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Abstract—The growing interest in the Metaverse has generated
momentum for members of academia and industry to innovate
toward realizing the Metaverse world. The Metaverse is a unique,
continuous, and shared virtual world where humans embody a
digital form within an online platform. Through a digital avatar,
Metaverse users should have a perceptual presence within the
environment and can interact and control the virtual world
around them. Thus, a human-centric design is a crucial element
of the Metaverse. The human users are not only the central
entity but also the source of multi-sensory data that can be used
to enrich the Metaverse ecosystem. In this survey, we study the
potential applications of Brain-Computer Interface (BCI) tech-
nologies that can enhance the experience of Metaverse users. By
directly communicating with the human brain, the most complex
organ in the human body, BCI technologies hold the potential
for the most intuitive human-machine system operating at the
speed of thought. BCI technologies can enable various innovative
applications for the Metaverse through this neural pathway, such
as user cognitive state monitoring, digital avatar control, virtual
interactions, and imagined speech communications. This survey
first outlines the fundamental background of the Metaverse and
BCI technologies. We then discuss the current challenges of
the Metaverse that can potentially be addressed by BCI, such
as motion sickness when users experience virtual environments
or the negative emotional states of users in immersive virtual
applications. After that, we propose and discuss a new research
direction called Human Digital Twin, in which digital twins can
create an intelligent and interactable avatar from the user’s brain
signals. We also present the challenges and potential solutions in
synchronizing and communicating between virtual and physical
entities in the Metaverse. Finally, we highlight the challenges,
open issues, and future research directions for BCI-enabled
Metaverse systems.

Index Terms—Metaverse, brain-computer interface, human
digital twin, non-invasive BCI, computer vision, AI, IoT, sensors,
VR, machine learning.

I. INTRODUCTION AND MOTIVATIONS

A. The Development of a Human-Centric Metaverse

THE term “Metaverse” was first coined by Neal Stephen-
son in his science fiction novel “Snow Crash” in 1992.

In this book, Stephenson described the Metaverse as a parallel
existence of the physical and virtual worlds where users can
interact with each other through their avatars. Although the
idea of the Metaverse emerged 30 years ago, the technology
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was not yet ready for it until recent years. Recently, a large
number of research and innovation efforts have been put into
developing virtual reality (VR), extended reality (XR), and
computing services to bring the Metaverse closer to reality
[1], [2]. Previously, VR and XR technologies have developed
the first building blocks for the Metaverse, such as 3D video
games, VR games, and later mobile XR games like Pokemon
Go. The development of the Metaverse beyond games and
social media platforms has begun to realize it as the next
generation of the Internet. Recent works and products have
explored Metaverse applications, such as healthcare [3], e-
commerce [4], entertainment, and education [5]. These ven-
tures have shown great potential for revenue growth in the
Metaverse, even though the Metaverse has not yet been fully
realized.

As the Metaverse is still in its early stages, many ongoing
parallel multifaceted research areas and challenges, including
VR/XR, human-machine interfaces, and computing services,
require substantial investment and development. Recent works
and surveys have attempted to define architectures for the
Metaverse based on these components. One particular area is
exploring a human-centric design to enhance users’ experience
in the Metaverse [6]. A human-centric design is a method of
utilizing a user’s behavioral, psychological, physiological, and
observation information to improve the performance and us-
ability of a system [7]. In principle, a human-centric approach
is to design an intuitive system by incorporating the user’s
potential state and modes of interaction. However, current
human interaction methods, such as computer mouse clicks
and keyboards, may not be intuitive within the new Metaverse
experience.

Specifically, in Metaverse, the users can explore their sur-
rounding environments using the control and sensory feedback
from their hands, eyes, or thoughts in an immersive virtual
environment [6], [8]. Although a large body of work has been
proposed recently, the human-machine interfaces are lagging
compared to other aspects of the Metaverse. However, human-
machine interaction is the primary channel that links the
human body, the center of the Metaverse, to machines, i.e.,
any supporting devices and infrastructures. Conventional sens-
ing techniques such as radio sensing, cameras, and wireless
sensors can be utilized to develop a human-machine interface
in the Metaverse. For example, face tracking, eye tracking,
photogrammetry, computer vision, and motion capture can be
used to construct fully immersive avatars in the Metaverse [9]–
[11]. In Fig. 1, we illustrate a human-centric design for the
Metaverse in which we focus on the interaction aspect of the
users between the physical world and the virtual world. For
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Fig. 1. An illustration of a human-centric design for the Metaverse. Users’ information can be collected using human body sensing techniques, e.g., heart
rate sensors, VR headsets, inertial measurement units (IMUs), and motion capture systems. Human characteristics such as body shapes, facial expressions,
behaviors, and health can be revealed by analyzing the collected data. Unlike conventional human body sensing approaches, BCI can provide an alternative
method to create intelligent avatars from a singular data source, i.e., human digital twins. Additional information from human users, e.g., emotional state and
motion sickness, can be transferred to their avatars through BCI.

this, the virtual world can be enriched by using the cognitive
interactions of the users. Such cognitive interactions can be
collected through sensing techniques such as eye tracking,
voice detection, and computer vision.

Using cognitive interactions of the users, or biological
signals of the users in general, has shown its potential in
designing and developing human-centric VR applications.
For example, eye movement and heart rate data have been
widely used in several applications, ranging from healthcare
to robotics and virtual reality control [12]–[14]. Early findings
showed that brain signals are encoded with a higher fidelity
of sensory information than conventional sensing techniques,
such as heart rate measurement and eye tracking. Toward this
vision, Brain-Computer Interfaces (BCIs) have been consid-
ered in such applications as a neural interface between users
and applications. As an attractive research area for exploiting
human cognition in enabling technologies, BCI is inevitably
becoming a part of the Metaverse.

B. Towards a Human-Centric Metaverse using BCI

This paper aims to provide a comprehensive survey about
using BCI to enable a human-centric design for the Metaverse
and discuss its associated communications challenges and
future research directions/opportunities. BCI offers the ability
to monitor the state of a Metaverse user and facilitate intuitive
modes of user interaction within the Metaverse. BCI research
began in 1875 when Richard Canton, a British physicist,
discovered the existence of electrical signals in the brains of
animals. Only four decades later, Han Berger, a psychiatrist,
invented the first measurement device allowing humans to
measure the brain’s electrical activity for the first time [15].
After decades of research, BCI technologies exceeded their
original scope in clinical trials and started attracting attention
from the industry. Since the re-emergence of the Metaverse,
researchers and industry have become early adopters of BCI
as an enabling technology for the Metaverse [2]. BCI can
provide rich information from brain activity for building

virtual environments and digital avatars beyond conventional
sensing approaches such as eye movement tracking, haptic
feedback, and audible sensors. We believe that BCI technology
enables the following unique opportunities in Metaverse that
would be unachievable with conventional sensing:

• Direct communication to the brain: BCI devices of-
fer the unique ability to bypass the peripheral motor-
sensory nervous/bodily systems to communicate directly
with the brain. The brain is the complex motor-sensory
control center of the body. The capability to interface
with the brain enables the real-time reading of motor
actions before execution and the response to sensory
information, as it is processed within the brain [16].
This also enables the Metaverse users to send voluntary
and directed commands for communication and control,
adding additional channels that convey highly relevant
information about the users’ intent [17]. BCI can enable
Metaverse users to relay complex commands, such as
locomotion, limb movement, speech, and planned actions,
to the Metaverse.

• Multimodal information encoded onto a singular
sensor: The brain serves as the body’s central nexus
for motor-sensory information. A distinctive aspect of
BCI sensors is the ability to capture the brain’s com-
plex neurological activity. The data acquired from these
BCI sensors offer rich and multimodal motor-sensory
information condensed into a singular sensor signal [16].
These signals can encompass various cognitive processes,
sensory stimuli, emotions, and motor functions. Within a
Metaverse BCI system, this information can be harnessed
and translated across various brain activities, including
perception, attention, memory, language processing, mo-
tor control, and emotional states.

• Higher degrees of encoded information within the
signal: The degree of encoded information is a crucial
drawback of conventional peripheral biomonitor sensors,
such as cardiovascular, electrodermal activity, and motion
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tracking [18]. These sensors can reliably detect discrete
changes in cognitive, mental and emotional states. How-
ever, they are less sensitive to transient or subtle shifts
[19]. In contrast, the neurological signals measured on
BCI sensors possess a higher degree of encoded infor-
mation that can be used to accurately measure subtle
changes in cognitive, mental, and emotional states [20].
Additionally, BCI signals can enhance our understanding
of complex neurological states that cannot be measured
through conventional sensing methods [21]. This capa-
bility can significantly enrich the understanding of the
cognitive, mental, and emotional state of Metaverse users
and enhance their personal experiences.

• Intuitive control and natural interaction: BCI can tap
into the user’s intentions, thoughts, and cognitive states.
Instead of relying on overt physical actions, such as
pressing buttons on a controller or moving a mouse, BCI
can interpret the user’s internal mental states. BCI can be
a supportive mechanism to convey user intentions and de-
sires without needing explicit external movements, result-
ing in a more intuitive and seamless control experience
[22], [23]. This BCI application can benefit individuals
with limited or impaired motor function [24]. BCI can aid
these individuals to regain control and interact with their
environment using intact brain activity. In the Metaverse,
an intuitive/natural user interface can enable a Metaverse
avatar that acts as the virtual prosthesis/extension of a
Metaverse user.

• Universal Access: A valuable aspect of BCI technology
is the ability to restore/replace motor functions for in-
dividuals with motor impairments, such as paralysis or
limb loss [24]. BCI technologies can bypass traditional
motor pathways and allow individuals to directly interface
with various assistive technologies to enable interaction
with their environments using their brain activities. BCI
has the potential to significantly enhance the quality of
life and enable individuals to perform tasks that would
otherwise be challenging or impossible. BCI can also be
integrated with other assistive technologies [25] or input
modalities [26] to create multimodal interfaces [27]. If
actualized, BCI can enable universal access for Metaverse
users with disabilities. Within the Metaverse, users can
experience all the features of the virtual environment
without restrictions on physical or mental capabilities.

‘

While there are several advantages to BCI technology, there
are also several challenges hindering the integration of BCI
for Metaverse users. The first challenge in the Metaverse
is the construction of virtual embodiments, which involve
multi-sensory data from the Metaverse users. Conventional
user embodiment and user interaction schemes require many
wearable and external sensing devices, such as handheld con-
trollers for user input, wearable trackers for body kinematics,
wearable cameras on head-mounted devices as facial sensors,
heart rate trackers for workload and emotion measurement,
and pupil cameras for eye movement tracking. Each sensing
technique requires specific hardware devices, sensors, and

customized software to serve a particular application, limit-
ing the scalability and synchronization of multi-sensory data
sources. In this case, BCI can act as a neural interface that
integrates multiple sensing modalities, such as limb movement,
intentions, emotion, and eye movement, into a single wearable
signal source [28]–[30]. The second challenge is the lack
of individualization in Metaverse technology. The multiple
sensing modalities of conventional technologies also raise
significant concerns about utilizing multi-sensory data sources
to tailor applications to individual needs. As the sensing
data come from different sources, it is challenging to fully
utilize, synchronize, and distill information from different
modalities, such as emotion recognition and eye movement
[31]. Unlike traditional approaches, BCI offers an information
source that can be individualized and tailored to the experience
of individuals. The third challenge is the real-time or near
real-time processing and communications of BCI signals in
Metaverse [32]. A critical factor is the scalability of the
computation load and power for the large user base within
the Metaverse. The current communications and computing
capabilities will be insufficient to actualize the full-scale of the
Metaverse. The fourth challenge is our limited knowledge of
virtual embodiment, as we have not been able to fully actualize
a virtual being/avatar in the Metaverse world. To address this
challenge, we discuss the potential of a Human Digital twin
(HDT) solution to provide a viable solution and open emerging
applications for the Metaverse using BCI.

