion of the outcomes derived from our
experiment.

3.1 Performance Comparisons

In order to demonstrate the advantages of our method, we conducted a com-
prehensive comparison with several existing CCA algorithms, namely ECCA,
SSCOR, and ESSCOR. The results are summarized in the following table, which
presents the improvements achieved by our RL-based Temporal Filter:

Table 2: Accuracy improvement summarizing of adopting the proposed method.
This experiment includes three CCA algorithms, which are ECCA, SSCOR, and
ESSCOR.

CCA Algorithms|#Improved|Acc without filter|Acc with filter|Acc lift
ECCA 44 53.1% 76.7% 23.6%
SSCOR 5 0.0% 8.8% 8.8%
ESSCOR 2 0.0% 17.5% 17.5%
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The first column of the table indicates the number of subjects (out of 102)
whose performance improved using our approach. The second and third columns
compare the average accuracy of these improved subjects before and after ap-
plying our method, respectively. The last column summarizes the improvement
percentages achieved with our RL-based Temporal Filter. One key advantage of
our method is its ability to selectively target problematic subjects. The classi-
fication head accurately identifies subjects that stand to benefit from the RL
filter’s intervention, allowing us to consistently enhance CCA accuracy. This
adaptability ensures that our method can improve CCA accuracy across vary-
ing scenarios and datasets. In particular, we observed a significant improvement
when combining our method with ECCA. Our filter yields enhancements in
nearly half of the subjects’ data, with an impressive average improvement of
23.6%. Conversely, SSCOR and ESSCOR showed limited improvements with
our approach. The 0.0% accuracy for some subjects indicates that SSCOR and
ESSCOR struggle to make correct predictions for all trial data. However, our
method still demonstrates we can utility 8.8% and 17.5% of the subjects trail to
yield correct prediction.

3.2 Filter Explanation and Visualizations

We present a data filtering technique to elucidate the mechanics of our proposed
approach. In Fig. 2, we have chosen a single trail of SSVEP data from a subject
to analyze its CCA classification results. In Fig. 2(a), the displayed SSVEP trail
data exhibits low quality, and when used with its corresponding reference signal
(Fig. 2(b)), the CCA classification yields an incorrect result. In this instance,
CCA predicts a label of 8, while the true label indicated by the reference signal
is 9.

To address this issue, we introduce our RL based filter, as detailed in Section
2.1. The RL filter systematically scans the problematic trail and identifies seg-
ments that require retraining (depicted in grey). Upon applying the RL filter,
the trail data undergoes transformation into a filtered trail data, as illustrated
in Fig. 2(c), from 500 time samples to 400 time samples. Simultaneously, the
same filter is applied to the reference signal (Fig. 2 (d)). Subsequently, both the
filtered trail data and the filtered reference signal are utilized to calculate CCA
correlations.

4 Conclusion

This paper presents a novel RL-based Temporal Filtering approach that can
be used in CCA for SSVEP classification task. The proposed RL-based Tem-
poral Filtering effectively identifies and filters out low-quality segments from
raw SSVEP data, leading to significant improvements in CCA accuracy. To val-
idate its efficacy, we conducted experiments with three CCA algorithms using
the wearable datasets. Additionally, the proposed approach provides an intuitive
view of how the RL agent interacts with SSVEP data by visualizations that allow
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Fig.2: Example of one trial data applied with the RL-based Temporal Filter,
visualizing the Oz channel of the SSVEP trial along with the ground-truth of
the reference signal.

users to interpret the results of filters, thus ensuring transparency and reliability.
An important advantage of adopting the RL-based Temporal Filtering method
is its ability to leverage even low-quality subjects’ data. This addresses the com-
mon challenge of data insufficiency frequently encountered in SSVEP-related
research, making the approach more robust and practical for real-world applica-
tions. This novel combination of RL and CCA provides additional explainability
and a solution for the subject difference issue. Our future research objectives
involve conducting in-depth analyses of the behavior of these filters. It aims to
uncover the underlying reasons behind incorrect CCA classifications on SSVEP
data, leading to further advancements in our understanding of SSVEP signals
and refining our proposed approach. We would also like to extend our experi-
ment with more SSVEP data without quality selection. When conducting online
SSVEP classification, the tolerance of low-quality data plays a more important
role than offline analysis.
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