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Abstract: The construction industry is a high-energy-consumption industry. Nearly 40% of global
carbon emissions derive from the construction industry. Prefabricated assembly technology is an
effective means of carbon emission reduction, but the incremental cost of prefabricated components
is much more expensive than that of cast-in-place components. It is not conducive for enterprises to
choose prefabricated assembly technology to decrease emissions. Most of the current studies focus on
the carbon-reduction effect of prefabricated assembled buildings, and there are fewer studies related
to the impact of cost factors on enterprises’ participation in building carbon reduction. The cost factor
will affect the choice of prefabricated assembly technology to reduce carbon emissions. Therefore, it is
necessary to analyze the relationship between carbon emissions and costs in prefabricated buildings.
Aiming at this problem, this paper proposes a dual-objective method to optimize cost and carbon
emissions by using the improved optimization algorithm to solve the problem. Through the analysis
of actual cases, the results show that when the prefabrication rate is 35–40%, enterprises can obtain a
better carbon-emission-reduction effect by appropriately increasing the cost. When the prefabrication
rate is higher than 40%, the carbon-reduction effect that can be obtained by greatly increasing the cost
is limited. Therefore, when enterprises decide a prefabrication range of 35–40%, they are able to obtain
the maximum carbon-reduction effect with the minimum cost. This study can provide a reference for
the government to formulate relevant policies with energy conservation and emission reductions in
prefabricated buildings and also can provide a reference for enterprises to make decisions between
carbon emission reduction and cost.

Keywords: construction carbon emissions; prefabricated technology; component cost; dual-objective
optimization

1. Introduction

The construction industry is listed as one of the largest consumers of energy, with
serious waste in terms of resources [1]. The industry consumes 36% of global energy con-
sumption, and its carbon emissions have reached up to 40% of global carbon emissions [2–4].
According to the relevant research on global carbon emissions, construction is a major
industry contributing to emissions, which indicates a great potential for reducing carbon
emissions [5–7]. The Paris Agreement set a goal for carbon neutrality by 2050 [8], while
China has announced that it aims to peak its carbon emissions before 2030 and achieve
carbon neutrality before 2060 [9–11]. For China to achieve its target, it is critical to reduce
the carbon footprint derived from the construction industry. With the rapid development
of China’s urbanization, the construction area has maintained an annual growth rate of 3%
to 5% in the past ten years [12], which increases the pressure of carbon emission reduction.
Enterprises have outdated construction technology, serious waste of materials and energy
in the production process, and insufficient investment in technology, which make the huge
carbon-emission-reduction potential of the construction industry untapped. Since the 21st
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century, modern construction technology has developed towards green construction, with
low energy consumption and low pollution. In this trend, prefabricated buildings have
gained attention. The prefabricated building (Precast Concrete (PC) building) is to transfer
manyon-site operations to the factory instead of the traditional construction process [13].
The components and accessories are fabricated in the factory, transported to the construc-
tion site, then installed in a standardized connection method to complete the building.
Compared with traditional cast-in-place buildings, prefabricated buildings have greatly
improved the utilization efficiency of building materials, construction equipment, and labor.
They reduce construction waste and material waste [14], improve construction quality [15],
increase production safety [16,17], and make the energy-saving and emission-reduction
effect better [18]. The wide use of PC buildings is an effective method for carbon emission
reductions in the whole life cycle of buildings [19]. In 1976, the U.S. Congress passed the
National Industrial Housing Construction and Safety Act. In the same year, a series of
strict industry norms and standards were issued, which are still in use today. Europe is the
birthplace of prefabricated construction, and the road to industrialization of construction
began as early as the 17th century. Various professional precast construction systems
and product series standards have been formed. In Japan’s first five-year housing plan
formulated in 1965, the “Five-Year Plan for New Housing Construction”, it was pointed
out that the ratio of industrialized housing should reach 15%. After 1975, the Japanese
government issued two codes, “Industrialized Housing Performance Certification Reg-
ulations” and “Industrialized Housing Performance Certification Technical Standards”,
which played a decisive role in improving the industrialization level of Japanese housing.
China proposed the “ACTION PLAN FOR CARBON DIOXIDE PEAKING BEFORE 2030”,
developing low-carbon building materials and green construction, and vigorously uses
prefabricated buildings to strengthen green design and green construction. By 2025, the
proportion of new prefabricated buildings will be greater than 30% [20], with reference to
“The 15th-FIVE-YEAR PLAN”. These policies have also strongly pushed the development
of low-carbon buildings.