C. Related Surveys and Our Contributions

Various surveys have been conducted on the Metaverse,
covering architecture, applications, technologies, security, and
privacy concerns. In [6], the authors discussed the potential
architecture and applications for the Metaverse. In [2], the
authors examined the enabling technologies for the Metaverse
from a cloud/edge computing perspective. In [33], the authors
analyzed the potential applications of machine learning and
deep learning for the Metaverse. In [8], privacy and security
issues of the Metaverse were discussed in detail. These exist-
ing surveys about the Metaverse focus on general issues and
technologies, often overlooking the incorporation of human
factors within the Metaverse. Although the authors in [33]
and [8] discussed the idea of using BCI as a neural interface
between users and the Metaverse, none of them examined
the BCI techniques involved in decoding human behavior. In
[34], the authors considered potential BCI applications for the
Metaverse. However, the context of the work was limited to
the surface of BCI and the Metaverse. For example, the authors
did not address the applications, limitations, and challenges,
such as synchronizing and communicating between entities, let
alone applying them in the Metaverse. The summary of the
related works and the key differences between these works and
our survey is given in Table I. Overall, BCI was not discussed
in detail in the aforementioned surveys. To the best of our
knowledge, our survey is the first in the literature to discuss
BCI’s potential in the Metaverse comprehensively.

In particular, in this survey, we aim to provide a compre-
hensive survey about BCI technologies and their potential for
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TABLE I
KEY DIFFERENCES BETWEEN THE RELATED WORKS AND OUR SURVEY.

Reference Key focus of survey How our work differs
[2] This work focuses on applications of mobile edge computing Our survey discusses key technologies in the Metaverse and

for the Metaverse proposes potential applications of BCI in the Metaverse (Section II)
[6] This work discusses architectures, applications, and enabling Our survey discusses key sensing technologies that can be used to

technologies for the Metaverse such as VR, AR, and IoT extract brain signals of the Metaverse users (Section II)
[8] This work focuses on privacy and security issues of the Metaverse Our survey discusses privacy, security, and ethical aspects of using

BCI for the Metaverse (Section VI)
[33] This work focuses on the applications of machine learning Our survey focuses on BCI as an enabling technology in which

algorithms in the Metaverse applications machine learning and deep learning can be used as supporting
algorithms to enhance the system’s performance and user
experiences (Section II)

[34] This work discusses potential Metaverse applications with BCI at Our survey provides comprehensive information about existing BCI
surface level without mentioning different BCI technologies and technologies and categorizes them into specific domains. We also
their potential for the Metaverse provide an adequate procedure of a typical BCI application and

how to apply it in the Metaverse (Sections IV and V)
[35] This work focuses on applications of BCI in wireless networks, Our survey focuses on BCI applications for the Metaverse in which

e.g., 5G, and how brain signals can be transmitted over noisy wireless networks can be utilized as underlying infrastructures. We
wireless environments further discuss the potential of emerging 6G communications

technologies for the BCI-enabled Metaverse (Section V)

future development of the Metaverse. Furthermore, we propose
and discuss a new concept of a Human Digital Twin (HDT), a
new approach to constructing human embodiment within the
Metaverse using BCI. In summary, our main contributions are
as follows:

• We provide the fundamental background and discuss the
current challenges of the Metaverse that conventional
sensing approaches could not effectively address.

• We provide the background of BCI, focusing mainly on
non-invasive BCI, which is more suitable for commercial
applications. We then describe how BCI technologies
can enhance user embodiment within the Metaverse.
We also review BCI-enabled interaction schemes for the
Metaverse users and describe the differences between the
BCI sensing technologies and the conventional sensing
techniques.

• We introduce the new concept of HDT. With HDT,
we can develop individualized Metaverse applications
and enhance our knowledge of virtual embodiment in
the Metaverse. We further discuss potential challenges
for integrating HDT in the Metaverse, such as real-
time communications, synchronization, and interactions
between HDTs.

• We highlight the challenges, open issues, and future re-
search directions of BCI technologies for the Metaverse.
The ethics and security of using BCI for the Metaverse
are also discussed. Alternatively, the potential applica-
tions, such as brain communications, are also discussed.

As illustrated in Fig. 2, our paper is organized as follows.
Section II provides the background of the Metaverse and BCI
technologies. Section III provides more details about BCI tech-
nologies, including emotional and cognitive state recognition
for the Metaverse. This section further discusses the potential
approaches to prevent error-related behaviors in the Metaverse,
such as VR motion sickness, stress, and fatigue. Section IV
describes the potential interactions between the users and the
Metaverse through BCI. This section also discusses VR-BCI
user interface design paradigms for the Metaverse applications.

I-A. Development of a
human-centric Metaverse

I-B. Towards a human-centric
Metaverse using BCI

I-C. Related works and
our contributions

II-A. The
Metaverse

II-B. Brain-computer
interface: sensor

technology

III-A. BCI emotional and cognitive state
recognition

III-B. Anomalous and error-related
behaviors detection

IV-A. Decoding thoughts and intentions
using BCI

IV-B. Social interaction using imagined
speech

V-A. Key technologies to enable human
digital twin within the Metaverse

V-B. Human digital twin interaction
within the Metaverse

VI-A. Current challenges VI-B. Emerging applications and future
research directions

Section VII. Conclusions

Section I. Introduction and Motivation

Section II. Background

Section III. BCI-enhanced User Immersion

Section IV. BCI-enhanced Metaverse User Interactions

Section V. Human Digital Twin

Section VI. Challenges, emerging applications, and research directions

II-C. Current usage
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BCI

II-D. Deployment of
BCI within the

Metaverse

V-C. Potential challenges for the
development of the human digital twin

V-D. Emerging 6G communications
technologies for human digital twin

Fig. 2. The organization of the survey.

In Section V, we propose a new concept of the HDT in which
the digital twin is utilized to create twin entities for human
users from their brain signals. Furthermore, we discuss the
communication technologies, such as 6G technologies, that
enable the integration of the human digital twin within the
Metaverse. In Section VI, we highlight the current challenges,
open issues, and future research directions toward BCI-enabled
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TABLE II
LIST OF COMMON ABBREVIATIONS USED IN THIS SURVEY

Abbreviation Description Abbreviation Description
HDT Human Digital Twin VR Virtual Reality
XR Extended Reality EEG Electroencephalogram
DoF Degree-of-Freedom AI Artificial Intelligence
IoT Internet of Things QoE Quality-of-Experience
ECoG Electrocorticography MEG Magnetoencephalogram
fNIRS Functional Near-Infrared Spectroscopy fMRI Functional Magnetic Resonance Imaging
FOV Field of View HMD Head-mounted Display
ERN Error-related Negativity MI Motor Imagery
SSVEP Steady-State Visual Evoked Potential TDMA Time Division Multiple Access
MISO Multiple Input Single Output MIMO Multiple Input Multiple Output
SDMA Spatial Division Multiple Access NOMA Non-Orthogonal Multiple Access
RSMA Rate-Splitting Multiple Access MMO Massive Multiplayer Online (a video game genre)
NFT Non-Fungible Token

Metaverse systems. This section also discusses ethics, security,
privacy issues, and emerging applications, including hardware,
software, and algorithm designs. Finally, Section VII con-
cludes the paper. In addition, we provide a list of abbreviations
and descriptions used in this paper in Table II.

II. BACKGROUND

A. The Metaverse

The term “Metaverse” is a combination of the prefix “Meta”
(meaning beyond) and the suffix “verse” (meaning universe).
As its name suggests, the Metaverse is a universe of the next-
generation Internet that allows the parallel existence of the
physical world and shares 3D virtual worlds. The earliest
concepts of the Metaverse can be found in classical MMO
(Massively multiplayer online) games [36]. In these games,
users are given a uniquely persistent virtual world as a medium
for social and worldly interactions. The Metaverse shifts this
paradigm by incorporating modern technology to generate a
seamlessly immersive experience transitioning between the
physical and virtual worlds. The envisioned Metaverse is
where users can naturally (touch the environment with their
hand or walk with their feet) move and interact with the virtual
environment as though they are in the physical world [6].
Unlike conventional interactions in the current Internet, where
we use devices such as a mouse, cursor, and keyboard, the
Metaverse enables users to immerse applications and services
through their digital avatars with supporting VR and XR tech-
nologies. As a result, users in the Metaverse can potentially
eliminate Spatio-temporal barriers in how they work, live, and
entertain. To this end, the Metaverse can be developed from the
convergence of multiple supporting engines such as VR/XR,
digital twin (DT), tactile Internet, artificial intelligence (AI),
and blockchain-based economy [2].

To create an immersive Metaverse experience, various tech-
nologies must be integrated and coordinated. In the following,
we highlight the essential technologies for human-centric
Metaverse design, but emerging technologies are not limited
to this discussion as the Metaverse is continually evolving.
Considering the left side of Fig. 1 as an example, multiple
technologies are used to create a virtual avatar, including
wireless sensors, sensor fusion, interpretation with machine

learning, 3D projection from data, and 3D view synthesis. Ma-
chine learning/deep learning algorithms can be utilized to fuse
the data collected from the sensors effectively [9], [10]. These
learning algorithms can further capture user data patterns,
e.g., body shape, behaviors, poses, and expressions, and then
prepare the data to be projected into the virtual environment.
Finally, the virtual avatar is placed into the virtual scene (with
VR) or mixed environment (with XR). The user’s experience
in the VR/XR environment can be enhanced by optimizing
the view, angle, resolution, and interaction within the scene
[6]. Extra haptic feedback can also be utilized to generate
realistic feelings about the virtual environment [30], [37].
Other necessary technologies include intelligent sensing, data
compression, edge computing, and wireless multiple access to
reduce latency and improve reliability [2].

Beyond gaming, governments and tech companies seek a
presence in the Metaverse. Decentraland lets users create,
explore, and interact with 3D virtual worlds owned and
controlled by themselves [38]. Users buy virtual land as Non-
Fungible Tokens (NFTs) via MANA cryptocurrency, which
uses the Ethereum blockchain. NVIDIA’s Omniverse intro-
duces a computing platform for creating Metaverse applica-
tions such as 3D scene generation, art creation, and robotic
control with supportive generative AI and physic-based simu-
lation engines [39]. Microsoft’s Mesh brings a new toolset for
users to create custom workplaces and tools harmonized with
other applications in Microsoft’s ecosystem, such as Teams
[40]. Other Metaverse apps focus on healthcare and education,
such as Xirang [41] and Telemedicine [42].

Besides using conventional sensing and data collection
techniques, integrating human physiological and psychological
information is crucial for developing human-centric Metaverse
applications. As motivated by the fact that the brain signals
are encoded with rich information about human activities, in
the following, we discuss the details of BCI technology and
how BCI can offer multimodal, low latency, and high fidelity
metrics for Metaverse user behavior [43].

B. Brain-Computer Interface: Sensor Technology

The human brain is the most complex and adaptive organ
within the human body [44]. It is the control center of
human intelligence, sensory perception, and motor functions.
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Fig. 3. Three types of BCI devices/sensors: invasive BCI, semi-invasive BCI,
and non-invasive BCI.

