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Abstract 

Meteorological changes urge engineering communities to look for sustainable and clean energy technologies 
to keep the environment safe by reducing CO2 emissions. The structure of these technologies relies on the deep inte-
gration of advanced data-driven techniques which can ensure efficient energy generation, transmission, and distribu-
tion. After conducting thorough research for more than a decade, the concept of the smart grid (SG) has emerged, 
and its practice around the world paves the ways for efficient use of reliable energy technology. However, many 
developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid 
(NGSG). Also, to deal with the non-linearity and uncertainty, the emergence of data-driven NGSG technology can 
become a great initiative to reduce the diverse impact of non-linearity. This paper exhibits the conceptual framework 
of NGSG by enabling some intelligent technical features to ensure its reliable operation, including intelligent control, 
agent-based energy conversion, edge computing for energy management, internet of things (IoT) enabled inverter, 
agent-oriented demand side management, etc. Also, a study on the development of data-driven NGSG is discussed 
to facilitate the use of emerging data-driven techniques (DDTs) for the sustainable operation of the SG. The prospects 
of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points 
of view including engineering, technology, et al. Finally, the trends of DDTs towards securing sustainable and clean 
energy evolution from the NGSG technology in order to keep the environment safe is also studied, while some major 
future issues are highlighted. This paper can offer extended support for engineers and researchers in the context 
of data-driven technology and the SG.
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1  Introduction
Data-driven technologies have become a widely used 
set of techniques in the field of scientific research and 
engineering where data are being used for understand-
ing, maintaining, and turning typical systems into smart 
sustainable systems. The use of data-driven techniques 
(DDTs) is gaining popularity in various engineering sec-
tors because of their appearance in decision making, 
transparency, reliability, and sustainability. For example, 
data-driven machine learning (ML) techniques are used 
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for analysis, prediction, control and diagnosis in medi-
cal research [1], precise agriculture [2], quantum finance 
[3], risk management in the supply chain [4], etc. These 
techniques may be supervised, semi-supervised or unsu-
pervised depending on the availability and condition of 
collected data, and can obtain a higher rate of success 
than typical methods used in the various fields of sci-
ence and business. Because of the increasing trends of 
data-driven methodologies, researchers have started con-
templating the presence of DDTs in conventional power 
systems. This has enabled the construction of a next-gen-
eration smart grid (NGSG) from the typical smart grid 
(SG). It also accelerates the traditional SG to unlock the 
full potential of future SGs with zero carbon emission 
and lifelong sustainability.

The conventional SG is an improved version of the tra-
ditional power grid and microgrid, where advanced tech-
nologies are used to enable communication, simulation, 
sensing, decision-making, etc. A comparative study of the 
microgrid and different versions of SG in terms of techni-
cal features associated with them is of great importance. 
An SG allows the components of the grid, e.g., smart 
meters, renewable energy sources (RESs), advanced com-
munication systems, closed-loop feedback systems, dis-
tributed generation, storage, etc., to communicate with 

each other. The grid ensures the production of sufficient 
high-quality power while integrating other benefits such 
as self-healing capabilities, fault assessment, consumer 
friendliness, cyber and physical security [5]. Because 
of the extended features as compared to the microgrid, 
some countries have successfully enabled the SG with 
good annual growth rate, as shown in Fig.  1 [6]. This is 
feasible because the existing SGs all around the globe are 
still operated based on conventional power systems to 
produce power from the kilowatt to gigawatt scale.

The conventional SG cannot fully meet the require-
ments as it continuously changes with emerging advanced 
technologies. The need for clean energy has increased 
globally over the past decade as a result of changing envi-
ronmental conditions and expanding populations and 
technology that may impose non-linear dynamics on the 
SG. The non-linearity in the smart power grid transmis-
sion and distribution systems may add new congestion, 
outages, fluctuation in voltage and frequency, that lead to 
blackouts as a result of the increasing demand for elec-
tricity [7]. Non-renewable energy sources though being 
an easier, quicker, and cheaper path to generate power, 
they are a direct obstruction to the green environment 
because of high emissions [8]. Renewable energy sources 
are on the rise to reduce dependency on fossil fuel-based 

Fig. 1  Countries contributing to SG world market [6]
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power generation [9]. However, the uncertainty and com-
plexity of SGs are increasing with the addition of more 
distributed generation (DG), increased market size, and 
renewable sources [10].

Again, the existing SGs are not yet sustainable in 
long-term power generation and distribution, because 
of the lack of absolute compatibility between grid com-
ponents [11], programmable sensors deployment [12], 
fast real-time monitoring, analysis and decision making 
with minimized latency [13], and integrating maximum 
intermittent generation [14]. To make a sustainable SG 
operation, researchers are interested in formulating the 
next-generation smart grid (NGSG). An NGSG will have 
the ability to address the above shortcomings through the 
integration of advanced DDTs, blockchain technology, 
and other edge computing techniques based on collecting 
and analyzing conventional SG data. As the datasets are 
getting massive because of increasing complexity in the 
SG systems, a better storage system with secured high-
speed data transfer system may also need to be integrated 
in an NGSG, where the data storage should be encrypted 
with blockchain technology and managed with advanced 
data management algorithms.

Further, the preservation of data privacy and data 
security also needs advancement in the conventional 
SG domain, where the security of massive amounts 
of datasets in the NGSG domain will be handled with 
next-generation blockchain technology and data tech-
niques [15, 16]. Additionally, an NGSG may also have 
several extended features including interoperability, less 
transmission loss, decreased latency, large sources han-
dling capability, grid mobility, ease of renovation, and 
advanced resilience, all features that are quite dependent 
on the adaptation of data-driven technology.

Thus, it can be concluded that an NGSG is the 
improved version of the existing SG which enables some 
extended features to work on minimizing the shortcom-
ings of the conventional SG. It can be an automated grid 
driven by data where the control operation, energy man-
agement, condition monitoring, forecasting, fraud char-
acterization, energy transaction and its security may be 
done in an improved manner on the basis of collecting 
and analyzing data, and implementing advanced data-
driven techniques. A comparative study between the 
conventional SG and an NGSG is reported in Table 1 in 
terms of operation and technologies. From Table 1, it can 
be seen that the use of highly computationally efficient 
DDTs, edge computing devices, next-generation block-
chain technology, advanced interoperability, and agent-
oriented techniques in the NGSG framework makes 
explicit differences between the conventional SG and the 
NGSG. The purpose of considering these technologies 

is to ensure sustainable energy evolution in the NGSG. 
Thus, it can be stated that the framework of NGSG 
focuses on sustainable energy technologies.

An NGSG may be largely dependent on the use of 
DDTs to achieve sustainable energy evolution world-
wide. Sustainable evolution refers to the integration of 
DDTs in data analysis from datasets of multiple decen-
tralized RESs and energy storage systems (ESSs), ena-
bling internet of things (IoT) devices, load forecasting, 
energy trading, security systems, grid faults, and losses. 
The ongoing research in the SG domain states that DDTs 
have been successfully implemented in characterizing 
grid faults and energy trading. However, it may impose 
new challenges in terms of security constraints as the 
energy demand increases, as well as gradually increased 
cyber security threats around the world. The solution 
to these challenges requires a revision in the SG struc-
ture based on enabling data-driven modeling and plan-
ning. The primary benefit of the data-driven NGSG is 
the availability of faster and more reliable operation and 
more accurate data that authorize the use of advanced 
DDTs towards enabling efficient and sustained electric-
ity flow from generation to distribution. Additionally, 
increased management and monitoring capabilities 
across the entire power system, as well as more afford-
able, adaptable, and effective operation, are presented 
by revolutionary developments in data-driven analysis 
models and algorithms, mostly inspired by advanced 
data science.

From the critical surveys addressed in Table 2, it can be 
seen that there exists much scope for and many applica-
tions of DDTs in the SG domain. The purpose of DDTs 
is to enable advanced features towards securing the sus-
tainable operation for energy evolution from the NGSG, 
as the absence of these features may hinder the scalabil-
ity, availability, security, and other issues in the SG. Many 
of them show the additional challenges that may arise 
while implementing DDTs in an NGSG. At present, there 
are many loop-holes in SG systems and it is necessary to 
study these drawbacks to remove them by improving the 
present SG technology. The main contributions of this 
study are:

•	 Studying conventional SG features A study of the 
technical features of a conventional SG is done to 
explore improvement potential. Also, some current 
SG projects around the world with their capacities 
are studied.

•	 Developing a technical framework for a data-driven 
NGSG First, a technical framework for an NGSG is 
developed by integrating new advanced technical 
features into the SG domain. A study is then pre-
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sented on the development of a data-driven NGSG 
along with the necessary analytics required to be per-
formed before the implementation of DDTs.

•	 Investigating the scope of data-driven techniques in 
the NGSG This study also explores the possible pros-
pects of DDTs in an NGSG and discusses the adapta-
tion challenges of data-driven NGSGs in reality.

•	 Exploring the role of DDTs in sustainable energy evo-
lution A brief discussion about the trends of DDTs 
towards obtaining sustainable energy evolution from 
an NGSG is also incorporated in this study to high-
light the significance of data-driven SG modeling.

