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Abstract: Road network extraction is a significant challenge in remote sensing (RS). Automated
techniques for interpreting RS imagery offer a cost-effective solution for obtaining road network data
quickly, surpassing traditional visual interpretation methods. However, the diverse characteristics of
road networks, such as varying lengths, widths, materials, and geometries across different regions,
pose a formidable obstacle for road extraction from RS imagery. The issue of road extraction can be
defined as a task that involves capturing contextual and complex elements while also preserving
boundary information and producing high-resolution road segmentation maps for RS data. The
objective of the proposed Archimedes tuning process quantum dilated convolutional neural network
for road Extraction (ATP-QDCNNRE) technology is to tackle the aforementioned issues by enhancing
the efficacy of image segmentation outcomes that exploit remote sensing imagery, coupled with
Archimedes optimization algorithm methods (AOA). The findings of this study demonstrate the
enhanced road-extraction capabilities achieved by the ATP-QDCNNRE method when used with
remote sensing imagery. The ATP-QDCNNRE method employs DL and a hyperparameter tuning
process to generate high-resolution road segmentation maps. The basis of this approach lies in the
QDCNN model, which incorporates quantum computing (QC) concepts and dilated convolutions
to enhance the network’s ability to capture both local and global contextual information. Dilated
convolutions also enhance the receptive field while maintaining spatial resolution, allowing fine
road features to be extracted. ATP-based hyperparameter modifications improve QDCNNRE road
extraction. To evaluate the effectiveness of the ATP-QDCNNRE system, benchmark databases are
used to assess its simulation results. The experimental results show that ATP-QDCNNRE performed
with an intersection over union (IoU) of 75.28%, mean intersection over union (MIoU) of 95.19%, F1
of 90.85%, precision of 87.54%, and recall of 94.41% in the Massachusetts road dataset. These findings
demonstrate the superior efficiency of this technique compared to more recent methods.

Keywords: road extraction; remote sensing; convolutional neural networks; dilated convolutions;
quantum computing; Archimedes optimization algorithm; artificial intelligence

1. Introduction

Remote sensing images (RSI) find diverse applications in urban planning, building
footprints extraction, and disaster management. Among the crucial aspects of urban areas
is the structure of road, which plays a vital role in urban planning, automated navigation,
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transportation systems and unmanned vehicles [1]. Researchers in the field of RSI pro-
cessing have a keen interest in extracting road networks, and high-resolution RS data is a
valuable resource for real-time road network updates [2]. Thus, presenting a novel road-
structure extraction approach from these images aids geospatial information systems (GIS)
and intelligent transportation systems (ITS). However, several challenges complicate the
extraction of roads from high-resolution RSI [3]. For example, extracting additional features
from high-resolution images, such as tree shadows, vehicles on the road, and buildings
alongside the road, presents difficulties [4]. Road networks exhibit intricate designs in
RSI, with road segments appearing uneven. Accurate road structure extraction from aerial
imagery is widely acknowledged as challenging due to the diverse road-type shadows and
occlusion resulting from the proximity of trees and buildings. [5]. Previous studies have
identified the five key factors for road extraction from aerial images as geometrical factors,
including road curvature and length to breadth; radiometric factors [6]; road surface homo-
geneity and consistent gray color contrast; topological factors, as roads form interconnected
networks without abrupt endings for topological reasons; and functional factors, such
as the connecting of various regions within a city, including residential and commercial
areas [7–10]. These factors collectively contribute to the road’s overall characteristics, but
lighting conditions and obstructions can alter their appearance, adding to the complexities
of road extraction [7–10]. Researchers have turned to artificial intelligence (AI) techniques,
utilizing the important usefulness of deep convolutional neural networks (DCNNs) in
diverse computer vision (CV) domains, to tackle the extraction of road networks from
high-resolution RSI. Convolutional neural networks (CNNs) were first introduced by Yann
Le Cun et al. in 1989 as a robust deep learning technique [11]. CNNs have demonstrated
exceptional proficiency in the automated extraction of features from various types of data,
thus proving their efficacy in computer vision tasks [12–15]. Simultaneously, progress has
been made in quantum technologies.

The discipline of quantum machine learning is rapidly growing and has demonstrated
its ability to enhance classical machine learning methods [16–25], including support vector
machines, clustering, and principal component analysis. Quantum convolutional neural
networks (QCNNs) are a notable field of study, representing a subset of variational quantum
algorithms. QCNNs integrate quantum convolutional layers that employ parameterized
quantum circuits to approximate intricate kernel functions within a high-dimensional
Hilbert space. Liu et al. (2019) pioneered the development of the first QCNN model for
image identification, drawing inspiration from regular CNNs [26]. This groundbreaking
work has since sparked further investigation and research in the field, as evidenced by
following publications [27–32], motivating the application of QCNN with improvement in
its basic architecture for road extraction from HRSI.

Significant advancements have been made in extracting high-level features and im-
proving the performance of numerous computer vision tasks, such as object detection,
classification, and semantic segmentation [33,34]. These approaches demonstrate superior
results compared to traditional methods, particularly when addressing the challenges
posed by obstacles and shadow occlusion, geometrical factors, road curvature, length to
breadth ratio, and radiometric factors [6] in road extraction from high-resolution imagery.

Therefore, the motivation for converting a CNN model into a quantum-based CNN
architecture is significant due to its potential for enhancing performance in many applica-
tions, including road extraction and various other cognitive problems. Quantum machine
learning models, such as quantum dilated convolutional neural networks (CNNs), leverage
quantum circuits to execute convolutions on input data. This approach has the potential
to offer improved computational efficiency compared to traditional convolutional layers
under specific conditions. Furthermore, quantum machine learning models have the capa-
bility to exploit the distinct characteristics of quantum systems in order to execute specific
computations more efficiently than classical systems.
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2. Related Works

Shao et al. [35] presented a novel road extraction network that incorporates an attention
mechanism, aiming to address the task of automating the extraction of road networks from
large volumes of remote sensing imagery (RSI). Their approach builds upon the U-Net
architecture, which leverages spatial and spectral information and incorporates spatial and
channel attention mechanisms. In addition, the researchers incorporated a residual dilated
convolution module into their approach to capture road network data at various scales.
They also integrated residual, densely connected blocks to effectively improve feature reuse
and information flow. In a separate study [36], the researcher employed RADANet, an
abbreviation for road-augmented deformable attention network, in order to effectively
capture extensive interdependencies among particular road pixels. This was motivated by
prior knowledge of road morphologies and advancements in deformable convolutions.