Herculano-Houzel [45] estimated that the central brain might
contain around 86 billion neurons. Each neuron is a node
along trillions of neural pathways within the brain. Each neu-
ral pathway passes neuroelectric signals (neurotransmission)
around the brain, forming a system that enables the brain
to function by communicating with the nervous system. A
broad definition of Brain-Computer Interface (BCI) is any
device that measures, analyzes, and interprets the brain signal
(neural pathways) and then relays information to a machine to
respond. The story of BCI begins with a discovery made by
the British physicist Richard Canton [15]. In 1875, Canton
discovered the existence of electrical signals in the brains
of animals. This discovery paved the way for the pursuit of
electrically mapping brain signals and a better understanding
of human neurophysiology. Four decades later, a psychiatrist
named Han Berger invented the first measurement device,
allowing humans to measure the brain’s electrical activity for
the first time [15]. Berger created the tool and discovered
the first neural oscillation frequency, the 8-12 Hz Berger
(Alpha) wave. In modern times, researchers furthered these
discoveries by developing various ways to measure the brain’s
neural signals, learning new neurophysiological behaviors, and
building autonomous systems. BCI refers to technologies that
can create communication pathways from the brain’s activity
to external devices, such as a computer or a machine [43]. BCI
devices/sensors are delivered in one of three forms: invasive,
semi-invasive, and non-invasive, as illustrated in Fig. 3.

Invasive BCI devices characterize electrodes implanted
(through surgery) beneath the skull and within the cortex
(direct signal acquisition from the brain). Invasive BCI systems
are not in a mature stage of development to be safely used
as consumer devices. Invasive BCI requires longer dedicated
research with animal populations before engaging in low-
sample-sized human research studies [46]. Invasive BCI is
often employed in extreme cases (e.g. severe motor disability)
where the patient’s quality of life benefits from the BCI
outweighs the risks [47]. Companies, such as Neuralink, are
pursuing the goal of implantable BCI devices [48].

Semi-Invasive BCI devices are sensors that are implanted
(through surgery) between the cortex (on the surface) and the

a) b)

c)

Fig. 4. This figure presents the two types of non-invasive EEG-based BCI
devices available on the market: (a) the Brain Products’ actiCAP active 64-
channel wet EEG electrodes system; (b) the Cognionics Quick-20 dry EEG
electrodes system; and (c) the layout for a 64 channel EEG system based
on the 10-20 standard. The 10-20 standard is a popular scalp electrode
configuration that places electrodes at equidistant intervals to cover each
brain region. Pictures were taken from the Computational Intelligence and
Brain-Computer Interface (CIBCI) lab at the University of Technology Sydney
(UTS), Australia.

skull [27]. Semi-invasive BCI systems commonly use an array
of Electrocorticography (ECoG) electrodes to map a specific
brain region. The surgical procedures and implant durability
for semi-invasive BCIs typically carry lower short to long-
term risks when compared to invasive BCIs. Semi-invasive
electrodes offer a higher-quality signal; however, similar to
invasive BCI, the surgical risks outweigh the benefits of the
device. Due to the risks of invasive and semi-invasive devices,
non-invasive systems are more popular as a low-risk and more
viable product for researchers and consumers. With further
research, reduction in surgical risks, and improved robustness
of implants, invasive and semi-invasive BCI devices will have
great potential to enhance the user experience within the
Metaverse significantly.

Non-Invasive BCI devices encompass multiple technolo-
gies that can detect neurophysiological behaviors without
any implanted electrodes; this includes technologies such
as Magnetoencephalography (MEG), Functional Near-Infrared
Spectroscopy (fNIRS), Functional Magnetic Resonance Imag-
ing (fMRI), and Electroencephalography (EEG). Certain non-
invasive BCI systems, such as fMRI and MEG, lack portability
due to equipment size or complexity. These types of systems
are not feasible as wearable devices for Metaverse users.
EEG and fNIRS-based BCI systems are the primary feasible
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solution for a portable, wearable, and accurate device that can
be used in a general consumer capacity [49]. Typically, EEG
devices use wearable scalp electrodes (see Fig. 4 for examples
of EEG device electrode configurations) with a highly con-
ductive material to measure the voltage (µV) fluctuations on
the wearer’s scalp [50]. On the other hand, fNIRS electrodes
utilize near-infrared spectroscopy to discern cortex neural
activity [51]. Certain systems offer paired EEG-fNIR elec-
trodes within one system [52]. These electrodes will measure
neural signals, be amplified, and digitized for analysis. The
resulting signal may contain multiple components (depending
on electrode placement), such as eye blinking, muscle move-
ment, movement artifacts (from displaced channels), and other
electrical activity. Most importantly, the signal will contain
information on the brain’s electrical activity [53]. Through
extensive repeated measure research and machine learning,
common neurophysiological behaviors can be classified and
used for various research applications, e.g., military, rehabilita-
tion gaming, medicine, mental health, robotics and automation,
and public services [54]. Therefore, wearable non-invasive
EEG/fNIRs BCI devices are most suitable for researchers and
consumers exploring the Metaverse.

EEG devices typically consist of two types, wet and dry
electrode systems [55]. Wet electrodes (An example shown in
Fig. 4(a)) refer to any electrode system that requires conduc-
tive gel or saline fluid to improve the contact connectivity
between the electrode and the wearer’s scalp. In contrast,
dry electrodes (An example shown in Fig. 4(b)) leverage
optimized electrode shapes (often hair comb-like) to contact
the scalp without needing gel/fluids. When comparing the two
types, wet electrodes offer a better signal quality (less noise
from impedance and external sources) but require preparation
(applying gel/fluid) and a limited operation time due to the
drying of the gel/fluid. Dry electrodes are generally larger than
wet electrodes, limiting the total possible electrodes placed
on the scalp, the overall signal quality (large electrodes are
more susceptible to movement), and the user comfort when
wearing the device [56]. Both types of EEG systems are
limited by movement noise, device usability (user comfort and
real-world practicality), and neurodiversity [53]. Unlike EEG,
fNIRs do not require conductive gel as the sensors primarily
use light [57]. The key drawback to consumer fNIRS devices
is the requirement of paired sensors (a source and detector)
to measure neural signals. A 64-channel system would require
128 fNIRS sensors compared to the 64 EEG electrodes (An
example of the 10-20 standard for 64 channels is shown
in Fig. 4(c)). The current size of the fNIRS sensors makes
the system unideal for consumer use, as dry EEG electrodes
could achieve a similar result with fewer sensors. Therefore,
given the real-world feasibility factors, EEG dry electrode BCI
systems are currently ideal for Metaverse users. It is likely
that with further improvement to signal processing techniques,
machine learning algorithms, and hardware design, we will
find that dry electrode EEG with fNIRS BCI devices will
become the next popular consumer device.

Signal processing and classification is another important
aspect of BCI devices. Fig. 5 outlines the typical workflow of
BCI-related research [58]. Two principal methodologies are

EEG
MRI
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MEG

BCI systems

Data
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Observed
effect

Computation
classifier

Document
finding

Output
system

Repeat task
to improve
classifier

Brain's neural
pathways
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Fig. 5. An overview of the pipeline of BCI systems. The figure illustrates the
acquisition of a signal through various types of BCI systems. Once a signal
has been acquired, information can be extracted for observational purposes
(monitoring or measuring a state) or classified into a specific behavior
(detecting intentions or tasks).

commonly selected within the field of neuroscience. Classical
neuroscience (neurology) practice furthers our understanding
of the brain through expert interpretation of signal feature
recognition (built through observational information). The
other (computational or cognitive neuroscience) is to develop
real-time systems through AI models (machine, deep, or re-
inforcement learning). Classical neuroscience requires domain
experts to process (digital signal processing) and interpret the
measured sensor results [59]. These domain experts would
typically process the sensor readings to reduce noise artifacts
(from power and movement) and extract meaningful features
to analyze. This form of methodology enables domain experts
to provide interpretations on a person’s cognitive, physiologi-
cal, or neurological state [60].

Alternatively, the computational neuroscience approach em-
ploys automated signal processing and machine/deep learning
practices to build AI-powered classification models [61]. Mod-
ern computational neuroscience methodologies involve basic
(minimal computation time) preprocessing the data to remove
noise, applying a time series feature extraction algorithm, and
applying a machine/deep/reinforcement learning model (super-
vised or unsupervised) to train and classify certain behaviors
[62]. The computational neuroscience approach can offer a
more reliable signal classification and accurate phenomena
detection over the conventional signal processing classification
approaches [63]. AI-powered classification models can be
trained to detect or interpolate subtle neurophysiological be-
haviors within an EEG signal that may not be recognized by a
domain expert or more fundamental signal classification meth-
ods [63]. A criticism of computational neuroscience methods
is the difficulty in generating interpretable classification and
research findings from machine/deep learning models [64].
Therefore, the computational neuroscience field has trended
towards building more interpretable machine/deep learning
classification methodologies [64]–[66].

C. Current Applications of BCI

BCI research has expanded to many interdisciplinary re-
search fields, studying behaviors such as cognitive states,
emotional responses, pathology (neurology), mental health,
pedagogy, ergonomics, and many other fields [67]. Conven-
tionally, EEG systems are widely employed in hospital and
clinical settings for medical practitioners to diagnose the state
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Fig. 6. An illustration of the integration of BCI with the Metaverse. Through BCI, the Metaverse user’s brain signals can be extracted, processed, and
communicated into the Metaverse. The figure outlines the types of information that can be obtained from the BCI device and integrated into the Metaverse.

of a patient’s brain [68]. EEG can also be used to diag-
nose various neurological disorders (epilepsy, seizures, stroke,
and sleep disorders), confirm brain death, and determine the
severity of brain injuries [69]. Other clinical applications
include using EEG electrodes to determine the sensory health
for the patients’ vision (Visual Evoked potential) [70] and
hearing (Frequency Follow Response) [71]. Recently, BCI
technology has grown in commercial and consumer usage to
monitor mental health, cognition, and emotional states [72].
These technologies typically employ dry-electrode systems,
which sacrifice signal quality to eliminate the requirement for
electrode gel. The current challenge for BCI systems is to
develop a real-time “plug and play” system for consumer use
[73]. Ultimately, the development of BCI technology needs to
bridge the gap between accessible electrode technology (easy
to wear or safe to implant) and high-fidelity physiological
information from the brain.

D. Deployment of BCI within the Metaverse

In Fig. 6, we illustrate a BCI-enabled Metaverse. BCI plays
a vital role as an interface to create adaptive virtual environ-
ments and intelligent avatars, supported by other technologies
such as a digital twin and real-time communications. As
illustrated in Fig. 6, a BCI-enabled Metaverse is a human-
centered approach in which BCI and VR technologies can co-
exist and cooperate in a closed loop. Within the conventional
BCI research field, there are many examples of VR-BCI
integration [18], [74]–[76] through using a traditional wet
electrode EEG cap (see Fig. 3(a) and Fig. 7) under XR/VR
device. This method of VR-BCI integration is viable in a
research context because of the importance of signal quality
and spatial resolution from the BCI operating in a controlled
environment. This VR-BCI set-up would not be feasible for
a real-world consumer because the wet sensor would only
provide limited usage as the gel would rapidly dry out. A
commercially available option to enable VR-BCI is to use dry

electrodes integrated into the VR/XR device, such as the Galea
VR HMD [77]. A dry electrode system will enable a portable
system with lower signal quality and spatial resolution.

The basic operation of the BCI-enabled Metavese may
include the following steps. The VR-BCI interface extracts
the users’ brain signals and processes the signals locally or
remotely at a computing unit, e.g., a remote server. Brain
signal extraction, processing, and classification are enabling
processes for creating human-like digital avatars with unique
characteristics of the users, e.g., emotional state, visual stimu-
lus, and behaviors, from the human brain signals. The commu-
nication channels, such as wired and wireless devices, further
enhance the scalability of the Metaverse system. The Internet-
connected computing unit will update and synchronize the
information into the Metaverse.

