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a b s t r a c t

Floods are natural hazards that lead to devastating financial losses and large displacements of people.
Flood susceptibility maps can improve mitigation measures according to the specific conditions of a
study area. The design of flood susceptibility maps has been enhanced through use of hybrid machine
learning and deep learning models. Although these models have achieved better accuracy than traditional
models, they are not widely used by stakeholders due to their black-box nature. In this study, we propose
the application of an explainable artificial intelligence (XAI) model that incorporates the Shapley additive
explanation (SHAP) model to interpret the outcomes of convolutional neural network (CNN) deep learn-
ing models, and analyze the impact of variables on flood susceptibility mapping. This study was con-
ducted in Jinju Province, South Korea, which has a long history of flood events. Model performance
was evaluated using the area under the receiver operating characteristic curve (AUROC), which showed
a prediction accuracy of 88.4%. SHAP plots showed that land use and various soil attributes significantly
affected flood susceptibility in the study area. In light of these findings, we recommend the use of XAI-
based models in future flood susceptibility mapping studies to improve interpretations of model out-
comes, and build trust among stakeholders during the flood-related decision-making process.
� 2023 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Floods are natural hazards that cause devastating financial and
socioeconomic damage. In Asian countries, which are among the
most flood-prone worldwide, approximately 90% of human losses
are caused by natural hazards, principally floods (Dutta and
Herath, 2004; Smith, 2013).

In South Korea, flood events occur yearly, mainly due to
typhoons and the summer monsoon. Almost 80% of all property
damage in South Korea is caused by floods (Kim et al., 2007).
Typhoons occur in South Korea 1–3 times per year on average,
mainly from August to September. Major recent typhoons include
the Rusa and Maemi typhoons, which occurred in 2002 and 2003,
respectively.

Flood susceptibility maps have been developed to identify and
characterize potential flood-prone areas based on their physical
characteristics (Vojtek and Vojteková, 2019). Flood susceptibility
maps can help reduce flood-related damage, which is crucial for
disaster mitigation (Sahoo and Sreeja, 2015). Recent flood suscep-
tibility mapping studies have used hydrological (Rahman et al.,
2019), hydrodynamic (Wagenaar et al., 2020), statistical
(Samanta et al., 2018), multi-criteria decision analysis (MCDA)
(de Brito and Evers, 2016; Rahman et al., 2019), and machine learn-
ing (ML) models (Lee et al., 2018; Darabi et al., 2019) integrated
with geographical information system (GIS) software. However,
hydrological and hydrodynamic models are time-consuming, and
have calibration issues that reduce their accuracy in identifying
flood-affected regions (Fenicia et al., 2014). MCDA models are
widely used and their accuracy has been demonstrated in several
studies (e.g., Danumah et al., 2016; Luu et al., 2018; Rahman
g).
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et al., 2019); among these, the analytic hierarchy process (AHP)
model is suitable for complex decision-making based on limited
data (Chen et al., 2011; Dikshit et al., 2020c).

ML-based models have been found to be more accurate than
other flood susceptibility mapping models. These include artificial
neural networks (ANNs) (Rahman et al., 2019), random forest (RF)
models (Chen et al., 2020), and support vector machine (SVM)
models (Tehrany et al., 2015; Mojaddadi et al., 2017). SVM-based
flood susceptibility maps of Malaysia have achieved an accuracy
of > 80% (Tehrany et al., 2015), and integrated statistical and ML
models have been used for flood susceptibility mapping of Bangla-
desh, with a prediction accuracy of 86% (Rahman et al., 2019). Chen
et al. (2020) found that an RF model produced more accurate sus-
ceptibility maps of Jiangxi Province, China than a decision tree
approach. Recently, Wagenaar et al. (2020) comprehensively
reviewed the use of ML-based models for flood risk and impact
assessment.