Li et al. [37] introduced a cascaded attention-enhanced framework designed to ex-
tract roadways with finer boundaries from remote sensing imagery (RSI). The proposed
architecture integrates many levels of channel attention to enhance the fusion of multiscale
features. Additionally, it incorporates a spatial attention residual block to effectively capture
long-distance interactions within the multiscale characteristics. In addition, a lightweight
encoder–decoder network is used in order to enhance the accuracy of road boundary
extraction. Yan et al. [38] proposed an innovative approach to road surface extraction,
incorporating a graph neural network (GNN) that operates on a pre-existing road graph
composed of road centerlines. The suggested method exploits the GNN approach for vertex
adjustment and employs CNN-based feature extraction to define road surface extraction
as a two-sided width inference problem of the road graph. Rajamani et al. [39] aimed to
develop an automated road recognition system and a building footprint extraction system
using CNN from hyperspectral images. They employed polygon segmentation to detect
and extract spectral features from hyperspectral data. CNN with different kernels was used
to classify the retrieved spectral features into two categories: building footprints and road
detection. The authors introduced a novel deep neural network approach, referred to as
dual-decoder-U-Net (DDU-Net), in their study [40]. The authors incorporated global aver-
age pooling and cascading dilated convolutions to distill multiscale features. Additionally,
a dilated convolution attention module (DCAM) was introduced between the encoder and
decoder to expand the receptive field. The authors of reference [41] have proposed a novel
road extraction network named DA-RoadNet, which integrates the ability to incorporate
semantic reasoning. The primary architecture of DA-RoadNet consists of a shallow network
that connects the encoder to the decoder. This network incorporates densely connected
blocks in order to address the issue of road infrastructure data loss resulting from several
down-sampling procedures. Hou et al. [42] proposed a route extraction approach for RSI
using a complementary U-Net (C-UNet) with four modules. They introduced an MD-UNet
(multi-scale dense dilated convolutional U-Net) to identify complementary road regions in
the removed masks, after the standard U-Net was employed for rough road data extraction
from RSI and generated the initial segmentation result. Tables 1 and 2 summarize various
proposed architectures from the last three years and offer a comparison based on various
key parameters, respectively.

The practical execution of many quantum circuits still poses challenges. QCNNs
face computational difficulties due to the need to execute additional circuits for quantum
operations and gradient calculations [28,29]. The utilization of quantum filters that possess
trainable characteristics further exacerbates this concern. Unlike classical CNNs, QCNNs
often lack vectorization capabilities on the majority of quantum devices, hence impeding
their scalability [43,44].
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To reduce the runtime complexity of QCNN, two main approaches are prominent.
Firstly, dimension reduction techniques such as principal component analysis (PCA) and
autoencoding can reduce the required qubits, but they may constrain the model’s expres-
siveness [45,46]. Secondly, the efficient conversion of classical data into quantum states is
pursued through encoding methods. Amplitude encoding conserves qubits but relies on
complex quantum circuits [47,48]. Conversely, angle encoding and its variants maintain
consistent circuit depth but may be less efficient for high-dimensional data [32,49,50]. A
hybrid encoding approach strikes a balance between qubit usage and circuit depth [46],
while threshold-based encoding simplifies quantum convolution but may have limitations
on real quantum devices [28].

Considering the various challenges that have been thoroughly examined and the
subsequent advancements made, this study presents an unconventional quantum-classical
architecture called the quantum dilated convolutional neural network (QDCNN) for road
extraction with the Archimedes tuning process (ATP) from high-resolution remote sensing
images. Initially, our proposed methodology benefited from previous architectures [26,28],
and for the dilated convolutional neural network, it uses the architecture described in [51]
and introduces a new strategy to decrease the computing expenses of QCNN in the use
of a quanvolutional layer [28], drawing inspiration from dilated convolution techniques
in deep learning. The utilization of dilated convolution, which was initially devised for
discrete wavelet transformations [52], has become increasingly prominent in various fields,
such as semantic segmentation [21,53–57], object localization [58], sound classification [59]
and time-series forecasting [60,61]. The utilization of dilated convolution in QDCNNs
effectively increases the filter context, resulting in improved computing efficiency without
any additional parameters or complexity.

The literature survey uncovered three research gaps:

• The limited investigation of quantum-inspired methodologies for the extraction of
road features from remote sensing images.

• The proposed ATP-QDCNNRE method described in Section 3.1 attempts to address the
integration of quantum-inspired dilated convolutions, exploring quantum computing
concepts and optimizing dilated convolutions for long-range dependencies for road
extraction from road datasets.

• Failures in the efficient use of dilated convolutions and automated hyperparameter
modifications to achieve good road semantic segmentation using deep learning models.
Employing automated hyperparameter tuning in Section 3.2, and developing a fully
automated road extraction system.

In summary, the present study makes two significant contributions:

• The proposed ATP-QDCNNRE method attempts to address the integration of quantum-
inspired dilated convolutions, explore quantum computing concepts, optimize dilated
convolutions for long-range dependencies, employ automated hyperparameter tuning,
and develop a fully automated road extraction system.

Implementing quanvolutional layers in the dilated convolutional neural network is a
novelty of the proposed model. Various parameters of quantum circuits, such as qubits and
gates, are highly tunable parameters that need to be taken into account to interpret results.

• The study performs experiments utilizing the Massachusetts road dataset to showcase
the enhanced performance of the QDCNN model.
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Table 1. Comparative study of literature review on road extraction in the last three years.

Authors [Citations] Year Methodology Challenges

Tao, J et al. [62] 2023
SegNet; Road extraction based on
transformer and CNN with
connectivity structures.

Narrowness, complex shape, and broad span of
roads in the RS images; the results are often
unsatisfactory.

Yin, A et al. [63] 2023
HRU-Net: High-resolution remote
sensing image road extraction based on
multi-scale fusion

Shadow, occlusion, and spectral confusion
hinder the accuracy and consistency of road
extraction in satellite images.

Shao, S et al. [35] 2022

Road extraction based on channel
attention mechanism and spatial
attention mechanism were introduced
to enhance the use of spectral
information and spatial information
based on the U-Net framework

To solve the problem of automatic extraction of
road networks from a large number of remote
sensing images.

