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Abstract

Meteorological changes urge engineering communities to look for sustainable and clean energy technologies

to keep the environment safe by reducing CO, emissions. The structure of these technologies relies on the deep inte-
gration of advanced data-driven techniques which can ensure efficient energy generation, transmission, and distribu-
tion. After conducting thorough research for more than a decade, the concept of the smart grid (SG) has emerged,
and its practice around the world paves the ways for efficient use of reliable energy technology. However, many
developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid
(NGSG). Also, to deal with the non-linearity and uncertainty, the emergence of data-driven NGSG technology can
become a great initiative to reduce the diverse impact of non-linearity. This paper exhibits the conceptual framework
of NGSG by enabling some intelligent technical features to ensure its reliable operation, including intelligent control,
agent-based energy conversion, edge computing for energy management, internet of things (loT) enabled inverter,
agent-oriented demand side management, etc. Also, a study on the development of data-driven NGSG is discussed
to facilitate the use of emerging data-driven techniques (DDTs) for the sustainable operation of the SG. The prospects
of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points
of view including engineering, technology, et al. Finally, the trends of DDTs towards securing sustainable and clean
energy evolution from the NGSG technology in order to keep the environment safe is also studied, while some major
future issues are highlighted. This paper can offer extended support for engineers and researchers in the context

of data-driven technology and the SG.

Keywords Data-driven technology, Smart grid, Sustainable energy evolution, Next-generation smart grid, Intelligent
management, And Machine learning technique

1 Introduction
Data-driven technologies have become a widely used
set of techniques in the field of scientific research and
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for analysis, prediction, control and diagnosis in medi-
cal research [1], precise agriculture [2], quantum finance
[3], risk management in the supply chain [4], etc. These
techniques may be supervised, semi-supervised or unsu-
pervised depending on the availability and condition of
collected data, and can obtain a higher rate of success
than typical methods used in the various fields of sci-
ence and business. Because of the increasing trends of
data-driven methodologies, researchers have started con-
templating the presence of DDTs in conventional power
systems. This has enabled the construction of a next-gen-
eration smart grid (NGSG) from the typical smart grid
(SQ). It also accelerates the traditional SG to unlock the
full potential of future SGs with zero carbon emission
and lifelong sustainability.

The conventional SG is an improved version of the tra-
ditional power grid and microgrid, where advanced tech-
nologies are used to enable communication, simulation,
sensing, decision-making, etc. A comparative study of the
microgrid and different versions of SG in terms of techni-
cal features associated with them is of great importance.
An SG allows the components of the grid, e.g., smart
meters, renewable energy sources (RESs), advanced com-
munication systems, closed-loop feedback systems, dis-
tributed generation, storage, etc., to communicate with
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each other. The grid ensures the production of sufficient
high-quality power while integrating other benefits such
as self-healing capabilities, fault assessment, consumer
friendliness, cyber and physical security [5]. Because
of the extended features as compared to the microgrid,
some countries have successfully enabled the SG with
good annual growth rate, as shown in Fig. 1 [6]. This is
feasible because the existing SGs all around the globe are
still operated based on conventional power systems to
produce power from the kilowatt to gigawatt scale.

The conventional SG cannot fully meet the require-
ments as it continuously changes with emerging advanced
technologies. The need for clean energy has increased
globally over the past decade as a result of changing envi-
ronmental conditions and expanding populations and
technology that may impose non-linear dynamics on the
SG. The non-linearity in the smart power grid transmis-
sion and distribution systems may add new congestion,
outages, fluctuation in voltage and frequency, that lead to
blackouts as a result of the increasing demand for elec-
tricity [7]. Non-renewable energy sources though being
an easier, quicker, and cheaper path to generate power,
they are a direct obstruction to the green environment
because of high emissions [8]. Renewable energy sources
are on the rise to reduce dependency on fossil fuel-based

Smart Grid Market Compound Annual Growth Rate

10.64%

3.10% '

= Saudi Arabia (2016-2026)
= Africa (2019-2027)
= North Amercia (2019-2027)

= South Korea (2019-2027)
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Fig. 1 Countries contributing to SG world market [6]
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power generation [9]. However, the uncertainty and com-
plexity of SGs are increasing with the addition of more
distributed generation (DG), increased market size, and
renewable sources [10].

Again, the existing SGs are not yet sustainable in
long-term power generation and distribution, because
of the lack of absolute compatibility between grid com-
ponents [11], programmable sensors deployment [12],
fast real-time monitoring, analysis and decision making
with minimized latency [13], and integrating maximum
intermittent generation [14]. To make a sustainable SG
operation, researchers are interested in formulating the
next-generation smart grid (NGSG). An NGSG will have
the ability to address the above shortcomings through the
integration of advanced DDTs, blockchain technology,
and other edge computing techniques based on collecting
and analyzing conventional SG data. As the datasets are
getting massive because of increasing complexity in the
SG systems, a better storage system with secured high-
speed data transfer system may also need to be integrated
in an NGSG, where the data storage should be encrypted
with blockchain technology and managed with advanced
data management algorithms.

Further, the preservation of data privacy and data
security also needs advancement in the conventional
SG domain, where the security of massive amounts
of datasets in the NGSG domain will be handled with
next-generation blockchain technology and data tech-
niques [15, 16]. Additionally, an NGSG may also have
several extended features including interoperability, less
transmission loss, decreased latency, large sources han-
dling capability, grid mobility, ease of renovation, and
advanced resilience, all features that are quite dependent
on the adaptation of data-driven technology.

Thus, it can be concluded that an NGSG is the
improved version of the existing SG which enables some
extended features to work on minimizing the shortcom-
ings of the conventional SG. It can be an automated grid
driven by data where the control operation, energy man-
agement, condition monitoring, forecasting, fraud char-
acterization, energy transaction and its security may be
done in an improved manner on the basis of collecting
and analyzing data, and implementing advanced data-
driven techniques. A comparative study between the
conventional SG and an NGSG is reported in Table 1 in
terms of operation and technologies. From Table 1, it can
be seen that the use of highly computationally efficient
DDTs, edge computing devices, next-generation block-
chain technology, advanced interoperability, and agent-
oriented techniques in the NGSG framework makes
explicit differences between the conventional SG and the
NGSG. The purpose of considering these technologies
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is to ensure sustainable energy evolution in the NGSG.
Thus, it can be stated that the framework of NGSG
focuses on sustainable energy technologies.

An NGSG may be largely dependent on the use of
DDTs to achieve sustainable energy evolution world-
wide. Sustainable evolution refers to the integration of
DDTs in data analysis from datasets of multiple decen-
tralized RESs and energy storage systems (ESSs), ena-
bling internet of things (IoT) devices, load forecasting,
energy trading, security systems, grid faults, and losses.
The ongoing research in the SG domain states that DDTs
have been successfully implemented in characterizing
grid faults and energy trading. However, it may impose
new challenges in terms of security constraints as the
energy demand increases, as well as gradually increased
cyber security threats around the world. The solution
to these challenges requires a revision in the SG struc-
ture based on enabling data-driven modeling and plan-
ning. The primary benefit of the data-driven NGSG is
the availability of faster and more reliable operation and
more accurate data that authorize the use of advanced
DDTs towards enabling efficient and sustained electric-
ity flow from generation to distribution. Additionally,
increased management and monitoring capabilities
across the entire power system, as well as more afford-
able, adaptable, and effective operation, are presented
by revolutionary developments in data-driven analysis
models and algorithms, mostly inspired by advanced
data science.

From the critical surveys addressed in Table 2, it can be
seen that there exists much scope for and many applica-
tions of DDTs in the SG domain. The purpose of DDTs
is to enable advanced features towards securing the sus-
tainable operation for energy evolution from the NGSG,
as the absence of these features may hinder the scalabil-
ity, availability, security, and other issues in the SG. Many
of them show the additional challenges that may arise
while implementing DDTs in an NGSG. At present, there
are many loop-holes in SG systems and it is necessary to
study these drawbacks to remove them by improving the
present SG technology. The main contributions of this
study are:

o Studying conventional SG features A study of the
technical features of a conventional SG is done to
explore improvement potential. Also, some current
SG projects around the world with their capacities
are studied.

+ Developing a technical framework for a data-driven
NGSG First, a technical framework for an NGSG is
developed by integrating new advanced technical
features into the SG domain. A study is then pre-
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Table 2 Comparison between the current study and related existing
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literature

References  Study the technical Investigate the Discuss the conceptual Study the prospects Discuss the trends of
architecture and developing aspect of framework of data- of DDTs in NGSG DDTs in NGSG towards
feature of SG SG through integrating driven NGSG with their adaption sustainable energy

advanced technical challenges evolution
feature

[17] Yes Yes No No No

[18] Yes Yes No No No

[19] Yes Yes No No No

[20] Yes Yes No No No

[7] No Yes No No No

[21] Yes Yes No No No

[22] Yes Yes No No No

Current study  Yes Yes Yes Yes Yes

sented on the development of a data-driven NGSG
along with the necessary analytics required to be per-
formed before the implementation of DDTs.
Investigating the scope of data-driven techniques in
the NGSG This study also explores the possible pros-
pects of DDTs in an NGSG and discusses the adapta-
tion challenges of data-driven NGSGs in reality.
Exploring the role of DDTS in sustainable energy evo-
lution A brief discussion about the trends of DDTs
towards obtaining sustainable energy evolution from
an NGSG is also incorporated in this study to high-
light the significance of data-driven SG modeling.