2 � Smart grid at present: technical architecture
An SG enables bidirectional flow of electricity between 
the utility and its end users, with its smart framework 
structured by combining information, power technolo-
gies, and telecommunication with the prevailing elec-
tricity system. This energy technology also supports 
automation mechanization for efficient power distribu-
tion, storage elements, fault detection, electric vehicles, 
grid data supervision, combination of hybrid RESs, and 
flexibility of grid networks [23]. The various compo-
nents shown in Fig. 2 can be used to build the SG energy 
technology. They include renewable sources, a smart 

Table 2  Comparison between the current study and related existing literature

References Study the technical 
architecture and 
feature of SG

Investigate the 
developing aspect of 
SG through integrating 
advanced technical 
feature

Discuss the conceptual 
framework of data-
driven NGSG

Study the prospects 
of DDTs in NGSG 
with their adaption 
challenges

Discuss the trends of 
DDTs in NGSG towards 
sustainable energy 
evolution

[17] Yes Yes No No No

[18] Yes Yes No No No

[19] Yes Yes No No No

[20] Yes Yes No No No

[7] No Yes No No No

[21] Yes Yes No No No

[22] Yes Yes No No No

Current study Yes Yes Yes Yes Yes

Fig. 2  Conventional smart grid architecture
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supervision system, a smart information system, an 
advanced storage system, a smart security system, sen-
sors, and grid-lines.

2.1 � Smart distributed generation sources
An SG uses a “smart distributed generation” unit which 
refers to the process of producing electricity efficiently 
in small-scale implementations close to the place of con-
sumer usage. The primary technologies for SG appli-
cation are RESs in addition to ESSs. It offers excellent 
prospects for controlling frequency and voltage devia-
tions, responding to emergency situations when the 
load exceeds the generation, and decarbonizing targeted 
areas. Plug-in hybrid electric vehicles (PHEVs) have the 
potential to reduce emissions while also lowering trans-
portation costs [24]. The potential of PHEVs to integrate 
onboard energy storage devices with the power grid can 
increase grid efficiency and dependability. The power 
grid can also increase its acceptance of intermittent 
renewable energy generation with the sole use of energy 
storage devices like battery ESSs. To achieve this, effec-
tive coordination among ESSs, the grid, and renewable 
generation units is needed [25].

A crucial prototype for power generation is the DG 
units that have improved reliability and power quality, 
and can lower system capacity margin. Executing DGs 
in practice may be difficult for several reasons includ-
ing: (1) large fluctuation in terms of availability of RESs; 
(2) very different generation and demand patterns; and 
(3) higher execution costs of DGs than the conventional 
power plants [26]. The development of DG units has also 
introduced the idea of a virtual power plant (VPP) that 
collects capacities of diverse DERs to increase electricity 
generation. In a VPP, a controller controls a large group 
of DGs, and thus, VPPs provide more efficiency and flex-
ibility, and can handle fluctuations better than conven-
tional power plants. However, VPPs require complex 
optimization, secure communication and intelligent con-
trol [27].

An SG consists of many DG units, and therefore elec-
tricity generation flexibility increases while the flow con-
trol becomes complex There are two domestic electricity 
distribution systems, i.e., (1) AC (Alternating Current) 
power distribution; and (2) DC (Direct Current) power 
dispatch [28]. The DC power distribution is more prac-
ticable because it makes domestic power distribution 
well organized and easier to control. Several technolo-
gies including microgrid and vehicles to grid (V2G), have 
emerged to distribute DC power. The microgrid can 
generate electricity of low voltage, even if it is islanded 
from the main grid. In the islanded mode, the users do 
not get electricity from any external sources. Micro-
grid disentangles execution of SG functions, e.g., better 

dependability, significant renewable energy penetration, 
self-healing, and effective load control systems [29]. V2G 
usually enables getting power from stored electricity 
like vehicles running in battery packs. It enables a novel 
method of storing and delivering electrical energy and 
enhances power quality by providing electrical energy 
stored in PHEV batteries to the grid during peak hours.

2.2 � Smart metering, measurement and monitoring
Any information technology that is concerned with dis-
tributed automation, such as data exchange compatibility 
and combination with current and future devices or sys-
tems should be addressed in SG technology. As a result, 
in the framework of an SG, a smart information subsys-
tem is employed to enable information production, simu-
lation, analysis, integration, and optimization.

Smart metering technology is the most vital means of 
obtaining information from consumers. The advanced 
metering infrastructure (AMI) uses automatic meter 
reading (AMR) technology to logically fit with an SG. 
The AMR system works on automatic data gathering, 
diagnostics, as well as collecting data from smart meter-
ing devices and sending data to the main database for 
accounting, troubleshooting, and analysis. In contrast to 
a typical AMR, AMI allows bidirectional communication 
with the meters [30]. The advantage of advanced smart 
metering is that the consumers can predict their approxi-
mate bills and manage the power usage to lower bills. It is 
also beneficial for utilities because smart metering ena-
bles real-time pricing [31].

Again, measuring and monitoring the system’s cur-
rent status at various places are essential for the smooth 
operation of the SG system. The topology of phasor 
measurement units (PMUs) and sensors is important for 
advanced monitoring. The status of an electrical grid is 
measured by PMUs to be used to analyze system health. 
A high number of PMUs as well as the capability to com-
pare the measurements taken from the grid can enable 
use of the collected data to track the state of the power 
system and rapidly respond to system circumstances. The 
existing frequency monitoring network system architec-
ture is designed to handle large amounts of data flows, 
processing, storage, and usage [32]. Accordingly, the sen-
sor networks provide practicable and low cost sensing as 
well as communication media for distant monitoring and 
identification of the system.

2.3 � Smart management of information
An SG can manage big datasets efficiently by extract-
ing the most efficient information and rejecting the false 
data. Data management is a process of examining, evalu-
ating, integrating, and optimizing data obtained from a 
large network of data-gathering devices. The goal of data 
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modeling is to make information interchangeable among 
multiple devices that are standard for diverse working 
environments and conditions. Data modeling is required 
for device forward and backward compatibilities, which 
means that the device is compatible with its previous and 
future versions. The goal of information integration is to 
combine data from several sources with distinct theo-
retical, contextual, and graphical representations. Infor-
mation optimization is a technique for increasing the 
effectiveness of information. Singular value decompo-
sition analysis is used to investigate the coupling archi-
tecture of an energy grid in order to uncover chances for 
lowering network traffic by determining which data must 
be exchanged between portions of the infrastructure to 
implement a control action [33].

2.4 � Smart data transmission
Modern technology has enabled the availability of vari-
ous commutation modules suited for SG systems. It is 
complicated to choose a suitable model as SGs tend to 
have different preferences for data transmission. How-
ever, the data transmission system of an SG must be of 
the utmost high quality to support quality of service. The 
data transmitted should be accurate, secure, complete, 
and private. Wireless data transmission uses radio waves 
to transmit signals and data. Wireless data transmission 
holds several advantages compared to wired data trans-
mission, including remote access, low maintenance and 
installation cost, high-speed data transfer, etc. The wire-
less data transmission category is subdivided into four 
subcategories described in the following sub-sections 
[34].

1.	 Wireless mesh system A wireless mesh system fol-
lows the method of mesh topology. A mesh ensures 
that all the data transmission modules are intercon-
nected. The modules form nodes and gateways. In a 
particular area, a wireless mesh system will provide a 
very cost-effective communication system that needs 
little to no mobility. This data transmission system 
is highly reliable for communication. The mesh net-
work provides a large coverage area and a high data 
transfer rate [34].

2.	 Cellular data transmission technology A cellular net-
work is a network for communication that is distrib-
uted over a large area. This wireless network system 
uses GSM, 3G, and 4G technology for transferring 
data at a very low cost. Time delay can be efficiently 
reduced using cellular data transmission technology. 
The latest 5G technology can be used for even faster 
data transfer [35].

3.	 Satellite data transmission Satellite data transmis-
sion is highly suitable for covering a very large area. 
A satellite is connected to a ground station through 
radio signals, and the satellite communicates in a 
straight line to the ground station. A satellite stays as 
a repeater above the earth as it orbits the earth in a 
geosynchronous position. Satellite technology can be 
used for rural and remote infrastructures. The down-
side of using satellites is that the performance of data 
transmission may deteriorate depending on weather 
conditions [36].

4.	 Direct data transmission Direct data transmission or 
point-to-point data transmission refers to sending 
data from one specific point to another directly. It is 
usually done using microwave signals. It is a cheap 
and conventional method for data transmission that 
has been used for the last two decades. A similar 
technology, free-space optical (FSO) data transmis-
sion, is done by propagating light through free space. 
This wireless data transmission method is suitable for 
remote places where complications arise from other 
data transmission methods. FSO data transmission is 
highly feasible in urban destinations whereas micro-
wave communications face blockades in particular 
places [34].

2.5 � Smart supervision/regulation technology
Supervision of an SG is essential for high-performance 
output and efficient management of all the subsystems. 
The flow of energy and information, being bidirectional, 
needs to be handled by ensuring the completion of 
various supervision objectives. An SG is easier to man-
age than typical power grids. This is mainly because SG 
enables bidirectional flows of electricity and informa-
tion. The active participation of electricity customers is 
also the main feature of an SG. Supervision of an SG can 
be done based on electricity demand, rather than sup-
ply. The objectives of SG supervision and management 
may include ensuring maximum efficiency, enhancing 
power production, easy monitoring, and analysis, con-
trol of emissions, waste management, gaining maximum 
profit, etc. Reference [37] proposes an optimized control 
technique from analyzing the profiles of a large group of 
customers to shave off energy consumption, while [38] 
presents a pricing method to incentivize customers.

To properly manage the supervision objectives of an 
SG, different methods have been adopted ranging from 
game theory to machine learning. Optimization of an 
SG using both convex and dynamic programming is 
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proposed in [39], while another technique for optimiza-
tion, swarm intelligence, shows promising performance 
in the field of energy distribution resources optimiza-
tion, which has no dimensional limitation. Data gathered 
from an SG using sensors and PMUs may also be used to 
predict the behavior of the SG system through properly 
developed machine learning algorithms.