Deep learning models have exceeded the performance of ML-
based models in several fields, such as computer vision and natural
language processing (LeCun et al., 2015). A few studies have
applied deep learning models to flood susceptibility mapping,
including convolutional neural network (CNN)-based models. For
example, flood susceptibility maps of Jiangxi Province, China pro-
duced using CNN architectures with one, two, or three dimensions
(1D, 2D, or 3D, respectively) were compared (Wang et al., 2019).
Similarly, a 2D CNN-based model was used to develop susceptibil-
ity maps for Iran (Khosravi et al., 2020), and several ML-based
models were compared with a deep learning model, the deep belief
network (DBF), for flood susceptibility mapping of central Viet-
nam; the DBF outperformed all ML models (Pham et al., 2021).

However, all of these studies have lacked a key component:
model interpretability or explainability. Although hybrid and deep
learning models tend to produce more accurate results, they are
considered to be ‘‘black boxes” and are therefore rarely selected
by stakeholders. Thus, models that readily demonstrate how speci-
fic outcomes are achieved are in high demand (Dikshit et al.,
2020a). One of the most commonly used explainable/interpretable
models is the Shapley additive explanation (SHAP) model, which
produces different types of plots that illustrate how interdepen-
dencies among variables lead to specific model outcomes. SHAP
models are increasingly being used for various types of geohazard
research, such as mapping building damage after earthquake
events (Matin and Pradhan, 2021), vegetation classification
(Abdollahi and Pradhan, 2021), and assessment of drought effects
(Dikshit and Pradhan, 2021). To our knowledge, this is the first
study to apply the explainable artificial intelligence (XAI) model
for flood susceptibility mapping. In this study, we used a CNN-
based model to develop a flood susceptibility map and then
applied SHAP to explain the model outcomes.
2. Materials and methods

2.1. Study area

The region of interest is Jinju Province, in southern South Korea
(Fig. 1). The average annual precipitation of Jinju is 1,591 mm,
which is mainly concentrated in July, followed by August. In
August 2018, a nationwide heavy rainfall event occurred in South
Korea, causing two deaths and total property damage of 41.5 bil-
lion won. In October of the same year, typhoon Kong-rey produced
heavy rainfall throughout Korea, causing two deaths, displacing
2,381 flood victims, and leading to property damage of 54.9 billion
won. The total flood damage area within the study region in 2018
was 23 km2. In September 2019, Typhoon Mitag caused 14 deaths
and a total property damage of 167 billion won. The total flooding
2

area of Jinju Province in 2019 was 7.6 km2 (Ministry of the Interior
and Safety (MIS) and Korea, 2019; Ministry of the Interior and
Safety (MIS) and Korea, 2020).

2.2. Factors causing flood

In this study, we analyzed 12 factors causing flood based on
data from previous studies (Lee et al., 2017, 2018) and the charac-
teristics of the study region.

2.2.1. Geographical factors
Elevation is a key factor influencing the probability of flood

occurrence (Lei et al., 2021). Areas with higher elevation experi-
ence less flooding, because water flows from higher to lower ter-
rain, where flooding occurs in flatter regions (Botzen et al.,
2013). Topographical parameters directly affected by flow extent
and runoff speed play important roles in flood occurrence (Kia
et al., 2011). Topographical parameters related to flood occurrence
are extracted directly from digital elevation models (DEMs) for use
in modeling studies. Therefore, highly precise DEMs are essential
for flood susceptibility mapping. We divided our study region into
seven subregions according to their topographical characteristics
(Fig. 2a), including mountains (23%), hills (35.6%), alluvial fans
(11.6%), and alluvial plains (11.34%) (See Fig. 3).

Land use/land cover (LULC) is another important factor con-
tributing to floods (Rizeei et al., 2016; Darabi et al., 2019). Areas
with healthy vegetation are less prone to floods, as flood events
and vegetation density are inversely proportional. Water runoff is
a concern in urban areas, which are usually composed of barren
lands and impermeable surfaces (Rizeei et al., 2016). Jinju Province
comprises urban (6%), agricultural (27%), forest (57.2%), grassland
(3.2%), and wetland (0.8%) areas, as well as bare land (1%) and
water cover (4.7%) (Fig. 2b).