Hao et al. [21] proposed to use building information modeling (BIM) technology to
simulate and evaluate instead of building physical facilities and measured the carbon emis-
sions of prefabricated buildings. The results show that prefabricated assembly technology is
able to reduce building carbon emissions. Ji et al. [22] relied on Luban software to simulate
prefabricated assembly construction technology and cast-in-place construction technology.
The results show that in the construction process, compared with cast-in-place technology,
the prefabricated assembly technology is more environmentally friendly. Based on BIM
technology and a carbon-emission calculation model, Ding et al. [23] measured the carbon
emissions of prefabricated buildings in the materialization stage and compared them with
cast-in-place technology. Hence, they concluded that the carbon emissions of prefabricated
components were decreased by 20.11% per unit volume, compared to cast-in-place com-
ponents. The carbon emission reduction effect is remarkable. The above studies show
that prefabricated buildings have high potential for energy saving and emission reduction.
However, in recent years, it has been found that not all prefabricated components have a
better carbon-reduction effect than prefabricated components. Teng et al. [24] conducted
research on 12 factors that affect the carbon emissions of prefabricated buildings and found
that prefabricated buildings do not promise to reduce carbon emissions without using
energy-efficient materials. Du et al. [25] found that in the prefabricated building supply
chain, technical factors play the most important role in carbon reduction. Jeong et al. [26]
found that although the new prefabricated column improved the production efficiency, the
carbon emission of the prefabricated column would be higher than that of the traditional
one, which is the result of increasing the material. Du et al. [27] measured the carbon
emissions of buildings based on three prefabrication scenarios and found that prefabri-
cated transverse members had the most significant carbon-reduction effect. Chippagiri
et al. [28] proposed that prefabrication technology can effectively contribute about 30% in
reduced carbon emissions. Pan et al. [17] suggested that using well-proven methods and
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materials contributed to the high capital cost. Jingke et al. [29] proposed that the average
incremental cost is highly linearly correlated with the prefabrication rate, which ranged
from 237 CNY/m2 to 437 CNY/m2 in Mainland China.

The above studies show that prefabrication technology is an effective means to reduce
carbon emissions in buildings, and an appropriate increase in prefabrication rate reduces
the overall carbon emissions of buildings. However, these studies do not consider that
prefabricated assembly technology in China is relatively outdated. Increasing the prefabri-
cation rate will lead to a sharp rise in construction costs. The rising cost blocks the way
when companies try to achieve carbon emission reduction in buildings by increasing the
prefabrication rate. Therefore, this paper proposes to optimize the two goals between
carbon emission and cost by means of dual-objective optimization. Combined with engi-
neering examples, the relationship between prefabrication rate, carbon emission, and cost
is analyzed, so that enterprises can create both economic and environmental benefits and
increase the enthusiasm of enterprises to reduce carbon emissions by using prefabricated
assembly technology. This study can provide a reference for the government to formulate
relevant policies with energy conservation and emission reduction of prefabricated build-
ings, and also can provide a reference for enterprises to make decisions between carbon
emission reduction and cost. In this paper, the impact of different prefabrication rates
on building carbon emissions and construction costs is analyzed through dual-objective
optimization, and the maximum environmental benefits are obtained with the minimum
economic cost. It improves the motivation of enterprises to use prefabricated components
for carbon emission reduction and provides reference for the decision-making of enterprises
and government.

2. Problem Description

The minimum cost and carbon emissions of construction projects are two important
indicators for evaluating the profitability and greenness of engineering projects. In the
resource-constrained project scheduling problem (RCPSP), each problem has a single
cost and demand for resources. The multimode resource-constrained project scheduling
problem (MRCPSP) is a form of RCPSP in which each problem has a finite number of
costs—resource modes—and each feasible mode is associated with its specific cost; the
allocation of resources is in one-to-one correspondence [30]. At present, in the field of
MRCPSP, the main area of study is renewable resources (machinery, equipment, labor,
etc.) or non-renewable resources (raw materials, funds, etc.) under the constraints of the
weight relationship, so that each feasible mode has a specific cost and resource demand.
The carbon emission/cost trade-off problem (CECTP) can also be classified as a special
form of MRCPSP.

During the implementation of engineering projects, different prefabrication conditions
will affect the carbon emissions and costs of the building. In general, as the prefabrication
rate increases, carbon emissions decrease and costs increase. Conversely, reducing the
prefabrication rate will increase carbon emissions and reduce costs. For engineering
projects, managers need a balance between the minimization of carbon emissions and
construction costs. The conflicting goals of carbon emissions and cost cannot be minimized
simultaneously under resource constraints. The role of dual-objective optimization is that
under the current resource constraints, the two objectives can achieve a relatively balanced
minimum value. Through a series of simulation analysis, managers can appropriately
increase the prefabrication rate and cost to greatly reduce carbon emissions, or appropriately
reduce the prefabrication rate and increase a small part of carbon emissions to greatly
reduce costs. Finally, we take into account both economic and environmental benefits. To
achieve these goals, the first step is to establish carbon emissions, the lowest-cost objective
function, and constraints for each target. The current resource constraints are solved
by a dual-objective optimization algorithm, a series of optimal solutions that meet the
constraints is used. Common solution algorithms include genetic algorithms, particle
swarm optimization, and simulated annealing algorithms. The optimal solution is obtained
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to make two objectives reach the relatively lowest equilibrium state under the constraints.
Finally, the optimal set of solutions is found to inform the managers’ decisions.