2.6 � Smart security system
Avoiding cyber security breaches is imperative to ensure 
the security of an SG. A smart security system protects 
the information of an SG and increases the integrity of 
privacy. The security of an SG can be maintained in 
three categories: solidity, failure detection and protec-
tion. The solidity of a system promises that the system 
can perform consistent behavior in various situations and 
changed working conditions. The integration of locally 
generated power can ensure fewer future failures, includ-
ing both electrical and mechanical failures [40]. Again, 
an SG has integrated failure detection methods that can 
detect failures when they occur. This also helps to diag-
nose and recover from failures in an SG. The failures can 
be branched out to various faults which occur in an SG, 
and their protection using digital methods. All the above-
mentioned features pave the way to feasibly adapt an 
SG in the real-time environment. Some countries have 
already implemented SG projects, as shown in Table 3.

3 � Add‑on technology towards the next‑generation 
smart grid

NGSGs have the possibility of enabling enhanced fea-
tures in the SG landscape as compared to conventional 
SG technologies. The security and privacy issues of the 
current SG systems may be better covered by an NGSG 
in the context of integrating more advanced features. 
The advance of an NGSG entirely depends on the use of 
data-driven techniques in its different parts. A concep-
tual framework of an NGSG is illustrated in Fig. 3. From 
Fig.  3, it can be seen that the framework of an NGSG 
may consist of integrating edge computing devices, IoT 
enabled inverters, blockchain-based energy trading, and 
computationally efficient DDTs in monitoring, control-
ling, and forecasting. It can also be noted that a data 
center may appear in an NGSG to collect data from the 
interconnected technologies and share the data among 
them to ensure its interoperability. By applying DDTs, the 
collected data from the different sources can be analyzed 
intelligently to help make decisions towards sustainable 
energy evolution. The detailed explanation of the intel-
ligent technologies used in an NGSG framework can be 
found in the following sub-sections.

3.1 � Intelligent agent‑based modeling of energy sources
To digitize the energy generation process in an 
NGSG, there has been a significant rise in the use of 

Table 3  Current smart grid projects in different countries

Project name Location Activation date Capacity Total cost

Narara Ecovillage Smart Grid [41] New South Wales, Australia September 2016 0.471 MW USD 4.73 M

Berrimal Wind [42] Western Victoria, Australia 2034 72 MW USD 135.72 M

Mortlake South Wind Farm [43] Victoria, Australia 2022 (Anticipated) 157.5 MW N/A

Aldoga Solar Farm [44] Central Queensland, Australia 2024 (Anticipated) 600 MW USD 0.5B

Lilyvale Solar PV Plant [45] Central Queensland, Australia 2019 126.2 MW USD 283.57 M

Harapaki Wind Farm [46] New Zealand 2024 (Anticipated) 176 MW USD 395 M

AEP Ohio [47] Ohio, USA 2009 2954.03 MW USD 133.77 M

Detriot Edison’s [48] Michigan, USA N/A 11,084 MW USD 10.88 M

Pacific Northwest Smart Grid Project [49] Washington, USA 2009 47 MW USD 179 M

The Roscoe Wind Farm [50] Texas, USA 2009 781.5 MW USD 1B

Glencore RAGLAN Mine Renewable Electricity 
Smart-Grid [51]

Quebec, Canada 2015 20.1 GW USD 7.8 M

Hebei Shahe Power Plant [52] Hebei, China 2013 1200 MW USD 750 M

Xiangjiaba shanghai power company [53] Shanghai, China 2020 6400 MW N/A

APDCL [54] Assam, India 2010 90,000 MW USD 3.67 M

CESC [54] Mysore, India N/A 151,890 MW USD 4 M

HPSEB [54] Himachal Pradesh N/A 533,000 MW USD 3 M

UGVCL [54] Gujarat 2014 1,700,000 MW USD 10 M

TSECL [54] Tripura 2005 128,730 MW USD 9.8 M

Jeju Island Smart Grid Project [55] Jeju Island, South Korea 2009 N/A USD 208 M

Setana Osato Wind Power Plant [56] Hokkaido, Japan 2020 51.2 MW USD 115.84 M
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agent-oriented software. An NGSG can be modularized 
by assigning the data-driven autonomous software that 
may virtually control the individual components of an 
NGSG and convert the centralized SG technology to a 
scalable and adaptable decentralized technology. For a 
multi-agent system, the complete NGSG is not needed 
to be recognized at any single point of a node, while the 
individual components can work towards predefined 
goals to achieve optimized performance, where the 
agent-backed components can interact with the system 
as well as each other [57]. However, the characteristics 
of an agent depend on the goal, which can be assigned 
to be cooperative or competitive with the other agent’s 
characteristics. The aggregated characteristics of the 
agents may be able to determine the generation char-
acteristics of the whole NGSG system. These character-
istics of agents can be tweaked and redefined for better 
optimization of an NGSG. Then the failure of compo-
nents in an SG does not result in total system failure 

because the individual agent works automatically with 
the initial knowledge it possesses.

3.2 � Intelligent agent‑oriented energy conversion unit 
integration

Agent-based energy models can be used to optimize 
energy conversion to minimize loss and maximize out-
put. A conventional SG is designed to convert energy 
on different levels. However, in each step of conversion, 
energy loss may occur. Analyzed data gathered from such 
energy conversion systems can be used to construct agent 
software for efficient energy conversion. At the time of 
converting energy from one state to another, sometimes 
losses occur in the form of energy other than the required 
output energy. Such losses can be reverted by reusing 
the excess energy through efficient agent-based conver-
sion. The synchronization between different conversion 
devices may have to be done using a multi-agent system 

Fig. 3  A conceptual framework for next-generation smart grid energy system
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for both monitoring and integrating the devices into the 
main power system [58].

3.3 � Edge computing for energy data management
To eradicate the issues from IoT in conventional SG, edge 
computing (EC) is a technology of great significance for 
an NGSG. The IoT approach for SG collects massive 
datasets that are difficult to process because the cloud 
servers are situated in a distant geographic area. The net-
working system is stressed when raw data collected from 
IoT devices are transmitted to the cloud because of the 
increases in latency and reaction time. The data collected 
from an SG may contain private data, and as the data are 
sent to a third-party cloud server it may pose the risk of 
privacy breach. The EC solution shows huge potential to 
remove these problems which are presented by typical 
IoT systems. It takes the data close to the collection point 
where they are to be processed [59]. Another perk of EC 
is that it can reduce the network load to a great extent by 
shrinking the volume of transmitted data. This creates a 
low-latency high-response network system essential for 
the forthcoming SG systems.

EC creates a hierarchical architecture, as shown in 
Fig. 4. The architecture consists of multiple processing 
layers where all the IoT devices in the SG are located. 
In EC, some data processing tasks are shifted from the 
clouds to the multiple layers. The processing is done 
at lower-level layer, unless it needs more computation 

than that when it is offloaded to the higher layers. For 
example, some embedded IoT devices can perform 
small prepossessing like noise filtration. However, the 
computation capabilities of these devices are limited, 
and sometimes they cannot fully process the data. 
Thus, the data are sent for processing to a higher layer 
with more computational power and gateways. The 
gateways in EC provide local computation work with 
the IoT devices parallel to their conventional work. 
Different data-driven models may have to be used to 
process data in the EC structure, such as a prediction 
algorithm based on reinforcement learning for energy 
price estimation and home scheduling [60], and the 
heuristic evolutionary model for advanced demand side 
management by load shifting, a model which aims to 
reduce peak load and cost in the SG domain [61].

3.4 � Interoperability between multiple energy hubs
The connectivity between different energy components 
in an NGSG will play a vital role in sustainable energy 
evolution. Market interoperability also needs to be 
explored to achieve overall connected operations over 
the entire system. A system’s interoperability refers to 
its capacity to collaborate with other systems in order 
to share resources [62]. The multiple levels of interop-
erability in an NGSG can be divided into the following 
segments:

Fig. 4  Hierarchical architecture of edge computing consisting of multiple processing layers
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1.	 User interoperability to ensure that there are options 
for customers to choose among various commercial 
and technological options.

2.	 Commercial interoperability to ensure that value can 
flow to where it is needed. Driven by market forces, it 
is important to confirm that incentives are matched 
across the energy system.

3.	 Interoperability of data to ease portability and data 
sharing between the components of energy sources, 
consumers and suppliers.

4.	 Equipment interoperability to ensure that the equip-
ment is replaceable or exchangeable when there are 
changing demands, to allow energy consumers to 
make intelligent and informed choices.

5.	 Vector interoperability to make sure that timely 
coordination takes place and that energy provisions 
across various components of the energy system are 
compatible with each other.

3.5 � Internet‑based inverter control technology
Intelligent data-driven inverter technology plays a sig-
nificant role in the root-level controlling of an NGSG by 
ensuring the mutual connection between generators and 
loads. These smart inverters have the capacity to connect 
with IoT devices with more embedded intelligent data-
driven software. This emerging technology ensures the 
devices perform more intelligently in relation to quick 
response, effective fault diagnosis, automated mainte-
nance, etc. [63]. The inverters in an NGSG will work 
autonomously without intervention and take a sophis-
ticated step towards the control of power conversion. 
Smart inverters will be aware of their adjacent environ-
ment and guarantee quick adaptation to sudden changes 
in the context of an SG. They will also have the ability 
to learn from the accumulated data to enhance future 
adaptability and control management.