Lithology refers to the geological characteristics of a region and
is a good indicator of past flood events within a given area (He
et al., 2007; Arabameri et al., 2019). In this study, we divided the
study region into 16 parts according to lithology. The western part
of the study area is dominated by metamorphic rocks, including
metatectic gneiss, hornblende gneiss, and banded gneiss. Meta-
morphic rocks are inconsistently covered by Mesozoic sedimentary
rocks, with strikes ranging from 10�N to 23�E and dips of approx-
imately 10�E. These sedimentary rocks include Nagdong and Silla
series rocks. The Nagdong series consists of the Wonji, Madong,
Jinju, and Chilgog formations, distributed from west to east; these
rocks are mainly composed of arkose sandstone containing abun-
dant feldspar. The Wonji and Jinju formations are mainly com-
posed of black shale, whereas the Madong and Chilgog
formations are composed of purplish sandy shale, which separate
the layers. The Wonji formation consists of pebbly sandstone,
arkose sandstone, sandstone, shale, and a thin limestone layer from
the bottom to the surface. The Madong formation is composed of
sandy shale, purplish fine sandstone, and shale. The Jinji formation
is composed of arkose sandstone, black sandy shale, and shale. The
Chilgog formation is composed of purplish sandy shale and arkose
sandstone. The Silla series consists of Silla conglomerate, and
Haman and Chindong formation rock. The Silla conglomerate cor-
responds to the base of the Silla series and is partly composed of
agglomerate. The Haman formation is composed of purplish sandy
shale, shale, and mudstone, and often includes tuffaceous sand-
stone. The Chindong formation consists of grayish and black shale.
The Haman and Chindong formations alternate with intruded gra-
nodiorite. Igneous rocks include pegmatite, porphyrite, acidic
dikes, basic dikes, and granodiorite. Pegmatite and porphyrite
intrude between metamorphic rocks, and other igneous rocks
intrude between sedimentary rocks. The acidic dikes include fel-
site, and basic dikes include diorite. Quaternary and present-age



Fig. 1. (a) Location of the study area in South Korea, and (b) Elevation map of Jinju region.

Fig. 2. (a) Topography, and (b) Landcover maps of the study region.
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alluvia flow throughout the study area (Choi and Kim, 1963; Choi
et al., 1968; Kim et al., 1969).

2.2.2. Soil attributes
Impervious surfaces tend to increase flooding; following heavy

precipitation, saturated soil behaves similarly to an impervious
surface (Hawley and Bledsoe, 2011; Blum et al., 2020). Water stor-
age potential, which affects the water balance, is determined based
on surface soil characteristics (Hong et al., 2018). In this study, we
included four soil attributes: soil depth, soil drainage, surface soil
texture, and deep soil texture (Fig. 4a–d). Throughout most of
the study area, the surface soil texture is silt loam, with some ripar-
ian areas showing fine sandy loam and loamy fine sand. The deep
3

soil is approximately 75% clay loam; riparian agricultural land is
mainly sandy loam, sand, and silty clay loam, with occasional clay
and slit loam. In most urban and agricultural areas, soil thickness
reached > 100 cm, whereas in forested areas, soil thickness was
approximately 20 cm.
2.2.3. Forest attributes
Forests are important for watershed management because

excessive deforestation leads to soil erosion and reduced water
retention, which increases flood risk. The forest attributes exam-
ined in this study included forest type, density, and composition,
and stem diameter (Fig. 5a–d).



Fig. 3. Lithology map of the study region.
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2.3. Flood inventory

Flood inventory maps provide details about inundated regions
and provide key information about historical flood event charac-
teristics (Zazo et al., 2018). The flood inventory data used in this
study were obtained from LX, the Korea Land Information Corpora-
tion, and comprises direct and indirect survey data. The data are
presented as a flooding boundary vertex within a plane coordinate
system, to delineate the actual flooding area. We used a total of
582 locations of flood events that occurred in 2018 and 2019;
among these, 492 occurred in 2018 and 90 occurred in 2019
(Fig. 5). We used 70% of the data for training and the remaining
30% for model testing (See Fig. 6).
3. Methodology

3.1. CNn

The CNN is a hierarchical deep learning algorithm based on
local connectivity and shared weights (LeCun et al., 1998). These
features allow CNNs to hierarchically extract low-, medium- and
high-level image features. CNNs consists of three main layers: con-
volutional layers, which read input data sequences and automati-
cally extract relevant features, pooling layers, which extract
features and identify the most important variables, and fully con-
nected layers, which interpret the internal representations of the
data and output a vector (See Fig. 7).

The first layer extracts feature maps related to the target vari-
able; it requires two inputs: an image matrix and filter. The second
layer uses an activation layer, which appears after the convolu-
tional layer if it is nonlinear. The choice of activation functions is
very important because they help the network learn complex pat-
terns within the data. The final layer conserves the important
information and reduces the number of parameters, especially
when large images are used as input. Various CNN architectures
4

(e.g., 1D, 2D, or 3D) can be developed based on the data and input
type (Wang et al., 2019). In this study, we used a CNN-2D model
similar to that of Wang et al. (2019).
3.2. Explainability

There is a fundamental difference between interpretability and
explainability (Rudin, 2019). Interpretability does not have a math-
ematical definition, instead relying on the ability of humans to
decipher model outcomes (García and Aznarte, 2020). In contrast,
explainability refers to a model-based understanding of the out-
comes of a separate black box model (Rudin, 2019). In an ideal sce-
nario, the model should be able to explain the results accurately;
this may be true for simpler models, but ML models are more com-
plex and require separate models to examine their outcomes.
Rudin (2019) argued that the focus should be on developing inter-
pretable rather than explainable models, but also acknowledged
several challenges for interpretable models and that explainable
models have considerable value for understanding outcomes in
certain applications. For example, recent geohazard studies have
shown that explainable models significantly promote understand-
ing of model outcomes (Dikshit and Pradhan, 2021; Matin and
Pradhan, 2021).

Explainable models include the local interpretable model-
agnostic explanation (LIME) (Ribeiro et al., 2016), neural-backed
decision tree (NBDT) (Wan et al., 2020), and SHAP (Lundberg and
Lee, 2017) models. SHAP was first introduced as a game theory
model to determine the contribution of an individual player in a
collaborative game (Shapley, 1953). The idea was to distribute
the total gain among players based on their contributions to the
outcome; SHAP values provided a solution to the problem of pro-
viding a fair reward to every player, assigning a unique value
determined by local accuracy, consistency, and null effect
(Shapley, 1953). The recent development of ML algorithms by
Lundberg and Lee (2017) has opened new avenues for understand-



Fig. 4. Soil attributes used as variables. (a) Soil depth; (b) Soil drain; (c) Surface soil Texture; and (d) Deep soil texture.
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ing model outputs, providing more transparency for models that
are usually considered black boxes.

The Shapley value is calculated based on the average marginal
contribution across all possible permutations of the features, as fol-
lows Eq. (1).

£i ¼
X

S#Nleftfig

Sj j! n� Sj j � 1ð Þ!
n!

v S [ if gð Þ � v Sð Þ½ � ð1Þ

where£i is the contribution of feature i, N is the set of all features, n
is the number of features in N, S is the subset of N containing feature
i, and v(N) is the base value, i.e., the predicted outcome for each fea-
ture in N without knowing the feature values.

The model outcome for each observation is estimated by sum-
ming the SHAP values of all features for that observation. There-
fore, the explanatory model is formulated as follows Eq. (2).

g z0ð Þ ¼ £0 þ
XM

i¼1

£iz
0 ð2Þ

where z0� 0;1f gM , M is the number of features, and £i can be
obtained from Eq. (2). SHAP provides multiple artificial intelligence
(AI) model explainers. Describing the different model explainers is
beyond the scope of this study; details can be found in Molnar
(2020). The deep explainer was designed specifically for use with
5

deep learning algorithms, which are the focus of this study. A flow-
chart of the approach used in this study is shown in Fig. 8.
4. Model development

During model development, flood and non-flood pixels were
allocated values of 1 and 0, respectively, and triggering factors
were overlaid. Thus, all essential data were extracted to flood
and non-flood locations; 70% of these data were used for training
and 30% for testing, which is the most common split ratio for flood
modeling (Tehrany et al., 2014; Wang et al., 2020).