Jie, Y et al. [64] 2022

MECA-Net is a novel approach for road
extraction from remote sensing images.
It incorporates a multi-scale feature
encoding mechanism and a long-range
context-aware network.

The scale disparity of roads in remote sensing
imagery exhibits significant variation, with the
identification of narrow roadways posing a
challenging task. Furthermore, it is worth noting
that the road depicted in the image frequently
encounters obstruction caused by the shadows
cast by surrounding trees and buildings. This, in
turn, leads to the extraction results being
fragmented and incomplete.

Li, J et al. [65] 2021

Proposed an innovative cascaded
attention DenseUNet (CADUNet)
semantic segmentation model by
embedding two attention modules,
such as global attention and core
attention modules

To preserve the integrity of smoothness of the
sideline and maintain the connectedness of the
road network; also to identify and account for
any occlusion caused by roadside tree canopies
or high-rise buildings.

Wu, Q et al. [66] 2020 Based on densely connected spatial
feature-enhanced pyramid method Loss of multiscale spatial feature.

Table 2. Presents comparative results of the methods shown in Table 1.

Authors
Results Based on Various Parameters Used by Authors

Overall Accuracy
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

Tao, J et al. [62] -- -- 87.34 92.86 90.02 68.38

Yin, A et al. [63] -- -- 80.09 84.85 82.40 78.62

Shao, S et al. [35] -- 98.90 78.40 77.00 76.40 63.10

Jie, Y et al. [64] -- -- 78.39 79.41 89.90 65.15

Li, J et al. [65] 98.00 -- 79.45 76.55 77.89 64.12

Wu, Q et al. [66] -- -- 90.09 88.11 89.09 80.39

3. The Proposed Methodology

In order to turn a classical deep learning semantic segmentation architecture into a
quantum-enabled convolutional neural network (CNN) overview of the workflow is shown
in Figure 1 classical convolutional layers are replaced with quantum convolutional layers,
as shown in Figure 2. Quantum convolutional layers consist of a collection of N quantum
filters that function similarly to classical convolutional layers. These filters generate feature
maps by locally modifying the input data. Various optimization approaches, such as the
various quantum eigen solver (VQE) or the quantum approximate optimization algorithm
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(QAOA), including the integration of Archimedes optimization algorithms (AOA), are used
to optimize the parameters of quantum filters.
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In real-world situations, the conversion procedure may encompass multiple stages,
including defining the quantum circuit for the quantum convolutional layer, initializing
circuit parameters, and optimizing those parameters using an appropriate optimization
algorithm. The complexity of this procedure may vary based on several aspects, including
the specific architecture employed, the quantity and quality of the training data, and the
specific demands of the given task.

This paper presents the unique ATP-QDCNNRE system utilizing the Archimedes opti-
mization algorithm (AOA) [67], designed for effective and automated road extraction from
RSI. The primary objective of the ATP-QDCNNRE system is to generate high-resolution
road segmentation maps through the application of deep learning (DL) techniques and a
hyperparameter tuning methodology with the integration of a quanvolutional layer into a
dilated convolutional neural network proposed by [28,51]. The proposed technique consists
of two main processes: road extraction using QDCNN with hyperparameter adjustment
using ATP and implementation of a quanvolutional layer into a dilated neural network with
the help of a quantum tool in Python called PennyLane [68]. The utilization of the quan-
tized dilated convolutional neural network (QDCNN) architecture in the ATP-QDCNNRE
system is primarily aimed at road extraction, as it is developed to produce improved
road segmentation. The performance of road extraction can be improved by the QDCNN
through its efficient acquisition of local and global road data, achieved by employing
dilated convolutions. Furthermore, the ATP-QDCNNRE system integrates an ATP-based
methodology for tuning hyperparameters, aiming at improving the hyperparameters of
the deep learning model. Through the adaptive operator adjusting technique of the ATP
method, the hyperparameters are dynamically tuned during the training phase. This adap-
tive approach tailors the deep learning (DL) model specifically for road extraction, leading
to enhanced segmentation results. Figure 1 provides an overview of the ATP-QDCNNRE
system, offering a visual representation. The figure showcases the integration of the se-
quential stages of the ATP-QDCNNRE system, including the processes of QDCNN-based
road extraction and ATP-based hyperparameter tuning.

3.1. Road Extraction Using QDCNN Model

In the automated road extraction process, the QCNN approach was employed in this
work. The QDCNN model proposed in this study features a three-tier-based architecture,
integrating a quantum layer, a convolution layer, and a dilated layer for road extraction
processes [69]. It utilizes a bi-directional cross-entropy function as the loss parameter for
its classification layer, enabling effective learning and performance evaluation. Figure 2
illustrates the infrastructure of the QDCNN model.

Firstly, the baseline model as described by [51] utilizes the DCN algorithm, which
performs four standard convolution operations and two average pooling operations on the
input image. Consequently, the dimensions of the feature map are reduced to one-fourth
of the dimensions of the original image. Subsequently, the system executes six dilated
convolution operations on the resulting feature maps with a dilation rate of 2. Afterward,
the feature maps are transmitted to the decoding stage, where two up-sampling operations
restore them to their original dimensions before the initial image. Finally, the resulting
output is assigned a corresponding probability value for pixel classification, achieved by
employing a convolutional layer with a single channel and convolution kernel size of 1 × 1.

In the proposed model, the first classical convolutional layer is transformed into a
quanvolutional layer using the approach described in [28]. The rest of the network remains
the same. Initially, implementation required a quantum computing device; however, since
we do not have access to one, various quantum computing simulators were applied for
implementation. Ultimately, PennyLane [68], a Python plugin, was utilized to implement
the concept and produce the desired results.
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3.1.1. Convolutional Layer

The term “convolutional operation” denotes a linear function that performs the aggre-
gation of weights linked to the input, playing a crucial role in the functioning of Convo-
lutional Neural Networks (CNNs). The prior source image was represented by i and the
resultant mapping feature was denoted by j. The mapping feature was produced by the
filter (f ), and the implemented technique was applied to the source images i.