3.6 � Self‑healing grid enabled by agent‑based control
The most crucial traits of an SG include self-healing 
capacity in the presence of unexpected conditions. When 
defects are found, the power system networks may have 
the ability to automatically restore the information. 
Although it is inevitable to have defects and disruptions 
in power systems, the potential dangers mainly depend 
on the fault magnitude, nature, duration, and location. 
The integration of sensors, self-operating sophisticated 
controllers, and cutting-edge software tools make up the 
agent-based self-healing grid. It will use real-time data 
to locate and isolate issues, restructure the system and 
reduce the number of impacted consumers. To attain the 
control of self-healing under faulty conditions, an agent-
oriented control technique based on optimization is 

required for the SG domain which will mitigate the effect 
of over-voltage by enabling the automatic restoration of 
the sound condition of the power network [64]. In terms 
of the multi-agent control systems, fuzzy logic is used to 
make decisions.

3.7 � Agent‑based holonic approach on the demand side
To balance the demand and supply sides of an NGSG, 
multi-agent-based holarchies consisting of various 
abstraction layers of the distribution grid may have to 
be proposed as a holonic approach [65]. The holon con-
cept may be applied as a holonic multi-agent approach to 
manage the information technology-based infrastructure 
of NGSG. This leads the path to efficient data transfer 
and robust communication security.

4 � Data‑driven next‑generation smart grid
4.1 � Critical steps for data‑driven NGSG development
The framework of a data-driven NGSG may depend on 
the forming of the critical steps as shown in Fig. 5, which 
demonstrates how a data-driven NGSG solves criti-
cal issues and develops the final model for a data-driven 
NGSG. The bottom of the pyramid is the first step and 
the top is the last step of the process. Every step in devel-
oping the NGSG framework shown in Fig. 5 is discussed 
in detail in the following sub-sections.

4.1.1 � Identifying problems
First and foremost, the SG power system needs to be 
thoroughly studied to understand the issues to be solved 
for system sustainability. Understanding the problem 
plays an important role in data management modeling. 
The SG power system may produce a large number of 
datasets that can be analyzed using different data science 
tools. Most of the data may prove irrelevant when com-
ing to the goal of data science modeling, and thus, data-
sets related to the problem to be analyzed are of the most 
significance [66]. Intensive studies of the power system 
incentivize data collection, as it simplifies understanding 
of the type of data that is needed for further analyzing the 
data algorithms.

4.1.2 � Data requirement and data collection
Data science methods need a huge amount of data to 
properly analyze certain system characteristics. The more 
data are available from a system, the easier it is to gener-
ate the final output. Data from an SG can be generated 
by enabling smart meters, sensors, and PMUs. Automa-
tion in data collection is an important aspect in the sus-
tainable and robust modeling of the data science method 
[66]. The required data can be found in the first step, 
“Identifying problems”. Additional datasets, such as the 
power system configuration, voltage and current levels, 
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transformer and generator information, security system, 
load flow, etc. may need to be added to improve the data 
science modeling.

4.1.3 � Comprehension of data
The data should be studied after collection, and catego-
rized based on the different characteristics of the system. 
The accuracy of data measured or collected should be 
high because data science methods require accurate data 
for smooth analysis. If the measured datasets are far from 
their actual values, the final output from the data algo-
rithms may not be satisfactory [66]. The comprehension 
of data will significantly enhance the process of acquir-
ing data as well as understanding which data are needed 
most for the system model. Nonetheless, several char-
acteristics of data such as data type, data quantity, data 
accessibility, data features, the combination of multiple 
datasets, previous datasets, etc., should be given atten-
tion for better data-driven NGSG modeling.

4.1.4 � Exploration and pre‑processing of data
Exploration of data involves the analysis of a dataset to 
summarize its key aspects. Data are explored at first to 
understand the essence of data towards assessing the 
quality and characteristics of the data. Various statisti-
cal representations can be used to process these datasets 
with different points of interest. This helps to under-
stand initial trends and attributes of the data. The qual-
ity of data may be further enhanced by using various 
pre-processing methods consisting of noise reduction, 
finding missing data, smart labeling of data, data filtra-
tion, and data formatting. One of the main goals of data 
preprocessing is to solidify the quality of data by correct-
ing, reformatting, and combining datasets [66]. Some of 

the processes for enriching the available data include data 
cleansing, data transformation, finding missing values, 
unbalanced data handling, bias issues handling, distribu-
tion of data, detecting anomalies in data, etc.

4.1.5 � Data modeling and evaluation
Different forms of data-driven and machine-learning 
models should be chosen for data analysis with the best 
fitting of the data according to the type of analytics. The 
typical process for separating data into training data and 
test data is either done by dividing the available datasets 
into a ratio of 8:2 or using the k-fold method for data 
splitting. To maximize model performance, it is necessary 
to split data and observe [67]. To test model performance, 
several model validation and assessment benchmarks can 
be used. These can help data scientists choose or build 
the learning method or model. These benchmarks include 
true positive, true negative, false positive, false negative, 
error rate, accuracy, precision, recall, receiver operating 
characteristic analysis, f-score, applicability analysis, etc. 
In addition, researchers may use sophisticated analytics, 
which may include feature selection and extraction, fea-
ture engineering, tuning algorithms, ensemble methods, 
modification of existing models, etc. to improve the final 
data-driven model for smart decision-making to handle 
specific system problems.

4.1.6 � Final product and data automation
The final product is the outcome of the system after 
processing and analyzing all the data. It can be a recom-
mendation, a comprehension, or a forecast. The obtained 
data product is used to make the best decision on vari-
ous problems. In practical application, several data prod-
ucts have made considerable contributions to make the 

Fig. 5  Critical steps to develop a data-driven next-generation smart grid
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system intelligent and self-activated [67]. In the case of 
energy trade, information gained through data analysis, 
such as churn prediction and customer segmentation, 
can be used to make smart decisions towards sustain-
able energy trade. Finally, the whole process of collection, 
comprehension, processing, and modeling data should 
be run through an automated algorithm system, thus 
eliminating the need for manual handling and ultimately 
reducing data processing time and increasing efficiency.

4.2 � Data‑driven techniques used in NGSGs
Properly designed data-driven techniques can have the 
ability to make the updated version of an SG and solve 
the existing problems related to insufficient, incorrect, 
and unreliable data. These techniques consist of different 
types of algorithms, which are broadly divided into three 
categories: supervised, semi-supervised, and unsuper-
vised [67–81]. A summary of various data-driven algo-
rithms used in SG for executing and improving different 
functions is reported in “Appendix 1.1”. However, the 
theory behind the development of DDTs can also be split 
into numerous categories, as discussed in the following 
sub-sections.

4.2.1 � Bayes concept‑based learning technique
As a practical data-driven technique, the theory of the 
Bayes concept establishes the connection between the 
model and the dataset. Deep learning-driven processes 
adhere to the Bayesian framework, and its methods exist 
to measure uncertainty. The Bayesian approaches can 
be applied to forecast net load in NGSG systems, while 
a deep long-short-term memory (LSTM) and Bayesian 
theory can be combined to anticipate the aggregated load 
in SG systems. A recurrent neural network (RNN) with 
memory cells which can store important information for 
a long time can perform effectively for the loads based on 
long-term reliance, significant volatility, and unpredict-
ability. Conversely, completely Bayesian inference can be 
used to pick models for both evidence-based and predic-
tive frameworks. The models for both frameworks can 
be chosen using fully Bayesian inference. Several studies 
have shown that the predictive approach, which displays 
data overfitting, does not perform as well as the evidence 
framework in this area [82].

4.2.2 � Probabilistic learning technique
The probabilistic learning concept for smart energy sys-
tems includes binary and Bernoulli, univariate Gaussian, 
and multinomial and categorical distributions. The bino-
mial distribution expresses the probability of a certain 
value among one or more independent values for a given 
set of parameters. The probability distribution of the 
intelligent power system has been significantly influenced 

by the binary and the Bernoulli distribution model. For 
plug-in electric vehicles, several methods have been 
developed to ascertain the probability distribution for 
their charging patterns at various periods of usage [83]. 
To reduce uncertainty and volatility in power systems, 
most studies have recently embraced grey Bernoulli 
approaches, and as a result, prediction now takes less 
functional data and research, especially when predicting 
long-term development.

4.2.3 � Common univariate distribution technique
Probability studies typically address common distri-
butions individually when it comes to the data-driven 
process, e.g., Student-t-, Gamma, Cauchy, and Beta 
distributions, Laplace irradiance, etc. The Cauchy dis-
tribution is heavily used in the analysis of power sys-
tem harmonics, estimation of wind power uncertainty, 
prediction-based models, and real-time dispatch of 
wind-based power plants. The Gamma and Weibull dis-
tributions are two methods that are widely used to deter-
mine wind speed in dispersed generation [83].

4.2.4 � Optimized learning technique
Power systems frequently provide diverse optimization 
strategies for various issues such as non-linearity, sensi-
tive to uncertainty, and large-scale. The constrained [84], 
bound and blackbox free optimizations [85] are some of 
the techniques used in the SG domain. There are also 
first-order and second-order approaches. The first-order 
optimization approach is widely used in the classifica-
tion of numerical optimization strategies that use the 
first-derivative methodology, while the second-order 
approach, often called the Newton technique, applies 
the second derivative in a scalar problem. These modifi-
cations have a significant impact on the power system’s 
optimal power flow problem [83]. Optimal power flow is 
an optimization tool for running power systems and con-
trolling energy. The linear programming, Karush–Kuhn 
Tucker conditions, quadratic programming, and estima-
tion of wind power uncertainty can be applied to SG sys-
tems in many ways, including but not limited to power 
generation planning, power system expansion, advanced 
energy systems, power flow analysis modeling and heu-
ristic methodologies, threats, unpredictability measures, 
and demand response.