Before establishing a carbon emission–cost dual-objective optimization model, this
paper considers the following factors that can directly affect building carbon emissions and
construction costs:

• The impact of carbon trading on costs:

Carbon trading, in brief, means that one party to the contract obtains carbon emis-
sion allowances by purchasing from the other party, and the buyer uses the purchased
allowances for industries that exceed the standard to achieve carbon-emission-reduction
goals. When considering the objective function of cost, the impact of carbon trading on
construction costs needs to be considered. There is currently no mandatory limit for its
quota, since carbon trading in China’s construction industry is in its infancy. The quota is
temporarily considered based on the carbon emissions when it is fully cast in place. The
reduced carbon emissions can be used for carbon trading, so that companies can make
profits. According to the National Carbon Emissions Trading Market’s figure, the average
price of China’s carbon trading market in 2021, is about 59 CNY CO2/t. When the carbon
emission is lower than the quota, the indicators below the quota can be sold; otherwise, the
indicators need to be purchased to meet the corresponding carbon emission standards.

• Requirements for precast rate:

China’s prefabrication rate for industrialized buildings is limited to not less than
20% [31], but requirements vary from region to region across the country. For instance,
the standard in Beijing and Shanghai is not less than 40%, which is the highest in China.
In some areas, only the assembly rate is required, and the prefabrication situation can be
adjusted according to the actual local conditions.

• Incremental relationship between prefabricated components and cast-in-place components:

Due to the difference in structural design and construction methods, the volume of
prefabricated components per unit area is higher than that of cast-in-place components.
When establishing the optimization model, it is necessary to convert the volume of the pre-
fabricated or cast-in-place component by its adjustment factor into the same component for
modeling. The volume of components in a unit building area shall not be lower than that of
fully cast-in-place components and not higher than that of fully prefabricated components.

3. Model Establishment
3.1. Objective Function
3.1.1. Objective Function of Carbon Emission

Calculate the carbon emissions of structural components according to the carbon
emission coefficient method in the raw material production stage, the transportation stage,
and the component processing and on-site installation stages [32], and the carbon emission
objective function is shown in the below formula.

MinT =
n

∑
i=1

xi × pxei + yi × pyei (1)

where T denotes carbon emissions of the overall structural components of the building
(CO2/kg); xi denotes volume of the i-th cast-in-place component (m3); pxei denotes carbon
emission coefficient of the i-th cast-in-place component (CO2 kg/m3); yi denotes volume
of the i-th prefabricated element (m3); pyei denotes carbon emission factor of the i-th
prefabricated element (CO2 kg/m3).

3.1.2. Objective Function of Cost

The cost of prefabricated components includes the supply cost and the installation
cost of components. The cost of cast-in-place components includes material, labor, and
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equipment usage fee. The cost measurement model of structural components is obtained
by adding up various costs of each component. According to the relevant rules of “Carbon
trading management methods (trial implementation)” in China, this study assumes that
the overall carbon emission of a building is lower than that of a fully cast-in-place building,
which can be considered as carbon saving. The constructed model is as follows.

When T ≥ L:

MinC =
n

∑
i=1

xi × cxdi + yi × cydi + (T − L)× Ct (2)

When T < L:

MinC =
n

∑
i=1

xi × cxdi + yi × cydi + (L− T)× Ct (3)

where C denotes total cost of components (CNY); xi denotes volume of the i-th cast-in-
place component (m3); Cxdi denotes cost of the i-th cast-in-place component (CNY/m3);
yi denotes volume of the i-th prefabricated element (m3); Cydi denotes cost of the i-
th prefabricated element (CO2 CNY/m3); L denotes carbon emissions of cast-in-place
components (CO2/kg); T denotes carbon emissions of the overall structural components of
the building (CO2/kg); Ct denotes carbon trading price (CO2 CNY/kg).

3.2. Restrictions

According to the design requirements of the building, there are certain restrictions
on the structural components within the unit building area. In general, the material con-
sumption of prefabricated components increases compared with cast-in-place components,
and the influence of this part of the increment on the volume of structural components
per unit area should be considered. The volume change will affect the change in carbon
emissions and cost. The prefabrication rate constraints are formulated according to the
actual situation, as shown in the following formula.

Restrictions on the volume of each member within a unit area, according to the actual
data of the project, are considered.

xi × hi + yi = vyi (4)

0 ≤ xi ≤ vxi (5)

0 ≤ yi ≤ vyi (6)

Restrictions on precast rate [31]

∑n
i=1 yi

∑n
i=1 xi + yi

≥ PR (7)

where xi denotes volume of the i-th cast-in-place component (m3); hi denotes adjustment
factor of the i-th cast-in-place component, that is, the ratio of the same prefabricated
component to the cast-in-place component of the same building; vyi denotes volume of the i-
th component, which, per unit building area, completely applies prefabricated construction
(m3); vxi denotes volume of the i-th component, which, per unit building area, completely
applies cast-in-place construction (m3); yi denotes volume of the i-th prefabricated element
(m3); n denotes all kinds of components; PR denotes prefabrication rate, which is the ratio
of the total volume of prefabricated components to the total volume of the overall structural
components of the building.