By monitoring the brain activities of the users, the Meta-
verse platform can analyze or predict the users’ behaviors,
attention, or emotional states and adjust VR settings to be
transmitted back to the users. As such, the service provider
can actively provide customized and personalized Metaverse
applications for the users. Note that other users in the Meta-
verse also contribute to the dynamics of the above process. In
addition, other supporting technologies, such as digital twins,
integrated VR-BCI devices, and real-time communications,
can facilitate and improve the completeness of the system.
BCI can be directly used to measure the Emotional/Cognitive
states of the Metaverse user, facilitate social interactions, and
enable the human digital twin within the Metaverse.

III. BCI-ENHANCED USER IMMERSION

Immersion is the degree of realism for the congruence
(between the real and virtual worlds) of the sensory input
and motor output. Immersion plays an essential role in the
Metaverse user experience. A fully immersed Metaverse user
can seamlessly transition between the physical world and the
Metaverse. Therefore, the modulation of the immersion levels
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Fig. 7. An illustration of a VR user using a VR headset (HTC Vive Pro) with a BCI sensor cap (64 channel EEG, Liveamp system) worn under the headset.
The user is experiencing a mixed reality environment where they are physically (through the platform) and virtually (through VR) elevated. The picture was
taken from the Computational Intelligence and Brain-Computer Interface (CIBCI) lab at the University of Technology Sydney (UTS), Australia.
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Fig. 8. An illustration of the emotional and cognitive state measurements using BCI. These types of information can be utilized in the Metaverse to provide
status indicators and improve the immersion of Metaverse users.

of the environment can directly affect the believability and
acceptance of the Metaverse. BCI can improve the immersion
of the Metaverse user by altering the rendering of the virtual
environment based on the user’s emotional and cognitive
state. Previous works explored this concept [78] using passive
BCI techniques to adaptively change the game environment’s
lighting and Field of View (FOV), thus enhancing the user’s
immersion. Passive BCI refers to using BCI to detect and mea-
sure changes in a user’s unintentional cognitive and emotional
state [79]. In this section, we explore two potential methods of
using BCI to enhance the user’s immersion in the Metaverse.
Specifically in Section III-A, we explore the user’s emotional
(including happiness, sadness, stress, calmness, anxiety, and
uneasiness) and cognitive state (mental workload, fatigue, and
attention) as shown in Fig. 8. After that, in Section III-B,
we present the potential of using anomalous and error-related
neurological behaviors to enhance immersion by correcting
anomalies within the Metaverse.

A. BCI Emotional and Cognitive State Recognition Applied to
the Metaverse

A person’s emotional state is commonly quantified by a
scale of valance (pleasant to unpleasant) and arousal (alertness
to drowsy). This mode of mapping a person’s emotional
spectrum is the Russell Circumplex model of affects [80].
Fig. 9(a) presents the Russell Circumplex models and shows
the spectrum of emotional states quantified by the arousal and
valance level. This understanding was furthered by the Yorkes-
Dodson law [81] (see Fig. 9(b)) that found a direct correlation
between human emotional arousal and cognitive performance.
Therefore, the ability to quantify and measure human emo-
tional states can play an essential role in understanding an
individual cognitive state. The BCI classification of emotional
states involves extracting specific EEG features for arousal and
valance from the EEG signal for a machine learning classifier
to detect [82]. Arousal is detected through the changes in the
brainwaves in the brain’s frontal region. Brainwaves are com-
mon oscillations in the brain’s electrical activity that correlate
to various neural activities. The brainwaves are broken down
into the Gamma (>35 Hz), Beta (12-35 Hz), Alpha (8-12
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Fig. 9. This figure presents (a) the Russell Circumplex model of Affects,
which is used to measure emotional states on a spectrum between arousal
and valence and (b) the Yorkes-Dodson Law dictates the relationship between
emotional arousal/stress and cognitive performance.

Hz), Theta (4-8 Hz), and Delta (0.5-4 Hz) wave. Studies [83]–
[85] found a strong correlation between an individual’s arousal
level and the frontal Beta, Alpha, and Theta power. The ratio
between Beta and Alpha activity is commonly used to measure
arousal level. Typically, the Beta brainwave would indicate an
active mental state. Conversely, the Alpha brainwave suggests
a relaxed and restful state. Therefore, heightened arousal can
be measured by a frontal region increase in Beta power and a
decrease in Alpha power. An individual’s valence level is mea-
sured through the brain’s hemispherical symmetry/asymmetry.
Hemispherical symmetry refers to an equal/similar activation
(neuron firing) state between the brain’s left and right cor-
tex. Hemispherical asymmetry occurs when one cortex has
significantly more activity than the other. Studies [86]–[88]
showed that valence correlates to the degree of hemispherical
symmetry with a strong hemispherical asymmetry exhibited
when in a negative valance (unpleasant) state. Works by
[89] and [90] used BCI and machine learning to classify
the dimensions of an individual’s arousal and valence levels,
which indicate their emotional state.

A person’s cognitive or mental state refers to their mental
well-being and the ability to think or process information. A
Metaverse user’s mental and cognitive state can significantly
impact their experience within the Metaverse. A high workload
(complex or challenging to navigate environment) or sensory-
loaded (high noise or color intensive) environment can trig-
ger negative mental states, reducing the user’s immersion in
Metaverse. Factors such as the current emotional state, expe-
rience of mental workload, fatigue level, and attention level
can directly affect a person’s cognitive state. Like emotional
states, cognitive state features are extracted by evaluating the
brainwaves of specific brain regions. The theta activity in the
frontal cortex often determines mental workload. Studies by
[91] and [92] asserted that as the difficulty of a task (higher
workload) increases, the theta activity in the frontal cortex will
increase.

Interestingly, the inclusion of multimodal data sources such
as cardiovascular (changes in heart rate) and pupillary activity
(changes in pupil dilation) can improve the accuracy of the
workload classification [20]. Mental fatigue resulted in the
increase in theta and alpha activity and the decrease of beta
activity in the frontal cortex [93]. Studies on attention discov-
ered that a distracted (unfocused) individual would exhibit a

decrease in beta power in the frontal region, an increased theta
and delta power in the central region, and a decrease in alpha
power in the parietal region [94], [95].

Fig. 10 depicts using passive BCI to create an adaptive
Metaverse display to enhance the user’s immersion. Using
passive BCI to gauge a user’s emotional and cognitive state
is a well-researched area with multiple reliable classifiers to
enable the technology. When introduced to the Metaverse,
passive BCI can dynamically adjust the user’s surrounding
environment and render display to improve the user’s im-
mersion. An example of this was the adaptive virtual reality
environment by [96]. By measuring the VR user’s emotions,
the system created a feedback loop that used the virtual
environment to modulate the user’s emotional state. Similarly,
the works by [97] and [78] explored limiting and adjusting an
environment’s complexity to improve the user’s cognitive state.
These works would use adjustable lighting and fog to moderate
the amount of the visible virtual environment to reduce the
user’s workload and visual fatigue. These practices could be
applied to the Metaverse through an integrated BCI VR device
to create a feedback system that adaptively adjusts the rendered
environment. This solution is very close to realization with
the recent innovations such as the workload measurement
integration in the HP G2 Reverb VR HMD [98] and the dry
electrode BCI integrated Galea VR HMD [77].

B. Anomalous and Error-related Behaviours to Improve User
Immersion

Another unique functionality of passive BCI is the ability to
detect potential adverse events before consciously recognizing
the event. Adverse and anomalous events can hinder user
immersion by creating a disassociation between the expected
real-world and the Metaverse. Examples could be events
such as the onset of VR sickness, loss of balance/falling, or
environmental errors. The real-time detection of these events
allows the implementation of safety and preventative measures
to improve the user’s longevity within the Metaverse. Through
extensive studies, each adverse event’s unique EEG signal
features can be reliably extracted and classified.

VR sickness refers to the sensation and experience of
symptoms such as headaches, nausea, vomiting, drowsiness,
and disorientation when using VR [99]. This is relevant for
Metaverse applications, where users often spend prolonged
periods in virtual environments. When VR sickness occurs,
users often disengage from the virtual environment to alleviate
the symptoms. In extreme cases, it may result in fainting,
falling (due to loss of balance), or severe nausea. These types
of adverse events will negatively affect the user’s sense of
immersion and reduce the longevity of the Metaverse user
to stay within the Metaverse. Certain VR Studies [100]–[102]
have successfully used EEG signals to classify and detect when
a person is experiencing VR/motion sickness. They found a
significant correlation between VR/motion sickness and theta
and delta bands activity within the occipital lobe (attributed
to the sensory perception of motion). They also observed
decreased alpha activity in the parietal and motor regions. The
loss of balance or falling is another significant risk for VR
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Fig. 10. This figure shows using passive BCI to detect the Metaverse user’s emotional and cognitive state. Then, the measured information modulates
different factors of the Metaverse display to enhance the user’s immersion. The picture was taken from the Computational Intelligence and Brain-Computer
Interface (CIBCI) lab at the University of Technology Sydney (UTS), Australia.

Metaverse users [75]. Studies by [103] and [104] show that
the beta and theta band activity in the parietal/motor cortex
is closely related to losing balance and falling. These VR
sicknesses and falling indicators can be trained through an
AI classifier to detect anomalous events in real-time during
a Metaverse experience. The ability to effectively detect VR
sickness and falling can allow the implementation of preven-
tative techniques such as reducing the motion of the virtual
environment and turning on VR see-through mode [75].

In the continuity of the Metaverse, errors and visual bugs
are inevitable factors that will appear within the virtual envi-
ronment. Erroneous artifacts or system glitches can hinder a
user’s immersion. Therefore, it is essential to have a system
in place to detect and correct these errors. One proposed
method that BCI could use to solve this issue is error-related
negativity (ERN) detection (see Fig. 11). ERN is a signal
response that occurs when a person observes incongruent or
erroneous stimuli within a task or environment [105]. ERN is
characterized by a negative potential around 50-250 ms after
the error [106]. Previous studies [76], [107] have successfully
classified the ERN response as an error correction method
within a VR environment. Due to the simplicity of ERN, it
can be reliably implemented to detect potential errors that
Metaverse users may observe. This solution would enable a
more efficient (compared to manual user reporting) method of
detecting and correcting potential errors within the Metaverse
environment.

These BCI solutions can improve the safety and longevity
of a Metaverse user. By incorporating the outlined BCI tech-
niques, the Metaverse system can become more reactive to
adverse events and use an appropriate strategy to prevent or
correct the problem. There are two critical challenges to the
implementation of this system. The first challenge is ensuring
the ability to accurately detect the onset of the adverse event
before the occurrence or conscious recognition. The system
would not be valid if it cannot prevent the adverse event
from occurring. The second challenge is to explore practical
strategies for preventative and corrective methods. The current
methods of prevention or correction involve removing the user
from the virtual environment and breaking their immersion.
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Fig. 11. This picture illustrated the use of BCI to detect anomalous states
and error-related behaviors. Using the BCI signal (e.g. ERN), the system can
detect and correct adverse events, such as when the user is about to fall due
to VR sickness.

Better methods are required that do not require removing the
user from the Metaverse.