Controllable

2 Smart grid at present: technical architecture

An SG enables bidirectional flow of electricity between
the utility and its end users, with its smart framework
structured by combining information, power technolo-
gies, and telecommunication with the prevailing elec-
tricity system. This energy technology also supports
automation mechanization for efficient power distribu-
tion, storage elements, fault detection, electric vehicles,
grid data supervision, combination of hybrid RESs, and
flexibility of grid networks [23]. The various compo-
nents shown in Fig. 2 can be used to build the SG energy
technology. They include renewable sources, a smart
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Fig. 2 Conventional smart grid architecture
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supervision system, a smart information system, an
advanced storage system, a smart security system, sen-
sors, and grid-lines.

2.1 Smart distributed generation sources

An SG uses a “smart distributed generation” unit which
refers to the process of producing electricity efficiently
in small-scale implementations close to the place of con-
sumer usage. The primary technologies for SG appli-
cation are RESs in addition to ESSs. It offers excellent
prospects for controlling frequency and voltage devia-
tions, responding to emergency situations when the
load exceeds the generation, and decarbonizing targeted
areas. Plug-in hybrid electric vehicles (PHEVs) have the
potential to reduce emissions while also lowering trans-
portation costs [24]. The potential of PHEVs to integrate
onboard energy storage devices with the power grid can
increase grid efficiency and dependability. The power
grid can also increase its acceptance of intermittent
renewable energy generation with the sole use of energy
storage devices like battery ESSs. To achieve this, effec-
tive coordination among ESSs, the grid, and renewable
generation units is needed [25].

A crucial prototype for power generation is the DG
units that have improved reliability and power quality,
and can lower system capacity margin. Executing DGs
in practice may be difficult for several reasons includ-
ing: (1) large fluctuation in terms of availability of RESs;
(2) very different generation and demand patterns; and
(3) higher execution costs of DGs than the conventional
power plants [26]. The development of DG units has also
introduced the idea of a virtual power plant (VPP) that
collects capacities of diverse DERs to increase electricity
generation. In a VPP, a controller controls a large group
of DGs, and thus, VPPs provide more efficiency and flex-
ibility, and can handle fluctuations better than conven-
tional power plants. However, VPPs require complex
optimization, secure communication and intelligent con-
trol [27].

An SG consists of many DG units, and therefore elec-
tricity generation flexibility increases while the flow con-
trol becomes complex There are two domestic electricity
distribution systems, i.e., (1) AC (Alternating Current)
power distribution; and (2) DC (Direct Current) power
dispatch [28]. The DC power distribution is more prac-
ticable because it makes domestic power distribution
well organized and easier to control. Several technolo-
gies including microgrid and vehicles to grid (V2G), have
emerged to distribute DC power. The microgrid can
generate electricity of low voltage, even if it is islanded
from the main grid. In the islanded mode, the users do
not get electricity from any external sources. Micro-
grid disentangles execution of SG functions, e.g., better
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dependability, significant renewable energy penetration,
self-healing, and effective load control systems [29]. V2G
usually enables getting power from stored electricity
like vehicles running in battery packs. It enables a novel
method of storing and delivering electrical energy and
enhances power quality by providing electrical energy
stored in PHEV batteries to the grid during peak hours.

2.2 Smart metering, measurement and monitoring

Any information technology that is concerned with dis-
tributed automation, such as data exchange compatibility
and combination with current and future devices or sys-
tems should be addressed in SG technology. As a result,
in the framework of an SG, a smart information subsys-
tem is employed to enable information production, simu-
lation, analysis, integration, and optimization.

Smart metering technology is the most vital means of
obtaining information from consumers. The advanced
metering infrastructure (AMI) uses automatic meter
reading (AMR) technology to logically fit with an SG.
The AMR system works on automatic data gathering,
diagnostics, as well as collecting data from smart meter-
ing devices and sending data to the main database for
accounting, troubleshooting, and analysis. In contrast to
a typical AMR, AMI allows bidirectional communication
with the meters [30]. The advantage of advanced smart
metering is that the consumers can predict their approxi-
mate bills and manage the power usage to lower bills. It is
also beneficial for utilities because smart metering ena-
bles real-time pricing [31].

Again, measuring and monitoring the system’s cur-
rent status at various places are essential for the smooth
operation of the SG system. The topology of phasor
measurement units (PMUs) and sensors is important for
advanced monitoring. The status of an electrical grid is
measured by PMUs to be used to analyze system health.
A high number of PMUs as well as the capability to com-
pare the measurements taken from the grid can enable
use of the collected data to track the state of the power
system and rapidly respond to system circumstances. The
existing frequency monitoring network system architec-
ture is designed to handle large amounts of data flows,
processing, storage, and usage [32]. Accordingly, the sen-
sor networks provide practicable and low cost sensing as
well as communication media for distant monitoring and
identification of the system.

2.3 Smart management of information

An SG can manage big datasets efficiently by extract-
ing the most efficient information and rejecting the false
data. Data management is a process of examining, evalu-
ating, integrating, and optimizing data obtained from a
large network of data-gathering devices. The goal of data
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modeling is to make information interchangeable among
multiple devices that are standard for diverse working
environments and conditions. Data modeling is required
for device forward and backward compatibilities, which
means that the device is compatible with its previous and
future versions. The goal of information integration is to
combine data from several sources with distinct theo-
retical, contextual, and graphical representations. Infor-
mation optimization is a technique for increasing the
effectiveness of information. Singular value decompo-
sition analysis is used to investigate the coupling archi-
tecture of an energy grid in order to uncover chances for
lowering network traffic by determining which data must
be exchanged between portions of the infrastructure to
implement a control action [33].

2.4 Smart data transmission

Modern technology has enabled the availability of vari-
ous commutation modules suited for SG systems. It is
complicated to choose a suitable model as SGs tend to
have different preferences for data transmission. How-
ever, the data transmission system of an SG must be of
the utmost high quality to support quality of service. The
data transmitted should be accurate, secure, complete,
and private. Wireless data transmission uses radio waves
to transmit signals and data. Wireless data transmission
holds several advantages compared to wired data trans-
mission, including remote access, low maintenance and
installation cost, high-speed data transfer, etc. The wire-
less data transmission category is subdivided into four
subcategories described in the following sub-sections
[34].

1. Wireless mesh system A wireless mesh system fol-
lows the method of mesh topology. A mesh ensures
that all the data transmission modules are intercon-
nected. The modules form nodes and gateways. In a
particular area, a wireless mesh system will provide a
very cost-effective communication system that needs
little to no mobility. This data transmission system
is highly reliable for communication. The mesh net-
work provides a large coverage area and a high data
transfer rate [34].

2. Cellular data transmission technology A cellular net-
work is a network for communication that is distrib-
uted over a large area. This wireless network system
uses GSM, 3G, and 4G technology for transferring
data at a very low cost. Time delay can be efficiently
reduced using cellular data transmission technology.
The latest 5G technology can be used for even faster
data transfer [35].
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3. Satellite data transmission Satellite data transmis-
sion is highly suitable for covering a very large area.
A satellite is connected to a ground station through
radio signals, and the satellite communicates in a
straight line to the ground station. A satellite stays as
a repeater above the earth as it orbits the earth in a
geosynchronous position. Satellite technology can be
used for rural and remote infrastructures. The down-
side of using satellites is that the performance of data
transmission may deteriorate depending on weather
conditions [36].

4. Direct data transmission Direct data transmission or
point-to-point data transmission refers to sending
data from one specific point to another directly. It is
usually done using microwave signals. It is a cheap
and conventional method for data transmission that
has been used for the last two decades. A similar
technology, free-space optical (FSO) data transmis-
sion, is done by propagating light through free space.
This wireless data transmission method is suitable for
remote places where complications arise from other
data transmission methods. FSO data transmission is
highly feasible in urban destinations whereas micro-
wave communications face blockades in particular
places [34].

2.5 Smart supervision/regulation technology

Supervision of an SG is essential for high-performance
output and efficient management of all the subsystems.
The flow of energy and information, being bidirectional,
needs to be handled by ensuring the completion of
various supervision objectives. An SG is easier to man-
age than typical power grids. This is mainly because SG
enables bidirectional flows of electricity and informa-
tion. The active participation of electricity customers is
also the main feature of an SG. Supervision of an SG can
be done based on electricity demand, rather than sup-
ply. The objectives of SG supervision and management
may include ensuring maximum efficiency, enhancing
power production, easy monitoring, and analysis, con-
trol of emissions, waste management, gaining maximum
profit, etc. Reference [37] proposes an optimized control
technique from analyzing the profiles of a large group of
customers to shave off energy consumption, while [38]
presents a pricing method to incentivize customers.

To properly manage the supervision objectives of an
SG, different methods have been adopted ranging from
game theory to machine learning. Optimization of an
SG using both convex and dynamic programming is
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proposed in [39], while another technique for optimiza-
tion, swarm intelligence, shows promising performance
in the field of energy distribution resources optimiza-
tion, which has no dimensional limitation. Data gathered
from an SG using sensors and PMUs may also be used to
predict the behavior of the SG system through properly
developed machine learning algorithms.

2.6 Smart security system

Avoiding cyber security breaches is imperative to ensure
the security of an SG. A smart security system protects
the information of an SG and increases the integrity of
privacy. The security of an SG can be maintained in
three categories: solidity, failure detection and protec-
tion. The solidity of a system promises that the system
can perform consistent behavior in various situations and
changed working conditions. The integration of locally
generated power can ensure fewer future failures, includ-
ing both electrical and mechanical failures [40]. Again,
an SG has integrated failure detection methods that can
detect failures when they occur. This also helps to diag-
nose and recover from failures in an SG. The failures can
be branched out to various faults which occur in an SG,
and their protection using digital methods. All the above-
mentioned features pave the way to feasibly adapt an
SG in the real-time environment. Some countries have
already implemented SG projects, as shown in Table 3.