[a, b] = ∑
p

∑
k

f [p, k].i[a + p, b + k], (1)

In Equation (1), a and b represent the indices that are part of J. Compared to the source
image, the resultant mapping feature typically has a lower spatial resolution, depending
on the convolution approach used. To apply the filter, the borders of the source input
were enclosed with pixels having a zero value, a process known as padding. Generally,
the spatial resolutions Outg and Outi are the most recent mapping features, and the g× h
kernel extracted from the ing × ini source image was computed as follows:

Outg =

(
ing − g + 2p

s

)
+ 1, (2)

Outi =

(
ini − h + 2p

s

)
+ 1, (3)

where as p and s refer to the padding stride correspondingly.

3.1.2. Dilatable Convolution

According to the findings presented in reference [56], it is observed that the use of
standard pooling and convolution processes results in a reduction in the resolution of
feature maps. The issue is resolved by introducing a dilation rate parameter in dilated
convolution. In contrast to conventional convolution, this method preserves the kernel size
while enlarging the receptive field. This feature is highly advantageous for activities that
require the preservation of spatial detail.

Figure 3 depicts a standard convolution alongside a dilated convolution, where the
latter has a dilation rate of 2. The utilization of dilated convolution is observed to enhance
the receptive field of the convolution kernel while maintaining a constant number of
parameters. Simultaneously, it has the capability to maintain the dimensions of the feature
maps unchanged. The receptive field of a convolution kernel with dimensions 3 × 3
and a dilation rate of 2 is equivalent to that of a convolution kernel with dimensions
5 × 5. However, the former requires only 9 parameters, which accounts for just 36% of the
parameter count of the latter.
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The dilated convolutional layer is a specific sort of convolutional layer that incorpo-
rates gaps between consecutive kernels, resulting in an expanded kernel. Dilation rate
controls input pixel sampling frequency in this layer, which is shown in Figure 3.

[a, b] = ∑
p

∑
k

f [p, k].i[a + p.d, b + k.d], (4)

Without adding learnable parameters, dilated convolution records a broader receptive
field than classical convolution using a similar kernel.

Outg =

(
ing − g− (g− 1)(d− 1) + 2p

s

)
+ 1, (5)

Outi =

(
ini − h− (h− 1)(d− 1) + 2p

s

)
+ 1, (6)

The above mentioned formula demonstrates that, for the given set of hyperparame-
ters, dilated convolution usually produces a small mapping feature compared to typical
convolution.

3.1.3. Fundamentally Different Quantum Convolution by Quanvolutional Filter

Quantum growing concepts distinguish quantum convolution (QC) from common
convolution. In quantum convolution, there are three modules: encoder, entanglement,
and decoder.

• Encoder model: At present, the data are encoded to a quantum state, and the encoded
data are examined using QC circuits. One of the variable encoding methods that can
be exploited to encode information is the Hadamard gate (H). The encoder function
represented by E(a) transforms an initial state into a uniform superposition state i,
specifically focusing on the data vector.

| i ·〉= E(a)| 0 ·〉, (7)

• Entanglement state: The encoder quantum state generated in the preceding model
element has an effect on the single- and multi-qubit gates inside this module. Com-
monly utilized multi-qubit gates in quantum computing encompass CNOT gates and
parametrically controlled rotation. The utilization of both single-qubit and multi-qubit
gates in a composite manner results in the formation of parameterized layers. These
layers can be further optimized to acquire assignment properties. If the unitary opera-
tions of the entanglement modules are all denoted by (θ), then the resulting quantum
state can be represented as follows:

|| i, θ ·〉= U(θ)| i ·〉, (8)

• Decoder model: Subsequently, local variables, such as the Pauli Z operator, are esti-
mated for the previous modules. The predictable value θ of local variables is attained
by the following equation:

〈· i, θ ·〉= A
⊕

x| i, θ ·〉, (9)

To create a quantum state-to-vector mapping, f (i, θ)

| i, θ ·〉 = f (i, θ), (10)

In Equation (10), f (i, θ) represent the input for QCNN. During the presented method,
quantum and classical layers are integrated, and the quantum circuit analysis are exploited
throughout. The primary distinction between common networks and the presented quan-
tum convolutional neural networks (QCNNs) is the incorporation of dilated convolutional
layers, resulting in the development of the quantum dilated convolutional neural network
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(QDCNN). The QDCNN possesses two distinct advantages. The QDC layer exhibits a
reduced number of iterations for the quantum kernel’s traversal over the image, attributed
to its expansive receptive fields. Additionally, the QDC layer employs usual methods
to decrease the spatial resolution of generated mapping features owing to its enhanced
receptive field, as shown in Figure 2.

3.1.4. Network Design of (Quantum Circuit) Quanvolutional Layer

The design of quanvolutional networks using quantum neural networks (QNNs)
represents an extension of CNN, incorporating an extra transformational layer known as
the quanvolutional layer. The integration of quanvolutional layers should be identical to
that of classical convolutional layers, hence enabling users to:

• assign the variable p to represent an arbitrary integer value, denoting the number of
quanvolutional filters in a specific quanvolutional layer;

• add multiple additional quanvolutional layers on top of any existing layer within the
network architecture.

The layer-specific configurational attributes encompass several aspects, such as encod-
ing and decoding methods, as well as the average number of quantum gates per qubit in
the quantum circuit.

By meeting these criteria, the quanvolutional filter is expected to possess a high degree
of generalizability and can be implemented with equal ease in any architecture, similarly
to its classical predecessor. The determination of the quantity of layers, the sequence
of their implementation, and the exact parameters associated with each layer are fully
dependent on the specifications provided by the end user. The visual representation of
the universality of QNNs is depicted in Figure 2. A new feasible model can be built by
modifying, eliminating, or incorporating layers according to preference. The network
design shown in Figure 2 would retain its structure if the quanvolutional layer were
substituted with a convolutional layer consisting of 32 filters. Similarly, the convolutional
layer could be replaced with a quanvolutional layer, including 128 quanvolutional filters,
while maintaining the general structure of the network. The distinction between the
quanvolutional and convolutional layers is contingent upon the manner in which the
quanvolutional filters perform calculations.