Summary: BCI technology can be integrated into the Meta-
verse to enhance the user experience. Extensive research into
passive BCI monitoring of a person’s emotional and cognitive
can be used to discern the user’s status better and facilitate
new social interaction types. Additionally, the measurement of
anomalous and error-related states can greatly improve the user
safety and robustness of the Metaverse. Such BCI applications
can aid in enabling our proposed Human Digital Twin system
(as illustrated in Fig. 1). Monitoring emotional and cognitive
states can aid in better informing the digital twin and adjusting
its behavior within the Metaverse. Furthermore, the research
around error-related behaviors can enable autonomic behavior
to minimize undesired behavior or interaction for the human
digital twin.
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Fig. 12. This figure presents the common active BCI paradigms for designing user interfaces. The figure presents examples of visual stimuli employed for
the P300 (recognition of specific stimuli), MI (thinking of left or right), and SSVEP (flickering stimuli at specific frequencies) paradigms. These paradigms
can be incorporated with wearable BCI to develop a Neuro-User Interface for Metaverse users. Within this interface, a user can move through MI directional
triggers, select interactable through P300/SSVEP, and communicate through the brain to text.

IV. BCI-ENHANCED METAVERSE USER INTERACTIONS

An important aspect of the Metaverse is to deliver a platform
to facilitate meaningful user interaction. A Metaverse user
must be able to interact with the environment (pick up objects
and locomotion) and socially with other Metaverse users.
Active BCI offers the potential to generate more intuitive
modes of user interaction within the Metaverse. In contrast to
passive BCI, active BCI refers to the user of BCI performing
specific tasks through intentional, conscious thought. This
section will explore the ways BCI can be used for users
to interact with their environment (Section IV-A) and the
potential of using BCI for social interaction through brain-
to-text (Section IV-B).

A. Decoding Thoughts and Intentions Using BCI to Improve
Metaverse Interactions

Understanding human thoughts and intentions is a com-
monly sought-after goal in the BCI research field [108].
Traditional systems rely on tactile manipulators, such as
controllers, buttons, joysticks, levers, and keyboards, to allow
users to convey their intentions to a system [109]. Other works
explored voice recognition, gesture control, and AI to develop
more intuitive methods of understanding user intention [110].
BCI offers the potential for direct translation between human
thought and intention, which could result in an intuitive and
responsive system. The underlying challenge in understanding
human intention is the complex multilevel nature of the human
mind [111]. Human intention ranges from low-level cognitive
decisions based on sensory perception (reacting to events,
bodily movements, or simple choices) to complex high-level
decisions requiring observation, planning, mental stimulation,
and multistep execution. Based on this challenge, researchers
have designed reliable active BCI paradigms to capture spe-
cific behaviors exhibited across the human population. When
designing an active BCI system, one typically selects a reliable
BCI paradigm to translate intentional thought into a classifi-
able EEG signal. We will highlight three of the most common
paradigms used for active BCI control (as shown in Fig. 12);
these are P300, Motor Imagery (MI), and Steady-State Visual
Evoked Potential (SSVEP).

P300: The P300 wave is the oldest and potentially the
most well-known EEG response out of the three paradigms.
As described by [112], the P300 wave is a positive peak
human event-related potential that occurs around 300ms after a
‘target’ stimuli are perceived. This P300 peak can be observed
across the brain’s frontal, central, and parietal regions. The
stimuli used for P300 paradigms can be both visual and
auditory. Typically, P300 paradigms feature an oddball design
where the user has a target and several non-target stimuli. A
signal classifier can discern whether the user observes a target
stimuli by detecting the positive peak amplitude. The P300
speller [113] is a successful example of using a P300 wave to
create a user interface. In this paradigm, the user will decide
their target or intended letter to type; then, multiple visual
letter stimuli will sequentially appear to the user. The classifier
will detect the P300 response within the EEG signal and input
the letter that appeared 300ms before the peak as the user’s
choice. Generally, P300 paradigms provide a reliable signal
response for detection; the primary drawbacks are the speed
of stimuli presentation (slow rate of input) and the dependency
on the user to focus on the target stimuli (difficult to use in
complex environments).

MI: An MI paradigm utilizes the thought of left and right
motor action to create a simple control paradigm [114]. MI
involves the extensive training of a classifier that detects left
and right motor actions (participants will clench their left or
right hand) within the motor cortex. The classifier model relies
on the hemispherical activation between the left and right-hand
actions. Once sufficient training is complete, the user will train
the classifier using the thought of left and right motor actions.
Previous studies [114]–[116] found that the mere thought or
representation of a motor action can trigger a response in
neurological pathways for actual motor action. This results
in a reliable and detectable signal for left and right control
without the need for ’real’ motor action (not even tensing).
MI’s primary benefit is the lack of need for visual or auditory
stimuli. However, MI requires extensive training individualized
for each user and is more susceptible to noise if the user is
mobile.

SSVEP: The SSVEP paradigm is popular with multiple vi-
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Fig. 13. An illustration of using imagined speech enabled by BCI to perform
thought-based social interactions. The figure depicts an example of how EEG
data can be decoded into handwriting and then text to be used for imagined
speech communication.

sual flashing stimuli that flicker at specific frequencies. SSVEP
BCI studies [117], [118] show that when a person observes
flickering/flashing visual stimuli, a synchronized frequency
activity can be observed in the occipital region of the brain.
In essence, if multiple flickering input control options are
presented to the user, the frequency of the occipital region’s
activity can be used to determine which control option the user
is focused on or targeting. SSVEP offers the advantage of not
requiring extensive training while being a reliable paradigm
for detection. The main drawback of the SSVEP paradigm is
the argument that the stimuli require too much attention, as
flickering visual stimuli will likely distract or block out the
surrounding environment.

Basic interactions and low-level intentions can be trans-
lated through active BCI paradigms such as P300, MI, and
SSVEP. High-level decisions present are far more challeng-
ing to decode. Many works explored various areas of the
hierarchy of executive decision-making [119]. One example
of a higher-level decision-making process is active spatial
navigation [21]. The work investigated the use of BCI during
active spatial navigation to understand the neurophysiological
behaviors of a user when processing spatial information when
navigating complex environments. The authors observed that
the retrosplenial complex (RSC, a cortical region of the brain)
theta activity correlates when a user engages in active spatial
navigation (identifying spatial locations around the user).
These biomarkers can indicate whether a user is lost within a
complex Metaverse environment. Other works explored the
use of AI to build training models that observe specific
behaviors/interactions of the user and attempt to decode the
neurological behaviors (such as robotic systems interaction
[120]–[122]. In conjunction with other multimodal information
and more advanced AI modeling, BCIs can infer and decode
many complex thoughts or intentions. These mechanisms can
be applied to the Metaverse to understand the user better and
facilitate a more intuitive user experience.

B. Social Interaction Using Imagined Speech

The ability to input semantic information is an essential
form of communication in human society. In the digital
era, the keyboard has become a ubiquitous tool that enables
a human to translate written language into a digital form
that can be communicated between humans and computers.

A key challenge in the Metaverse is to provide effective
communication methods for social interaction. The straight-
forward approaches are to use a virtual keyboard [37] or
use a microphone for direct speech [123]. In the traditional
line of thought, BCI can offer keyboard and letter selection
solutions through P300 [113], MI [124], and SSVEP [125].
However, it could be argued that these methods would be
inherently less efficient than traditional ones. We believe that
the more significant application of BCI for communication is
the potential of creating a new communication medium called
‘imagined speech’. By decoding human thoughts, semantic
comprehension, and emotions, BCI could allow individuals to
communicate through their thoughts alone [126], [127].

A recent innovation is the research by [128], which explores
decoding brain activity into text. This allows the Metaverse
user to interact socially by thought alone. Various works
achieved this feat [128]–[130] in which ECoG, an implanted
electrode grid, provides spinal cord injury patients with the
ability to generate text through thought. This technique de-
codes the brain’s motor cortex region to interpret the thought
or representation of the handwriting motor action (similar
to MI). Then, the handwritten text is translated into digi-
tized signals via deep learning. As suggested by [131], this
technology enables imagined speech communication between
the Metaverse and real-world users. In principle, the findings
from the ECoG results can be applied to EEG BCI devices.
Fig. 13 illustrates using EEG signals to classify imagined
speech for social interactions. The critical ongoing challenge
is translating this work from ECoG to EEG. The semi-
invasive BCI system (ECoG) is a direct form of brain activity
sensing with minimal noise. In contrast, a non-invasive EEG
BCI system may produce significantly worse signal quality.
Another challenge is that neurodiversity and the requirement
of extensive participant training will hinder the realization of
imagining speech technology.

Summary: The outlined BCI paradigms offer the potential
to build a more intuitive user interface and social interaction
for Metaverse use. Active BCI can enhance the fidelity and
intuitiveness of controlling Metaverse avatars. Our proposed
human digital twin framework (discussed in more detail in
the next section) can utilize these interactions to learn the
user’s behavior within the Metaverse and support intention-
driven action (instead of direction control). The ongoing
challenge is to develop a reliably detected paradigm in an EEG
signal that requires minimal training, does not unnecessarily
distract the user, and can be used by various users. These
ongoing challenges indicate the need for further research and
exploration into BCI to create new technologies for Metaverse
users.

V. HUMAN DIGITAL TWIN

Sociality is a key factor in the Metaverse [32]. The Meta-
verse must facilitate a social environment with continuity and a
stable population of users. A challenge within the Metaverse is
an unstable user base and the discontinuity of interaction when
a Metaverse user exits the interfacing device (XR/AR/VR or a
smartphone). This section examines the potential solution for
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Fig. 14. An outline of the key technologies and information involved in mapping the Human digital twin from human body sensing (with BCI and other
supporting technologies). The graph model illustrates the human digital states containing real-time information of the human user.

this problem by developing a Human Digital Twin(HDT) in the
Metaverse using BCI and Digital Twin (DT) technology. DT is
a computer-based model that simulates and emulates physical
entities, such as objects, humans, or human-related features,
with their digital counterparts [132]. While DT has been
applied in various areas, such as manufacturing, healthcare,
and the Internet of Things (IoT), the concept of HDT remains
largely unexplored. A few works [133], [134] attempted to
define HDT paradigms. Still, these primarily focus on using
conventional IoT sensors to collect human information, similar
to DT approaches in healthcare, such as fitness management
[135] and disease diagnosis [133]. To our knowledge, no work
has considered using human brain signals to construct HDT.

We propose the development of an HDT as the ultimate
Metaverse BCI prosthesis (see Fig. 15). The HDT will create a
stable population of Metaverse users that maintain continuity
between the Metaverse and the real-world. Using real-time
data metrics, such as EEG, smartphone, and smartwatch data,
the HDT will behave in the Metaverse as an extension of the
user in the real-world (when the user is not present in the
Metaverse). The HDT will interact with the Metaverse, other
Metaverse users, and other HDTs. The user can replace the
HDT by accessing and entering the Metaverse. In this section,
we will first outline the wearable technologies required to
achieve HDT (Section V-A) and the potential applications of
HDT within the Metaverse (Section V-B). We further discuss
potential challenges for the development of HDT within the
Metaverse (Section V-C) and emerging 6G communications
for HDT interaction (Section V-D).

A. Key Technologies to Enable the Human Digital within the
Metaverse

Fig. 14 outlines the core components of creating the human
digital twin. In this survey, we identify several technolo-
gies enabling HDT within the Metaverse. Technologies such
as BCI, wearable biosensors (heart rate, muscle, IMU, and
temperature), smartphones, and AI can be integrated into
the Metaverse to formulate the HDT to replicate life-like
representations of the user’s cognition, emotions, thoughts, and
movements.