Table 3 Current smart grid projects in different countries
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3 Add-on technology towards the next-generation
smart grid

NGSGs have the possibility of enabling enhanced fea-
tures in the SG landscape as compared to conventional
SG technologies. The security and privacy issues of the
current SG systems may be better covered by an NGSG
in the context of integrating more advanced features.
The advance of an NGSG entirely depends on the use of
data-driven techniques in its different parts. A concep-
tual framework of an NGSG is illustrated in Fig. 3. From
Fig. 3, it can be seen that the framework of an NGSG
may consist of integrating edge computing devices, IoT
enabled inverters, blockchain-based energy trading, and
computationally efficient DDTs in monitoring, control-
ling, and forecasting. It can also be noted that a data
center may appear in an NGSG to collect data from the
interconnected technologies and share the data among
them to ensure its interoperability. By applying DDTs, the
collected data from the different sources can be analyzed
intelligently to help make decisions towards sustainable
energy evolution. The detailed explanation of the intel-
ligent technologies used in an NGSG framework can be
found in the following sub-sections.

3.1 Intelligent agent-based modeling of energy sources
To digitize the energy generation process in an
NGSG, there has been a significant rise in the use of

Project name Location Activation date Capacity Total cost
Narara Ecovillage Smart Grid [41] New South Wales, Australia September 2016 0.471 MW usD4.73 M
Berrimal Wind [42] Western Victoria, Australia 2034 72 MW UsD 135.72 M
Mortlake South Wind Farm [43] Victoria, Australia 2022 (Anticipated) 157.5 MW N/A

Aldoga Solar Farm [44] Central Queensland, Australia 2024 (Anticipated) 600 MW USD 0.5B
Lilyvale Solar PV Plant [45] Central Queensland, Australia 2019 126.2 MW USD 28357 M
Harapaki Wind Farm [46] New Zealand 2024 (Anticipated) 176 MW USD 395 M
AEP Ohio [47] Ohio, USA 2009 2954.03 MW USD 13377 M
Detriot Edison’s [48] Michigan, USA N/A 11,084 MW USD 10.88 M
Pacific Northwest Smart Grid Project [49] Washington, USA 2009 47 MW UsD 179 M
The Roscoe Wind Farm [50] Texas, USA 2009 7815 MW UsD 1B
Glencore RAGLAN Mine Renewable Electricity ~ Quebec, Canada 2015 20.1 GW usb7.8M
Smart-Grid [51]

Hebei Shahe Power Plant [52] Hebei, China 2013 1200 MW UsD 750 M
Xiangjiaba shanghai power company [53] Shanghai, China 2020 6400 MW N/A

APDCL [54] Assam, India 2010 90,000 MW UsD 367 M
CESC [54] Mysore, India N/A 151,890 MW uUsb4 M
HPSEB [54] Himachal Pradesh N/A 533,000 MW Usb3Mm
UGVCL [54] Gujarat 2014 1,700,000 MW usb 10 M
TSECL [54] Tripura 2005 128,730 MW Usb 9.8 M
Jeju Island Smart Grid Project [55] Jejulsland, South Korea 2009 N/A Usbh 208 M
Setana Osato Wind Power Plant [56] Hokkaido, Japan 2020 51.2 MW UsD 115.84 M
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Fig. 3 A conceptual framework for next-generation smart grid energy system

agent-oriented software. An NGSG can be modularized
by assigning the data-driven autonomous software that
may virtually control the individual components of an
NGSG and convert the centralized SG technology to a
scalable and adaptable decentralized technology. For a
multi-agent system, the complete NGSG is not needed
to be recognized at any single point of a node, while the
individual components can work towards predefined
goals to achieve optimized performance, where the
agent-backed components can interact with the system
as well as each other [57]. However, the characteristics
of an agent depend on the goal, which can be assigned
to be cooperative or competitive with the other agent’s
characteristics. The aggregated characteristics of the
agents may be able to determine the generation char-
acteristics of the whole NGSG system. These character-
istics of agents can be tweaked and redefined for better
optimization of an NGSG. Then the failure of compo-
nents in an SG does not result in total system failure

because the individual agent works automatically with
the initial knowledge it possesses.

3.2 Intelligent agent-oriented energy conversion unit
integration

Agent-based energy models can be used to optimize
energy conversion to minimize loss and maximize out-
put. A conventional SG is designed to convert energy
on different levels. However, in each step of conversion,
energy loss may occur. Analyzed data gathered from such
energy conversion systems can be used to construct agent
software for efficient energy conversion. At the time of
converting energy from one state to another, sometimes
losses occur in the form of energy other than the required
output energy. Such losses can be reverted by reusing
the excess energy through efficient agent-based conver-
sion. The synchronization between different conversion
devices may have to be done using a multi-agent system
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for both monitoring and integrating the devices into the
main power system [58].

3.3 Edge computing for energy data management

To eradicate the issues from IoT in conventional SG, edge
computing (EC) is a technology of great significance for
an NGSG. The IoT approach for SG collects massive
datasets that are difficult to process because the cloud
servers are situated in a distant geographic area. The net-
working system is stressed when raw data collected from
IoT devices are transmitted to the cloud because of the
increases in latency and reaction time. The data collected
from an SG may contain private data, and as the data are
sent to a third-party cloud server it may pose the risk of
privacy breach. The EC solution shows huge potential to
remove these problems which are presented by typical
IoT systems. It takes the data close to the collection point
where they are to be processed [59]. Another perk of EC
is that it can reduce the network load to a great extent by
shrinking the volume of transmitted data. This creates a
low-latency high-response network system essential for
the forthcoming SG systems.

EC creates a hierarchical architecture, as shown in
Fig. 4. The architecture consists of multiple processing
layers where all the IoT devices in the SG are located.
In EC, some data processing tasks are shifted from the
clouds to the multiple layers. The processing is done
at lower-level layer, unless it needs more computation
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than that when it is offloaded to the higher layers. For
example, some embedded IoT devices can perform
small prepossessing like noise filtration. However, the
computation capabilities of these devices are limited,
and sometimes they cannot fully process the data.
Thus, the data are sent for processing to a higher layer
with more computational power and gateways. The
gateways in EC provide local computation work with
the IoT devices parallel to their conventional work.
Different data-driven models may have to be used to
process data in the EC structure, such as a prediction
algorithm based on reinforcement learning for energy
price estimation and home scheduling [60], and the
heuristic evolutionary model for advanced demand side
management by load shifting, a model which aims to
reduce peak load and cost in the SG domain [61].

3.4 Interoperability between multiple energy hubs

The connectivity between different energy components
in an NGSG will play a vital role in sustainable energy
evolution. Market interoperability also needs to be
explored to achieve overall connected operations over
the entire system. A system’s interoperability refers to
its capacity to collaborate with other systems in order
to share resources [62]. The multiple levels of interop-
erability in an NGSG can be divided into the following
segments:

Fig. 4 Hierarchical architecture of edge computing consisting of multiple processing layers
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1. User interoperability to ensure that there are options
for customers to choose among various commercial
and technological options.

2. Commercial interoperability to ensure that value can
flow to where it is needed. Driven by market forces, it
is important to confirm that incentives are matched
across the energy system.

3. Interoperability of data to ease portability and data
sharing between the components of energy sources,
consumers and suppliers.

4. Equipment interoperability to ensure that the equip-
ment is replaceable or exchangeable when there are
changing demands, to allow energy consumers to
make intelligent and informed choices.

5. Vector interoperability to make sure that timely
coordination takes place and that energy provisions
across various components of the energy system are
compatible with each other.

3.5 Internet-based inverter control technology

Intelligent data-driven inverter technology plays a sig-
nificant role in the root-level controlling of an NGSG by
ensuring the mutual connection between generators and
loads. These smart inverters have the capacity to connect
with IoT devices with more embedded intelligent data-
driven software. This emerging technology ensures the
devices perform more intelligently in relation to quick
response, effective fault diagnosis, automated mainte-
nance, etc. [63]. The inverters in an NGSG will work
autonomously without intervention and take a sophis-
ticated step towards the control of power conversion.
Smart inverters will be aware of their adjacent environ-
ment and guarantee quick adaptation to sudden changes
in the context of an SG. They will also have the ability
to learn from the accumulated data to enhance future
adaptability and control management.

3.6 Self-healing grid enabled by agent-based control

The most crucial traits of an SG include self-healing
capacity in the presence of unexpected conditions. When
defects are found, the power system networks may have
the ability to automatically restore the information.
Although it is inevitable to have defects and disruptions
in power systems, the potential dangers mainly depend
on the fault magnitude, nature, duration, and location.
The integration of sensors, self-operating sophisticated
controllers, and cutting-edge software tools make up the
agent-based self-healing grid. It will use real-time data
to locate and isolate issues, restructure the system and
reduce the number of impacted consumers. To attain the
control of self-healing under faulty conditions, an agent-
oriented control technique based on optimization is
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required for the SG domain which will mitigate the effect
of over-voltage by enabling the automatic restoration of
the sound condition of the power network [64]. In terms
of the multi-agent control systems, fuzzy logic is used to
make decisions.