4.3 � Key analytics to adopt data‑driven techniques in NGSG
Numerous processes of analytics shown in Fig. 6 can sig-
nificantly aid the data-driven techniques used for an SG 
[86]. Figure  6 shows the process of prescriptive analyt-
ics, predictive analytics, decision intelligence, and data 
mining.
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4.3.1 � Predictive analytics
Predictive analytics, a form of advanced analytics, uses 
statistical modeling, past data, data mining methods, 
machine learning, etc., to forecast future events. In Fig. 6, 
data are gathered from numerous datasets and ana-
lyzed to comprehend the reasons for and results of every 
occurrence. A pattern is created, and then all the data are 
evaluated statistically. Finally, predictive analytics pre-
dicts the outcome.

4.3.2 � Prescriptive analytics
The practice of using data to decide the best action is 
known as prescriptive analytics. This form of analysis 
generates recommendations for the next moves by tak-
ing into account all the essential aspects. As shown in 
Fig. 6, prescriptive analytics methods analyze the model 
and extract knowledge from the data. Then, possible 
future outcomes are generated. Observing the possible 
outcomes, prescriptive analytics gives optimized decision 

to the systems, or devices, or people, on the action they 
should take.

4.3.3 � Data mining
The process of going through massive datasets to uncover 
patterns and links in order to forecast outcomes by data 
analysis is known as data mining. The process of data 
mining from collection and selection of data to acquir-
ing knowledge via processing target data and interpreting 
patterns is shown in Fig. 6.

4.3.4 � Cohort and cluster analytics
Cluster analytics refers to the grouping of similar data 
into a number of finite clusters. This is a type of behav-
ioral analytics that divides data into clusters before 
analysis. The clusters carry similar characteristics or 
experiences over a period of time. Multiple clusters are 
made when the substance of a group of data varies from 
another group of data. Being an unsupervised analysis 
method, cluster analysis does not assure the number of 

Fig. 6  Variable processes of advanced analytics using data-driven techniques
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clusters beforehand, while the number of clusters is only 
revealed after the clustering algorithm is completed. It 
tends to find a core similarity within data thus separating 
a group of data based on differences among the groups.

4.3.5 � Decision intelligence analytics
Decision intelligence is a trending method that uses data-
driven techniques to make a decision based on cause 
and effect. It uses various models and algorithms of data 
science assisted by social and managerial sciences. This 
method is important for designing, modeling, and tuning 
the decision-making process of power systems. Figure 6 
shows that decision intelligence blends multiple decision-
making methodologies with AI, ML, automation, and rel-
evant information.

4.3.6 � Operationalizing and scaling
Operationalizing refers to the materialization of an 
abstract idea or concept into a measurable form. This 
method is valuable for collecting data on abstract or 
unobservable systems, e.g., future power systems, in a 
systematic way. This can quantify different parameters of 
an NGSG as such power systems are not yet available in 
a practical environment and can only be observed as an 
idea or a simulation. Conversely, the scaling of an NGSG 
refers to a comparatively small size prototype and is 
essential for running various operations on a small scale 
to identify the characteristics of that test before conduct-
ing it on a large scale in the original power system.

5 � Data‑driven techniques in NGSG: prospects 
and adaptation challenges

5.1 � Prospect of data‑driven techniques in NGSG
5.1.1 � DDTs in intelligent energy materials processing
Energy materials production is on the verge of a break-
through as per the advancement in data-driven tech-
nologies for materials research. Significant growth in the 
field of materials science can be found in [87]. The recent 
improvements in data-driven techniques for materials 
engineering show that ML innovates intelligent energy 
materials’ production and design process. Addition-
ally, it can be used for measuring the electronic proper-
ties of power systems. In using data-driven techniques 
like ML, the first step is to gather the objectives and set 
goals to achieve them. This is the most important step as 
the goals must be specific and achievable from the avail-
able datasets or information. The data-driven ML models 
are useful for enabling a low-cost and reliable approach 
toward predictions where computational or experimental 
approaches increase expense.

5.1.2 � DDTs in intelligent energy systems component
A smart energy system is made of multiple components 
for the generation, storage, distribution, and consump-
tion of energy. These aspects of energy systems can all be 
subjected to data-driven techniques such as ML or arti-
ficial intelligence (AI) for the performance improvement 
of an NGSG. With the enabling of this technology, data 
gathering from connected devices has provided a better 
understanding of system characteristics and improve-
ment in various details. The data-driven ML methods 
have the ability to allow better simulations to construct 
prediction and forecasting models. The energy storage 
system of an NGSG should be improved for efficient 
charging and discharging of the storage devices [88].

5.1.3 � DDTs towards intelligent demand‑side management
Data-driven ML technologies play a significant role in 
demand-side management by allowing energy consum-
ers to try out different market mechanisms in practical 
scenarios. A sophisticated integration of demand side 
devices, such as solar PV, battery storage, and smart 
meters, is done through linking with the internet, being 
associated with ML techniques, and following advance in 
data collection and data sharing. The concept of “smart 
homes” is very popular now and the number of smart 
homes has seen a spike in recent years [89]. A Swedish 
pilot project was done on reducing peak energy usage 
significantly by implementing data-driven ML techniques 
in the field of demand response management [90], in 
which a multi-agent approach offers demand responses 
in the NGSG by allowing coordination among its com-
ponents. Energy devices can communicate with the 
power grid and exchange information by giving access to 
the dynamic communication system [90]. The demand 
response programs are categorized into two groups, 
i.e., price-based and incentive-based. Real-time pricing, 
rate per usage, critical peak pricing, etc., are included 
in price-based demand response, whereas emergency 
response, direct load control, ancillary market services, 
market capacity arrangement, and buyback programs are 
included in incentive-based demand responses. These 
categories can be subjected to data-driven management 
techniques for better demand-side management of an 
NGSG.

5.1.4 � DDTs towards smart manufacturing in NGSG
The fourth industrial revolution has enabled the produc-
tion and collection of data from connected machines in 
industry. Data-driven ML techniques can be used to ana-
lyze the collected data as an approach to smart manu-
facturing [91]. Some of the various ML models used for 
smart manufacturing include: (1) support vector machine 
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(SVM); (2) k-nearest neighbors; (3) Bayesian networks; 
(4) artificial neural networks; (5) decision tree; (6) multi-
ple logistic regression; (7) k-means; (8) random forest; (9) 
gradient boosted; and (10) additive models. The newer 
business models also require smart manufacturing. This 
is enabled by the technical advance of Industry 4.0. In a 
data-driven smart manufacturing system, the benefits of 
real-time data analysis, advanced decision-making, better 
plant efficiency, and increased production may be crucial 
for NGSG modeling.

5.1.5 � DDT in intelligent energy resource planning
Energy forecasting and management is a significant field 
of interest for energy resource allocation and demand-
side handling [92]. Decision-makers can be assisted by 
different data-driven decision-making techniques con-
structed by data experts. These contribute a lot to design-
ing energy plans, choosing optimal decisions, and finding 
alternatives. Robust energy systems enabled by intelligent 
planning allow the use of data-driven algorithms to iden-
tify market conditions and aid the building of advanced 
energy devices. The real-time applications of data-driven 
methods in the field of energy are commonly seen in vari-
ous energy systems. A key aspect of data-guided tech-
niques is the use of AI to improve NGSG performance 
[91]. The incorporation of the IoT in intelligent energy 
planning and management is also one of the most signifi-
cant aspects of data-driven techniques used in the energy 
industry. The IoT can enable access to remote access 
and control of an NGSG with a smart tracking system. 
Here, smart meters inform consumers about the vol-
ume of energy consumption, while local infrastructures 
like microgrids can be connected to cloud servers to 
exchange information to enable significantly better load 
forecasting.

5.1.6 � DDTs in integrating the large‑scale heterogeneous 
energy sources

Policy makers have already been focusing on the up-
scaling of renewable energy. This will affect the energy 
market. Thus, power grid operators and engineers are 
putting emphasis on data-driven techniques and models 
to achieve a seamless transition from fossil fuel to renew-
able energy. Harnessing energy from renewables on a 
large scale requires enabling multiple green sources of 
energy at the same time, which signifies the importance 
of heterogeneous energy sources. The synchronization of 
such sources can be guaranteed using data-driven algo-
rithms, including collecting and analyzing data from the 
sources with specific ML models. For example, solar and 
wind power plants already generate a huge amount of 
data which allows data-guided techniques to forecast dif-
ferent levels of energy with the help of sensor integration 

[93]. These energy consumption datasets can be analyzed 
to predict peak and low demand times, and design the 
production rate to minimize losses. However, the up-
scaling of green energy sources also opens a door in an 
NGSG for cyber attackers. Thus, the security of an NGSG 
should be ensured by updating the data-driven ML mod-
els regularly to increase integrity.

5.2 � Challenges to implementing DDTs in the NGSG
The development of a data-driven smart grid system 
toward achieving sustainable energy transition has 
some challenges from various points of view. In the fol-
lowing sub-sections, a thorough discussion on the chal-
lenges during the adaptation of DDTs in the NGSG is 
conducted.

5.2.1 � Engineering point of view

1.	 Overfitting mechanism When a model tries to fore-
cast a trend in excessively noisy data, overfitting may 
occur. This is the result of a model that is too com-
plicated and may have a large number of parameters 
because it does not accurately reflect the reality in the 
data. A typical data-driven ML network may contain 
millions of variables. The training data model typi-
cally consists of a large number of records. However, 
even when a network recognizes the training set and 
gives answers that are hundred percent precise and 
correct, it may entirely fail when faced with new data. 
This mechanism is known as overfitting, and is one of 
the limitations of data-driven techniques [94].

2.	 Installation of intelligent energy processing unit Intel-
ligent processing methods need complex thermo-
chemical operations and multi-component frame-
works. These generate a lot of data quickly. The 
best scenario is for operators to receive rapid data 
on the properties of energy material manufacture 
and process parameters in real-time, allowing them 
to identify novel processes and phenomena more 
quickly and react effectively and efficiently. Exist-
ing techniques, however, provide “postmortem” data 
yearly after the manufacturing process has ended. 
To improve and assess the production process, data-
driven ML techniques can be applied [95]. However, 
the existing data-driven techniques may demand a 
revision in their structure to maintain the energy 
materials and electric infrastructure at the energy 
distribution level.

3.	 Feasible energy storage material The enormous 
amount of background data and the increasing com-
plexity of energy storage systems provide significant 
hurdles for the current methodologies and algo-
rithms. For greater precision, stability, and efficiency, 
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emerging cutting-edge technologies can address the 
shortcomings of traditional approaches. First, the 
development of energy storage encompasses inven-
tion and breakthrough, long-term storage, a high 
amount of protection for electro-chemical backups, 
and cheap cost. This low-cost technology is also 
necessary for high efficiency and physical storage. 
Secondly, research is focused on modeling energy 
storage and streamlining the procedure in different 
energy systems, supporting the use of energy stor-
age technologies, and developing innovative struc-
tures and thorough evaluations for modernizing and 
advertising energy storage [96].

5.2.2 � Technology point of view

1.	 Tech advancement Argonne scientists are trying to 
develop optimization approaches that combine ML 
and AI to simulate the intricacy of various electrical 
system challenges much more quickly than the cur-
rent methodologies. The primary focus is to acceler-
ate load flow analysis and daily computation of the 
electricity system [97].

2.	 Improved energy efficiency Future difficulties in sus-
tainable 5G and 6G power management hold sig-
nificant potential for data-driven methods. For the 
cost-effective design and optimization of network 
operations, data-driven ML approaches, like feder-
ated learning, deep learning, and optimization may 
be considered. By gaining flexible network structure 
and altering traffic conditions, it is possible to con-
struct 5G or 6G air interfaces. Using a variety of 5G 
and 6G technologies, including SG, intelligent trans-
mission and distribution of network lines, smart 
buildings, and industrial automation, data-driven ML 
will be more widespread and crucial than simply con-
serving energy. On the other hand, these approaches 
typically require coordination and computing, which 
can pose significant challenges for the design and 
implementation of power-efficient data-driven tech-
niques and for upcoming 5G and 6G networks [83].

5.2.3 � Decision‑making point of view

1.	 Decision-making When making decisions on energy 
distribution, data-driven techniques can improve 
intelligent system performance. Any situation involv-
ing decision-making in a dynamic environment can 
benefit from reinforcement learning. Agricultural 
production optimization, robotics, automatic control 
and adjusting (i.e., heating, air conditioning, and ven-

tilation), and supply chain optimization are examples 
in which DDTs can assist. In the future, renewable 
energy sources should be employed fast and in ways 
suitable for their unpredictable nature. Here, light 
and wide energy usages are offered in the interim by 
the placement of smart meters. The efficient use and 
analysis of the data can present new load forecasting 
options where proper decision-making can be diffi-
cult [98].

2.	 Decision on demand response unit Demand response 
representatives should first operate in a barely vis-
ible environment, which means they cannot prop-
erly understand the working process of the demand 
response unit. The structure and administration 
for demand response are designed to monitor and 
use real-time data on energy consumption to offer 
energy pricing for thousands of customers via the 
utility power grid. Customers can adjust their energy 
consumption in response to grid conditions and the 
rates. By assisting end-users to think about how they 
need power grid improvements, ongoing growth 
can increase reliability, cost-effectiveness, and sus-
tainability. The prospective integration of renewable 
energy directly into the power grid will be encour-
aged by the corresponding knowledge and such resil-
ience [99].

5.2.4 � Others

1.	 Economic challenges The energy storage industry is 
now facing difficulties in several countries, including 
weak legislative support, high price, doubt in value, 
unsound business practices, etc. In the coming years, 
it will be crucial because of two factors: first, the 
suggestion of substitutes to the energy storage plan 
including power generators and electrical firms; and 
second, the development of a suitable business com-
petitive structure and arrangement of sufficient fund-
ing schemes for fresh data-driven advanced technol-
ogies [100]. According to Woori’s forecast, the cost of 
energy storage will increase globally by 26 percent in 
a year. Although there are various market variables 
for energy storage, the primary obstacles continue to 
be high costs, poor subsidy programs, a median cost 
configuration, and lack of a business prototype.

2.	 Trained consumers Many companies have to deal 
with the challenges of training their consumers on 
how to use cutting-edge technologies. The same task 
may be required of data engineers. Investors, devel-
opers, and managers overestimate the existing capa-
bilities of data-driven techniques, while anticipating 
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that the algorithms will comprehend difficult issues 
with ease and make reliable predictions.

3.	 Lack of expert manpower Even though the market 
for data-driven methodologies is attractive to many 
people and the energy sector, to further develop this 
research field it requires more expert manpower. 
In the energy sector, power utilities face challenges 
when innovating new technologies because of a lack 
of skilled employees.

6 � Trends of DDT towards sustainable energy 
evolution in NGSG

Utility firms may allocate resources more effectively, 
reduce costs, and find better ways to serve customers 
with the help of the proper analytical platform. Addi-
tionally, the appropriate data analytic platform enables 
them to maximize the value of the generated data. This 
can help the sustainable energy evolution through the 
improvement of the following aspects in an NGSG.

6.1 � Securing reliable control operation
The most crucial aspect of SG energy systems is their 
ability to operate securely and reliably. The SG has 
already benefited from the involvement of data driven 
techniques in terms of stability, security, and dependabil-
ity [90]. It is well recognized for providing timely and effi-
cient stability analysis which claims the implementation 
of automatic control. The use of data-driven techniques, 
like machine learning, reinforcement learning, and deep 
learning in stability and control analysis has been the 
subject of extensive research in recent decades, as shown 
in Table  4. It is realized that the implementation of the 
data-driven techniques in an NGSG may offer a reliable 
solution to address the control issues in terms of fre-
quency, voltage, preventive and restorative measures, and 
enable a sustainable energy evolution through the reduc-
tion of CO2 emission in the environment.

6.2 � Definitive energy management
Energy management is associated with the control, plan-
ning, and monitoring of energy-related processes to 
conserve energy resources, reduce energy costs, and safe-
guard the environment by minimizing CO2 emissions. 
Energy management through advanced data-driven 
methodologies has already started in SGs as shown in 
Table  5. The advantage of using the advanced methods 
is the ability to perform work in less time, while offer-
ing a realistic solution to manage energy over a small 
amount of data. This is done through enabling DDTs in 
SG planning and management, including grid synchroni-
zation, active and reactive power management, ancillary 
services, and techno-economic modeling. From Table 5, 

it may be predicted that the emergence of DDTs in an 
NGSG also paves the way to contributing to sustainable 
energy evolution [112].

6.3 � Precise asset condition monitoring
Old assets are a prime cause for uncertainty in load and 
demand management, affecting optimal operation and 
the overall health of the NGSG. Thus, constant monitor-
ing of all the assets of an NGSG is needed to reduce the 
risk of equipment failure [120]. Obsolete technologies are 
also to be replaced with advanced technologies. Various 
data-guided methods, as shown in Table 6, can be prime 
examples of asset monitoring systems where data taken 
from an NGSG are analyzed to understand the asset 
conditions.

6.4 � Accurate fault prediction and characterization
Traditional fault detection algorithms, like impedance 
based and wave-based techniques, cannot adjust with 
the penetration of distributed renewable power gen-
eration [130]. On the other hand, AI-based data-driven 
approaches can bypass challenging modeling and fault 
mechanism analysis. A fault classification approach based 
on a data-driven CNN fed with features retrieved by the 
Hilbert-Huang Transform (HHT) in power distribution 
systems is proposed in [131]. This approach performs 
admirably in fault classification thanks to the CNN’s 
strong feature learning capabilities. Another data-driven 
Graph Convolutional Networks (GCN)-based method 
for addressing fault location is suggested in [132]. It 
keeps the spatial information of buses in the GCN struc-
ture, which allows improved fault detection accuracy. 
To achieve fault detection and location, the voltage and 
frequency signals are used, respectively. Additionally, a 
fault contour map that groups the buses into several tiers 
based on the severity of the impacts is provided. A short 
summary on the recent progress of data-driven tech-
niques for precise SG fault characterization, detection, 
and location identification is shown in Table 7. It is seen 
that the data-driven approaches can satisfactorily per-
form fault diagnosis, though their performances may suf-
fer because of a lack of sufficient data. By developing the 
data-driven NGSG infrastructure, data can be gathered 
from various sources and then combined and used to 
increase the precision of defect diagnosis. This can help 
improve sustainable energy evolution.

6.5 � Accurate forecasting and uncertainty estimation
The increasing integration of RESs, such as tidal, solar, 
wind, etc., demands more effort to schedule and oper-
ate an SG. Load forecasting (LF) is a crucial component 
for planning and running modern power systems since 
it helps to preserve stability, and keep the environment 
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safe by reducing CO2. Faultless load forecasting is useful 
for decreasing production costs, as it enables reducing 
utility risks by predicting future consumption of prod-
ucts that the utility will transport or deliver. However, it 
is highly challenging as the load is stochastic in nature 
[161]. Conventional forecasting models frequently do not 
disclose the degree of uncertainty in their forecasting, 
which can result in expensive and dangerous choices, and 
compromise attempts to develop dependable SG systems 
[162]. Before digging into the data-driven deep learning 
approaches of load forecasting, it is essential to catego-
rize load forecasting techniques. The objective of short-
time load forecasting (STLF) is to measure the load over 
a few weeks starting at one hour [163]. STLF is essential 
for the generation, transmission, and distribution of SG 
power. The data-driven techniques in Table  8 are used 
for improving STLF. The methods of Table  9 are used 
for analyzing the data for very-short-time load forecast-
ing (VSTLF). For longer periods, such as medium-time 

load forecasting (MTLF) and long-time load forecasting 
(LTLF), the techniques shown in Tables  10 and 11 are 
used, respectively. It can be shown that the data-driven 
method can provide accurate forecasting for the NGSG 
model, and can also conveniently improve the possibility 
of achieving sustainable energy evolution.

6.6 � Precise fraud characterization
Electricity utilities must deal with non-technical losses 
incurred by fraud and theft committed by their custom-
ers or third parties. Certain approaches have been devel-
oped to developed to detect potential scammers among 
consumers and third-party interference as listed in 
Table 12. Many data analysis-based approaches are taken 
toward detecting and diminishing fraud. Table 12 shows 
that fraud characterization may become more accurate 
and convenient by enabling the data-driven SG model. 
This can create a reliable security layer in diminishing 

Table 7  Fault prediction and characterization techniques

References Technical approach Fault 
detection

Fault 
characterization

[133] Dissimilarity learning method based on Clustering ✓ ✓
[134] IoT based model ✓ ×

[135] Power line communication-based data transmission algorithm ✓ ✓
[136] Machine learning algorithm ✓ ✓
[137] Neural networks, SVM, Decision tree ✓ ×

[138] Data extraction from smart meters and sensors ✓ ×

[139] Feature extraction method from big data ✓ ×

[140] Machine learning algorithm ✓ ✓
[141] Big data approach towards data processing from smart meters ✓ ×

[142] ANN ✓ ✓
[143] Convolutional sparse autoencoder ✓ ✓
[144] Supervised data-driven topic model consisting of heterogeneous network of information ✓ ×

[145] Field programmable gate arrays (FPGAs) based higher order statistical method ✓ ✓
[146] Data-mining based model ✓ ✓
[147] Deep neural network ✓ ✓
[148] Data-driven Multivariate Exponentially Weighted Moving Average (MEWMA) ✓ ✓
[149] Sparse self-encoding neural network ✓ ✓
[150] ANN, Multiplier-based method (MBM) ✓ ✓
[151] Decision tree ✓ ✓
[152] Neural network ✓ ×

[153] Multivariate Statistical Analysis (MVA) ✓ ×

[154] Combined data analysis ✓ ✓
[155] Multi-agent model ✓ ×

[156] Mobile Edge Computing (MEC), IoT-based Solutions ✓ ×

[157] Neural network ✓ ×

[158] Neural network ✓ ×

[159] SVM ✓ ×

[160] Holonic multi-agent approach ✓ ×
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and characterizing the fraud. This itself may accelerate 
the sustainable energy evolution process.

6.7 � Safe energy trading (blockchain)
The highest priorities of every system are security, pri-
vacy, and trust. In the same vein, the upcoming SG should 
have a good level of security, including: 1) ensuring that 
an unauthorized third party cannot acquire any informa-
tion; (2) ensuring established cryptographic techniques; 
(3) preventing information changes from unauthorized 
entities; (4) denying access without permission; and (5) 
ensuring authorized access to those with rights and privi-
leges. Reference [229] presents a revolutionary consensus 
technique that makes Bitcoin the most popular applica-
tion of blockchain to date, resolving the issue of creating 
trust in a distributed system. Additional approaches are 
also being used, including cryptographically secured data 
structures, digital signatures, time stamps, and incentive 
schemes. The majority of current solutions are based on 
centralized models. To make decentralized energy trad-
ing, blockchain technology has emerged and success-
fully trades energy among consumers, prosumers, and 
suppliers. Although these technologies are mature and 

functioning properly, the existing blockchain-enabled SG 
system has a number of problems, including consumer 
priority, security, and time consumption. Table  13 indi-
cates the blockchain-based techniques and algorithms 
for safe energy trading. It is concluded that implement-
ing DDTs in an NGSG can drive the world to sustainable 
energy evolution.

7 � Future research directions
All the research conducted on DDTs and their results for 
various aspects of SG highlight the significance of meth-
ods to achieve sustainability as a whole for an NGSG. 
Reliable control operations powered by data-driven 
technologies may cover all the control problems of a 
future SG. The management models used in an SG can 
be improved by increasing computational capability to 
analyze large datasets simultaneously. This improvement 
can also ensure even lower carbon emissions and energy 
consumption, ultimately aiding the goal of sustainability. 
The next-generation blockchain enabled trading eradi-
cates the chance of energy theft by keeping decentralized 
records of all the simultaneous energy transactions hap-
pening in a certain time frame. Further, the advancement 

Table 9  VSTLF techniques

LF type Year Technical approach Contribution Challenges

VSTLF 2022 ANN [184] Load forecasting with optimal asset man-
agement

1. Weak performance on unstructured and
sparse data
2. Improper short time intervals
3. Insufficient data
4. High calculation time
5. Random and big data
6. Over-fitting problem
7. Management of structured and unstruc-
tured data

Extreme Gradient Boosting (XGBoost) [165] Forecasts loads specifically for warehouses 
and logistics consumption

2021 Markov-chain mixture distribution (MCM) 
model [185]

Develops a standard model for household 
power consumption

2020 FFNN, Neuro-fuzzy, Fuzzy Multi-Objective 
Decision Making (F-MODM) [186]

Develops load forecasting 1 h ahead based 
on weather data

RNN, GRU, BP [187] Predicting load demand of residential 
infrastructure for a short period

DML, Apache Spark, Apache Hadoop, 
Linear Regression, Generalized Linear 
Regression, Decision Tree, Random Forest, 
Gradient-boosted trees, Distributed com-
puting [188]

Reduces training time and testing time 
of load forecasting

CNN, Mutual Information (MI), MI-ANN, 
Relief F, Kernel Principal Component Analy-
sis (KPCA), BP [189]

Over-fitting issue reduction and compu-
tational time reduction using CNN, KPCA, 
MI etc.

LTSM, Bayesian deep learning, Bayesian 
Theory [82]

Probabilistic-residential load forecasting 
for PV systems

2019 BPNN, Bayesian Regularization, Levenberg–
Marquardt algorithm [190]

Load forecasting for individual district 
buildings

DBN, BP, Phase Space, Reconstruction PSR, 
Levenberg–Marquardt algorithm [191]

Predicting load forecasting of bus-load 
forecasting and distributed energy pen-
etration

KNN-ANN, FFNN, Euclidean theory [192] Load forecasting for hydro-thermal unit 
generation combining ANN and KNN

2018 Neuro-fuzzy, ANFIS, Genetic algorithm, 
Particle Swarm Optimization [193]

Decreasing execution or training time 
as well as reducing feature selection 
complexity
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in data-enabled asset monitoring can confirm a robust 
energy grid by eliminating the chance of component fail-
ure, improving NGSG integrity, and prolonging its life-
time. However, the development of a techno-economic 
model for a data-driven NGSG system in terms of opera-
tional cost, time consumption, manufacturing cost, and 
computational efficiency imposes additional challenges 

which open the following research platforms for further 
improvement.

1.	 Increased robustness in techniques Future SGs based 
on multiple renewable energy sources will need to 
depend on data techniques that satisfy multidiscipli-
nary constraints as the system complexity is increas-

Table 10  MTLF techniques

LF type Year Technical approach Contribution Challenges

MTLF 2022 LSTM and NARX neural network [194] Hourly energy demand prediction 
of a municipality

1. Over-fitting issue
2. Systems precision iii. Huge calculation 
timeSARIMA (seasonal auto-regressive inte-

grated moving average) and ES (Exponen-
tial Smoothing) [195]

Predicts yearly consumption of electricity 
for the agriculture sector

ISSA-SVM (improved sparrow search 
algorithm-Support Vector Machine) [196]

Error index of load forecasting is kept 
optimal which results in better prediction 
accuracy

2021 LSTM network [197] Load forecasting with minimal error 
for industrial power consumption

Support Vector Regression (SVR) [198] Mean absolute percentage error (MAPE) 
and root mean square error (RMSE) are kept 
to a minimum

2020 BPNN, Singular Spectrum Analysis (SSA), 
Weightless Neural Network (WNN), Cuckoo 
Search algorithm [199]

Surveying load forecasting for wavelet 
disintegration to learn about the reduction 
of stochastic part

Grasshopper Optimization Algorithm, BP, 
Regressive Model [200]

Daily and hourly continuous load forecast-
ing

Load Range Discretization (LRD), CNN, BP 
[201]

Probability distribution generation for load 
forecasting

Mutual Information-ANN, Jaya algorithm 
[202]

Removes feature selection redundancy

LSTM, Cascade NN, Edited Nearest Neighbor 
(ENN), Ensemble Learning. Levenberg–Mar-
quardt algorithm [203]

Decreasing mean absolute percentage 
error by integrating cascade neural network 
in load forecasting

CNN, BP, Image encoding, Gramian Angular 
field, Recurrence Plot, Markov Transition 
field [204]

Single residential user load forecasting 
using CNN on time series datasets

DML, Apache Hadoop, Apache Spark, Linear 
Regression, Generalized Linear Regression, 
Decision Tree, Gradient-boosted trees, Ran-
dom Forest, Distributed computing [188]

Development of a Distributed Machine 
Learning approach for reducing training 
time and test time with higher accuracy

2019 KNN-ANN, BPNN, Spark [205] Handling multivariate data and multiple 
time series while predicting load forecast-
ing outputs

LSTM, BPNN, Adaptive Moment Estimation 
[206]

Load forecasting prediction by analyzing 
electricity price

Parallel deep learning [207] Ensuring control of hybrid energy storing 
system in a distributed system using paral-
lel deep learning

LSTM, GRU [208] Predicting load forecasting by training 
GRU and LTSM with various time scale 
sequences

2018 FFNN, Particle Swarm Optimization, MLP 
[209]

Mid-term load forecasting in terms of green 
environment and peak load

BPNN [210] Identification of max power load at pho-
tovoltaic power generation and power 
capacity
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ing gradually as per changing requirements. Failure 
to satisfy any of the requirements of an NGSG may 
result in disruption of power generation and trans-
mission, increased operational cost, damaged com-
ponents, and long blackouts.