1) Wearable Brain-Computer Interface: One clear advan-
tage of using human brain signals to construct HDT avatars

in the Metaverse is the potential reduction of the number of
sensors and wearable devices required for users, leading to
lower production costs and increased mobility and creativity.
The brain signals contain a wealth of information about
physical and mental health, such as the ability of EEG to
complement electrocardiograms in predicting and diagnosing
indicators of pathological perturbations, as demonstrated in
brain-heart interaction studies [136]. As a result, the number
of electrocardiogram sensors may be reduced or eliminated.
Using BCI to control prosthetic devices, as described in
[137], opens the door to potential BCI applications such as
performing activities of daily living. Other BCI approaches
can translate motor imagery and prosthetic limb movements
into control of virtual avatars, eliminating the need for external
sensors on the body [138]. With the advancement of technol-
ogy, we can expect future BCI-enabled Metaverse systems to
feature lightweight, highly mobile BCI devices for interaction
with Metaverse applications.

One of the central challenges in deploying HDT in the
Metaverse is ensuring high accuracy in the data measured
by integrated VR-BCI headsets, compared with data collected
from conventional sensors. To address this challenge, future
research may need to investigate the correlations and connec-
tions between brain signals and other human biological signals,
such as the electrocardiogram (ECG) and electromyogram
(EMG) [136]. Another challenge is real-time synchronization
and communication between HDT avatars and the Metaverse
users, which is essential for maintaining high-quality data
within the Metaverse.

Once the correlations and relationships between signals
among different brain lobes and the human’s biological sig-
nals, e.g., ECG and EMG, are recognized, a wide range of ap-
plications for the Metaverse can emerge. Multimodal machine
learning techniques, which recently advanced in processing
large amounts of data from various sources or distributions
[139], [140], can be a central component in a range of the
Metaverse applications. In [141], the authors proposed an MI-
BCI control framework that can work with multimodal signals,
i.e., EEG and fNIRS. In particular, the proposed multimodal
classifier based on a Convolutional Neural Network (CNN)
can extract spatial and temporal features of both EEG signals
and fNIRS images, thus resulting in higher classification
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accuracy. In [142], the authors proposed an interactive social
platform that integrates eye gaze, EEG signals and peripheral
psychophysiological signals of children with Autism Spectrum
Disorders (ASD) in a VR setting. The aim of the study in [142]
is to understand the underlying factors that affect ASD children
through emotion recognition tasks in a VR environment. As
a result, potential future works can improve the emotion
recognition abilities and eventual social functioning of children
with ASD.

Although the works mentioned earlier achieved adequate
performance with multimodal data in VR environments, incor-
porating such approaches into the Metaverse is still a signifi-
cant research gap. The main difference between conventional
VR settings and the Metaverse is that multiple HDT avatars are
involved, yielding more complicated interactive social systems
between the HDT avatars. In other words, multiple ‘brains’ of
different individuals would be synchronized in the Metaverse.
To fully understand the social connections and interactions
between such HDT avatars, conventional approaches consid-
ering a single deep learning/machine learning classifier for an
individual may fail to apply in a social HDT avatars setting
[31]. To address these challenges, transfer learning [143] and
meta-learning [144] can be applied. The transfer learning and
meta-learning techniques share the same interest in utilizing
underlying transferable features of the input signals, e.g.,
EEG, among different individuals. Once the learning models
are trained, they can be transferred or directly applied to
different HDT avatars with minimal fine-tuning processes. As
a result, the Metaverse applications can only maintain a small
number of learning models while guaranteeing high prediction
accuracy of different tasks, e.g., emotion recognition and
seizure prediction, compared with conventional machine learn-
ing approaches. This can reduce the maintenance, deployment,
and scalability costs for the Metaverse applications.

2) Wearable Sensors Technologies: Wearable and portable
technology has become ubiquitous in the current digital era.
BCI technology can unlock a wide array of human sensing
capabilities for a life-like HDT and can be further enhanced
through additional wearable sensors. There are many platforms
for wearable sensors, such as smartphones, smartwatches, and
smart clothing/jewelry [145]. These platforms utilize multiple
types of sensors, such as pulse oximetry, electrodermal ac-
tivity, global positioning system (GPS), inertial measurement
unit (IMU), microphones, cameras, and temperature sensors
(thermometers or thermistors). AI personalization and IoT
data sharing can enhance the interpretation of these sensor
measurements. These multimodal measurements and advanced
technology culminate into a sensory information mapping sys-
tem for emotions, cognitions, thoughts, and body movements.

Smartphones are an essential technology for everyday life.
Over 80% of the world’s population is estimated to own a
smartphone [146]. Smartphones offer a portable platform for
high-performing processing, network connectivity, and various
onboard (or attached) sensors [147]. Additionally, smartphones
can be the gateway device for users to enter and interact
with the Metaverse [148]. For the HDT-based Metaverse
interaction, the smartphone can measure physical (steps and
calendar/schedule logging), locational (GPS location and IoT

geographical data), and social activity (AI personalization
and IoT social data) [149]. This information can be used
to formulate the activities and location of the HDT as a
representation of the user in the Metaverse.

Smartwatches is an emerging technology that is growing in
popularity in daily life. A smartwatch is a wrist-worn comput-
ing device capable of communicating with other smartphones
and computer devices [150]. Smartwatches are often used
to monitor fitness, as an extension of a smartphone (phone
calls, messaging, payment, and music), and as an assistive
technology. Typically, smartwatches (such as Fitbit, Garmin,
Apple, or Samsung watches) will carry a range of integrated
sensors such as pulse oximetry, ECG, EMG, temperature,
and IMU [151]. These sensors can actively measure physical
exercise, basic emotional state (meditation and stress), health
metrics (cardiovascular), and longitudinal activity (sleep, steps,
and location) [152]. Within the Metaverse, the HDT can utilize
metrics to represent real-world users’ current bodily/mental
state and physical activity accurately.

B. Human Digital Twin Interaction within the Metaverse

Within the Metaverse, the HDT will co-exist with the digital
avatars of other Metaverse users. The fundamental difference
of the HDT is the independence from direct human-operator
control. Digital avatars function through the direct control of
a Metaverse user. In contrast, the HDT is designed to act
independently of the Metaverse user, driven only by high-
level intentions and preset instructions. Specifically, the HDT
is intended only to exist when the user is absent from the
Metaverse (the HDT is the digital twin in the Metaverse).

Fig. 15 represents the different interaction scenarios we
envision the HDT will engage within the Metaverse. The
lifecycle of the HDT begins with the user leaving the Meta-
verse (Scenario 1: User-HDT synchronization). The HDT will
replace the user’s avatar and become a representation of the
user when the user is present in the real-world. The HDT will
continuously synchronize with the user state through various
wearable technologies outlined in Fig. 14. Within the Meta-
verse, the HDT can interact with the avatars of other Metaverse
(Scenario 2: HDT-Avatar Interaction). The HDT will use
technology, such as natural language models, to simulate a
life-like interaction between an HDT and a Metaverse user.
Alternatively, if two real-world users interact, their HDT will
also interact (Scenario 3: HDT-HDT Interaction). This interac-
tion will center around the transference/sharing of information
and ensuring that real-world users can inform each other with
up-to-date information, similar to using social media. HDT’s
lifecycle ends when the real-world user enters the Metaverse
(Scenario 4: User-HDT replacement). The Metaverse user’s
avatar would replace the HDT, and all of the HDT’s activities
would be synchronized with the Metaverse user.

1) User-HDT Synchronization: The HDT addresses the
key discontinuity problem for Metaverse users once they exit
Metaverse. In this scenario, when a user exits the Metaverse,
the HDT will be activated to replace the user. As outlined
in Section V-A, the HDT can leverage several technologies,
such as BCI, smartphones, smartwatches, and AI, to create a
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Fig. 15. An illustration of the different scenarios where the Human Digital Twin (HDT) interacts with the Metaverse user, other avatars of Metaverse users,
and other HDTs. Each scenario depicts the types of interactions the HDT can engage in and the supporting technology to enable the interaction.

life-like extension and representation of the user within the
Metaverse [134]. Through AI personalization and behavior
recognition, the HDT can interact with other users’ avatars
and HDTs within the Metaverse. The HDT can represent
the current status of the real-world user through health and
biometric tracking technology [132], [135], [153]. The HDT
can accurately reflect the real-world user’s current status,
activities, and interactions within the Metaverse.

2) HDT-Avatar Interaction: Social life-likeness is impor-
tant when an HDT interacts with other Metaverse users’
controlled avatars. While the HDT will likely have a unique
status/identity within the Metaverse, the HDT must be life-like
to supplement the user base of the Metaverse (similar to non-
playable characters in video games) [154]. An HDT-to-avatar
interaction can provide a naturalistic interface for Metaverse
users to be informed on the status, activities, and locations
of other users in the real-world [155]. Using natural language
models, such as ChatGPT, the HDT can engage in authentic
social conversations with Metaverse users [156], [157]. This
technology can further personalize natural language models by
analyzing imagined speech [131] and prior social engagements
(social media or messaging) [158]. Overall, the HDT will act
as a representation of the real-world user that is capable of en-
gaging in meaningful social interactions with other Metaverse
users.

3) HDT-HDT Interaction: HDT-to-HDT interaction is an-
other distinctive form of interaction within the Metaverse.
This type of interaction occurs when two real-world users
interact within the real-world at the same location/area. In
this situation, the HDTs will communicate in an esoteric
manner to share information and update the real-world user
on various life events, similar to social media information
sharing [159]. This type of interaction shares similarities to
the spatial location functions of the Snapchat social platform
[160]. Within the Snapchat app, the spatial location of the
users is visualized on a map with Bitmoji avatar representation.

This spatial map is used to relay information, news, and other
social events to groups of users occupying the same spatial
area [160], [161]. BCI and other wearable technologies can
further enrich the behavior of HDT and shared information
by measuring the thoughts and well-being of the users. With
the growing usage of social media, HDT-to-HDT interaction
can be a useful tool for the expedient social transference of
information between two people.

4) User-HDT Replacement: The end of the HDT’s lifecycle
is when the real-world user re-enters the Metaverse (through
smartphone, VR/AR/XR, or other devices). In this scenario,
the user’s avatar will replace the HDT and the Metaverse user
can return to interacting within the Metaverse. During this
scenario, the HDT can provide highlights and narratives akin
to social media stories [162]. Creating a narrative can enhance
the acceptance of HDT as they are essential to informing and
continuing the user’s interaction/connection to the Metaverse
[154]. Furthermore, updating the user of the HDT’s activities
incentivizes other Metaverse users to interact with the HDT.
The importance of the avatar’s replacement of the HDT (over
the HDT co-existing with the user) is to maintain the HDT’s
identity as an extension of the user. If the user co-exists
with its own HDT in the Metaverse, it may create a sense
of disembodiment or detachment between the HDT and the
user [163]. Therefore, the process of a user-controlled avatar
replacing the HDT is paramount in facilitating a sense of
embodiment and continuity for the user.

C. Potential Challenges for the Development of the Human
Digital Twin in the Metaverse

Another critical challenge in enabling the Metaverse appli-
cations with BCI is real-time synchronization and communi-
cation between the Metaverse users and their HDTs. In the
following, we focus on the communication aspect based on
the two main perspectives that are (i) communications between
BCI headsets and other infrastructures in the physical world
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and (ii) communications between human avatars and other
avatars or technologies/virtual services in the Metaverse. The
first type of real-time communication is in the physical world,
while the latter is in the Metaverse. Real-time communications
in the physical world aim to provide robust and reliable
connectivity for users with equipped VR/BCI headsets. The
transmission of the brain signals over the network systems
should meet low latency and error requirements. On the
other hand, real-time communications in the Metaverse mainly
occur between the users or their avatars and the environment,
objects, or other avatars within the Metaverse. As a result, the
requirement of real-time communications in the Metaverse is
to achieve the continuity of user experience in the Metaverse
where there is a parallel presence between the Metaverse and
the real world.