The insulation of the two components not only affects the energy consumption of the
building during its use, but also has an impact on the carbon emissions and the cost of the
building life cycle. At present, there are few studies related to the insulation performance
of two components and, therefore, relatively accurate constraints cannot be presented. With
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more relevant studies, the effects of insulation performance on carbon emissions and costs
can be considered in subsequent studies.

4. Algorithm Improvement

For solving dual-objective optimization problems, common methods include exact
algorithms, heuristic algorithms, and evolutionary algorithms. Heuristic algorithms are
commonly used with the benefits of being faster and more efficient, including traditional
genetic algorithm (GA) [33–36], simulated annealing (SA) [37], ant colony optimization
(ACO) [38], and particle swarm optimization (PSO) [39,40], as well as the mean gray wolf
optimization (MGWO), which appeared in recent years, Non-Dominated Sorting Whale
Optimization Algorithm (NSWOA), Multi-Objective Artificial Bee Colony (MOABC), etc.
Among these algorithms, the genetic algorithm is the most widely used.

The single-objective genetic algorithm can be easily modified to solve the dual-
objective Pareto solution set algorithm. The genetic algorithm can search in all areas
of the solution set space, which can transform the non-continuous, discrete, and mul-
tidimensional space problems into the operation of the genetic algorithm, display the
non-dominated Pareto solutions of each target, and finally find its frontier solution set.
Especially in dual-objective optimization, it is not necessary to set the weights of each objec-
tive in advance, which reduces the influence of subjective factors on the results. Therefore,
genetic algorithm and its series of algorithms have become the mainstream algorithms for
solving dual-objective and multi-objective problems in recent years.

The NSGA-II algorithm is a branch of the traditional genetic algorithm. The algorithm
uses the spatial crowding degree to fully cover the feasible solutions and gradually finds
the optimal solution through Pareto frontier sorting. The quality of the parent population
and the offspring population and the efficiency of the algorithm are important factors that
affect the effectiveness of the NSGA-II algorithm [41].

The current NSGA-II algorithm usually chooses the roulette method or the tournament
method when solving dual objectives. Although it enriches the diversity of the next-
generation population to a certain extent, its strong randomness makes the quality of
the generated new-generation population hard to guarantee. The crossover operator
and mutation operator also have problems, such as freedom and anisotropy, which lead
to the unstable quality of the generated offspring population and the result falling into
local optimum. Therefore, this section proposes to improve the selection method, genetic
operator, and mutation operator to improve the quality of the population and make the
optimization effect of dual objectives better.

4.1. Selection Operator Improvements

In the traditional tournament method or roulette method, although individuals are
randomly selected, when the population is large, there will be repetitions between indi-
viduals, which will reduce the quality of the next generation generated by the selected
population for crossover mutation. In response to this problem, this study proposes to use
the Stochastic universal sampling (SUS) method to improve the roulette method.

The principle of roulette wheel selection (RWS) is to reflect the fitness value of an
individual into the roulette wheel. The resulting offspring has better fitness.

Assuming that there are six individuals, the respective fitness values from 1 to 6 are
(0.311 0.528 0.162 0.794 0.166 0.602), and the roulette wheel corresponding to their fitness is
shown in Figure 1. If you want to select n individuals, you need to operate n times, and the
area pointed by the pointer is the individual represented.
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Figure 1. Schematic diagram of roulette.

Using the roulette method to select n individuals requires running the wheel n times,
which affects the efficiency of the algorithm. SUS is an improvement to this problem. For
example, if n individuals are selected, SUS can generate equally spaced pointer positions
only once and then select n individuals. The specific steps of the improved selection method
are given as follows:

• Step 1: Calculate pointer spacing D = f/n, where f is the fitness value;
• Step 2: Randomly generate the starting point of the pointer, Start = (A random number

between 0 and P);
• Step 3: Determine the position of each pointer, Pointers = (Start + I ×D) (where

I ∈ (0, n − 1));
• Step 4: Select the required n individuals according to the pointer position.

For instance, six individuals’ fitness values are 0.311, 0.528, 0.162, 0.794, 0.166, 0.602,
respectively, and the total fitness value of six individuals’ fitness values, f = 2.563. Assuming
that six individuals are selected, the selection steps are as follows:

• Step 5: Calculate pointer spacing, D = f/n = 2.563/6 = 0.4272
• Step 6: Assuming the position of the initial pointer, Start = 3
• Step 7: Calculate the position of each pointer:

Pointers = (3 + 0.311× 0.3 + 0.528× 1.3 + 0.162× 2.3 + 0.794× 3.3 + 0.166× 4.3 + 0.602
× 5) = (3, 3.528, 3.324, 5.382, 3.664, 6.01). Finally, the individual in the area corresponding
to the pointer can be found through the program.