The CNN architecture was comprised of four feature-capturing
convolutional layers and a final dense, fully connected layer to
learn about feature classification. Hyper-parameterization is a
key step when developing a neural network model (LeCun et al.,
2015). The sizes of the convolutional and pooling layers are deter-
mined according to the scale of its operation (Gowlik et al., 2015).
An activation function defines the weighted sum of the input and
approximates any nonlinear functions; the rectified linear unit
(ReLU) function was used in this study to introduce nonlinearity.
A loss function measures inconsistencies between the predicted
and observed values; in this study, we used the binary cross-
entropy loss function. We also used an Adam optimizer, with stan-
dard b values of 0.01 (momentum) and 0.001 (learning rate) for
momentumized gradient descent in our back propagation.



Fig. 5. Forest attributes used in the study. (a) Forest age; (b) Timber diameter; (c) Forest density; and (d) Tree types.
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Model performance was evaluated using the area under the
receiver operating characteristic curve (AUROC), which is a com-
mon approach in geohazard modeling (Fan et al., 2017; Dikshit
et al., 2020b) based on the relationship between sensitivity (ordi-
nate axis) and specificity (abscissa), where sensitivity refers to cor-
rectly identified flood pixels and specificity refers to correctly
identified non-flood pixels using a confusion matrix (Fawcett,
2006). These parameters are defined as follows Eqs. (3) and (4).

Sensitiv ity ¼ TP
TP þ FN

ð3Þ
Specificity ¼ TN
TN þ FP

ð4Þ

where TP (true-positive) and TN (true-negative) are the numbers of
correctly classified grid cells, and FP (false-positive) and FN (false-
negative) are the numbers of incorrectly classified grid cells.

The AUROC was used to assess model prediction quality by ana-
lyzing its ability to predict the occurrence or non-occurrence of
events (Dikshit et al., 2020c). Specifically, an AUROC value of 1
indicates perfect agreement between actual and modeled data,
whereas a value of 0.5 indicates the occurrence of an expected out-
come by chance, and a value of 0 indicates no agreement (Fawcett,
2006; Choubin et al., 2019). After running the CNN model, a flood
6

susceptibility map was developed and divided into five classes:
very high, high, moderate, low, and very low flood susceptibility.

In data-driven modeling, partial dependence plots or bar plots
are typically used to show the influence and interactions of each
variable. In SHAP-based modeling, dependence plots indicate vari-
able relationships better than conventional approaches (García and
Aznarte, 2020; Abdollahi and Pradhan, 2021). Several different
types of plots can be constructed based on Shapley values, includ-
ing the summary plot, which explains the cumulative effect of the
variables, the dependence plot, which plots the effect of a single
feature on model predictions, the individual force plot, which
explains the effects of individual variables on a single observation,
and the collective force plot, which is created by combining all
force plots, each rotated by 90� and stacked horizontally. In the
present study, we used summary and force plots. SHAP summary
plots were used instead of conventional bar plots to evaluate global
significance, whereas local explanations were obtained based on
force plots (García and Aznarte, 2020).
5. Results

CNNs have traditionally been used to capture neighborhood
pixel information/features from images. In this study, we utilized
this characteristic to capture the geographical neighborhood dur-



Fig. 6. Flood inventory map used for training and testing the model.

Fig. 7. Schematic illustration of 2D CNN architecture used in the study.
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ing flood classification. The AUROC analysis revealed an accuracy of
88.4% for our approach (Fig. 9).

From the model, we developed a map based on five flood sus-
ceptibility classes (Fig. 10), which showed that 4.6% and 10.8% of
the study region had very high and high flood susceptibility,
respectively, whereas 38.6% and 24.8% of the region had very low
and low flood susceptibility, respectively; the remaining 21.2%
had moderate flood susceptibility.
7

SHAP models were developed based on a game theory
approach, with the properties of different features combined to
make a final prediction. The SHAP plots explain the model outputs
by considering the importance of neighborhood information.
Neighborhoods that promote classification are shown in different
colors. For example, a flood class prediction obtained by a CNN
model based on a force plot is explained by the plot in Fig. 11. Such
explanatory plots demonstrate how multiple variables interact



Fig. 8. Flowchart used in the present study.

Fig. 9. ROC-AUC curve.
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during the production of output (averaged from all predictions)
from base data (Abdollahi and Pradhan, 2021). Variables marked
in red push the model outcome toward a higher classification,
whereas those marked in blue push it toward a lower value. A
major benefit of using individual force plots is that they allow
the reader to understand the importance of each feature to each
pixel, thereby providing a spatial context to output variation. For
the output shown in Fig. 11, variables improving classification
accuracy for each pixel included land cover, elevation, soil depth,
and surface soil texture; those decreasing classification accuracy
included forest composition and lithology.

Fig. 12 shows a summary plot, which highlights the low, high,
and mean values of each feature among all samples in the training
dataset (Matin and Pradhan, 2021). The abscissa represents Shapley
values for each observation. Such plots can be used to examine the
relationships between a target and variables of interest. In Fig. 12,
the most important variable is land use, whereas lithology is the
least important variable. The observed importance of land use as
the most important variable can be attributed to several potential
mechanisms. For example, land use can affect the number of per-
8

meable surfaces and vegetation cover, which can impact the rate
of infiltration and the amount of runoff. Urbanization and land con-
version to impervious surfaces such as buildings and roads can lead
to increased runoff and flash flooding. Additionally, land use
changes can also affect the hydrological properties of soils, such
as their infiltration capacity, which can impact the susceptibility
to flooding. On the other hand, lithology, being the least important
variable, can be explained by the fact that lithology is a relatively
stable property of the Earth’s surface and does not change fre-
quently like land use does. Additionally, the study region is mostly
composed of the same rock types, thus variations in lithologywould
not have a significant impact on flood susceptibility. Importantly,
this plot summarizes all pixels; it may ormay not hold true for indi-
vidual pixels, as shown in the individual force plot.
6. Discussion

The use of neural networks has greatly advanced the field of
flood susceptibility modeling. Several studies have been performed



Fig. 10. Flood susceptibility map of the study region.

Fig. 11. SHAP individual force plot (Refer to Table 1 for variable names).

Table 1
Variables used in the present study.

S.
No.

Variable Source

1 Landcover Ministry of Environment. Korea
2 Elevation Ministry of Land, Infrastructure and Transport

(MOLIT). Korea
3 Soil Depth National Institute of Agricultural Sciences. Korea
4 Soil Drain National Institute of Agricultural Sciences. Korea
5 Surface soil

texture
National Institute of Agricultural Sciences. Korea

6 Forest Age
class

Korea Forest Service

7 Deep soil
Texture

National Institute of Agricultural Sciences. Korea

8 Timber
diameter

Korea Forest Service

9 Tree Types Korea Forest Service
10 Forest Density Korea Forest Service
11 Topography Ministry of Land, Infrastructure and Transport. Korea
12 Lithology Korea Institute of Geoscience and Mineral Resources

(KIGAM). Korea
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9

using conventional ML-based models for different regions world-
wide. A recent surge in the use of deep learning models, such as
CNNs, has highlighted their superiority over traditional neural net-
works. In this study, we used a CNN for flood susceptibility map-
ping of Jinju Province, South Korea, which has a long history of
flood events causing immense damage to infrastructure and loss
of life. A total of 12 flood-triggering factors, and 582 historical flood
events, were used to develop the model and classify the region. The
model achieved an accuracy of 88.4%, demonstrating its reliability.

Previous flood susceptibility studies of South Korea have
applied ML models with varying results. For example, Lee et al.
(2016) achieved accuracies of 79.1% and 77.2% using RF and
boosted tree models, respectively, of Seoul. Similarly, Lee et al.
(2018) used frequency ratio and logistic regression models for
flood susceptibility mapping of Seoul and achieved an accuracy
of > 79% for both models. Lei et al. (2021) compared CNN and a
recurrent neural network (RNN) for flood susceptibility assessment
in Seoul, and found that CNN provided slightly better results than
RNN, with an accuracy of 84%.



Fig. 12. SHAP summary plot (refer to Table 1 for the variable names).

B. Pradhan, S. Lee, A. Dikshit et al. Geoscience Frontiers 14 (2023) 101625
In this study, we introduced an explainable algorithm to deter-
mine how a CNN model achieved a specific result. Two SHAP plots
were used for this analysis: an overall summary plot and an indi-
vidual force plot of flood classification. Based on the summary
plot, we determined that land use was the most important vari-
able influencing flood susceptibility, whereas lithology was the
least important. It is important to note there exists significant dif-
ferences between SHAP’s summary plot versus traditional feature
analysis methods (Wang et al. 2020; Zhang et al. 2021; Zhang
et al., 2022). Like, (1) SHAP values are unique for each feature
and every data point. Traditional feature importance methods,
provide an overall importance score for each feature, which
may not be specific to a particular data point. (2) SHAP values
are based on the concept of cooperative game theory, which pro-
vide a way to fairly distribute a value among a group of individu-
als. This is a more robust approach as compared to traditional
feature importance methods which are typically based on a
heuristic or approximation. (3) SHAP values consider the interac-
tions between features, whereas traditional feature importance
methods focus on the individual effect of each feature. (4) SHAP
values can be used with any model (model-agnostic), whereas
traditional feature importance methods may be specific to a cer-
tain type of model.

However, single-pixel analysis of flood class showed slightly
different results, highlighting the importance of spatial variation.
This distinction is particularly important when developing suscep-
tibility maps for large areas, where each region can have different
influential variables. Accurate flood susceptibility maps produced
using these methods will help stakeholders develop regional miti-
gation plans and local solutions.

Future studies should also examine the potential of SHAP as a
feature identification tool, at both the local (pixel) and regional
scales. A recent study used this method to identify factors influenc-
ing an earthquake damage mapping study in Palu (Matin and
10
Pradhan, 2021). Another study used Pearson’s correlation analysis
to identify redundant variables in a flood study in South Korea (Lei
et al., 2021). Metrics such as variable importance, information gain
ratio, kappa analysis, and spatial autocorrelation have also been
applied to analyze variable importance (Meyer et al., 2019). These
metrics cannot be evaluated at the pixel level, and provide only an
overall sense of variable interaction. The use of SHAP helps remove
redundant variables, thus reducing computational cost, which
would allow the use of more sophisticated models in developing
countries.
7. Conclusion

Floods are among the most destructive recurring natural haz-
ards worldwide. South Korea is greatly affected by flood events;
therefore, the development of accurate and interpretable flood sus-
ceptibility maps would facilitate the design of effective flood man-
agement and mitigation plans. In this study, we used a deep
learning CNN model to develop a flood susceptibility map for Jinju
Province, South Korea. The main contribution of this work is the
application of the SHAP explainable algorithm to determine how
the model results were achieved, and the most influential vari-
ables. The main finding of this study was that the CNN achieved
an AUROC value of 0.88, indicating good accuracy. Moreover, SHAP
summary plots showed that, overall, land use was the most influ-
ential factor with respect to flood susceptibility; however, this may
not hold true for individual flood/non-flood locations, as indicated
by the individual force plot. The introduction of XAI models will
help unravel the results of black box models and promote a better
understanding of variable interactions in geohazard mapping. The
utilization of SHAPmodel in flood susceptibility modelling can lead
to a more informed understanding of the underlying mechanisms
and factors that drive flood risk. Researchers can use the feature
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importance scores provided by the SHAP model to identify key dri-
vers of flood susceptibility and focus their efforts on gaining a dee-
per understanding of these factors. For practitioners, the SHAP
values can be used to prioritize areas for flood mitigation and man-
agement efforts, by identifying the areas that are most susceptible
to flooding based on the identified key drivers. Additionally, the
SHAP model’s ability to account for interactions between features,
allows practitioners to design more effective and targeted flood
management strategies, by considering the complex interactions
between various factors that contribute to flood risk.
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