1) Real-time Communications in the Physical World: To
achieve reliable and robust real-time communication between
BCI headsets and other devices, the infrastructures that sup-
port wired/wireless communications play an essential role.
In conventional BCI systems, e.g., BCI2000 [164], real-time
communications usually refer to scenarios where user brain
signals are acquired with wired connections. Thanks to hard-
ware development, wired connections are being replaced by
wireless connections with increasing mobility and reliability.
Early research works in wireless BCI utilize Bluetooth for
short-range communication between the BCI headset and
the processing unit, i.e., a computer [165]–[168]. Although
Bluetooth shows its capability in real-time communication,
the communication range of Bluetooth is relatively short, i.e.,
from a few meters up to a range of ten meters. Further efforts
to increase the communication range of the wireless BCI
systems are reported in [165], [169]–[172]. With significant
increases in communication range [165], [169], [170] and joint
computing-resource allocation [172], wireless BCI shows its
potential for enabling real-time communications between BCI
headsets and other infrastructures in real-time at a large scale.

As mentioned above, several works successfully investi-
gated wireless BCI systems’ connectivity and reliability. How-
ever, when large-scale systems include heterogeneous wireless
devices and medium access schemes, the radio resources
should be efficient management [35]. Specifically, Bluetooth
and fiber connections may not always be available for BCI
users because of coverage problems of such technologies. Such
problems require new wireless access methods, radio resource
allocation schemes, and broader bandwidth. In the following,
we discuss the potential solutions for the problems mentioned
above in wireless BCI systems.

To handle multiple requests and transmission of not only
brain signals but also VR content over the wireless environ-
ment, Time Division Multiple Access (TDMA) can be an
efficient solution. With TDMA, the time horizon is divided
into multiple time slots, and the BCI users can communicate
with the service providers or with each other in reserved
time slots [173]. However, using time domain division also
brings scheduling and data packet collision problems, thus
making the TDMA-based systems hard to scalable. Recent
advances in antenna design can enable many BCI users to
use Multiple Input Single Output (MISO) and Multiple Input

Multiple Output (MIMO) communications. For example, in
MISO systems, the service provider can be a multi-antenna
transmitter that can serve multiple users or multiple groups of
users via Spatial Division Multiple Access (SDMA) [174]. Ad-
vanced multiple-access methods can utilize the power domain
to transmit VR applications and brain signals. For example,
Non-orthogonal Multiple Access (NOMA) [175] and Rate-
splitting Multiple Access (RSMA) [176], [177] can be used
to enhance data transmission rate, thus increasing the quality
of service for the users. Besides advanced multiple access
methods, 6G systems can utilize broadband communication
techniques such as millimeter wave (mmWave) and Terahertz
to enhance data transmission rate further. In such 6G systems,
the data transmission rate is envisioned to be ten times faster
than that of the 5G systems, making seamless experiences for
data-demanded applications such as BCI-enabled Metaverse.
Section V-D discusses more in-depth information about 6G
technologies for HDT interactions in the Metaverse.

The techniques and methods mentioned above in wireless
communications are promising for BCI-enabled Metaverse
applications. However, the underlying theory behind such tech-
niques and methods is based on Shannon’s theory of wireless
channel capacity. In other words, the data transmission rate of
such methods cannot exceed the Shannon bound. Recent ad-
vances in machine learning and wireless communication tech-
niques enable the transmission beyond Shannon bound with
semantic compression and semantic communication [178].
Unlike conventional data compression techniques, such as
Shannon-Fano and Huffman coding, semantic compression
is designed especially for machine-based communications in
which intelligent machines only need specific semantic infor-
mation to encode/decode the data successfully. On the other
hand, semantic communication refers to using language and
other symbolic systems to convey meaning between individu-
als or groups. Semantic communication involves transmitting
words or signals and interpreting those words or signals within
specific contexts for their intended meaning. Considering the
brain signals as information that needs to be transmitted, we
need further investigations on the semantic meaning of the
brain signals, e.g., semantic reasoning of EEG signals [179],
to design effective semantic communication frameworks for
BCI-enabled Metaverse applications.

2) Real-time Communications for the Human Digital Twin
in The Metaverse: Unlike real-time communications in the
BCI/VR systems, real-time communications in the Metaverse
refer to the scenario where users can interact with the Meta-
verse environment and their digital avatars in real-time. For
this, the Metaverse applications should be able to provide
highly user-driven embedded facilities such as real-time rec-
ommendations and individual support for the users through the
virtual environment and digital avatars. For example, digital
avatars can give valuable suggestions to users based on the
analyzed brain signals. On the other hand, the quality of
immersion of users in the Metaverse through VR/XR should
also be highly considered. Our discussion about imagined
speech communications [180], adaptive VR/XR environment
rendering [78], error-related behaviors detection [79], [181],
and HDT in the previous section can also be applied in this
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context. The embodiment of the human digital avatars, i.e.,
HDT, can be further enhanced by using a digital twin. With
a digital twin, the human digital avatars can actively mirror
their real-world counterparts through sensory data [182]. In
addition, digital twin avatars can simulate or predict potential
user anomalous behaviors with reinforcement learning and
deep learning in real-time [182], [183]. This functionality can
also support other Metaverse-related interactions such as user
collaboration, conferencing, presentations, and educational
training/demonstrations [166].

D. Emerging 6G Communications Technologies for HDT in
the Metaverse

As the communications society is still actively discussing
the potential use cases and technologies in 6G systems, we
select and describe two use cases and corresponding technolo-
gies likely to be enablers for the HDT in the Metaverse. The
two use cases are (i) augmented reality/ virtual reality and (ii)
holographic telepresence and communications [184]–[186].
With key benefits from ultra-low latency, high reliability, and
massive device connectivity, 6G can provide a platform for
seamless AR/VR experiences over wireless networks. Specif-
ically, as the capacity and data rate are expected to reach
a Tb/s and a gigabit-per-second [184], respectively, VR/AR
applications with ultra-high resolutions can be fully realized.
While AR and VR applications can provide users with immer-
sive experiences in virtual environments, the primary goal of
6G telepresence is to enable users to feel physically present
in a remote location or environment [186]. To fully realize
an immersive remote experience, all five senses of humans
are expected to be digitized and transferred across networks
[184]. Similarly, haptic feedback from the remote environment
to the users can also be utilized through haptic sensors,
e.g., vibration and heat from nanogenerator sensors [187], to
generate truly telepresence experiences. Utilizing these haptic
feedback mechanisms ensures that users can experience a
tangible and responsive connection to the Metaverse.

An enabler technology for realizing the above use cases
could be edge computing, which brings data processing units
closer to the users than cloud computing. Edge computing
can be realized through network virtualization and network-
slicing technologies, which create virtual sub-networks (or
slices) of devices on a shared physical infrastructure. This
allows network operators to tailor different slices to meet
specific requirements of diverse applications, such as enhanced
mobile broadband, ultra-reliable low-latency communications,
and massive machine-type communications. As a result, it
enables faster data processing and lower latency, thus con-
tributing to a more responsive and immersive experience in
AR/VR applications [181]. An innovative approach to ad-
dress latency and communication efficiency challenges can
be achieved by leveraging edge computing capabilities and
incorporating semantic communication technology [188]. Se-
mantic communication involves exchanging information with
contextual meaning, allowing for more intelligent and context-
aware communication between entities in the Metaverse [178],
[188]. This approach introduces a layer of understanding to the

communication process, enabling participants to interpret and
respond to information more efficiently.

Integrating BCI technology and haptic sensors within the
framework of holographic telepresence in 6G systems can
offer profound benefits, contributing to a highly immersive
and responsive user experience. The fusion of BCI and hap-
tic feedback sensors in holographic telepresence introduces
notable challenges, primarily centered around precise timing
and synchronization. For instance, BCI sensors, like EEG used
to capture mental states, may have a distinct threshold for
latency requirements. In the case of the P300 paradigm, a
delay tolerance of 300 ms is necessary to capture EEG signals
triggered by stimuli in the virtual environment. However, this
delay is notably longer than the stringent timing requirements
of haptic feedback sensors, which typically operate within a
range of 20 ms to ensure real-time responsiveness. Achiev-
ing synchronization between these diverse sensory inputs is
crucial to delivering a coherent and immersive holographic
telepresence experience. 6G technologies, such as massive
MIMO for robust signal transmission, network slicing for
dedicated high-bandwidth channels in the sub-THz range, and
massive machine-type communication (mMTC) for flexible
data frame structure [189], play important roles in supporting
the efficient communication and synchronization required for
this integrated system.

Summary: The HDT can address the key issues of user
continuity within the Metaverse and act as a medium for
social interactions. By utilizing BCI, AI, and other emerging
technologies, the HDT can act as a digital prosthesis or
extension of the user within the Metaverse when the user
is not actively in the Metaverse. If the HDT is successfully
integrated, it will dynamically reshape the social environment
of the Metaverse. Like social media, the HDT will create a new
dimension of information sharing and user interaction between
humans and their HDT. Furthermore, the emergence of 6G
technology can solve many technical challenges to actualizing
the HDT in the Metaverse.

VI. CHALLENGES, EMERGING APPLICATIONS, AND
FUTURE RESEARCH DIRECTIONS

Despite the success in clinical trials and healthcare appli-
cations, there are still debates on using BCI technologies for
commercial products. We discuss the open issues regarding
the usability of BCI for the Metaverse, ethics, and security.
We also review potential research directions of BCI toward a
human-centric design for the Metaverse.

A. Current Challenges

1) Translational Development: One key obstacle to using
BCI within the Metaverse is translating the laboratory-based
BCI research into a real-world technology [190]. BCI-related
research works involve a human subject performing a task
within a controlled environment while wearing a high-density
wet electrode system (often 64, 124, or 256 channels) to
maximize recorded signal quality [72]. BCI technology in a
real-world setting (or research in the wild) can be far more
challenging than a research environment [191]. Factors, such
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as the user’s complex emotional/cognitive state from daily
life, noise from movement, neurodiversity, user comfort (dry
electrodes may be uncomfortable and wet electrodes can dry
out), neurodiversity, and diversity in users’ head/hair shapes
can affect the feasibility of using BCI devices in the real-
world [192]. Ideally, Metaverse users should be able to easily
wear and use BCI technology while engaging in various
activities, such as locomotion and interaction in the virtual
world. Furthermore, security and privacy considerations must
be made to ensure a safe and ethical experience for Metaverse
users [193]. There is a need for further longitudinal studies
to investigate the human factors of long-term usage of BCI
devices in the real-world and the Metaverse.

2) Hardware Development: The first challenge comes from
brain signal extraction for BCI applications. Although the
portability and mobility of non-invasive BCI technologies
enable commercial products, the brain signals extracted with
such non-invasive BCI technologies through either dry or wet
sensors usually come with a low signal-to-noise ratio (SNR)
compared with the invasive methods. The reason is that the
external sensors in non-invasive methods are further away from
neuronal sources, plus noise, muscle contraction artifacts, and
other tissue-related interference, making signals extracted less
effective. On the contrary, invasive methods with the implanted
electrode grids under the skull can provide less noisy and more
reliable readings. However, the usability of invasive methods
still faces criticisms and ethical concerns.

The hardware and software capabilities remain open chal-
lenges toward the two distinct directions of the BCI methods.
The invasive BCI research and development may focus on
designing microchips and grids that can be implanted under
the skull. The recently funded companies such as NeuralLink
[194] and BrainGate [195] are operating toward this vision.
However, such companies still develop their products based
on clinical trials for patients with paralysis or animals. Apart
from this direction, other companies such as Neurable [196]
and OpenBCI [197] focusing on non-invasive BCI methods
aim to develop portable, highly mobile BCI devices for daily
use. Moreover, OpenBCI’s Galea headset is a VR-BCI device
that allows users to play games and interact with virtual
environments through thoughts [198]. We can expect potential
Metaverse applications based on VR-BCI technology in the
near future. However, the software must be further developed
due to the noisy nature of non-invasive BCI signals. The
wearable weight and comfort of such devices should also be
considered in design and development.