4.2. Crossover Operator Improvement

The NSGA-II algorithm usually uses single-point crossover or multipoint crossover
operator to perform crossover operation. This crossover method makes the chromosomes
of gene recombination appear as coding duplication, which reduces the quality of the new
population. For this problem, this paper proposes to use partial matching crossover (PMX)
to improve single-point crossover, so that no duplicate genes appear in chromosomes and
the quality of the population after gene recombination is improved. The specific steps are
as follows:

• Step 1: Select the initial population, assuming that the population list 1 and list 2 are
as follows.

list 1: [5 9 4 2 3 0 8 7 6 1]
list 2: [5 7 8 6 9 2 4 3 1 0]
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• Step 2: Randomly generate a vector length smaller than the parent through the pro-
gram, such as

p = 2.
list 1: [5 9] [4 2 3 0 8 7 6 1]
list 2: [5 7] [8 6 9 2 4 3 1 0]

• Step 3: Crossover the randomly selected vector to the last digit of the gene.

list 1: [5 9] [8 6 9 2 4 3 1 0]
list 2: [5 7] [4 2 3 0 8 7 6 1]

• Step 4: Revised, the three steps above performed the single-point crossover operation
and the fourth step performed partial matching crossover for the individuals after
the single-point crossover. Keep the genes after single-point crossover unchanged,
search for duplicate values in the unexchanged genes, and then find the corresponding
position in the previous generation of individuals to reproduce in situ. In this example,
the second and fifth elements 9 in list 1 are repeated after the single-point crossover,
and the fifth element 3 in the original position of list 1 before the crossover is found to
reproduce. After reproduction, it is found that element 3 is repeated and it needs to
be reproduced again, and finally, element 7 is found. In the same way, the repeated
element 7 in list 2 also needs to be reproduced, which is the same as the method of list
1 and it also needs to be reproduced twice. The result after reproduction is as follows.

list 1: [5 9] [8 6 7 2 4 3 1 0]
list 2: [5 7] [4 2 9 0 8 7 6 1]
The improved crossover operator avoids gene duplication, improves the quality of

offspring, and makes the solution set better.

4.3. Mutation Operator Improvement

The mutation operation of a genetic algorithm is based on probability, and a certain
gene in an individual is mutated through a certain probability. Traditional genetic oper-
ators include mutation operators, such as bit-flip mutation and crossover mutation. The
traditional mutation operator is distributed around the in situ and the gene to be mutated
is searched in a small range, which can easily make the algorithm fall into local optimum,
and the final optimization effect is not significant. This section proposes to use Gaussian
mutation operators to enrich the diversity of population individuals, so that the algorithm
does not easily fall into local optimum.

Gaussian mutation (GM) is a new vector generated using a random vector that obeys
a normal distribution as the in-place vector. This mutation method not only improves the
quality of the population and improves the accuracy of optimization but also enables the
genetic algorithm to jump out of the local optimum in the search. A better global search
makes the algorithm run more efficiently. The Gaussian probability density formula is
as follows [42].

f (x) =
1√

2Πσ
exp

(
− (x− µ)2

2σ2

)
(8)

where µ is expected value of a normal distribution; σ is standard deviation of the distribu-
tion. In this study, µ and σ are set to 0 and 1, respectively.

5. Algorithm Design
5.1. Principle of NSGA-II Algorithm

NSGA (Non-dominated Sorting Genetic Algorithms) is one of the genetic algorithms.
Compared with the traditional genetic algorithm, the concept of non-dominated sorting is
introduced, and hierarchical non-dominated sorting is used to make individuals with higher
fitness genetics [43,44]. The probability of reaching the next generation is even greater.
Deb et al. [45] proposed NSGA-II (Fast Non-dominated Sorting Genetic Algorithms) with
elite strategy. The basic idea is to perform non-dominated sorting on the population to
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classify the population and calculate the crowded distance of the population to maintain
the population. The diversity of an approximate solution is obtained when the termination
condition is reached. The algorithm reduces the computational complexity and can preserve
the diversity of the population. Based on the elite retention strategy, while expanding the
population, it prevents the loss of elite individuals. Compared with the traditional genetic
algorithm, it runs faster and has better convergence. The basic process framework of the
NSGA-II algorithm is shown in Figure 2.
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Figure 2. Algorithm flowchart.

Similar to NSGA, the main implementation specifications of NSGA-II are provided
as follows:

• (1) Generation of initial population and offspring population

A population n(t) with a set number of chromosomes n is randomly generated, and the
initial population is sorted by non-dominated classification, through selection, crossover,
and variation to generate a descendant population.

• (2) Generation of populations after the second generation

Starting from the second generation, the parent population and the offspring are
merged to obtain a population with 2n individuals. Non-dominant sorting is performed on
the merged population. At the same time, the crowded distance between individuals needs
to be calculated. The dominant principle is used to select individuals to generate the next
generation of populations.

• (3) Algorithm termination judgment
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After executing the first two steps, check whether the termination conditions are met.
If so, output the optimal solution; otherwise, continue to execute the above steps.

5.2. Improved NSGA-II Algorithm

In Section 4, the existing problems of the traditional algorithm and the improved
methods are introduced in detail, mainly by improving the selection method, the crossover
operator, and the mutation operator to optimize the offspring population and generate
a high-quality population. The biggest feature of NSGA-II is to use the spatial crowded
distance to conduct an omnidirectional search for the solution under the constraints, so as to
find the optimal solution at the frontier. The improved population is of higher quality, and
it is easier to find a higher-quality Pareto frontier solution to improve the final optimization
result. The specific steps are as follows.

• Step 1: Initialize the population N(n) with the number of individuals n, gen = 0, the
total G, and the value of each individual conforms to the constraints of the model.

• Step 2: Sort the population non-dominantly and find the Pareto frontier solution set.
• Step 3: Use the improved method in Section 4.2 to select the parent population, use the

fitness function to measure the pros and cons of the individual, and select the better
individual to generate the offspring population W(t).

• Step 4: Using partial matching crossover and Gaussian mutation operator to perform
crossover and mutation operations on W(t), a population Q(n) is obtained.

• Step 5: Combine W(t) and Q(t) to obtain a population R(t) with a population size of 2n.
• Step 6: Perform non-dominated sorting on R(t) and sort according to rank. Individuals

with the same rank are sorted according to their fitness from large to small, and the
first n individuals are selected as the next-generation population N (gen + 1).

• Step 7: Repeat the operations from the second step to the sixth step until the generation
is greater than the maximum G, then stop the operation and output the value.

6. Case Study
6.1. Determination of Carbon Emissions and Cost Parameters

The project for case1 study is located in Liaoning Province, with 34 floors, 2.9 m high
per floor, and a single building area of 22,862.69 m2. The project for case2 study is located
in Zhejiang Province, with 18 floors, 2.8 m high per floor, and a single building area of
8964 m2. The project for case2 study is located in Guangdong Province, with two floors,
3.5 m high per floor, and a single building area of 1040 m2. In the design stage of three
projects, the increment of prefabricated components and cast-in-place components of the
project was analyzed and simulated, and a list of quantities of the two components per unit
area was obtained, as shown in Table 1.

Table 1. List of quantities for structural components.

Material
Component

Concrete
(m3/m2) Steel (kg/m3) Steel (kg/m2) Mold (m2/m2)

Case 1 2 3 1 2 3 1 2 3 1 2 3

Column
Prefab 0.130 0.113 0.049 120 104 102 15.6 14 4.998 1.08 0.97 1.05

Cast-In-Place 0.120 0.105 0.045 125 110 95 15 13.1 4.275 1.00 0.88 1.01

Girder
Prefab 0.100 0.087 0.05 150 131 129 15 12.8 6.45 0.89 0.76 0.45

Cast-In-Place 0.090 0.079 0.046 167 146 143 15 13 6.578 0.80 0.70 0.41

Board
Prefab 0.100 0.087 0.060 110 95 92 11 9.4 5.52 1.00 0.85 0.51

Cast-In-Place 0.090 0.079 0.054 111 97 95 10 8.8 5.13 0.90 0.79 0.54

Wall
Prefab 0.080 0.07 0.12 120 105 122 9.6 8.4 14.64 0.80 0.7 0.10

Cast-In-Place 0.080 0.07 0.12 125 109 127 10 8.8 15.24 0.80 0.7 0.10

Stairs
Prefab 0.020 0.018 0.01 90 81 85 1.8 1.6 0.85 0.20 0.18 0.10

Cast-In-Place 0.020 0.018 0.01 80 72 76 2 1.44 0.76 0.20 0.18 0.10
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In the measurement of carbon emissions, the activities that produce the difference in
production of the two components are considered. The carbon emissions’ measurement
for both components includes the carbon emissions from all activities during the raw
material production, raw material and component transportation, component processing,
and installation phases. According to the engineering quantity list per unit area, the
carbon emission of prefabricated components per unit area and unit volume is measured
in combination with the carbon emission factor method. The measured results are shown
in Table 2.

Table 2. Carbon emissions of each component.

Processing Methods
Component Prefab (CO2 kg/m3)

Cast-In-Place
(CO2 kg/m3) Prefab (CO2kg/m2)

Cast-In-Place
(CO2kg/m2)

Case 1 2 3 1 2 3 1 2 3 1 2 3

Column 500.04 440.22 431.42 535.04 467.92 458.56 65.00 49.74 21.14 64.2 49.13 20.64
Girder 565.14 480.9 471.28 607.69 569.48 558.09 50.86 41.84 23.57 54.69 44.99 25.67
Board 479.36 417.58 409.23 512.98 442.89 434.03 47.94 36.33 24.55 46.17 34.99 23.43
Wall 518.45 453.65 444.58 536.06 468.96 459.58 41.48 31.76 53.35 42.88 32.83 55.15
Stairs 400.61 361.73 354.50 458.33 414.12 405.84 8.01 6.511 3.55 9.17 7.45 4.06

Costs include the cost of raw materials, auxiliary materials, and components consumed
in the production process of components; amortization fees or rental fees for turnover
materials; usage fees or rental fees for construction machinery and transportation tools;
wages and bonuses paid to production workers, allowances of the nature of wages, etc.,
and all expenses incurred during construction organization and management. Further, it
includes the impact of carbon emissions trading prices on component costs. According
to the local carbon emission trading price, the carbon trading prices of the three cases are
14.63 CNY/co2t, 52.78 CNY/co2t and 74.12 CNY/co2t, respectively, and the cost of the
main components is shown in Table 3.

Table 3. Cost of each component (m3/CNY).

Component
Case Column Girder Board Wall Stairs

1
Prefab 4436 4171 3175 4236 3092

Cast-In-Place 1398 1559 1320 1575 1370

2
Prefab 4585 4659 4021 4569 4148

Cast-In-Place 1445 1741 1671 1699 1838

3
Prefab 4930 4519 3890 4540 3530

Cast-In-Place 1554 1689 1617 1688 1564

6.2. Model Establishing and Solving

According to the method in Section 3 and the data in Section 6.1, the carbon emission-
cost dual-objective optimization model is established, and then it is solved according to the
improved NSGA-II algorithm in Section 5. Local policies require the assembly rate to be
no less than 50% in three cases, and there are no clear requirements for the prefabrication
rate. The prefabrication rate is not less than 20%, according to China’s “Industrialized
Building Evaluation Standard”, and the model is established with a building area of 100 m2

according to the method in Section 3. The number of iterations is 200 and the number of
populations is 300. The Pareto frontier diagram after the optimization is shown in Figure 3.
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The Pareto solutions in Figure 3 satisfy the constraints and are the result of the trade-
off between the two objectives. From the perspective of the solved optimal population,
when the prefabrication rate is in a range of 35% to 40%, by adjusting the prefabrication
situation, a better carbon-reduction effect can be obtained on the premise of increasing a
small amount of cost. When the prefabrication rate is 40–50%, the impact of a substantial
increase in the cost on the overall carbon emission reduction of the building is weakened.
When the prefabrication rate is higher than 50%, to obtain a better carbon-reduction effect,
the cost needs to be greatly increased, and the carbon-reduction effect is the weakest. The
carbon emissions of individual solutions tend to be the same, but the costs are different.
The specific data changes are shown in Table 4.

Table 4. Comparison of objective function values of Pareto optimal solution sets under different
prefabrication rates (Case(1) Case(2) Case(3)).

Case (1)

Solution
Number

35% ≤ PR ≤ 40% 40% ≤ PR ≤ 50% 50% ≤ PR ≤ 60%

CO2/kg Cost/CNY CO2/kg Cost/CNY CO2/kg Cost/CNY

1 21,405.42 88,080.61 21,336.22 93,853.74 21,267.56 106,311.6
2 21,405.42 88,080.61 21,326.84 94,488.22 21,258.07 108,547.5
3 21,399.63 88,549.59 21,323.25 94,924.01 21,254.47 109,195.6
4 21393.39 88,904.89 21,318.66 95,482.5 21,253.79 109,887.7
5 21,381.52 89,491.56 21,317.22 95,877.21 21,246 110,805.6
6 21,381.45 90,067.24 21,306.68 98,065.6 21,244.92 111,239.6
7 21,375.37 90,591.67 21,304.3 98,907.15 21,242.02 111,649.6
8 21,361.41 90,678.79 21,299.97 99,497.52 21,238.74 11,2346.6
9 21,359.61 91,219.65 21,297.58 100,070.1 21,235.63 112,820

10 21,355.09 91,619.5 21,296.39 100,323.9 21,233.99 113,559.8
11 21,352.31 92,219.93 21,293.73 100,719.8 21,228.44 114,697.2
12 21,342.33 92,772.25 21,292.64 101,199.2 21,225.6 11,5331.7
13 21,338.42 93,336.47 21,289.11 101,812.6 21,220.63 116,070
14 21,285.74 102,436.4 21,218.05 116,658.5
15 21,282.8 103,161.5 21,217.74 117,131.7
16 21,281.38 103,438.9 21,214.96 117,379.4
17 21,278.55 103,913.2 21,214.12 117,872.5
18 21,276.85 104,596.5 21,210.27 118,334.9
19 21,272.16 105,435.4 21,207.1 118,986.9
20 21,272.11 105,444.3
21 21,269.3 106,077.5
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Table 4. Cont.

Case (2)

Solution
Number

35% ≤ PR ≤ 40% 40% ≤ PR ≤ 50% 50% ≤ PR ≤ 60%

CO2/kg Cost/CNY CO2/kg Cost/CNY CO2/kg Cost/CNY

1 16,602.24 98,584.14 16,551.5 110,131.97 16,525.56 120,317.52
2 16,607.9 98,060.06 16,556.01 109,282.56 16,525.56 120,317.52
3 16,612.12 97,685.44 16,556.24 108,866.58 16,526.18 119,829.63
4 16,614.63 97,207.39 16,557.83 108,454.89 16,526.8 119,325.12
5 16,620.16 97,037.34 16,559.01 108,174.19 16,528.15 118,714.01
6 16,623.57 96,635.62 16,565.55 106,753.72 16,528.8 118,177.95
7 16,631.7 95,858.59 16,566.33 106,238.39 16,529.11 117,620.51
8 16,634.45 95,478.21 16,567.64 106,150.79 16,530.09 116,838.05
9 16,639.89 94,982.78 16,568.54 105,574.55 16,531.1 116,412.19

10 16,642.12 94,732.9 16,571.72 105,033.09 16,531.76 115,674.13
11 16,651.62 94,356.45 16,573.02 104,544.22 16,532.64 115,318.3
12 16,657.77 93,981.65 16,577.29 103,796.67 16,533.05 114,926.11
13 16,678.28 93,128.06 16,578.61 103,050.43 16,534.71 114,561.35
14 16,659.62 93,633.91 16,580.08 102,619.07 16,535.94 114,283.03
15 16,685.06 92,700.67 16,580.34 102,315.13 16,537.21 113,938.91
16 16,694.98 92,243.69 16,582.11 102,041.3 16,538.28 113,651.73
17 16,709.69 91,524.65 16,584.72 101,603.88 16,541.24 113,013
18 16,719.52 91,109.94 16,587.14 101,153.27 16,542.72 112,503.05
19 16,719.52 91,109.94 16,592.91 10,0641.74 16,544.08 112,240.5
20 16,595.69 99,699.83 16,551 110,848.22
21 16,597.53 99,366.72

Case (3)

Solution
Number

35% ≤ PR ≤ 40% 40% ≤ PR ≤ 50% 50% ≤ PR ≤ 60%

CO2/kg Cost/CNY CO2/kg Cost/CNY CO2/kg Cost/CNY

1 12,795.25 72,712.57 12,661.18 77,418.01 12,621.88 86,671.82
2 12,773.54 73,276.82 12,656.76 77,441.21 12,621.03 86,918.29
3 12,761.54 73,504.08 12,654.88 77,845.11 12,620.8 87,091.2
4 12,739.02 73,636.25 12,653.61 78,216.09 12,619.55 87,439.58
5 12,721.35 73,924.12 12,651.35 78,468.9 12,619.05 87,852.52
6 12,709.43 74,118.92 12,650.52 78,637.57 12,616.56 88,431.36
7 12,700.45 74,852.8 12,649.98 78,983.97 12,615.82 88,795.8
8 12,697.53 75,081.87 12,649.05 79,059.65 12,615.02 89,090.96
9 12,687.1 75,346.38 12,642.14 79,704.56 12,613.87 89,744.3

10 12,680.8 75,691.11 12,641.3 80,052.81 12,612.62 90,377.25
11 12,677.08 76,069.06 12,640.41 80,325.04 12,609.91 91,248.27
12 12,671.7 76,434.38 12,640 80,655.42 12,609.62 91,760.12
13 12,663.15 76,691.65 12,639.49 80,801.29 12,609.57 92,065.52
14 12,661.27 76,990.67 12,638.24 81,114.03 12,607.43 92,558.71
15 12,637.55 81,436.05 12,607.24 92,979.5
16 12,636.98 81,474.49 12,606.15 93,486.78
17 12,635.71 81,933.67 12,604.74 94,108.97
18 12,634.4 82,478.35 12,604.17 94,457.95
19 12,633.25 82,782.7 12,603.82 94,674.42
20 12,632.21 83,197.97 12,602.87 95,025.05
21 12,629.02 84,284.16
22 12,627.63 84,839.62
23 12,626.99 84,951.18
24 12,625.79 85,439.21
25 12,624.98 85,830.62
26 12,624.57 85,996.64
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7. Conclusions

In this paper, two goals of carbon emission and cost are firstly modeled by means
of dual-objective optimization, and the impact of relevant status quo on these two goals
is considered in the model. Secondly, in the solution of the model, this paper analyzes
the shortcomings of the traditional NSGA-II algorithm and makes related improvements.
Finally, the relationship between carbon emissions, cost, and prefabrication rate is analyzed
based on actual examples. The conclusions are drawn as follows:

• Carbon emission and cost are two conflicting goals, and dual-objective optimization
can make them reach a balanced state, creating both economic and environmental
benefits. When establishing a dual-objective model, the impact of carbon trading on
component costs needs to be considered.

• The traditional NSGA-II algorithm has the problem of low quality of the parent and
offspring population. This paper proposes to optimize the population by improving
the selection method, crossover operator and mutation operator, and redesigning
the algorithm.

• From the case, after the dual-objective optimization, by increasing a small amount
of cost, a better carbon-reduction effect is achieved when the prefabrication rate is
35–40%. When the prefabrication rate is greater than 40%, for a better carbon emission
reduction effect, you need to increase the cost significantly.

• For enterprises, when the prefabrication rate is between 35% and 40%, the maximum
environmental benefit can be obtained at the minimum economic cost. Enterprises can
make more reasonable decisions based on the optimal solution set after optimization
and the actual engineering situation. For the government, when the prefabrication
rate is between 35% and 40%, popularizing prefabricated buildings for energy saving
and emission reduction can improve the enthusiasm of enterprises to reduce carbon
emissions. In addition, the government can refer to the optimal solution set to establish
building carbon reduction policies that make it easier for companies to implement.

• The difference in insulation performance was not considered in this study because the
insulation properties of cast-in-place and prefabricated components have been less
studied. Insulation performance can have an impact on the carbon emission and cost
during the use of the building. Therefore, the impact of insulation performance of
different members on the overall cost and carbon emission reduction of the building
can be considered in subsequent studies.
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