3.2. Hyperparameter Tuning Using ATP

In this work, the ATP- hyperparameter tuning process based on the Archimedes
optimization algorithm (AOA) [70] was utilized. ATP is a robust and novel optimization
approach embodying the principles of Archimedes [70]. The outcomes of the experiment
showed that ATP can effectively address optimizer issues and solve near-optimum or fetch
optimum problems in a shorter period. The ATP mathematical formula consists of several
stages, as given below:

Stage1: Initialization. A group of random individuals was generated and kept in the
location, as follows:

|Oi= = lbi + rand× (ubi − lbi), i = 1, 2, 3 . . . . . . .N (11)

In Equation (11), Oi represents the ith agent’s (object’s) location of total agents N, ubi
and lbi denotes the upper and lower boundaries of ith agents correspondingly, and rand
specifies the Dimn dimension random vector in the interval.

densi = randm, (12)

Voli = randm, (13)

where voli represents the volume of agent, and ith and densi denotes the density.

accni = ibi + randm× (ubi − lbi), (14)
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In Equation (14), accni denotes the acceleration, ubi and lbi indicate the upper bound-
aries of ith agents correspondingly, and randm shows the Dimn -dimension random value
in the interval.

Stage2: Updating Density and Volume. Both density and volume are used as in
Equations (15) and (16)

denst+1
i = denst

i + randm×
(

densbest − denst
i

)
, (15)

Volt+1
i = Volt

i + randm×
(

Volbest −Volt
i

)
, (16)

where volbest and densbest indicate the optimum volume and density obtained at point t,
and volt

i and denst
i use the terms “volume” and “density” of jth operatives in position t.

Stage3: Transfer Operators and Density Factors. Here, collisions occur between the
individuals and the agent, and then the agent tries to reach a state of equilibrium. A transfer
operator TF is used to shift between exploration and exploitation:

TF = exp
(

t− tmax

tmax

)
, (17)

In Equation (17), t and tmax denote the existing and maximal iteration count. Further-
more, a reduction in density factors was added to support ATP in fetching a near-optimal
solution, as follows:

dt+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
, (18)

Stage 4: Exploration of where the individuals’ collision occurs. If the TF is less than
0.5, then arbitrary material is selected and the acceleration of the agent i′s is enhanced,
as follows:

accnt+1
i =

densmr + volmr × accnmr

densi × voli
, (19)

In Equation (19), volmr, accnmr, and densmr indicate the volume, acceleration, and den-
sity of an element that has been randomly generated, and voli, accni, and densi encapsulate
the volumetric, acceleration, and density of ith agents.

Stage 5: Exploitation where no individual collision takes place. When the TF is greater
than approximately 0.5, the acceleration of agent i′s is upgraded using the following equation:

accnt+1 =
densbest + volbest × accnbest

densi × volt+1
i

, (20)

In Equation (20), accnbest, densbest, and volbest show the specific rates of acceleration,
density, and volume.

Stage 6: Normalizing acceleration: The process of normalizing acceleration involves
the utilization of Equation (21):

accnt+1
i−norm = u×

accnt+1
i + min(accn)

max(accn)−min(accn)
+ 1, (21)

where max(accn), and min(accn) denote the maximal and minimal acceleration corre-
spondingly. accnt+1

i−norm represents the percentage individuals who are shifting steps, and
l and u indicate lower as well as upper bounds of normalization that equal 0.1 and 0.9
correspondingly.

Stage 7: Location updating: Equation (20) updates an individual’s location if TF is less
than 0.5; otherwise, Equation (23) is utilized.

gt+1
i = gt

i + c1 × randm× accnt+1
i−norm × d×

(
grandm − gt

i
)
, (22)
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gt+1
best = gt

best + F× c2 × randm× accnt+1
i−norm × d×

(
T × xbest − gt

i
)
, (23)

Here, gt
i signifies the ith agents (object) at iteration, t, gt

best denotes the optimum agent
at t iteration, and d indicates the dimensionality; c1 and c2 are constants. T signifies time
function and equal c3 × TF, where c3 falls within [c3 × 0.3, 1] and takes a fixed ratio from
the optimal place. Subsequently, it diminishes to the spatial separation between the present
and ideal locations, thereby denoting a directional movement using flag F and p. The
Probability is calculated using the equation:

F =

{
+1, i f p < 0.5
−1, i f p > 0.5

, (24)

where P = 2× randm− C4. Each agent is evaluated using objective function f , and the
optimal values are remembered. xbest, densbest, volbest, and accnbest, are assigned. Pseudo
code for the complete ATP based on AOA is provided as follows for better significance.

4. Data and Results
4.1. Data Collection

The evaluation of the road extraction results obtained from the ATP-QDCNNRE
method is conducted on the Massachusetts road [71] dataset.

The Massachusetts Road Dataset and Its Preprocessing

The Massachusetts road dataset [71] is globally recognized as the most extensive
publicly accessible road dataset. The dataset covers a wide variety of urban, suburban,
and rural regions and covers an area of over 2600 square kilometers, as shown in Figure 4.
The dataset comprises 1171 images, which are further categorized into subsets, including
1108 training images, 14 validation images, and 49 test images. Additionally, correspond-
ing label images are provided, as depicted in Figure 5. Each image has dimensions of
1500 × 1500 pixels, with a resolution of 1.2 m per pixel. The dataset comprises a range of
distinct attributes, including road networks, grassland areas, forested regions, and built
structures.
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Figure 5. Sample images with corresponding labels of Massachusetts road dataset.

The dataset preprocessing follows the approach outlined in [8], with some modifi-
cations in the cropping size, as illustrated in Figure 6, and in the augmentation process.
In the previous study [8], 100 images were generated from a single image, but in this
study, only 30 images were generated, as shown in Figure 7, to augment the sample size.
The remote sensing images from the training and validation sets, along with their related
label images, were divided into image samples of size 500 × 500 pixels. Based on the
principles governing the partitioning of datasets, all divided sample data were randomly
allocated into two distinct subsets: a training set and a validation set, with a ratio of 4:1.
During the process of sample examination, it was necessary to remove a certain number
of interfering images along with their matching label images. The training set had a total
of 14,086 images, each with dimensions of 500 × 500 pixels. Similarly, the validation set
consisted of 4695 images, all with dimensions of 500 × 500 pixels.
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4.2. Experimental Results