3) Software Development: The software development for
BCI may heavily focus on extracting and monitoring brain
signals. Understanding an individual’s brain signals is a chal-
lenging task, let alone the neurodiversity among the popu-
lation, age, race, and health. For example, the EEG signals
from an individual may almost differ from the others in terms
of amplitudes of the signals and the delayed responses to
external events. As a result, one software or algorithm does
not always fit all. Dealing with the neurodiversity between
populations is still an open research issue [31]. Few research
works attempted to address this problem, but the existing
methods are still limited to a few research participants [172],

[199]–[201]. The common approaches of the above studies
are additional feature extraction techniques [199], feature
representation [200], multimodal machine learning [201], and
meta-learning [172]. The main goal of these works is to ensure
that the trained machine-learning models can be applied to
a new BCI subject without further user-specific training or
calibration. Thus, this can significantly enhance the scalability
and interoperability of the system. For the large-scale BCI-
enabled Metaverse systems, besides developing accurate signal
processing schemes, resolving the neurodiversity of brain
signals should be further investigated.

4) Security and Privacy: The security and privacy of
personal information/data is one of the major concerns in
the modern digital era [193]. The commercialization of BCI
systems leads to Metaverse/BCI users inadvertently sharing
their neurological data, often without a complete understand-
ing of the encoded information and the associated risks. The
collected and stored neurological data can be decoded to
discern personal bodily health, mental state, age, and other per-
sonal information [202]. Recent studies showed that analyzing
resting-state fMRI data [203] and local field potentials [204]
of the BCI users can reveal diseases such as Parkinson’s and
Alzheimer’s, respectively. Additionally, predicting a person’s
brain age can yield further insights into the person’s current
and potential future mental states (likelihood of onset diseases)
[205]. A breach of such sensitive information could subject
users to various risks, including social repercussions (such
as losing friends), personal impacts (affecting mental health),
and economic consequences (including job loss), thereby
compromising their overall well-being. Within the Metaverse,
safeguards should ensure that users are fully aware of the
collection, usage, and associated risks of their personal data.

Another important issue is the user agency and model trans-
parency during human-AI teaming [206]. The abstraction of
neurological data and training through AI modelling presents
liability risks for a user’s actions and agency. The lack of an
interpretable AI model for the BCI system can result in the loss
of trustworthiness in AI models and a negative user experience
[65]. Additionally, the complex and abstract nature of human
thoughts and cognition can lead to doubt in the decision-
making and whether the liability/consequence falls on the user
or the AI model [190]. Therefore, employing a trustworthy AI
framework with interpretable machine/deep learning models is
paramount to support human-AI interaction better [65], [207],
[208].

In BCI-enabled Metaverse applications, the BCI headsets
connected to the Internet also expose the users to potential
privacy issues such as hackers, corporations, or government
agencies that can track or even manipulate an individual’s
mental experience [209]. Specifically, the Metaverse is a social
platform for users to socialize and exchange information (per-
sonal activities, status, and life events) [36]. Metaverse users
are at risk of malicious actors gathering their BCI and personal
data for monetary gain. Similar to privacy issues of existing
social media platforms such as Facebook and Twitter, in which
the user data is the product of the social media platforms,
the users’ information can be sold to companies for targeted
advertisements. Blockchain technology is a key technology to
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ensuring a decentralized Metaverse with a transparent con-
sensus mechanism to prevent the data manipulation problems
of a firm/company in a centralized Metaverse [210], [211].
By leveraging transparency and the benefits of immutable
nature, blockchain technology provides a robust framework
for securing Metaverse users’ data from unauthorized access
and tampering. With further development in the deployment
and scalability factors, blockchain technology could be a
crucial mechanism for creating a safer environment for users to
engage in the immersive experiences of the Metaverse [212].

5) Ethics: Thanks to the rapid growth of machine learning
and deep learning algorithms, much research has shown that
using machine learning and deep learning enables highly ac-
curate predictions and classifications on different BCI settings
[31]. Although such algorithms successfully achieved high per-
formance, they are usually tricky or impossible to comprehend
[213], [214]. As a result, this introduces an unknown and
unaccountable process between the neural pathways within
the brain and the external technologies within the Metaverse
[215]. For example, the deep learning-aided auto-correction
mechanism in imagined speech communication [131] may
send unintended messages that the user is possessive about. To
void this issue, implementing a BCI-enabled Metaverse system
needs to prioritize “how” and “when” to send and/or collect
imagined speech of the users. Toward an ethical solution for
this, a collaborative project named BrainCom [216], funded by
the European Union, is developing speech synthesizers with
BCI technologies. Such technologies aim to vocalize the users’
thoughts and ethical concerns accurately.

B. Emerging Applications and Future Research Directions

Although BCI has a long development history, integrating
BCI into the Metaverse is still in its infancy. Thus, the industry
and academia’s interest in this topic will expand in the coming
years. In this section, we discuss the emerging applications of
BCI toward the Metaverse. Furthermore, we present several
potential research directions.

1) Integrated VR-BCI Devices: The recent development of
hardware and software for BCI applications in VR and XR
enables improved portability and reduced costs of integrated
VR-BCI devices. Some start-ups are developing headsets that
allow users to control the VR environment using their EEG
signals. For example, Galea [217] and Cognixion ONE [218]
are the headsets developed by OpenBCI and Cognixion, re-
spectively, use from 6 to 8 dry EEG electrodes, in combination
with transmission module, e.g., Bluetooth and WiFi, and
eye tracking module. Galea is a VR-based headset, while
Cognition ONE is an AR-based one, so these devices function
very differently. Galea focuses on translating EEG signals into
digital commands for VR games and applications. On the other
hand, Cognixion ONE uses EEG signals, eye movement, and
facial expressions to control digital devices and interact with
augmented environments. Overall, both Galea and Cognixion
ONE are innovative and exciting products pushing the bound-
aries of brain-computer interface technology. However, they
have different strengths and applications, so their choice will
depend on the user’s needs and preferences. For example,

Galea is more promising for gaming applications in the BCI-
enabled Metaverse, where users can control their players
through their thoughts. The simplicity and wireless design
of Cognixion ONE could indicate that the device is more
appropriate for healthcare Metaverse applications.

2) Multitasking in the Metaverse: Most of the current ma-
chine learning and deep learning approaches for BCI applica-
tions are task-specific, meaning that a machine learning model
is associated with an individual, given a specific demand,
e.g., emotional detection and seizure prediction [31]. This
approach is suitable for the classifiers to be deployed at the
user site, e.g., a pre-installed software in the headset. However,
when it comes to multitasking applications, e.g., combined
imagined speech and emotional recognition, the task-specific
classifier/software may fail or downgrade the performance.
For example, in some Metaverse applications such as virtual
fighting, fitness, and dance gaming, the multisensory data from
EEG, facial expression, and emotional states can be jointly
exploited to enable secure imagined conversations between
groups of users and reduce potential motion sickness induced
by fast-moving scenes. To fully exploit the multisensory data
in such scenarios, multimodal machine learning approaches,
which we described in Section V-A, can be a suitable ap-
proach. With multimodal machine learning, we can expect
only one machine learning model to assist the user in various
tasks, from emotional recognition to imagined speech commu-
nication, without requiring changes or upgrades in software
and hardware.

3) Potential Research Directions: Regarding the technical
challenges and usability of the BCI-enabled Metaverse con-
cept, different aspects of this new concept must be further
investigated and studied. The following discusses the potential
research directions for the BCI-enabled Metaverse systems.

Machine Learning for processing heterogeneous
datasets: In recent years, the notable trend in BCI has been
the application of advanced machine-learning techniques
for analyzing brain signals. Similarly, machine learning
techniques will be a significant component in the BCI-
enabled Metaverse system. Unlike conventional problems in
BCI research, which extensively focus on designing highly
accurate classifiers for specific tasks [31], the integration of
BCI into Metaverse brings new challenges. One of the most
notable is addressing the system’s complexity in processing
multiple sources of human brain signals. As shown in early
findings [172], [199], [201], the participation of multiple users
in a task yields a degraded performance for the classifier due
to the neurodiversity among the users. The neurodiversity
suggests that the brain signals such as EEG or fMRI are
highly individual and different among users based on gender,
age, and other factors [219]. As a result, a classifier trained
with one dataset, e.g., EEG, of a person does not work well
with one another.

Conventional approaches with machine learning require
different classifiers for different people, thus resulting in inef-
ficient computing and poor usability. To address this problem,
further analysis on the brain signals [199], [201] or advanced
machine learning algorithm, e.g., meta-learning [172], can be
applied. As a result, only one classifier can be used across the
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users without degrading the performance. Although a few early
works address the neurodiversity problem, the large number of
data generated from human activities, including human brain
signals, poses new challenges. The virtual environments in
the Metaverse also raise technical concerns about combining
virtual environments’ constraints, e.g., motion sickness and
delay, into creating effective machine learning models. The
multiple modalities of the data sources make it hard to
understand and analyze the informative features. The multi-
modal machine learning techniques discussed in the previous
sections can be a potential solution. Apart from multimodal
approaches, the success of attention-based machine learning
models, e.g., Transformer [220], in understanding complex
problems, ranging from visual scenes to language understand-
ing, make it a potential candidate for tacking the multiple
modalities of the evolved data in the Metaverse. The attention-
based mechanisms with designed attention vectors allow the
machine learning models to pay attention to the most valuable
parts of the data, thus making the data extraction process more
effective. In addition, the applications across the virtual worlds
in the Metaverse can share similar features, e.g., user behaviors
in applications such as e-commerce. Therefore, we can better
exploit the valuable features and optimize the machine learning
models by learning transferable features of the virtual worlds.
In such scenarios, transfer learning techniques are commonly
used [143].

Human Digital Twin for Maintaining Continuity in the
Metaverse: As discussed in Section V, HDT will play a key
role in helping us better understand the virtual embodiment
of the human body in the Metaverse. In future Metaverse
applications, HDT should provide intelligent interfaces for
digital avatars by using the brain signals and leveraging 3D
visual effects of the human body, e.g., facial expression and
body pose, to construct individual avatars. As a result, the
continuity of the Metaverse can be maintained, such that
the HDT can auto-generate or self-operate in the virtual
environment with less control from humans. The human users
can join the Metaverse and replace the HDT with their avatars
when wearing VR/XR headsets (see Fig. 15). To this end, the
brain signals can be mixed with other human data such as body
motion with physical engines [9], [10], and facial expression
[11] to construct the most realistic and personalized HDT in
the Metaverse. This can be a new research area that lies at
the intersection of neuroscience, e.g., using human biological
data, and 3D avatar construction, e.g., using facial expression,
limb movement, and kinematics study of the human body.

VII. CONCLUSION

This survey provides an in-depth overview of non-invasive
BCI technologies and their potential applications in the Meta-
verse. With BCI-enabled applications, the Metaverse is ex-
pected to be highly personalized and customized to individual
needs. Furthermore, the users can interact with the virtual
environments with a limited number of sensors, such as
kinematics and handheld devices. We also discussed a novel
concept of HDT, where the twin representations of the users in
the virtual worlds can be developed using a digital twin. Lastly,

we discussed the open issues, including security, privacy, hard-
ware and software capability. The potential research directions
were also covered. