
Case Studies in Construction Materials 18 (2023) e01928

Available online 10 February 2023
2214-5095/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Case study 

Efficient boosting-based algorithms for shear strength prediction 
of squat RC walls 

Alireza Farzinpour a, Esmaeil Mohammadi Dehcheshmeh a, Vahid Broujerdian a,*, 
Samira Nasr Esfahani b, Amir H. Gandomi c,d,** 

a School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran 
b Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran 
c Faculty of Engineering & IT, University of Technology Sydney, Sydney, NSW, Australia 
d University Research and Innovation Center (EKIK), Óbuda University, 1034 Budapest, Hungary   
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A B S T R A C T   

Reinforced concrete shear walls have been considered as an effective structural system due to 
their optimal cost and great behavior in resisting lateral loads. For the slender type of these walls, 
failure modes are mainly related to flexure, while for the squat type with height-to-length ratios 
less than two, shear is the dominant factor. Thus, accurate estimation of shear strength for squat 
shear walls is necessary for design applications and can also be complex due to the various 
effective parameters. In order to address this issue, first a comprehensive dataset with 558 
samples of squat shear walls is conducted, and three hybrid models consisting of genetic algo-
rithms and boosting-based ensemble learning methods, i.e., XGBoost, CatBoost, and LightGBM, 
are used for estimation of shear strength. The results showed high prediction accuracy, with a 
coefficient of determination of at least 98.6% for all three models. Genetic algorithm has been 
proven to be an effective method for tuning boosting-based algorithms compared to manual 
testing. In addition, the results of the algorithms are compared to their default hyperparameters 
and other conventional regression Models. Also, multicollinearity and principal component 
analysis (PCA) were studied. Furthermore, the performance of three tuned models is compared 
with that of a mechanics-based semi-empirical model and other genetic programming (GP)-based 
models. Finally, parametric and sensitivity analyses were performed, to demonstrate the ability of 
the models to identify the most critical parameters with significant influence on shear strength.   

1. Introduction 

Reinforced Concrete (RC) shear walls are frequently used in tall structures as a lateral load resisting system. As a result, in seismic 
analysis and design processes [1] and [2], precise capacity predictions of these systems are a critical factor. There are two main 
characteristics that difficult these predictions: flexure shear and concrete–reinforcement interactions. This task becomes 
design-critical, especially for squat shear walls (that have height-length ratios of less than two), as shear force, when compared with 
flexure, is significantly more likely to break these walls. Attempts to build mechanics-based shear strength models for squat walls, such 
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as the strut and tie model, have been made in recent decades [3] and [4], or the softened truss model [5] and [6]. Because these models 
simplify the complex nonlinear behavior of concrete, their estimates have some degree of scattering (and some bias) [7] and [8]. 

Machine learning (ML) algorithms, as well as deep learning algorithms, are widely employed in many engineering sectors and have 
broadened the scope of structural and seismic engineering studies. Due to the increasing development of precise and fast ML algo-
rithms, as well as the availability of enough accurate experimental data, using these techniques to estimate and interpret the limited 
state-based criteria associated with design codes has become acceptable by the community. Several studies have been done using these 
algorithms in structural engineering and optimization phases in the recent years [9]. 

Mangalathu and Jeon [10] developed a methodology with an artificial neural network, and tested it with a dataset based on ex-
periments for reinforced columns with circular sections. This method was able to predict how the columns will fail (shear, flexure, or 
flexure-shear). A similar study was carried out on shear walls to discover the failure process, which is essential to the current endeavor 
[11]. Siam et al. [12] classified and predicted the performance of 97 reinforced masonry shear wall samples using ML models. Feng 
et al. [13] used an ensemble learning approach to categorize the failure mode of RC columns, as well as predict the maximum lateral 
force (Vmax) in the load-displacement curve of columns. They also used the same ML technique to predict column plastic hinge length, 
which is a critical parameter in time history analysis for performance-based seismic assessment [14]. Thinh Le and Vuong [15] used an 
ML model based on Gaussian regression for predicting the load-carrying capacity of filled steel tubular (CFST) columns. Their results 
were also validated with other ML models like Artificial neural network, Support vector machine and several other code formulations 
(such as, EC4, AISC and ACI) for estimating load capacity of these columns. 

Wu and Zhou [16] used a combination of support vector regression and grid search optimization as a hybrid approach to predict the 
compressive strength of sustainable concrete. They also used the Shapley additive explanation (SHAP) method to explain the 
importance of features on compressive strength. Feng et al. [17] used the same approach for shear strength of squat shear walls with 
XGBoost for prediction and SHAP algorithm for interpretation. An ML technique that uses Genetic Programming (GP) was reported to 
estimate the shear strength of squat walls, at the same time it applies specific mechanics-guided inferences to develop an unambiguous 
expression for shear strength, which resulted in a model with great accuracy and practicality [18]. 

Using multi-expression programming (MEP), Gandomi et al. [19] developed new design equations to assess the shear resistance of 
steel fiber-reinforced concrete beams (SFRCB). The ability of MEP to model mechanical phenomena without the requirement to 
predefine the model structure distinguishes it from traditional statistical methodologies. Also, Aravind et al. [20] employed six ML 
algorithms for classifying and detecting failure types of geopolymer concrete beams. 

ML methods are appropriate for a wide range of issues and datasets. Finding the most appropriate and best ML model architecture is 
an iterative and time-consuming procedure [21]. This task is especially vital for hyperparameters which cannot be directly obtained 
from pattern learning and must be set before the learning phase [22]. Hyperparameters in the ML area are used for two main purposes. 
First, they are used to define the structure of a ML model (such as several hidden layers and units in neural networks). Second, they are 
used to specify the technique used to minimize the loss function in the optimization process of learning (for example, learning rate and 
the number of epochs in neural networks) [23]. Choosing the best configuration of hyperparameters is crucial to find the ideal per-
formance of a model, being known as hyperparameter tuning. Tuning hyperparameters is an important step when developing a good 
ML model, especially for models which have a lot of these parameters [24]. Manual testing is an old approach for tuning the 
hyperparameters, with the drawback that it requires a deep understanding of hyperparameter values, as well as their behavior on 
algorithm performance [25]. Also, manual tuning can be ineffective for algorithms with an ample hyperparameter search space, an 
intricate structure, and in the presence of nonlinear hyperparameter interactions. These factors have motivated increased research into 
hyperparameter optimization (HPO) techniques, whose primary purpose is to automate the tuning process and enable users to 
effectively apply ML algorithms. After an HPO procedure, the best-performed ML algorithm structure for the considered problem 
should be achieved [21] and [26]. Some of the most compelling reasons to employ HPO techniques on ML models are listed below 
[24]:  

1) Since many ML developers spend a substantial amount of time optimizing hyperparameters, this will decrease the amount of human 
effort necessary, especially for tasks with many features or complicated algorithms with an ample search space for 
hyperparameters. 

2) It helps ML models to perform better. When changing datasets or applications, different ML hyperparameters have different op-
timum values.  

3) It helps making models more easily repeatable. Multiple ML algorithms can only be adequately compared when the same degree of 
hyperparameter tuning strategy is employed. Thus, applying the same HPO approach to various ML algorithms aids in selecting the 
optimal ML model for a given problem. 

Metaheuristic algorithms, which are collections of strategies for addressing complex, high search space, and non-convex optimi-
zation problems, can be used to tackle HPO problems [27]. Among all metaheuristic approaches, genetic algorithm (GA) [28] and 
particle swarm optimization (PSO) [29], are the two most common algorithms used for HPO problems. GAs uncover high-performing 
hyperparameter combinations in each generation, passing them on to the next generation, and until the best performing combination is 
discovered [30]. In PSO algorithms, each particle communicates with other particles to find and update the current global optimum in 
each iteration, until the ultimate optimum is found. Metaheuristics can quickly explore the search space for the best or near-best 
solutions [29] and therefore, their excellent efficiency is particularly well suited to HPO issues with huge configuration spaces 
[30]. For example, they can be used in tree-based algorithms with a vast configuration space and many hyperparameters [30]. In 
tree-based methods, boosting algorithms are widely used because of their high accuracy and fast performance. Furthermore, 
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combining them with a metaheuristic approach can increase the accuracy and speed of both the hyperparameter tuning and prediction 
phases. Different works also have been employed regarding these matters. For example, Mohit Jane [31] used a GA to tune the XGBoost 
hyperparameters for classification problems. Telikani et al. [32] investigated evolutionary computation approaches to improve the 
performance of ML models in phases like preprocessing, learning and postprocessing. Zhang et al. examined a modified type of beetle 
antennae search (BAS) algorithm for hyperparameter tuning the random forest model in order to predict the shear strength of concrete 
beams based on two types of datasets for beams with and without stirrups [33]. Sun et al. proposed a 360-sample dataset for coalcrete 
material and used support vector machines (SVM) optimized by the BAS algorithm for predicting the young modulus of the material 
[34]. In another study, the evaluation of PSO-tuned ensemble algorithms is considered for the strength assessment of jet-grouted 
coal-grout composites [35]. 

In this paper, First, a new dataset of 558 samples is assembled from the literature. Then, the effectiveness of the GA for hyper-
parameter optimization of various boosting-based methods, such as XGBoost, CatBoost, and LightGBM, will be explored on the pro-
posed dataset for shear strength prediction. In order to make a comparison, consideration of these three boosting-based algorithms 
with their default hyperparameters is also examined, alongside other conventional ML methods such as random forest (RF), decision 
trees (DT), artificial neural network (ANN), and support vector machine (SVM). Models’ performances are evaluated based on five 
measurement metrics. Also, the correlation matrix of the dataset is extracted, and the presence of multicollinearity is studied. Principal 
component analysis (PCA) as a way to tackle multicollinearity is performed on the dataset, with four and nine principal components 
with at least 72% and 95% informative performance of the primary dataset being selected and considered as two new datasets. After 
that, performance of GA-boosting models on the datasets given dimension reduction is compared based on the same five metrics. In the 
third step, the predictions from the GA are tuned into ML models, being compared with a mechanics-based and GP extracted [18] 
models. In the end, sensitivity and parametric analysis [36] are conducted, input features are compared based on their influence on the 

Fig. 1. Schematic diagram of squat RC walls.  

A. Farzinpour et al.                                                                                                                                                                                                    



Case Studies in Construction Materials 18 (2023) e01928

4

resulted estimations, and conclusions are made according to the results of the different steps. 

2. Material and methods 

2.1. Squat shear wall data set 

An experimental dataset is required to create an adequate estimation model for predicting the shear strength of squat shear walls. A 
new set of 558 squat shear wall tests has been compiled, which combines earlier datasets from Ma et al. [37]- [38] and Feng et al. [17]. 
This set can improve the prediction accuracy of ML models because of the large number of test instances. The schematic depiction of 
the squat RC wall tests in the dataset is shown in Fig. 1. The four input category features are the geometric dimensions, reinforcement 
ratio, material characteristics, and applied loads, as depicted in this diagram, and Table 1 shows a statistical description of the input 
features. 

2.2. Genetic algorithm 

GA [28] is a popular metaheuristic and population-based optimization algorithm(POAs) [39] and [40] based on natural selection 
and genetics. More specifically on the fact that people with the highest survival and environmental adaption have more chances to live 
and pass on their qualities to next generations. Various studies have been done based on the use of POAS in different fields, like 
structural engineering [41] or hyperparameter optimization [28], [29], and [42]. In GA, each chromosome, or person, represents a 
hyperparameter, and its decimal value is the actual input value for the hyperparameter in each evaluation. Every chromosome has 
several binary digit genes prone to crossover and mutation activities. The population comprises all possible values within the 
initialized chromosome/parameter ranges, whereas the fitness function describes the population’s fitness [43]. The following are the 
main GA procedures [39]: 

1) Initialize the population, chromosomes, and genes randomly, representing the whole search space, hyperparameters, and hyper-
parameter values, respectively.  

2) To evaluate the performance of each individual in the current generation, calculate the optimal function, which is the objective 
function of an ML model.  

3) To create a new generation with the next set of hyperparameter configurations to be evaluated, perform chromosomal selection, 
crossover, and mutation operations.  

4) Repeat steps 2 and 3 until the termination condition is satisfied.  
5) Terminate and output the ideal hyperparameter configuration. 

The population initialization phase in GA and PSO is crucial, since it provides an initial estimate of the optimum values. Near-global 
optimum solutions should be included in a good initial population of hyperparameters, by covering the prospective areas and not being 
restricted to an unpromising part of the search space [44]. Random initialization, which essentially provides an initial population with 
random values in the search space, is frequently used in GA to generate hyperparameter configuration possibilities for the first 
population [45]. GA has O(n2) time complexity, and as a result, GA might be inefficient due to its low convergence speed. The 
fundamental issue of GA is that it requires the user to define extra hyperparameters, such as the fitness function type, population size, 
crossover rate, and mutation rate. Furthermore, and since GA is a sequential execution technique, parallelization is challenging [46]. 

2.3. Extreme gradient boosting (XGBoost) 

XGBoost is a type of ensemble learning approaches, which are used to predict and interpret the mechanical behavior of concrete 
structures in some researches [17] and [47]. Compared to the gradient boosted decision tree (GBDT), XGBoost has improvements in 

Table 1 
Statistical description of dataset input features.  

Features/value mean std min 25% 50% 75% max 

Hw  918.91  516.02  145.00  500.00  860.00  1300.00  2200.00 
Lw  1328.24  769.94  420.00  600.00  1180.00  1905.00  3960.00 
tw  76.09  43.89  10.00  40.00  70.00  101.60  160.00 
fc  28.56  14.52  12.30  19.10  25.50  33.00  104.00 
ρv  0.0070  0.0054  0  0.0036  0.0056  0.0090  0.0367 
fyv  367.86  114.84  0  303.26  369.00  433.00  624.00 
ρh  0.0069  0.0050  0  0.0034  0.0057  0.0092  0.0367 
fyh  368.70  115.49  0  302.30  369.00  433.00  624.00 
ρL  0.0303  0.0202  0.0035  0.0150  0.0250  0.0461  0.1058 
fyL  382.92  82.07  208.90  312.30  382.20  443.40  605.00 
P  286.06  488.90  0  0  0  448.25  2365.00 
tf  118.29  69.70  30.00  80.00  101.60  150.00  360.00 
bf  295.18  390.13  30.00  100.00  152.40  360.00  3045.00  
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multithreaded processing, the classifier, and optimization function. This algorithm controls the complexity of the tree and reduces 
overfitting by adding a regularization term to the objective function. A column sampling technique is employed to prevent overfitting. 
The second order Taylor expression of the objective function is used to make the definition of the objective function simpler and more 
precise when finding the optimal solution [17] and [48]. 

Considering D
{(

xi, yi
) }

as a dataset with n samples and m features, the predictive variable is an additive model which is made up of 
k basic models and can be formulated as follow: 

ŷi = ϕ(xi) =
∑K

k=1
αk fk(xi) (1)  

where ŷi is the prediction value; ϕ() is the final strong learner; fk() is the weak learner (the decision tree (DT) technique produces a 
weak learner); K is the number of weak learners; and αk is the learning rate (to avoid overfitting, the learning rate was employed). 

As mentioned earlier the objective function of XGBoost includes a regularization term which represent the complexity of the model 
and a traditional term for the loss between predicted and real values; as follow [17] and [48]: 

Obj =
∑m

i=1
(yi − ŷi)

2
+
∑

k
Ω( fk) (2)  

Ω( fk) = γT +
1
2

λ‖wk‖ (3)  

where wk is the leaf scores (or weights); and γ and λ are the penalty coefficients. Regularization term can smooth the final learning 
weight and avoid overfitting. 

2.4. CatBoost 

CatBoost is an improvement of GBDT algorithm similar to XGBoost. CatBoost provides a novel and effective method of dealing with 
categorical features throughout the learning process, using Order boosting to correct prediction shift problems and improve accuracy. 
The CatBoost method was intended to make it easier to deal with the category features in GBDT. CatBoost uses a more efficient method 
that avoids overfitting at the same time it allows for training on the entire dataset, which is achieved by randomly permuting the 
dataset and computing the average label value for each sample with the same category value placed before the given one in the 
permutation [42]. 

2.5. LightGBM 

LightGBM is a Microsoft-published enhancement framework based on the decision tree method introduced in 2017 [49] and [50]. 
The significant features of LightGBM are to include a decision tree strategy based on gradient-based one-side sampling (GOSS), 
exclusive feature bundling (EFB), and a histogram and leaf-wise growth approach with a depth limit and unlike XGBoost, LightGBM 
would grow the tree vertically whereas other algorithms grow trees horizontally, which makes LightGBM an effective method in 
processing large-scale data and features [49] and [50]. Again considering D

{(
xi, yi

) }
as a dataset with n samples, LightGBM objective 

function can be written as: 

Obj(t) =
∑n

i=1
l(yi, ŷt

i)+
∑t

i=1
Ω( fi) =

∑n

i=1
l(yi, ŷ(t− 1)

i + ft(xi))+
∑t

i=1
Ω( fi) (4) 

With considering logistic loss and the Taylor expansion the objective function will be: 

Obj(t) =
∑n

i=1

[

l
(
yi, ŷ(t− 1) )

+ gi ft(xi)+
1
2
hi f 2

t (xi)

]

+Ω( ft) (5)  

where gi and hi denote the first- and second-order gradient statistics of the loss function. 
Using the accumulation of n samples to pass over all of the leaf nodes as in Eq. 6, it yields: 

Obj(t) ≅
∑n

i=1

[

gi ft(xi)+
1
2

hi f 2
t (xi)

]

+Ω( ft) (6) 

Considering Ij denote the sample set of leaf j, the objective function could be transformed as follow: 

Obj(t) =
∑n

i=1

[(
∑

i∈Ij

gi

)

wj +
1
2

(
∑

iϵIi

hj + λ

)

w2
j

]

(7) 

For a certain tree structure, the partial derivative of the jth leaf node’s output Wj is calculated, and the extreme value of objective 
function could be solved as follows: 
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ωj
* = −

∑
i∈Ij

gi
∑

iϵIi
hj + λ

(8)  

Lt(q) = −
1
2
∑T

j=1

∑
i∈Ij

gi
2

∑
iϵIi

hj + λ
(9) 

Finally, the objective function after adding split can be written as: 

G =
1
2

[ ∑
i∈IL

gi
2

∑
iϵIL

hi + λ
+

∑
i∈IR

gi
2

∑
iϵIR

hi + λ
−

∑
i∈Igi

2
∑

iϵIhj + λ

]

(10)  

where IL and IR are the sample sets of the left and right branches, respectively [50]. 

2.6. Multicollinearity and principal component analysis (PCA) 

Multicollinearity refers to the state where independent variables in the dataset exhibit a strong relationship with each other. As a 
result, this can cause problems when the model is fitted, and interpretations are needed for the results. There are several methods to 
identify and tackle multicollinearity. Pearson’s correlation coefficient metric directly evaluates the strength of the relationship be-
tween two variables, where its values range between − 1 and 1. The correlation coefficient’s magnitude represents the relationship’s 
strength, with a higher value corresponding to a stronger relationship. By calculating the correlation between pairs of predictive 
features, the presence of multicollinearity between them can be identified. Fig. 2 shows Pearson’s correlation coefficient matrix. 

The correlation matrix indicates that there are four pairs of features ((Hw, tw), (Lw, tf), (ρh, ρv), (fyh, fyv)) that indicate the 
presence of multicollinearity, due to correlation coefficient values of more than 0.7. One way to deal with multicollinearity is to use 
dimensionality reduction techniques, such as PCA analysis. PCA is a multivariate method used to evaluate a dataset where many inter- 
correlated quantitative dependent variables represent observations. Its purpose is to extract the essential information from the dataset, 
represent it as a set of new orthogonal variables called principal components, and display the similarity pattern of the observations and 
variables as dots on maps. Cross-validation techniques, such as the bootstrap or the jackknife, can be used to test the validity of the PCA 
model [51]. 

2.7. Model implementation 

The original dataset is randomly divided into training and testing datasets for each of the three model implementations, with a 
division of 75% and 25% for training and testing sets, respectively. The GA steps for each model are as follows [31]: 

Fig. 2. Correlation matrix of a dataset.  
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1) Initialization, in which the parameters are randomly initialized to form the population.  
2) The model is trained using the initial population and determining the fitness value. In the case of a regression problem, the cross- 

validation score on the coefficient of determination (R2) is used.  
3) Specify the number of parents to be chosen and build an array of the chosen parents based on their fitness value.  
4) Use uniform crossover, in which each parameter for the child is chosen independently from the parents, based on a predefined 

distribution.  
5) Genetic mutation, where variety is introduced to the children, by randomly picking one of the factors and changing its value by a 

random amount. Certain constraints are also added to keep the changed values within a specified range. 

The performance of the three models is assessed using the training and testing sets, using the coefficient of determination (R2), root- 
mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Also, the performance index (PI), 
as proposed by Gandomi and Roke [52] is calculated. It is a function of both R and RMSE and its lower values (closer to zero) indicate 
better model performance. Its formula can be shown below: 

PI =
RRMSE
R + 1

(11) 

After that, PCA analysis is done on the data set, and a certain number of features are chosen based on the cumulative variance chart. 
Genetic-based techniques are used on the dimensionality reduction data set, and the results are investigated for the reduced dataset. 
Compression of models was made with a semi-empirical mechanics- and a GP-based model. In the end, sensitivity and parametric 
analysis are also conducted. 

3. Results and discussions 

3.1. Results on the basic dataset 

The shear strength values for squat walls predicted by the genetically tuned XGBoost, CatBoost, LightGBM and other mentioned 
models for the entire dataset are described in this section. Table 2 presents the evaluation results of the models on the original dataset 
and for five accuracy metrics. According to four of five metrics, algorithms that are optimized with GA outperformed examinations 
with their default hyperparameter values on the test set. Also, GA-XGBoost outperformed all other conventional ML models. The RF 
and DT parameters are set to their default values. For ANN, 10 hidden layers are considered, with 4000 maximum iterations. And, for 
SVR, the C and gamma parameters are equal to 4000 and 0.2, respectively. 

Figs. 3–6a illustrate the change in the values of the different hyperparameters in the population, during the generations of the GA, 
for the XGBoost model. Fig. 6b shows the R2-score changes in the 10-fold cross-validation score on training sets, which is part of the 
fitness function in GA. Twelve parents are considered and updated in the following generations through the use of mutation and 
crossover methods. The algorithm started with a high fitness value of nearly 0.967 in the first parent at the first generation in the 
randomly initialized population, but it could improve in subsequent generations until the final generation of the first parent, where it 
reaches the highest value of 0.984. They suggest the value of each parameter for the best R2 performance, as seen in this generation of 
first parent from hyperparameter figures, with learning_rate = 0.203, n_estimator = 900, maximum depth = 14.0, min child weight 
= 10.0, subsample = 0.727, col sample by tree = 0.897 and reglambda = 7.201. 

Table 2 
Evaluation of different metrics on machine learning models.  

Methods Sets R2 RMSE (kN) MAE (kN) MAPE (%) PI 

GA-XGBoost Training  0.9998  2.98  1.26  0.64  0.002 
Testing  0.9906  71.38  43.89  11.44  0.036 

XGBoost (Default) Training  0.9998  2.70  1.22  0.82  0.001 
Testing  0.9846  91.10  53.63  10.91  0.047 

GA-CatBoost Training  0.9995  14.69  10.46  5.54  0.008 
Testing  0.9861  86.53  50.29  14.91  0.044 

CatBoost (Default) Training  0.9994  16.26  11.79  5.80  0.009 
Testing  0.9852  89.46  51.67  12.10  0.047 

GA-LightGBM Training  0.9999  7.06  3.90  1.75  0.004 
Testing  0.9867  84.74  49.13  13.95  0.043 

LightGBM (Default) Training  0.9934  56.18  30.11  7.79  0.031 
Testing  0.9844  91.87  58.60  13.12  0.047 

ANN Training  0.9934  56.07  39.17  17.52  0.031 
Testing  0.9554  155.19  83.78  23.41  0.079 

RF Training  0.9960  43.74  22.79  4.98  0.024 
Testing  0.9851  89.64  56.19  11.59  0.046 

DT Training  0.9999  2.41  0.42  0.31  0.001 
Testing  0.9789  106.79  52.60  12.15  0.054 

SVM Training  0.9996  13.74  3.92  1.84  0.007 
Testing  0.9863  85.92  48.39  13.46  0.044  
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The total execution times for the training and testing phases of boosting-based algorithms and tuning the hyperparameters of 
methods with the mentioned genetic algorithm are shown in Table 3. According to the results, CatBoost had the best performance in 
both phases. However, results for the other two methods are also great, which shows the efficiency of boosting algorithms for pre-
diction and metaheuristic methods for hyperparameter tuning. It should be noted that results can vary for datasets with different 
amounts of data and different genetic algorithm configurations. 

In order to make a comparison between predictions and their actual values, Fig. 7 illustrates the measured shear strengths versus 
the model’s predicted shear strengths for both training and testing sets, showing that shear strength can be accurately predicted using 
these models. The variation of scatters around the ideal y = x line is so low, and the prediction results of algorithms are closely 
reaching the line, implying that the predicted and tested values are almost identical. Also, among the three algorithms, GA-XGBoost 
performed the best with the lowest variation of scatters. 

Fig. 8 displays the prediction-to-test ratios of shear strengths for the proposed dataset versus the aspect ratio of walls (i.e., hw/lw) 
from 0.0 to 2.0. The resulted mean ± standard deviation prediction intervals of ratio points are also provided as a result. As can be seen 

Fig. 3. Hyperparameter values history: (a) learning rate, and (b) n_estimator.  

Fig. 4. Hyperparameter values history: (a) maximum depth, and (b) minimum child weight.  
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from the figure, the dispersion of data points around the mean value line is higher for walls that have a lower aspect ratio than 1.5. This 
is totally because of the more complicated behavior of these types of squat walls, which is known as shear-kind performance, and it is 
harder for ML models to learn these types of patterns [17]. However, as shown in the figure, the amount of dispersion is not excessive, 
indicating that the models performed well. The minimum, maximum, coefficient of variation, and standard deviation of 

Fig. 5. Hyperparameter values history: (a) subsample, and (b) col sample by tree.  

Fig. 6. Hyperparameter values history: (a) reglambda, and (b) R2-score history of cross-validation.  

Table 3 
Execution time of algorithms.  

Models Training and testing (second) Tuning (minutes) 

GA-XGBoost  1.06  13.2 
GA-CatBoost  0.48  8.6 
GA-LightGBM  1.83  16.5  
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prediction-to-test ratios are also summarized in Table 4. 
According to Table 4, the mean of prediction for all the three models is very close to 1.0. The highest coefficient of variation among 

all the three models is for XGBoost, which is only 8.1%, and for LightGBM and CatBoost are 10.6% and 13.6%, respectively. These 
results also show the excellent performance of GA tuned models, for shear strength prediction of shear walls. 

3.2. Results on PCA extracted dataset 

After showing that there are four pairs of features with a high correlation coefficient, for making a comparison between the number 
of necessary principal components for prediction, four and nine principal components with the cumulative explained variance equal to 
0.72 and 0.95 are considered as new inputs for shear strength prediction and genetic-based ML models are examined using them. 
Singular value decomposition is used to obtain the relationship between PCA-selected features. Preprocessing stage is considered in the 
same manner as the original dataset, which means that 25% of the dataset is considered for the test set. Also, standard scaling is done 
for input features. Table 5. Displays the findings of five common metrics for algorithms based on the dataset obtained by PCA Analysis 
on the original dataset. 

The preceding findings demonstrate the great results of genetic tuned boosting-based algorithms on PCA-based datasets, with at 
least 92.96% and 96.06% R2 Scores for the GA-XGBoost and GA-CatBoost on four and nine principal component inputs, respectively. 
For four principal components GA-CatBoost and GA-LightGBM achieved the best results, while for nine components GA-XGBoost got 
the highest values from the measurement metrics, according to Table 5. 

3.3. Validation of proposed model with other methods 

3.3.1. Genetic programming (GP) based model 
Gondia et al. [18], as mentioned before, used GP to develop a shear strength prediction model, by using a dataset of 254 squat 

reinforced concrete shear walls with boundary elements. In this study, important factors on the behavior walls and shear strength were 
identified in the first step. After that, GP, which is a form of artificial intelligence, was used to propose the expression. The final 
GP-generated expression, according to this study, is: 

Fig. 7. Results of the shear strength prediction.  
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Fig. 8. Prediction –to– test ratios of shear strengths.  

Table 4 
Boosting-based methods of prediction performance.  

Models Predicted-to-test ratio results 

Minimum Maximum Mean Standard deviation COV 

GA-XGBoost  0.632  1.573  1.006  0.081  0.081 
GA-CatBoost  0.474  1.858  1.014  0.138  0.136 
GA-LightGBM  0.571  1.998  1.010  0.107  0.106  

Table 5 
Evaluation of different metrics on machine learning models with PCA dataset.  

Number of Principal Components Algorithms Sets R2 RMSE (kN) MAE (kN) MAPE (%) PI 

Four GA-XGBoost Training  0.9984  28.49  16.76  8.59  0.015 
Testing  0.9296  178.55  113.23  40.53  0.109 

GA-CatBoost Training  0.9959  14.45  10.83  6.41  0.008 
Testing 0.9538  144.74  81.72  25.16  0.085 

GA-LightGBM Training  0.9845  81.88  47.58  19.54  0.049 
Testing 0.9450  136.92  76.88  34.76  0.093 

Nine GA-XGBoost Training  0.9996  14.69  7.91  3.04  0.008 
Testing  0.9728  110.93  61.98  16.15  0.063 

GA-CatBoost Training  0.9998  7.26  5.68  3.94  0.004 
Testing 0.9609  133.04  81.24  24.60  0.075 

GA-LightGBM Training  0.9955  44.48  28.39  14.67  0.026 
Testing 0.9652  108.91  70.33  43.25  0.074  
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VGP = αc
( ̅̅̅̅

f ′

c

√

twlw
)
+ αs

(
ρhfyhtwlw

)
+αP(P) (12)  

where: 

αc = [8.29 − 1.14(hw/lw) ]

αs = [0.68 − 0.38(hw/lw) ]

αP = [0.44 − 0.17(hw/lw) ]

The above expression is valid for walls with the same values of ρv and ρh, according to the mentioned study; thus, a subset of the 
original dataset with this condition is extracted to do a comparative study with current methods. The range of variables in the subset is 
also set to be nearly the same as the training and testing dataset of GP expression. The statistical information of this part is summarized 
in Table 6. 

First, the GP-based expression is used to predict the shear strength of wall samples in Table 6. After that, the results of genetic tuned 
algorithms with this subset are extracted. Compression is done based on the mean, standard deviation, and coefficient of variation of 
the predicted to test values ratio. The results are summarized in Table 7. 

As seen from the previous table, the performance of the three GA tuned boosting-based methods is better than GP-based expression, 
with relative mean values close to 1.0 and COVs of 0.11, 0.10, and 0.16, for GA-LightGBM, GA-XGBoost, and GA-CatBoost, respec-
tively. It must be noted that the resulted mean and COV of GP expression are close to what is mentioned in the reference paper, which is 
0.27 and 0.26, for training and testing sets, respectively. 

3.3.2. Mechanic-based semi-empirical model 
A mechanic-based semi-empirical model, which is based on the ASCE/SEI 43–05 [53], is adopted to examine the accuracy of ML 

models. The formulation of the mentioned model is as (Eq. 13): 

Vn = vndtw  

vn = 0.69
̅̅̅̅

f ′

c

√

− 0.28
̅̅̅̅

f ′

c

√ (
hw

lw
− 0.5

)

+
P

4lwtw
+ ρsefyh ≤ 1.66

̅̅̅̅

f ′

c

√

ρse = Aρv +Bρh (13) 

In the above equations, d = 0.6lw; ρse is the equivalent reinforcing ratio that combines ρh and ρv. A and B in the equation of ρse, can 
be obtained as follow: 

⎧
⎨

⎩

hw/lw ≤ 0.5,A = 1,B = 0
hw/lw ≥ 1.5,A = 0,B = 1

0.5 ≤ hw/lw ≤ 1.5,A = − hw/lw + 1.5, hw/lw − 0.5

⎫
⎬

⎭

This model, combined with GA-LightGBM, GA-CatBoost and GA-XGBoost, is used to predict the shear strength of 558 shear walls in 
the dataset. 

The mean, standard deviation, maximum, minimum, and COV values for these predicted-to-test ratios are shown in Table 8. The 
results of the three ML models offer a superior mean prediction, and a considerably lower prediction variance, as seen in the table. The 
ASCE model’s mean ratio prediction is 0.87, which is close to 1.0; however, the model’s coefficient of variation is relatively large 
(0.43). The results from ML models are excellent for both mean and coefficient of variation, which shows the robustness of the pro-
posed models. 

3.4. Sensitivity and parametric analysis 

A parametric analysis based on Gandomi et al. [37] was also performed for each of the three boosting-based methods, giving the 
possibility to investigate the influences of each input variable on the final shear strength estimation output of the models. The 
sensitivity of model output for prediction to each of the input variables can be investigated using E.q.14 and E.q.15: 

Ni = fmax(xi) − fmin(xi) (14)  

Si =
Ni

∑n
j=1Nj

× 100 (15)  

where fmax(xi)and fmin(xi) are, respectively, the maximum and minimum wall shear strength estimations resulted based on the pre-
dictive models while setting all other variables except xi equal to their mean values. 

Results of the parametric study are shown in Fig. 9. As seen in this figure, all three boosting-based methods show obvious positive 
trends for features, like (Lw), (tw), (P) and (bf). These are parameters that when increasing their value, affect positively the shear 
strength of walls and increase shear strength estimation. Looking to feature like (Hw), there is decreasing trends for shear strength 
estimation as its value will decrease with increasing values of this feature. Also, slight decreasing trends can be deduced for some 
ranges of (fyh). However, as can be seen, trends of shear strength prediction for each input feature are not smooth due to the tree-based 
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structure of these algorithms. Also, it must be noted that models converge to a constant behavior for low-frequency ranges of feature 
values, and cannot have a good training. In general, the performance of boosting-based methods, like other complex ML models are so 
dependent on the availability of a sufficient amount of data for both training and testing so that it will ensure both high performance 
and no occurrence of overfitting and also proper tuning of these algorithms is necessary to avoid overfitting. The results of the 
sensitivity analysis of the three models are also depicted in Fig. 10, which shows that the shear strength prediction results of GA- 
LightGBM and GA-CatBoost are most sensitive to (Lw), (tw), (bf) and (P). For GA-XGBoost, the four most sensitive parameters are (Lw), 
(tw), (ρh) and (Hw). These findings are in close agreement with other studies like [17] and [18], which show the robustness of the three 
models. 

4. Conclusions 

This study introduced a boosting-based technique, to estimate the shear strength of squat RC walls, which was tuned using a GA. 
For this experiment, a dataset of 558 specimens were used; and then, the dataset was randomly split into training and test sets, and 
preprocessing methods were applied. Then, an ML-tuned algorithm was used to predict shear strength, and the results were evaluated 
with other methods using five accuracy measurements. It was also studied the presence of multicollinearity in the dataset, having 
found four pairs of features with high correlation between them. PCA analysis was performed to tackle multicollinearity, four and nine 
principal components were considered as new input features. Also, the prediction results of ML models on these new reduced datasets 
were discussed. The proposed models’ robustness was examined using another GP and semi-empirical model for shear strength pre-
diction. Finally, sensitivity and parametric analyses for the three studied models were conducted. 

The following are the conclusions that could be derived from this research:  

• Due to the excellent accuracy and speed that can be achieved, boosting-based Ensemble learning algorithms, like LightGBM, 
XGBoost, and CatBoost, are beneficial in prediction problems. The validation accuracy of these methods was as high as 99%. 

Table 6 
Wall samples in the reduced dataset.  

Parameters/value count mean std min 25% 50% 75% max 

Hw  187  753.694  255.419  330.000  488.975  800  1000  1200 
Lw  187  1384.968  685.904  430  813  1220  1905.500  3327 
tw  187  62.909  35.460  10  40  50.800  79  160 
fc  187  29.520  14.120  12.300  20.690  25.580  34.995  102 
ρv  187  0.008  0.005  0  0.005  0.006  0.012  0.024 
fyv  187  366.574  74.011  270.973  323  341.302  412  551.600 
ρh  187  0.008  0.005  0  0.005  0.006  0.012  0.024 
fyh  187  365.546  71.266  271  323  341.300  412  500 
ρL  187  0.034  0.017  0.006  0.021  0.032  0.047  0.089 
fyL  187  364.474  68.774  272  308.850  366.800  407  539.200 
P  187  176.014  359.811  0  0  0  30.020  1423 
tf  187  113.040  63.633  30  60  101.600  127  320 
bf  187  234.550  224.013  60  95.250  145  300  1000  

Table 7 
Compression of three ML models with GP-Based expression.  

Models Predicted-to-test ratio results 

Minimum Maximum Mean Standard deviation COV 

GP-Based expression  0.57  2.65  1.03  0.31  0.30 
GA-XGBoost  0.676  1.573  1.016  0.104  0.102 
GA-CatBoost  0.475  1.858  1.029  0.165  0.161 
GA-LightGBM  0.815  1.689  1.013  0.108  0.107  

Table 8 
Compression of the three ML models with a semi-empirical model.  

Models Predicted-to-test ratio results 

Minimum Maximum Mean Standard deviation COV 

ASCE  0.31  2.91  0.87  0.38  0.43 
GA-XGBoost 

GA-CatBoost  
0.632 
0.474  

1.573 
1.858  

1.006 
1.014  

0.081 
0.138  

0.081 
0.136 

GA-LightGBM  0.571  1.998  1.010  0.107  0.106  
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• For hyperparameter tuning of models with a high search space, a metaheuristic approach like a GA can be more efficient, when 
compared with other methods like grid search, due to speed and automatic capabilities.  

• A compression is made between the Genetic tuned LightGBM, XGBoost, and CatBoost method; XGBoost achieved the best overall 
performance with R2 = 0.9906, RMSE = 71.38 kN, MAE = 43.89 kN, MAPE = 11.44 %, and PI = 0.036 on the testing set.  

• The PCA method can be useful on datasets with a high correlation between features. The predictions made using these new features 
were made with advanced ML methods, leading to the conclusion that extracted datasets can be close to full-dimensional ones. This 
is very important for datasets with a high number of features. Four and nine principal components of the RC squat wall dataset are 

Fig. 9. Parametric analysis of dataset shear strength using developed GA-XGBoost (blue line), GA-CatBoost (green line), GA- LightGBM (red line).  
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considered as new input features, and three models are investigated on them. Genetic-tuned CatBoost had the best results for four 
principal components, while GA-XGBoost scored the best for a dataset with nine considered principal components.  

• Compression is performed between three proposed models and GP-based expression based on a reduced dataset compatible with 
feature ranges used for training and testing GP-based expression. ML models have much less coefficient of variation and mean 
values close to one for predicted to test ratios of shear strength. These results are the same for a semi-empirical model based on 
ASCE.  

• Sensitivity and parametric analysis were also conducted for three models. The results show that models are sensitive to critical 
parameters on the shear strength of squat walls, which is comparable with other studies in this area. 

Due to the excellent accuracy and speed that can be achieved, boosting-based ensemble learning algorithms might be beneficial as 
surrogate models in prediction and optimization problems. Future use of these algorithms in studies like reliability-based design 
optimization can greatly reduce the required computational cost. Also, they can eliminate experimental investigations of squat shear 
walls with configurations in the range of the training dataset. However, to produce the same high accuracy for models on other ranges 
of data and other types of shear walls, additional studies are required based on new sample data points. 
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