3.7 Agent-based holonic approach on the demand side

To balance the demand and supply sides of an NGSG,
multi-agent-based holarchies consisting of various
abstraction layers of the distribution grid may have to
be proposed as a holonic approach [65]. The holon con-
cept may be applied as a holonic multi-agent approach to
manage the information technology-based infrastructure
of NGSG. This leads the path to efficient data transfer
and robust communication security.

4 Data-driven next-generation smart grid

4.1 Critical steps for data-driven NGSG development

The framework of a data-driven NGSG may depend on
the forming of the critical steps as shown in Fig. 5, which
demonstrates how a data-driven NGSG solves criti-
cal issues and develops the final model for a data-driven
NGSG. The bottom of the pyramid is the first step and
the top is the last step of the process. Every step in devel-
oping the NGSG framework shown in Fig. 5 is discussed
in detail in the following sub-sections.

4.1.1 Identifying problems

First and foremost, the SG power system needs to be
thoroughly studied to understand the issues to be solved
for system sustainability. Understanding the problem
plays an important role in data management modeling.
The SG power system may produce a large number of
datasets that can be analyzed using different data science
tools. Most of the data may prove irrelevant when com-
ing to the goal of data science modeling, and thus, data-
sets related to the problem to be analyzed are of the most
significance [66]. Intensive studies of the power system
incentivize data collection, as it simplifies understanding
of the type of data that is needed for further analyzing the
data algorithms.

4.1.2 Data requirement and data collection

Data science methods need a huge amount of data to
properly analyze certain system characteristics. The more
data are available from a system, the easier it is to gener-
ate the final output. Data from an SG can be generated
by enabling smart meters, sensors, and PMUs. Automa-
tion in data collection is an important aspect in the sus-
tainable and robust modeling of the data science method
[66]. The required data can be found in the first step,
“Identifying problems”. Additional datasets, such as the
power system configuration, voltage and current levels,
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Data Requirement & Data Collection

Fig. 5 Critical steps to develop a data-driven next-generation smart grid

transformer and generator information, security system,
load flow, etc. may need to be added to improve the data
science modeling.

4.1.3 Comprehension of data

The data should be studied after collection, and catego-
rized based on the different characteristics of the system.
The accuracy of data measured or collected should be
high because data science methods require accurate data
for smooth analysis. If the measured datasets are far from
their actual values, the final output from the data algo-
rithms may not be satisfactory [66]. The comprehension
of data will significantly enhance the process of acquir-
ing data as well as understanding which data are needed
most for the system model. Nonetheless, several char-
acteristics of data such as data type, data quantity, data
accessibility, data features, the combination of multiple
datasets, previous datasets, etc., should be given atten-
tion for better data-driven NGSG modeling.

4.1.4 Exploration and pre-processing of data

Exploration of data involves the analysis of a dataset to
summarize its key aspects. Data are explored at first to
understand the essence of data towards assessing the
quality and characteristics of the data. Various statisti-
cal representations can be used to process these datasets
with different points of interest. This helps to under-
stand initial trends and attributes of the data. The qual-
ity of data may be further enhanced by using various
pre-processing methods consisting of noise reduction,
finding missing data, smart labeling of data, data filtra-
tion, and data formatting. One of the main goals of data
preprocessing is to solidify the quality of data by correct-
ing, reformatting, and combining datasets [66]. Some of
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the processes for enriching the available data include data
cleansing, data transformation, finding missing values,
unbalanced data handling, bias issues handling, distribu-
tion of data, detecting anomalies in data, etc.

4.1.5 Data modeling and evaluation

Different forms of data-driven and machine-learning
models should be chosen for data analysis with the best
fitting of the data according to the type of analytics. The
typical process for separating data into training data and
test data is either done by dividing the available datasets
into a ratio of 8:2 or using the k-fold method for data
splitting. To maximize model performance, it is necessary
to split data and observe [67]. To test model performance,
several model validation and assessment benchmarks can
be used. These can help data scientists choose or build
the learning method or model. These benchmarks include
true positive, true negative, false positive, false negative,
error rate, accuracy, precision, recall, receiver operating
characteristic analysis, f-score, applicability analysis, etc.
In addition, researchers may use sophisticated analytics,
which may include feature selection and extraction, fea-
ture engineering, tuning algorithms, ensemble methods,
modification of existing models, etc. to improve the final
data-driven model for smart decision-making to handle
specific system problems.

4.1.6 Final product and data automation

The final product is the outcome of the system after
processing and analyzing all the data. It can be a recom-
mendation, a comprehension, or a forecast. The obtained
data product is used to make the best decision on vari-
ous problems. In practical application, several data prod-
ucts have made considerable contributions to make the
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system intelligent and self-activated [67]. In the case of
energy trade, information gained through data analysis,
such as churn prediction and customer segmentation,
can be used to make smart decisions towards sustain-
able energy trade. Finally, the whole process of collection,
comprehension, processing, and modeling data should
be run through an automated algorithm system, thus
eliminating the need for manual handling and ultimately
reducing data processing time and increasing efficiency.

4.2 Data-driven techniques used in NGSGs

Properly designed data-driven techniques can have the
ability to make the updated version of an SG and solve
the existing problems related to insufficient, incorrect,
and unreliable data. These techniques consist of different
types of algorithms, which are broadly divided into three
categories: supervised, semi-supervised, and unsuper-
vised [67-81]. A summary of various data-driven algo-
rithms used in SG for executing and improving different
functions is reported in “Appendix 1.17 However, the
theory behind the development of DDTs can also be split
into numerous categories, as discussed in the following
sub-sections.

4.2.1 Bayes concept-based learning technique

As a practical data-driven technique, the theory of the
Bayes concept establishes the connection between the
model and the dataset. Deep learning-driven processes
adhere to the Bayesian framework, and its methods exist
to measure uncertainty. The Bayesian approaches can
be applied to forecast net load in NGSG systems, while
a deep long-short-term memory (LSTM) and Bayesian
theory can be combined to anticipate the aggregated load
in SG systems. A recurrent neural network (RNN) with
memory cells which can store important information for
a long time can perform effectively for the loads based on
long-term reliance, significant volatility, and unpredict-
ability. Conversely, completely Bayesian inference can be
used to pick models for both evidence-based and predic-
tive frameworks. The models for both frameworks can
be chosen using fully Bayesian inference. Several studies
have shown that the predictive approach, which displays
data overfitting, does not perform as well as the evidence
framework in this area [82].

4.2.2 Probabilistic learning technique

The probabilistic learning concept for smart energy sys-
tems includes binary and Bernoulli, univariate Gaussian,
and multinomial and categorical distributions. The bino-
mial distribution expresses the probability of a certain
value among one or more independent values for a given
set of parameters. The probability distribution of the
intelligent power system has been significantly influenced
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by the binary and the Bernoulli distribution model. For
plug-in electric vehicles, several methods have been
developed to ascertain the probability distribution for
their charging patterns at various periods of usage [83].
To reduce uncertainty and volatility in power systems,
most studies have recently embraced grey Bernoulli
approaches, and as a result, prediction now takes less
functional data and research, especially when predicting
long-term development.

4.2.3 Common univariate distribution technique

Probability studies typically address common distri-
butions individually when it comes to the data-driven
process, e.g., Student-t-, Gamma, Cauchy, and Beta
distributions, Laplace irradiance, etc. The Cauchy dis-
tribution is heavily used in the analysis of power sys-
tem harmonics, estimation of wind power uncertainty,
prediction-based models, and real-time dispatch of
wind-based power plants. The Gamma and Weibull dis-
tributions are two methods that are widely used to deter-
mine wind speed in dispersed generation [83].

4.2.4 Optimized learning technique

Power systems frequently provide diverse optimization
strategies for various issues such as non-linearity, sensi-
tive to uncertainty, and large-scale. The constrained [84],
bound and blackbox free optimizations [85] are some of
the techniques used in the SG domain. There are also
first-order and second-order approaches. The first-order
optimization approach is widely used in the classifica-
tion of numerical optimization strategies that use the
first-derivative methodology, while the second-order
approach, often called the Newton technique, applies
the second derivative in a scalar problem. These modifi-
cations have a significant impact on the power system’s
optimal power flow problem [83]. Optimal power flow is
an optimization tool for running power systems and con-
trolling energy. The linear programming, Karush—Kuhn
Tucker conditions, quadratic programming, and estima-
tion of wind power uncertainty can be applied to SG sys-
tems in many ways, including but not limited to power
generation planning, power system expansion, advanced
energy systems, power flow analysis modeling and heu-
ristic methodologies, threats, unpredictability measures,
and demand response.

4.3 Key analytics to adopt data-driven techniques in NGSG
Numerous processes of analytics shown in Fig. 6 can sig-
nificantly aid the data-driven techniques used for an SG
[86]. Figure 6 shows the process of prescriptive analyt-
ics, predictive analytics, decision intelligence, and data
mining.
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4.3.1 Predictive analytics

Predictive analytics, a form of advanced analytics, uses
statistical modeling, past data, data mining methods,
machine learning, etc., to forecast future events. In Fig. 6,
data are gathered from numerous datasets and ana-
lyzed to comprehend the reasons for and results of every
occurrence. A pattern is created, and then all the data are
evaluated statistically. Finally, predictive analytics pre-
dicts the outcome.

4.3.2 Prescriptive analytics

The practice of using data to decide the best action is
known as prescriptive analytics. This form of analysis
generates recommendations for the next moves by tak-
ing into account all the essential aspects. As shown in
Fig. 6, prescriptive analytics methods analyze the model
and extract knowledge from the data. Then, possible
future outcomes are generated. Observing the possible
outcomes, prescriptive analytics gives optimized decision

to the systems, or devices, or people, on the action they
should take.

4.3.3 Data mining

The process of going through massive datasets to uncover
patterns and links in order to forecast outcomes by data
analysis is known as data mining. The process of data
mining from collection and selection of data to acquir-
ing knowledge via processing target data and interpreting
patterns is shown in Fig. 6.

4.3.4 Cohort and cluster analytics

Cluster analytics refers to the grouping of similar data
into a number of finite clusters. This is a type of behav-
ioral analytics that divides data into clusters before
analysis. The clusters carry similar characteristics or
experiences over a period of time. Multiple clusters are
made when the substance of a group of data varies from
another group of data. Being an unsupervised analysis
method, cluster analysis does not assure the number of
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clusters beforehand, while the number of clusters is only
revealed after the clustering algorithm is completed. It
tends to find a core similarity within data thus separating
a group of data based on differences among the groups.

4.3.5 Decision intelligence analytics

Decision intelligence is a trending method that uses data-
driven techniques to make a decision based on cause
and effect. It uses various models and algorithms of data
science assisted by social and managerial sciences. This
method is important for designing, modeling, and tuning
the decision-making process of power systems. Figure 6
shows that decision intelligence blends multiple decision-
making methodologies with Al, ML, automation, and rel-
evant information.

4.3.6 Operationalizing and scaling

Operationalizing refers to the materialization of an
abstract idea or concept into a measurable form. This
method is valuable for collecting data on abstract or
unobservable systems, e.g., future power systems, in a
systematic way. This can quantify different parameters of
an NGSG as such power systems are not yet available in
a practical environment and can only be observed as an
idea or a simulation. Conversely, the scaling of an NGSG
refers to a comparatively small size prototype and is
essential for running various operations on a small scale
to identify the characteristics of that test before conduct-
ing it on a large scale in the original power system.

5 Data-driven techniques in NGSG: prospects

and adaptation challenges
5.1 Prospect of data-driven techniques in NGSG
5.1.1 DDTs in intelligent energy materials processing
Energy materials production is on the verge of a break-
through as per the advancement in data-driven tech-
nologies for materials research. Significant growth in the
field of materials science can be found in [87]. The recent
improvements in data-driven techniques for materials
engineering show that ML innovates intelligent energy
materials’ production and design process. Addition-
ally, it can be used for measuring the electronic proper-
ties of power systems. In using data-driven techniques
like ML, the first step is to gather the objectives and set
goals to achieve them. This is the most important step as
the goals must be specific and achievable from the avail-
able datasets or information. The data-driven ML models
are useful for enabling a low-cost and reliable approach
toward predictions where computational or experimental
approaches increase expense.
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5.1.2 DDTs in intelligent energy systems component

A smart energy system is made of multiple components
for the generation, storage, distribution, and consump-
tion of energy. These aspects of energy systems can all be
subjected to data-driven techniques such as ML or arti-
ficial intelligence (Al) for the performance improvement
of an NGSG. With the enabling of this technology, data
gathering from connected devices has provided a better
understanding of system characteristics and improve-
ment in various details. The data-driven ML methods
have the ability to allow better simulations to construct
prediction and forecasting models. The energy storage
system of an NGSG should be improved for efficient
charging and discharging of the storage devices [88].

5.1.3 DDTs towards intelligent demand-side management
Data-driven ML technologies play a significant role in
demand-side management by allowing energy consum-
ers to try out different market mechanisms in practical
scenarios. A sophisticated integration of demand side
devices, such as solar PV, battery storage, and smart
meters, is done through linking with the internet, being
associated with ML techniques, and following advance in
data collection and data sharing. The concept of “smart
homes” is very popular now and the number of smart
homes has seen a spike in recent years [89]. A Swedish
pilot project was done on reducing peak energy usage
significantly by implementing data-driven ML techniques
in the field of demand response management [90], in
which a multi-agent approach offers demand responses
in the NGSG by allowing coordination among its com-
ponents. Energy devices can communicate with the
power grid and exchange information by giving access to
the dynamic communication system [90]. The demand
response programs are categorized into two groups,
i.e., price-based and incentive-based. Real-time pricing,
rate per usage, critical peak pricing, etc., are included
in price-based demand response, whereas emergency
response, direct load control, ancillary market services,
market capacity arrangement, and buyback programs are
included in incentive-based demand responses. These
categories can be subjected to data-driven management
techniques for better demand-side management of an
NGSG.

5.1.4 DDTs towards smart manufacturing in NGSG

The fourth industrial revolution has enabled the produc-
tion and collection of data from connected machines in
industry. Data-driven ML techniques can be used to ana-
lyze the collected data as an approach to smart manu-
facturing [91]. Some of the various ML models used for
smart manufacturing include: (1) support vector machine



Ahsan et al. Protection and Control of Modern Power Systems

(SVM); (2) k-nearest neighbors; (3) Bayesian networks;
(4) artificial neural networks; (5) decision tree; (6) multi-
ple logistic regression; (7) k-means; (8) random forest; (9)
gradient boosted; and (10) additive models. The newer
business models also require smart manufacturing. This
is enabled by the technical advance of Industry 4.0. In a
data-driven smart manufacturing system, the benefits of
real-time data analysis, advanced decision-making, better
plant efficiency, and increased production may be crucial
for NGSG modeling.

5.1.5 DDT inintelligent energy resource planning

Energy forecasting and management is a significant field
of interest for energy resource allocation and demand-
side handling [92]. Decision-makers can be assisted by
different data-driven decision-making techniques con-
structed by data experts. These contribute a lot to design-
ing energy plans, choosing optimal decisions, and finding
alternatives. Robust energy systems enabled by intelligent
planning allow the use of data-driven algorithms to iden-
tify market conditions and aid the building of advanced
energy devices. The real-time applications of data-driven
methods in the field of energy are commonly seen in vari-
ous energy systems. A key aspect of data-guided tech-
niques is the use of Al to improve NGSG performance
[91]. The incorporation of the IoT in intelligent energy
planning and management is also one of the most signifi-
cant aspects of data-driven techniques used in the energy
industry. The IoT can enable access to remote access
and control of an NGSG with a smart tracking system.
Here, smart meters inform consumers about the vol-
ume of energy consumption, while local infrastructures
like microgrids can be connected to cloud servers to
exchange information to enable significantly better load
forecasting.

5.1.6 DDTs in integrating the large-scale heterogeneous
energy sources

Policy makers have already been focusing on the up-
scaling of renewable energy. This will affect the energy
market. Thus, power grid operators and engineers are
putting emphasis on data-driven techniques and models
to achieve a seamless transition from fossil fuel to renew-
able energy. Harnessing energy from renewables on a
large scale requires enabling multiple green sources of
energy at the same time, which signifies the importance
of heterogeneous energy sources. The synchronization of
such sources can be guaranteed using data-driven algo-
rithms, including collecting and analyzing data from the
sources with specific ML models. For example, solar and
wind power plants already generate a huge amount of
data which allows data-guided techniques to forecast dif-
ferent levels of energy with the help of sensor integration
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[93]. These energy consumption datasets can be analyzed
to predict peak and low demand times, and design the
production rate to minimize losses. However, the up-
scaling of green energy sources also opens a door in an
NGSG for cyber attackers. Thus, the security of an NGSG
should be ensured by updating the data-driven ML mod-
els regularly to increase integrity.

5.2 Challenges to implementing DDTs in the NGSG

The development of a data-driven smart grid system
toward achieving sustainable energy transition has
some challenges from various points of view. In the fol-
lowing sub-sections, a thorough discussion on the chal-
lenges during the adaptation of DDTs in the NGSG is
conducted.

5.2.1 Engineering point of view

1. Overfitting mechanism When a model tries to fore-
cast a trend in excessively noisy data, overfitting may
occur. This is the result of a model that is too com-
plicated and may have a large number of parameters
because it does not accurately reflect the reality in the
data. A typical data-driven ML network may contain
millions of variables. The training data model typi-
cally consists of a large number of records. However,
even when a network recognizes the training set and
gives answers that are hundred percent precise and
correct, it may entirely fail when faced with new data.
This mechanism is known as overfitting, and is one of
the limitations of data-driven techniques [94].

2. Installation of intelligent energy processing unit Intel-
ligent processing methods need complex thermo-
chemical operations and multi-component frame-
works. These generate a lot of data quickly. The
best scenario is for operators to receive rapid data
on the properties of energy material manufacture
and process parameters in real-time, allowing them
to identify novel processes and phenomena more
quickly and react effectively and efficiently. Exist-
ing techniques, however, provide “postmortem” data
yearly after the manufacturing process has ended.
To improve and assess the production process, data-
driven ML techniques can be applied [95]. However,
the existing data-driven techniques may demand a
revision in their structure to maintain the energy
materials and electric infrastructure at the energy
distribution level.

3. Feasible energy storage material The enormous
amount of background data and the increasing com-
plexity of energy storage systems provide significant
hurdles for the current methodologies and algo-
rithms. For greater precision, stability, and efficiency,
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emerging cutting-edge technologies can address the
shortcomings of traditional approaches. First, the
development of energy storage encompasses inven-
tion and breakthrough, long-term storage, a high
amount of protection for electro-chemical backups,
and cheap cost. This low-cost technology is also
necessary for high efficiency and physical storage.
Secondly, research is focused on modeling energy
storage and streamlining the procedure in different
energy systems, supporting the use of energy stor-
age technologies, and developing innovative struc-
tures and thorough evaluations for modernizing and
advertising energy storage [96].

5.2.2 Technology point of view

1. Tech advancement Argonne scientists are trying to

develop optimization approaches that combine ML
and Al to simulate the intricacy of various electrical
system challenges much more quickly than the cur-
rent methodologies. The primary focus is to acceler-
ate load flow analysis and daily computation of the
electricity system [97].

. Improved energy efficiency Future difficulties in sus-
tainable 5G and 6G power management hold sig-
nificant potential for data-driven methods. For the
cost-effective design and optimization of network
operations, data-driven ML approaches, like feder-
ated learning, deep learning, and optimization may
be considered. By gaining flexible network structure
and altering traffic conditions, it is possible to con-
struct 5G or 6@ air interfaces. Using a variety of 5G
and 6G technologies, including SG, intelligent trans-
mission and distribution of network lines, smart
buildings, and industrial automation, data-driven ML
will be more widespread and crucial than simply con-
serving energy. On the other hand, these approaches
typically require coordination and computing, which
can pose significant challenges for the design and
implementation of power-efficient data-driven tech-
niques and for upcoming 5G and 6G networks [83].

5.2.3 Decision-making point of view

1. Decision-making When making decisions on energy

distribution, data-driven techniques can improve
intelligent system performance. Any situation involv-
ing decision-making in a dynamic environment can
benefit from reinforcement learning. Agricultural
production optimization, robotics, automatic control
and adjusting (i.e., heating, air conditioning, and ven-
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tilation), and supply chain optimization are examples
in which DDTs can assist. In the future, renewable
energy sources should be employed fast and in ways
suitable for their unpredictable nature. Here, light
and wide energy usages are offered in the interim by
the placement of smart meters. The efficient use and
analysis of the data can present new load forecasting
options where proper decision-making can be diffi-
cult [98].

2. Decision on demand response unit Demand response

representatives should first operate in a barely vis-
ible environment, which means they cannot prop-
erly understand the working process of the demand
response unit. The structure and administration
for demand response are designed to monitor and
use real-time data on energy consumption to offer
energy pricing for thousands of customers via the
utility power grid. Customers can adjust their energy
consumption in response to grid conditions and the
rates. By assisting end-users to think about how they
need power grid improvements, ongoing growth
can increase reliability, cost-effectiveness, and sus-
tainability. The prospective integration of renewable
energy directly into the power grid will be encour-
aged by the corresponding knowledge and such resil-
ience [99].

5.2.4 Others

1. Economic challenges The energy storage industry is

now facing difficulties in several countries, including
weak legislative support, high price, doubt in value,
unsound business practices, etc. In the coming years,
it will be crucial because of two factors: first, the
suggestion of substitutes to the energy storage plan
including power generators and electrical firms; and
second, the development of a suitable business com-
petitive structure and arrangement of sufficient fund-
ing schemes for fresh data-driven advanced technol-
ogies [100]. According to Woori’s forecast, the cost of
energy storage will increase globally by 26 percent in
a year. Although there are various market variables
for energy storage, the primary obstacles continue to
be high costs, poor subsidy programs, a median cost
configuration, and lack of a business prototype.

. Trained consumers Many companies have to deal

with the challenges of training their consumers on
how to use cutting-edge technologies. The same task
may be required of data engineers. Investors, devel-
opers, and managers overestimate the existing capa-
bilities of data-driven techniques, while anticipating
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that the algorithms will comprehend difficult issues
with ease and make reliable predictions.

3. Lack of expert manpower Even though the market
for data-driven methodologies is attractive to many
people and the energy sector, to further develop this
research field it requires more expert manpower.
In the energy sector, power utilities face challenges
when innovating new technologies because of a lack
of skilled employees.

6 Trends of DDT towards sustainable energy
evolution in NGSG
Utility firms may allocate resources more effectively,
reduce costs, and find better ways to serve customers
with the help of the proper analytical platform. Addi-
tionally, the appropriate data analytic platform enables
them to maximize the value of the generated data. This
can help the sustainable energy evolution through the
improvement of the following aspects in an NGSG.

6.1 Securing reliable control operation

The most crucial aspect of SG energy systems is their
ability to operate securely and reliably. The SG has
already benefited from the involvement of data driven
techniques in terms of stability, security, and dependabil-
ity [90]. It is well recognized for providing timely and effi-
cient stability analysis which claims the implementation
of automatic control. The use of data-driven techniques,
like machine learning, reinforcement learning, and deep
learning in stability and control analysis has been the
subject of extensive research in recent decades, as shown
in Table 4. It is realized that the implementation of the
data-driven techniques in an NGSG may offer a reliable
solution to address the control issues in terms of fre-
quency, voltage, preventive and restorative measures, and
enable a sustainable energy evolution through the reduc-
tion of CO, emission in the environment.

6.2 Definitive energy management

Energy management is associated with the control, plan-
ning, and monitoring of energy-related processes to
conserve energy resources, reduce energy costs, and safe-
guard the environment by minimizing CO, emissions.
Energy management through advanced data-driven
methodologies has already started in SGs as shown in
Table 5. The advantage of using the advanced methods
is the ability to perform work in less time, while offer-
ing a realistic solution to manage energy over a small
amount of data. This is done through enabling DDTs in
SG planning and management, including grid synchroni-
zation, active and reactive power management, ancillary
services, and techno-economic modeling. From Table 5,
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it may be predicted that the emergence of DDTs in an
NGSG also paves the way to contributing to sustainable
energy evolution [112].

6.3 Precise asset condition monitoring

Old assets are a prime cause for uncertainty in load and
demand management, affecting optimal operation and
the overall health of the NGSG. Thus, constant monitor-
ing of all the assets of an NGSG is needed to reduce the
risk of equipment failure [120]. Obsolete technologies are
also to be replaced with advanced technologies. Various
data-guided methods, as shown in Table 6, can be prime
examples of asset monitoring systems where data taken
from an NGSG are analyzed to understand the asset
conditions.

6.4 Accurate fault prediction and characterization
Traditional fault detection algorithms, like impedance
based and wave-based techniques, cannot adjust with
the penetration of distributed renewable power gen-
eration [130]. On the other hand, Al-based data-driven
approaches can bypass challenging modeling and fault
mechanism analysis. A fault classification approach based
on a data-driven CNN fed with features retrieved by the
Hilbert-Huang Transform (HHT) in power distribution
systems is proposed in [131]. This approach performs
admirably in fault classification thanks to the CNN’s
strong feature learning capabilities. Another data-driven
Graph Convolutional Networks (GCN)-based method
for addressing fault location is suggested in [132]. It
keeps the spatial information of buses in the GCN struc-
ture, which allows improved fault detection accuracy.
To achieve fault detection and location, the voltage and
frequency signals are used, respectively. Additionally, a
fault contour map that groups the buses into several tiers
based on the severity of the impacts is provided. A short
summary on the recent progress of data-driven tech-
niques for precise SG fault characterization, detection,
and location identification is shown in Table 7. It is seen
that the data-driven approaches can satisfactorily per-
form fault diagnosis, though their performances may suf-
fer because of a lack of sufficient data. By developing the
data-driven NGSG infrastructure, data can be gathered
from various sources and then combined and used to
increase the precision of defect diagnosis. This can help
improve sustainable energy evolution.

6.5 Accurate forecasting and uncertainty estimation

The increasing integration of RESs, such as tidal, solar,
wind, etc., demands more effort to schedule and oper-
ate an SG. Load forecasting (LF) is a crucial component
for planning and running modern power systems since
it helps to preserve stability, and keep the environment
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Table 7 Fault prediction and characterization techniques
References Technical approach Fault Fault
detection characterization
3 Dissimilarity learning method based on Clustering v

~

loT based model

[ Y]

Machine learning algorithm

~J

Neural networks, SVM, Decision tree

(ee]

Data extraction from smart meters and sensors

O

Feature extraction method from big data

S

Machine learning algorithm

[N

ANN

Convolutional sparse autoencoder

N U NWw

Data-mining based model
Deep neural network

O

Sparse self-encoding neural network
ANN, Multiplier-based method (MBM)
Decision tree

N — O

Neural network
Multivariate Statistical Analysis (MVA)
Combined data analysis

w

LYoo hBN S O00RYIIT AN Q000NN S AW

ul

Multi-agent model
Mobile Edge Computing (MEC), loT-based Solutions
Neural network

0 N O

Neural network
SVM
Holonic multi-agent approach

@L\Smmmmmmmmm.b.bLbhbb#bhwwwwwww

S

Power line communication-based data transmission algorithm

Big data approach towards data processing from smart meters

Supervised data-driven topic model consisting of heterogeneous network of information
Field programmable gate arrays (FPGAs) based higher order statistical method

Data-driven Multivariate Exponentially Weighted Moving Average (MEWMA)

D N N N N N N N N e N N N N N N N N N N N N NN
XX X X X X AOX X AL RAX KA XAOX X X <X X

safe by reducing CO,. Faultless load forecasting is useful
for decreasing production costs, as it enables reducing
utility risks by predicting future consumption of prod-
ucts that the utility will transport or deliver. However, it
is highly challenging as the load is stochastic in nature
[161]. Conventional forecasting models frequently do not
disclose the degree of uncertainty in their forecasting,
which can result in expensive and dangerous choices, and
compromise attempts to develop dependable SG systems
[162]. Before digging into the data-driven deep learning
approaches of load forecasting, it is essential to catego-
rize load forecasting techniques. The objective of short-
time load forecasting (STLF) is to measure the load over
a few weeks starting at one hour [163]. STLF is essential
for the generation, transmission, and distribution of SG
power. The data-driven techniques in Table 8 are used
for improving STLE. The methods of Table 9 are used
for analyzing the data for very-short-time load forecast-
ing (VSTLEF). For longer periods, such as medium-time

load forecasting (MTLF) and long-time load forecasting
(LTLF), the techniques shown in Tables 10 and 11 are
used, respectively. It can be shown that the data-driven
method can provide accurate forecasting for the NGSG
model, and can also conveniently improve the possibility
of achieving sustainable energy evolution.

6.6 Precise fraud characterization

Electricity utilities must deal with non-technical losses
incurred by fraud and theft committed by their custom-
ers or third parties. Certain approaches have been devel-
oped to developed to detect potential scammers among
consumers and third-party interference as listed in
Table 12. Many data analysis-based approaches are taken
toward detecting and diminishing fraud. Table 12 shows
that fraud characterization may become more accurate
and convenient by enabling the data-driven SG model.
This can create a reliable security layer in diminishing
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LF type Year

Technical approach

Contribution

Challenges

VSTLF 2022

2021

2020

ANN [184]
Extreme Gradient Boosting (XGBoost) [165]

Markov-chain mixture distribution (MCM)
model [185]

FFNN, Neuro-fuzzy, Fuzzy Multi-Objective
Decision Making (F-MODM) [186]

RNN, GRU, BP [187]

DML, Apache Spark, Apache Hadoop,
Linear Regression, Generalized Linear

Load forecasting with optimal asset man-
agement

Forecasts loads specifically for warehouses
and logistics consumption

Develops a standard model for household
power consumption

Develops load forecasting 1 h ahead based
on weather data

Predicting load demand of residential
infrastructure for a short period

Reduces training time and testing time
of load forecasting

1. Weak performance on unstructured and
sparse data

2. Improper short time intervals

3. Insufficient data

4. High calculation time

5.Random and big data

6. Over-fitting problem

7. Management of structured and unstruc-
tured data

Regression, Decision Tree, Random Forest,
Gradient-boosted trees, Distributed com-
puting [188]

CNN, Mutual Information (MI), MI-ANN,
Relief F, Kernel Principal Component Analy-
sis (KPCA), BP [189]

LTSM, Bayesian deep learning, Bayesian
Theory [82]

BPNN, Bayesian Regularization, Levenberg-
Marquardt algorithm [190]

DBN, BP, Phase Space, Reconstruction PSR,
Levenberg-Marquardt algorithm [191]

Ml etc.

2019
buildings

etration
KNN-ANN, FFNN, Euclidean theory [192]

Over-fitting issue reduction and compu-
tational time reduction using CNN, KPCA,

Probabilistic-residential load forecasting
for PV systems

Load forecasting for individual district

Predicting load forecasting of bus-load
forecasting and distributed energy pen-

Load forecasting for hydro-thermal unit

generation combining ANN and KNN

2018 Neuro-fuzzy, ANFIS, Genetic algorithm,

Particle Swarm Optimization [193]

Decreasing execution or training time
as well as reducing feature selection
complexity

and characterizing the fraud. This itself may accelerate
the sustainable energy evolution process.

6.7 Safe energy trading (blockchain)

The highest priorities of every system are security, pri-
vacy, and trust. In the same vein, the upcoming SG should
have a good level of security, including: 1) ensuring that
an unauthorized third party cannot acquire any informa-
tion; (2) ensuring established cryptographic techniques;
(3) preventing information changes from unauthorized
entities; (4) denying access without permission; and (5)
ensuring authorized access to those with rights and privi-
leges. Reference [229] presents a revolutionary consensus
technique that makes Bitcoin the most popular applica-
tion of blockchain to date, resolving the issue of creating
trust in a distributed system. Additional approaches are
also being used, including cryptographically secured data
structures, digital signatures, time stamps, and incentive
schemes. The majority of current solutions are based on
centralized models. To make decentralized energy trad-
ing, blockchain technology has emerged and success-
fully trades energy among consumers, prosumers, and
suppliers. Although these technologies are mature and

functioning properly, the existing blockchain-enabled SG
system has a number of problems, including consumer
priority, security, and time consumption. Table 13 indi-
cates the blockchain-based techniques and algorithms
for safe energy trading. It is concluded that implement-
ing DDTs in an NGSG can drive the world to sustainable
energy evolution.

7 Future research directions

All the research conducted on DDTs and their results for
various aspects of SG highlight the significance of meth-
ods to achieve sustainability as a whole for an NGSG.
Reliable control operations powered by data-driven
technologies may cover all the control problems of a
future SG. The management models used in an SG can
be improved by increasing computational capability to
analyze large datasets simultaneously. This improvement
can also ensure even lower carbon emissions and energy
consumption, ultimately aiding the goal of sustainability.
The next-generation blockchain enabled trading eradi-
cates the chance of energy theft by keeping decentralized
records of all the simultaneous energy transactions hap-
pening in a certain time frame. Further, the advancement
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LFtype Year Technical approach

Contribution

Challenges

MTLF 2022 LSTM and NARX neural network [194]

SARIMA (seasonal auto-regressive inte-
grated moving average) and ES (Exponen-
tial Smoothing) [195]

ISSA-SVM (improved sparrow search
algorithm-Support Vector Machine) [196]

2021 LSTM network [197]
Support Vector Regression (SVR) [198]

2020  BPNN, Singular Spectrum Analysis (SSA),
Weightless Neural Network (WNN), Cuckoo
Search algorithm [199]
Grasshopper Optimization Algorithm, BP,
Regressive Model [200]
Load Range Discretization (LRD), CNN, BP
[201]
Mutual Information-ANN, Jaya algorithm
[202]
LSTM, Cascade NN, Edited Nearest Neighbor
(ENN), Ensemble Learning. Levenberg—Mar-
quardt algorithm [203]
CNN, BP, Image encoding, Gramian Angular
field, Recurrence Plot, Markov Transition
field [204]
DML, Apache Hadoop, Apache Spark, Linear
Regression, Generalized Linear Regression,
Decision Tree, Gradient-boosted trees, Ran-
dom Forest, Distributed computing [188]

2019  KNN-ANN, BPNN, Spark [205]
LSTM, BPNN, Adaptive Moment Estimation
[206]
Parallel deep learning [207]
LSTM, GRU [208]

2018  FFNN, Particle Swarm Optimization, MLP
[209]
BPNN [210]

Hourly energy demand prediction
of a municipality

1. Over-fitting issue
2. Systems precision iii. Huge calculation

Predicts yearly consumption of electricity ~ UMe

for the agriculture sector

Error index of load forecasting is kept
optimal which results in better prediction
accuracy

Load forecasting with minimal error
for industrial power consumption

Mean absolute percentage error (MAPE)
and root mean square error (RMSE) are kept
10 a minimum

Surveying load forecasting for wavelet
disintegration to learn about the reduction
of stochastic part

Daily and hourly continuous load forecast-
ing

Probability distribution generation for load
forecasting

Removes feature selection redundancy

Decreasing mean absolute percentage
error by integrating cascade neural network
in load forecasting

Single residential user load forecasting
using CNN on time series datasets

Development of a Distributed Machine
Learning approach for reducing training
time and test time with higher accuracy

Handling multivariate data and multiple
time series while predicting load forecast-
ing outputs

Load forecasting prediction by analyzing
electricity price

Ensuring control of hybrid energy storing
system in a distributed system using paral-
lel deep learning

Predicting load forecasting by training
GRU and LTSM with various time scale
sequences

Mid-term load forecasting in terms of green
environment and peak load

|dentification of max power load at pho-
tovoltaic power generation and power
capacity

in data-enabled asset monitoring can confirm a robust
energy grid by eliminating the chance of component fail-
ure, improving NGSG integrity, and prolonging its life-
time. However, the development of a techno-economic
model for a data-driven NGSG system in terms of opera-
tional cost, time consumption, manufacturing cost, and
computational efficiency imposes additional challenges

which open the following research platforms for further
improvement.

1. Increased robustness in techniques Future SGs based
on multiple renewable energy sources will need to
depend on data techniques that satisfy multidiscipli-
nary constraints as the system complexity is increas-
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Table 11 LTLF techniques
LF type Year Technical approach Contribution Challenges

LTLF 2021 Improved ANN model with an Adaptive Backpropa-  Fixes deviations between trained datasets and newly 1. Randomness
gation Algorithm (ABPA) [211] collected forecast datasets 2. Uncertainty of output
Hybrid Support Vector Regression (HSVR) [212] Long-term load forecasting for real industrial power
consumption in China
Feature-fusion-kernel-based Gaussian process model Converts one dimensional time-series data
[213] into multidimensional features to minimize the gap
between original datasets and forecasting
2020 Takagi-Sugeno model, RFNN, Fuzzy Rules, Nonlinear  Retaining temperature data from weather stations
System, BP [214] with LTLF process and holiday feature management
FENN. BPNN [215] Mean square error reduction for smart grid consist-
ing of low voltage
LSTM, ANN [216] Enhancing system marginal price using ANN
DML, Apache Spark, Apache Hadoop, Linear Regres-  Single residential user load forecasting using CNN
sion, Generalized Linear Regression, Decision Tree, on time series datasets
Random Forest, Gradient-boosted trees, Distributed
computing [188]
CNN, Mutual Information (MI), MI-ANN, Relief F, Ker-  Over-fitting issue reduction and computational time
nel Principal Component Analysis (KPCA), BP [189] reduction using CNN, KPCA, Ml etc.
2019 Parallel deep learning, DC-DC converter [207] Ensuring control of hybrid energy storing system
in a distributed system using parallel deep learning
2018 Neuro-fuzzy, ANFIS, BPNN, Levenberg-Marquardt Effectively predicting long term load forecasting
algorithm [217] using ANN
BPNN [210] |dentification of max power load at photovoltaic
power generation and power capacity
ing gradually as per changing requirements. Failure ment to ensure the maximum sustainability of an
to satisfy any of the requirements of an NGSG may NGSG. The improvement includes the management
result in disruption of power generation and trans- of every component, supply chain, security, demand
mission, increased operational cost, damaged com- response and all other aspects of an NGSG by intro-
ponents, and long blackouts. ducing synchronization and interoperability between
2. Enhanced data preprocessing and handling efficiency them. The data acquired from one sector of an NGSG
Various circumstances such as climate change, tax, may be used to improve other sectors. This is a key
regulation, and economic growth, etc., can affect the aspect of future management techniques.
supply and demand requirements for energy in the 5. International policy optimization Research on data-
future. This will differentiate the data acquired from driven technology for SG systems is confined to small
an SG which may vary from the previously acquired solutions for large problems. This is where energy
data. This can cause the data techniques trained on policies can offer flexibility in the research field of
historical datasets to be unable to generate accurate DDTs and force an NGSG to pursue and implement
results. The variations of collected data can have new data techniques to decrease carbon emission, cost,
information unknown to the algorithm that may be waste, etc., as well as increasing generation, effi-
analyzed after advanced preprocessing with higher ciency, resilience, and overall sustainability.
efficiency. This will increase the demand for better
and quicker preprocessing techniques.
3. Counsideration of local environment Most established 8 Conclusion
data-driven techniques are trained on the data avail- ~ With the advance of technologies, the need for a sus-
able at a global scale or in a specific area. However,  tainable and green environment is increasing. As well as
the data generated at a local level may vary greatly  increasing the amount of intermittent renewable genera-
from the global datasets. The data techniques should  tion, a data-driven technology may boost the capacity of
be flexible without losing robustness on the adapta-  clean energy sources, like solar, wind, and photovoltaic
tion to new systems in different environments. systems. An NGSG promotes energy-efficient power
4. Optimization of management system The existing systems and improves the effectiveness of power con-

management algorithms may need further improve-

sumption and energy sustainability. In this paper, the
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conceptual data-driven NGSG framework for sustainable
energy evolution is discussed. The main findings of this
paper can be summarized as:

+ A comparative study on the conventional SG and

NGSG is explicitly done here in terms of their opera-
tion and technology. Also, the critical steps to build
the data-driven NGSG are also demonstrated and
briefly discussed.

All the intelligent features of a data-driven NGSG
are reported and discussed to identify the scope of
DDTs.

Several challenges in initiating the implementation

of DDTs are explored and addressed for the growth
towards sustainable evolution in an NGSG.

Appendix
Data-driven techniques in SGs

.

Page 33 of 42

Advanced DDTs in the conventional SG for the man-
agement, condition monitoring, fault prediction,
advanced forecasting, and precise fraud characteri-
zation are summarized. These lead to the purpose of
using DDTs in an NGSG.

In conclusion, it can be seen that a variety of challeng-
ing problems in NGSGs, problems which resist even the
most determined efforts of conventional mechanism-
based solutions, are successfully resolved by data-driven
techniques. These techniques improve NGSG security,
increase effectiveness, and reduce dependency on labor
and knowledge-intensive human tasks.

Algorithms Description Figure

Applications

Supervised learning
ANN [67] ANN is a network consisting

(1) Load forecasting,

of multiple nodes that take input Tnnclayer (2) Power grid stability
and perform simple functions Hidden Layer 1 assessment,
and send the data to an adja- (3) Fault detection,
cent node Hidden Layer 2 (4) Smart grid security
Output Layer
GCN [68] GCN, when learning repre- Input Layers Output Layers Electric parameter identi-
sentations from data, takes ) Hidden Layers fication
into consideration the knowl-
edge about the data’s structure o
and generates strong represen- :
tations; nonetheless, the robust- ‘ .
ness of the GCN depends 1 - » _o
on the caliber of the feature ¢
matrix and the original graph s N _
C = Channels of Input F = Featuring Maps
CNN [69] CNN is beneficial Image Patch ~ Hidden Layer 1 Hidden Layer 2 FinaL[ILayer Electricity theft detection

An important aspect of CNN
is that the problems may

not have spatially dependent
features

when the reduction of param-
eters is necessary in ANN. T f;-—/ ﬂ =l

Decision Tree [70] Decision tree is a tree struc-
tured algorithm that is useful
for classification and regression.
A decision tree consists of three
parts: internal nodes, branches
and leaves. The dataset attrib-
utes are represented in nodes

Convolution  Max Pooling Convolution Max Pooling Convolution

Root Small-signal stability
Node (RN) analysis

Decisi;m Decision
Node (DN) Node

Decision
Node

Terminal
Node

Terminal
Node

Terminal
Node (TN)

Terminal Terminal
Root Node Node Node
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Algorithms

Description

Figure

Applications

Genetic Algorithm
[71]

KNN [72]

Logistic Regression
[73]

Naive Bayes [74]

Random Forest [73]

Genetic Algorithm is an effi-
cient searching and meta-
heuristic method that replicates
the behavior of naturally occur-
ring genetic materials by its
selection, mutation and crosso-
ver operation

KNN algorithm is a nonparamet-
ric classification algorithm based
on the proximity of data. The
classification method includes
Euclidean distance for calculat-
ing the nearest neighbors

Logistic regression is a method
used for linear classification

and binary classification prob-
lems. Depending on a collection
of independent variables, logistic
regression calculates the prob-
ability of a particular event

Naive Bayes algorithm is based
on the popular Bayes theorem
and is one of the prominent
probabilistic robust classification
techniques used in machine
learning and data analytics

Random Forest algorithm con-
sists of multiple decision trees
that are the subsets of the col-
lected data

A

Mutate few randomly

N

Produce random

Breed new generation

specimen —~__ Search for the
best specimen

New data point

to classify
*
Ei \ K
< —
> =
Ls
X-Axis
b 4
di -0 —
Threshold Value
&
— S-Curve
Le-0-90-6 X
P(x|A) P(x|B)
X
e e
N\ o\ o\
( /R .- A P
B J 8 @ ®
Tree-1 Tree-2 Tree-n
Category A Category B Category A

Majority Voting
Final Class

Optimal demand response

Power consumption
prediction

Smart grid stability predic-
tion

Demand side management

Smart grid stability predic-
tion
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Algorithms Description Figure Applications

SVM [75] SVM is used for classification Negative Positive Stealthy false data injection
as well as regression problems. Hyperplane* Hyperplane detection

SVM is popular in the sec-
tors of data mining, machine
learning and pattern recogni-

Koes

Maximum Margin

tion because of its remarkable Hyperplane
generalization ability {
>~ * Support
* * Vectors

*

X-Axis

Semi-supervised learning

Graph Neural Net-
work (GNN) [76]

Q-Learning [77]

Particle Swarm
Optimization [78]

Unsupervised learning

Deep Autoencoder
[79]

GNN has been proposed
as a new deep learning model

to learn non-Euclidean material -;
A e
\.

Updates are made via bootstrap- Leading Particle
ping in the off policy algorithm ._'
known as Q-learning

Direction of Personal Best

'.'.'.i‘ New Position

../\./ ./]')irection of

Resultant Velocity

Direction of Global Best
Particle

The Particle Swarm Optimization
technique is easy to implement
and use, adaptable, and has a
small number of controlling
parameters (cognitive ratio, iner-

tia weight, and social ratio) Acti
ction

13

Environment

State,
Reward

Decoder

®
@ [
® -
e®_o ® ® Ouput -

Deep Autoencoder consists Encoder

of two deep belief networks
that are symmetrical

Input
o ® ° < ® ® P
® Compressed - ® ®

Feature Vector ®

False data injection attack
detection

Vulnerability analysis

Energy consumption
monitoring

Anomaly detection of elec-
tricity theft cyberattacks
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Algorithms Description Figure Applications
Hidden Markov The capacity of HMMs to con- (/’”‘\ o ’A\\ o (N Islanding prediction
Model (HMM) [80]  nect chains of observations < > e Q"{) - <i3// - - k\i@,)" Hg!) -
with an inherent Markov M N s
process—whose unseen states l l 1 l l
serve as the focus of inference— = — N PN >
explains their widespread use. ( 0, > <Oz ) (\ 0; ) (0n) (Onu)

Because HMMs can handle
discontinuous time series, such
as hourly data, they are particu-
larly well suited for describing
and forecasting failures

K-means clustering ~ K-means clustering is the most
[81] basic, widely used, and com-
putationally efficient clustering
technique
This method has been heavily
applied in a variety of fields,
including the categorization
of documents, ride data analysis,

H = Stochastic process; O = Observations

Cluster 1 Privacy preserving
<

Cluster 2

™ Cluster 3

in-depth call record analysis,
customer classification, criminal
network analysis, and others

Before K-means

After K-means

Abbreviations

SG Smart grid

NGSG Next-generation smart grid
DDT Data-driven technique

loT Internet of things

ML Machine learning

RES Renewable energy sources
PHEV Plug-in hybrid electric vehicle
ESS Energy storage system

AMI Advanced metering infrastructure
PMU Phasor measurement unit

STLF Short time load forecasting
VSTLF Very-short-time load forecasting
MTLF Medium-time load forecasting
LTLF Long-time load forecasting
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