All experiments adopted the same parameter initialization method and optimizer
during the training process, with differences in the parameters for QDCNNRE, as shown in
Table 3. In the experiment, raw image data were transformed into feature maps using a non-
trainable quantum filter. Each model was trained for 50 epochs using a mini-batch size of 32
and the Adam optimizer with a learning rate of 0.01. The batch size was reduced to four in
order to mitigate the computational expenses associated with training parametric quantum
circuits in the trainable quantum filter. PennyLane [68], Qulacs [72], and PyTorch [73]
were utilized in this study. PennyLane is a Python-based system that is open source
and facilitates automatic differentiation for hybrid quantum-classical computations. The
software is compatible with widely used machine learning frameworks, such as TensorFlow
and PyTorch. Additionally, it offers a comprehensive collection of plugins providing access
to various quantum devices, including simulators and hardware, from multiple suppliers,
such as IBM, Google, Microsoft, Rigetti, and QunaSys. The PennyLane-Qulacs plugin is
referenced as [74]. Due to the substantial number of quantum circuit executions required
in the parameter-shift rule scheme, we chose to train all hybrid models using the built-in
PennyLane simulator default.qubit. This simulator supports the backpropagation approach
for the PyTorch interface. The experiments were conducted on a Windows operating system
with Intel (R) Xeon (R) CPU E5-2687 V4 @ 3.00 GHz as the CPU. The GPU model used was
NVIDIA GRID RTX8000-12Q with 12 GB of memory.

Table 3. Hyperparameters in QDCNNRE.

Hyperparameter Description

Quantum circuit depth The depth of quantum circuits or layers in the network
(3 quantum layers).

Quantum gate parameters Parameters specific to quantum gates used in the model.
Example: Gate time and type (e.g., CNOT, Hadamard).

Momentum
qml.optimize.
ArchimedesOptimizer

Momentum is a mathematical optimization method used to
enhance convergence speed and stability during the training
of machine learning models. The “qml.optimize.
ArchimedesOptimizer” is a quantum optimization algorithm
used for solving optimization problems on quantum devices.

Loss Function The choice of loss function for semantic segmentation is
cross-entropy loss.

Activation function The type of activation function used in the network. ReLU
and Sigmoid.

Learning rate Controls the step size during optimization.

The parameters of the quantum circuit were optimized using various methods, such
as the variation quantum Eigen solver (VQE), the quantum approximate optimization
algorithm (QAOA), and the Archimedes optimization algorithm. Hyperparameters for a
regular CNN in semantic segmentation include the size of kernels, the number of kernels,
the length of strides, and the pooling size, all of which directly affect the performance
and training speed of CNNs. Hyperparameters for a quantum dilated CNN for semantic
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segmentation include learning rate, mini-batch size, momentum, optimizer, and weight
decay. Some of these hyperparameters are provided in Table 3 with their descriptions.

4.2.1. Evaluation Method

The cross-entropy loss function is commonly employed in deep convolutional neural
networks for solving two-class problems. It quantifies the likelihood of belonging to a
particular class [20]. Therefore, the loss function employed in our study was based on [20].

L = − 1
n∑n

i=1 yilogai + (1− yi)log(1− ai), (25)

where yi indicates the real category of the input xi, in which y1/4
i means that the ith pixel

belongs to the road. The ai is the category of the pixel in output image, which is modeled
by the following sigmoid function:

ai =
1

1 + e−zi
, (26)

where zi denotes the input of the last layer.
The accuracy of road extraction outputs achieved by each network was assessed using

four assessment metrics: intersection over union (IoU), precision, recall, and F1. The IoU
metric is a measure of the proportion between the intersection and union of prediction
outcomes and labels. Precision is a metric that quantifies the ratio of accurately predicted
pixels to the total number of pixels anticipated as roads. The term “recall” refers to the
ratio of accurately anticipated road pixels to the total number of road pixels. The F1 score
is a comprehensive evaluation statistic that represents the harmonic mean of precision and
recall. The calculation algorithms for the four aforementioned evaluation measures are
presented below:

IoU =
TP

TP + FP + FN
, (27)

Precision =
TP

TP + FP
, (28)

Recall =
TP

TP + FN
, (29)

F1 =
2× Precision× Recall

Precision + Recall
, (30)

In the present study, the term “precision” is defined as the proportion of accurately
predicted road pixels to the total number of pixels anticipated as roads, as represented by
Equation (28). The term “recall” pertains to the proportion of pixels that are accurately
classified as roads, relative to the total number of pixels that are actually labeled as roads,
as represented by Equation (29). The F1 score is a robust evaluation metric that combines
the precision and recall measures, as depicted in Equation (30). In the context of prediction
evaluation, true positive (TP) denotes the accurate identification of positive cases, false
positive (FP) represents the erroneous identification of negative cases as positive, and false
negative (FN) signifies the inaccurate identification of positive cases as negative.

The measurement index of classical (MIoU) is a well-established metric for evaluat-
ing the performance of semantic segmentation algorithms. Its calculation is defined by
Equation (10), where K denotes the total number of categories. In this particular study,
K was set to 1, with K + 1 representing the number of categories encompassing both
foreground and background. The variable pij represents the count of objects predicted as
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belonging to category j, when they actually belong to category i. Moreover, IoU (intersection
over union) serves as the sole evaluation metric for road segmentation.

MIoU =
1

K + 1

k

∑
i=0

Pij

∑K
j=0 pij + ∑K

j=0 Pij − Pii
, (31)

4.2.2. Experimental Result Analysis

In the context of comparative experiments, the proposed method was evaluated
against various extraction approaches. The comparative analysis of several methodologies
for the road dataset is presented in Table 4, Figures 8 and 9.

Table 4. Comparative outcomes of ATP-QDCNNRE approach with DL techniques on the Mas-
sachusetts road dataset.

Model IoU MIoU F1 Score Precision Recall FPS

PSPNet [75] 58.91 72.23 75.22 74.37 76.09 75

D-LinkNet [76] 61.45 75.72 80.61 78.77 82.53 96

LinkNet34 [77] 61.35 75.87 80.17 78.77 81.63 105

CoANet [78] 61.67 76.42 81.56 78.53 84.85 61

CoANet-UB [78] 64.96 80.92 88.67 85.37 92.24 40

MECA-Net [64] 65.15 82.32 78.90 78.39 79.41 89

ATP-QDCNNRE (Ours) 75.28 95.19 90.85 87.54 94.41 158
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Figure 8. Graphical representation of comparative results described in Table 4.

In Table 4, the techniques categorized as classical approaches do not employ the
framework of convolutional networks. Among deep-learning-based methods, the met-
rics demonstrate that encoder–decoder architectures, particularly U-Net-like networks,
exhibit favorable performance for semantic segmentation. This substantiates the suitability
of U-Net-like structures in comparison to existing literature works. The selected model,
QDCNNRE, bears resemblance to the U-Net architecture, but incorporates a quanvolu-
tional layer and a dilated convolutional layer as additional components. The addition
of a quanvolutional layer, as shown in Figure 2, is instrumental. Table 4 demonstrates
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that the proposed ATP-QDCNNRE technique exhibited superior performance among all
the techniques.
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Figure 9. Segmentation results of ATP-QDCNNRE on the Massachusetts road dataset. (a) The original
images; (b) their corresponding ground truth. Visual results of various state-of-the-art models are
shown as: (c) PSPNet (d) D-LinkNet (e) LinkNet 34 (f) CoANet (g) CoANet-UB (h) MECA-Net and
(i) ATP-QDCNNRE (Ours).

The visual findings provided in Figure 9c–i have been utilized to analyze and evaluate
the segmentation performance on the Massachusetts road dataset with many state-of-the-
art models. The initial images, denoted as Figure 9a, along with their corresponding ground
truth representations in Figure 9b, serve as the foundation for visually assessing the seg-
mentation outcomes. Among the range of advanced models, such as PSPNet, D-LinkNet,
LinkNet 34, CoANet, CoANet-UB, and MECA-Net, the ATP-QDCNNRE (Figure 9i) stands
out by demonstrating significant improvements in the segmentation task. The visual out-
comes indicate that ATP-QDCNNRE demonstrates better performance in capturing road
structures and their intricate characteristics, leading to a more effective segmentation out-
come in comparison to other similar methods. Table 4 presents a quantitative analysis of the
segmentation results, which is expected to corroborate the visual findings. Specifically, the
metrics presented in Table 4 indicate effective outcomes for the ATP-QDCNNRE approach.
The cumulative data suggest that ATP-QDCNNRE has superior performance compared to
various state-of-the-art models in the area of road segmentation.

A study involving an ablation study was conducted to evaluate the functionality of
the modules. Table 5 presents a quantitative comparison of the ablation study conducted
on the Massachusetts dataset, visually shown in Figures 10 and 11. The Baseline network
refers to the modified dilated convolutional network (DCNN) architecture depicted in
Figure 2. The Baseline-DCNN incorporates quantum to become the QDCNN module at the
top of the QDCNNRE. The baseline-QDCNNRE method employs the Archimedes tuning
process (ATP) coupled with the Archimedes optimization algorithm (AoA) to automatically
tune the quantum circuit parameters, such as momentum, qubits, and gates for optimal
values, as described in Section 3.2.

Table 5. Ablation experiment.

Methods Precision (%) Recall (%) F1-Score (%) IoU (%)

Baseline (DCNN) 58.47 76.10 66.10 65.67

DCNN + (Quanvolutional)
QDCNNRE 80.07 72.22 76.40 72.04

Baseline + ATP-QDCNNRE 87.54 94.41 90.85 75.28
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Figure 11. Visual result of the ablation study: (a) original image, (b) ground truth, (c) Baseline DCNN,
(d) DCNN+ quanvolutional layer, and (e) ATP-QDCNNRE.

5. Discussion

The topic of discussion is the QCNN model. The conventional QCNN model served
as the benchmark model for our study, utilized initially as the first quanvolutional layer, as
depicted in Figures 2 and 12. The QCNN model shares the same structure as our QDCNN
model, with the sole distinction being the utilization of a conventional quantum kernel
instead of a dilated quantum kernel, which we implemented after six dilated convolutions,
as shown in Figure 2. In the up-sampling part of the network, we employed QDCNN. Each
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model has a random quantum circuit composed of two layers, each containing four qubits.
These layers consist of four parameters, which can be either non-trainable or trainable. It is
imperative that all these circuits with random characteristics possess an equal architectural
framework, which is established through the utilization of a uniform random seed.
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The resulting state of the 4-qubit system undergoes additional transformation through
a subsequent random parameterized quantum circuit, potentially generating entanglement.
The decoding method employed in this study was similar to the approach described in
reference [79]. In this approach, each expectation value is assigned to a distinct channel
inside a single output pixel. Consequently, despite the presence of a single filter, the
quantum layer has the ability to convert the input two-dimensional image into four distinct
feature maps. The inclusion of a quantum layer in the model may enhance its performance
by enabling correlation among the channels of the output feature maps. The QDC layer
in the Massachusetts road datasets is responsible for extracting a feature tensor of size
500 × 500 × 32 from the input image, which has dimensions of 500 × 500. This feature
tensor is then passed through the rest of the network shown in Figure 2, resulting in
two output probabilities: either road pixels or non-road pixels. To assess the influence of
the dilation rate on the performance of the model, we examined QDCNN models with a
dilation rate of 2, as depicted in Figure 12.

The comparative analysis is based on various fundamental parameters used in the
evaluation of road extraction, including IoU, recall, precision, and F1 score. The results
outperformed other state-of-the-art methods, as shown in Figures 8 and 9. The quantitative
results are presented in Tables 4–6.

Table 6. FPS analysis of the ATP-QDCNNRE approach with other methodology on various road
datasets.

Methods FPS on Various Road Dataset

PSPNet [76] 75

D-LinkNet [77] 96

LinkNet34 [78] 105

CoANet [79] 61

CoANet-UB [79] 40

MECA-Net 80] 89

PSPNet [76] 75

ATP-QDCNNRE (Ours) 158
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Within the domain of remote sensing and semantic segmentation, the emergence
of quantum computing signifies a fundamental transformation that has the capacity to
profoundly alter the manner in which we extract valuable insights from Earth observation
data. Conventional approaches, which heavily rely on traditional computing systems,
frequently encounter difficulties in accurately capturing intricate details and contextual
subtleties in remote sensing images, specifically in the context of road extraction. Quan-
tum convolutional neural networks (QDCNNs) coupled with Archimedes optimization
techniques present a viable avenue for future research and development. QDCNNs have
the ability to improve the accuracy and efficiency of road extraction in remote sensing (RS)
imagery by utilizing the parallelism and computational capabilities of quantum bits (qubits)
in quantum circuits, as shown in Figure 13. This allows for the simultaneous processing of
numerous locations of interest. The utilization of quantum-based methodologies exhibits
the potential to greatly propel the domain of remote sensing, facilitating enhanced accuracy
and expedited mapping of roads and infrastructure. This is particularly crucial for various
applications such as urban planning, disaster management, and environmental monitoring.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 25 
 

 

(qubits) in quantum circuits, as shown in Figure 13. This allows for the simultaneous pro-
cessing of numerous locations of interest. The utilization of quantum-based methodolo-
gies exhibits the potential to greatly propel the domain of remote sensing, facilitating en-
hanced accuracy and expedited mapping of roads and infrastructure. This is particularly 
crucial for various applications such as urban planning, disaster management, and envi-
ronmental monitoring. 

 
Figure 13. Quantum circuit. 

Nevertheless, it is crucial to recognize that the utilization of quantum computing for 
image analysis remains a developing domain fraught with numerous technological obsta-
cles. The successful deployment of quantum-dilated convolutional neural networks 
(QDCNNRE) is contingent upon the accessibility of quantum hardware that possesses a 
growing quantity of qubits and enhanced error rates. In addition, the ongoing research 
efforts are focused on the development of quantum algorithms that are specifically de-
signed for the task of semantic segmentation. With the maturation of quantum technology 
and the increasing synergy between quantum and classical computing, significant break-
throughs in road extraction and other remote sensing applications are expected. These 
advancements have the potential to contribute to a more sustainable world that is in-
formed by data. 

Table 6. FPS analysis of the ATP-QDCNNRE approach with other methodology on various road 
datasets. 

Methods  FPS on Various Road Dataset 
PSPNet [76] 75 

D-LinkNet [77] 96 
LinkNet34 [78] 105 

CoANet [79] 61 
CoANet-UB [79] 40 
MECA-Net 80] 89 

PSPNet [76] 75 
ATP-QDCNNRE (Ours) 158 

6. Conclusions 
This research article introduces the novel ATP-QDCNNRE method, aiming to en-

hance the efficiency and accuracy of road extraction from remote sensing images. Our 
methodology combines a synergistic integration of deep learning techniques and quan-
tum dilated convolutional neural networks (QDCNN), inspired by principles derived 

Figure 13. Quantum circuit.

Nevertheless, it is crucial to recognize that the utilization of quantum computing
for image analysis remains a developing domain fraught with numerous technological
obstacles. The successful deployment of quantum-dilated convolutional neural networks
(QDCNNRE) is contingent upon the accessibility of quantum hardware that possesses a
growing quantity of qubits and enhanced error rates. In addition, the ongoing research
efforts are focused on the development of quantum algorithms that are specifically designed
for the task of semantic segmentation. With the maturation of quantum technology and the
increasing synergy between quantum and classical computing, significant breakthroughs in
road extraction and other remote sensing applications are expected. These advancements
have the potential to contribute to a more sustainable world that is informed by data.

6. Conclusions

This research article introduces the novel ATP-QDCNNRE method, aiming to enhance
the efficiency and accuracy of road extraction from remote sensing images. Our methodol-
ogy combines a synergistic integration of deep learning techniques and quantum dilated
convolutional neural networks (QDCNN), inspired by principles derived from quantum
computing. We employed the QCNN model, which shares a similar structure with the
QDCNN model but distinguishes itself by incorporating dilated quantum kernels.

The utilization of quantum kernels significantly enhanced the model’s ability to
effectively capture complex local and global contextual information. All experiments
maintained uniform parameter initialization approaches and optimizers throughout the
training process. The training procedure involved converting unprocessed imagery into
feature maps using non-trainable quantum filters. Each model underwent training for
50 epochs, with a mini-batch size of 32. We employed the Adam optimizer with a learning
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rate of 0.01. To handle the computational requirements associated with training parametric
quantum circuits within the trainable quantum filter, we reduced the batch size to four. For
implementation, we utilized the PennyLane library and PyTorch. PennyLane is a Python-
based open-source platform that facilitates hybrid quantum-classical computations by
providing automatic differentiation support. Considering the significant quantum circuit
executions in the parameter-shift rule scheme, we chose to train all hybrid models using the
default.qubit built-in simulator in PennyLane. This simulator’s PyTorch interface supports
backpropagation. The experiments were conducted on a Windows operating system using
Intel Xeon CPUs and NVIDIA GRID RTX8000-12Q GPUs, ensuring optimal computational
efficiency. The experimental results obtained from analyzing the Massachusetts road dataset
provide evidence supporting the effectiveness of the ATP-QDCNNRE method.

The proposed approach outperformed recent methodologies, as evidenced by its supe-
rior performance on multiple evaluation metrics. These metrics included an intersection
over union (IoU) of 75.28%, mean intersection over union (MIoU) of 95.19%, F1 score
of 90.85%, precision of 87.54%, and recall of 94.41%. The optimization of parameters in
quantum circuits was achieved using various approaches, such as the variation in quantum
Eigensolver (VQE) and the quantum approximate optimization process (QAOA), which
integrated the Archimedes optimization process. In the domain of hyperparameters for
quantum dilated convolutional neural networks (CNNs) used in the context of semantic
segmentation, we conducted a comprehensive optimization process for key parameters,
including learning rate, mini-batch size, momentum, optimizer selection, and weight de-
cay. These factors significantly impacted both the model’s performance and the speed
of training. The ATP-QDCNNRE method represents a novel advancement in utilizing
quantum-computing-inspired deep learning techniques for road extraction from RS imagery.
However, there are certain computational constraints associated with significant process-
ing resources required for quantum computing and hyperparameter optimization. These
limitations could potentially impact the feasibility of implementing our methodology for
real-time road extraction tasks or large-scale datasets. Nevertheless, the ATP-QDCNNRE
method marks significant progress in the field of road extraction from remote sensing data.

The results revealed from the ATP-QDCNNRE technique present intriguing possibili-
ties for future research in this field. The potential of quantum computing to improve the
efficiency of road extraction tasks is highlighted by the model’s effective performance, as
evidenced by its visual and quantitative findings on the Massachusetts road dataset. This
finding presents opportunities for investigating the utilization of quantum integration with
conventional CNN algorithms in the fields of remote sensing and image analysis. Such
exploration has the potential to result in notable progress in the processing of geospatial
data and the management of infrastructure. Subsequent investigations may be directed
towards further enhancing the model, optimizing its architectural design, and investigating
its applicability in many real-world contexts.
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