2.	 Enhanced data preprocessing and handling efficiency 
Various circumstances such as climate change, tax, 
regulation, and economic growth, etc., can affect the 
supply and demand requirements for energy in the 
future. This will differentiate the data acquired from 
an SG which may vary from the previously acquired 
data. This can cause the data techniques trained on 
historical datasets to be unable to generate accurate 
results. The variations of collected data can have new 
information unknown to the algorithm that may be 
analyzed after advanced preprocessing with higher 
efficiency. This will increase the demand for better 
and quicker preprocessing techniques.

3.	 Consideration of local environment Most established 
data-driven techniques are trained on the data avail-
able at a global scale or in a specific area. However, 
the data generated at a local level may vary greatly 
from the global datasets. The data techniques should 
be flexible without losing robustness on the adapta-
tion to new systems in different environments.

4.	 Optimization of management system The existing 
management algorithms may need further improve-

ment to ensure the maximum sustainability of an 
NGSG. The improvement includes the management 
of every component, supply chain, security, demand 
response and all other aspects of an NGSG by intro-
ducing synchronization and interoperability between 
them. The data acquired from one sector of an NGSG 
may be used to improve other sectors. This is a key 
aspect of future management techniques.

5.	 International policy optimization Research on data-
driven technology for SG systems is confined to small 
solutions for large problems. This is where energy 
policies can offer flexibility in the research field of 
DDTs and force an NGSG to pursue and implement 
data techniques to decrease carbon emission, cost, 
waste, etc., as well as increasing generation, effi-
ciency, resilience, and overall sustainability.

8 � Conclusion
With the advance of technologies, the need for a sus-
tainable and green environment is increasing. As well as 
increasing the amount of intermittent renewable genera-
tion, a data-driven technology may boost the capacity of 
clean energy sources, like solar, wind, and photovoltaic 
systems. An NGSG promotes energy-efficient power 
systems and improves the effectiveness of power con-
sumption and energy sustainability. In this paper, the 

Table 11  LTLF techniques

LF type Year Technical approach Contribution Challenges

LTLF 2021 Improved ANN model with an Adaptive Backpropa-
gation Algorithm (ABPA) [211]

Fixes deviations between trained datasets and newly 
collected forecast datasets

1. Randomness
2. Uncertainty of output

Hybrid Support Vector Regression (HSVR) [212] Long-term load forecasting for real industrial power 
consumption in China

Feature-fusion-kernel-based Gaussian process model 
[213]

Converts one dimensional time-series data 
into multidimensional features to minimize the gap 
between original datasets and forecasting

2020 Takagi–Sugeno model, RFNN, Fuzzy Rules, Nonlinear 
System, BP [214]

Retaining temperature data from weather stations 
with LTLF process and holiday feature management

FFNN. BPNN [215] Mean square error reduction for smart grid consist-
ing of low voltage

LSTM, ANN [216] Enhancing system marginal price using ANN

DML, Apache Spark, Apache Hadoop, Linear Regres-
sion, Generalized Linear Regression, Decision Tree, 
Random Forest, Gradient-boosted trees, Distributed 
computing [188]

Single residential user load forecasting using CNN 
on time series datasets

CNN, Mutual Information (MI), MI-ANN, Relief F, Ker-
nel Principal Component Analysis (KPCA), BP [189]

Over-fitting issue reduction and computational time 
reduction using CNN, KPCA, MI etc.

2019 Parallel deep learning, DC-DC converter [207] Ensuring control of hybrid energy storing system 
in a distributed system using parallel deep learning

2018 Neuro-fuzzy, ANFIS, BPNN, Levenberg–Marquardt 
algorithm [217]

Effectively predicting long term load forecasting 
using ANN

BPNN [210] Identification of max power load at photovoltaic 
power generation and power capacity
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conceptual data-driven NGSG framework for sustainable 
energy evolution is discussed. The main findings of this 
paper can be summarized as:

•	 A comparative study on the conventional SG and 
NGSG is explicitly done here in terms of their opera-
tion and technology. Also, the critical steps to build 
the data-driven NGSG are also demonstrated and 
briefly discussed.

•	 All the intelligent features of a data-driven NGSG 
are reported and discussed to identify the scope of 
DDTs.

•	 Several challenges in initiating the implementation 
of DDTs are explored and addressed for the growth 
towards sustainable evolution in an NGSG.

•	 Advanced DDTs in the conventional SG for the man-
agement, condition monitoring, fault prediction, 
advanced forecasting, and precise fraud characteri-
zation are summarized. These lead to the purpose of 
using DDTs in an NGSG.

In conclusion, it can be seen that a variety of challeng-
ing problems in NGSGs, problems which resist even the 
most determined efforts of conventional mechanism-
based solutions, are successfully resolved by data-driven 
techniques. These techniques improve NGSG security, 
increase effectiveness, and reduce dependency on labor 
and knowledge-intensive human tasks.

Appendix
Data‑driven techniques in SGs

Algorithms Description Figure Applications

Supervised learning

ANN [67] ANN is a network consisting 
of multiple nodes that take input 
and perform simple functions 
and send the data to an adja-
cent node

(1) Load forecasting,
(2) Power grid stability 
assessment,
(3) Fault detection,
(4) Smart grid security

GCN [68] GCN, when learning repre-
sentations from data, takes 
into consideration the knowl-
edge about the data’s structure 
and generates strong represen-
tations; nonetheless, the robust-
ness of the GCN depends 
on the caliber of the feature 
matrix and the original graph

Electric parameter identi-
fication

CNN [69] CNN is beneficial 
when the reduction of param-
eters is necessary in ANN. 
An important aspect of CNN 
is that the problems may 
not have spatially dependent 
features

Electricity theft detection

Decision Tree [70] Decision tree is a tree struc-
tured algorithm that is useful 
for classification and regression. 
A decision tree consists of three 
parts: internal nodes, branches 
and leaves. The dataset attrib-
utes are represented in nodes

Small-signal stability 
analysis
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Algorithms Description Figure Applications

Genetic Algorithm 
[71]

Genetic Algorithm is an effi-
cient searching and meta-
heuristic method that replicates 
the behavior of naturally occur-
ring genetic materials by its 
selection, mutation and crosso-
ver operation

Optimal demand response

KNN [72] KNN algorithm is a nonparamet-
ric classification algorithm based 
on the proximity of data. The 
classification method includes 
Euclidean distance for calculat-
ing the nearest neighbors

Power consumption 
prediction

Logistic Regression 
[73]

Logistic regression is a method 
used for linear classification 
and binary classification prob-
lems. Depending on a collection 
of independent variables, logistic 
regression calculates the prob-
ability of a particular event

Smart grid stability predic-
tion

Naïve Bayes [74] Naive Bayes algorithm is based 
on the popular Bayes theorem 
and is one of the prominent 
probabilistic robust classification 
techniques used in machine 
learning and data analytics

Demand side management

Random Forest [73] Random Forest algorithm con-
sists of multiple decision trees 
that are the subsets of the col-
lected data

Smart grid stability predic-
tion
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Algorithms Description Figure Applications

SVM [75] SVM is used for classification 
as well as regression problems. 
SVM is popular in the sec-
tors of data mining, machine 
learning and pattern recogni-
tion because of its remarkable 
generalization ability

Stealthy false data injection 
detection

Semi-supervised learning

Graph Neural Net-
work (GNN) [76]

GNN has been proposed 
as a new deep learning model 
to learn non-Euclidean material

False data injection attack 
detection

Q-Learning [77] Updates are made via bootstrap-
ping in the off policy algorithm 
known as Q-learning

Vulnerability analysis

Particle Swarm 
Optimization [78]

The Particle Swarm Optimization 
technique is easy to implement 
and use, adaptable, and has a 
small number of controlling 
parameters (cognitive ratio, iner-
tia weight, and social ratio)

Energy consumption 
monitoring

Unsupervised learning

Deep Autoencoder 
[79]

Deep Autoencoder consists 
of two deep belief networks 
that are symmetrical

Anomaly detection of elec-
tricity theft cyberattacks
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Algorithms Description Figure Applications

Hidden Markov 
Model (HMM) [80]

The capacity of HMMs to con-
nect chains of observations 
with an inherent Markov 
process—whose unseen states 
serve as the focus of inference—
explains their widespread use. 
Because HMMs can handle 
discontinuous time series, such 
as hourly data, they are particu-
larly well suited for describing 
and forecasting failures

Islanding prediction

K-means clustering 
[81]

K-means clustering is the most 
basic, widely used, and com-
putationally efficient clustering 
technique
This method has been heavily 
applied in a variety of fields, 
including the categorization 
of documents, ride data analysis, 
in-depth call record analysis, 
customer classification, criminal 
network analysis, and others

Privacy preserving
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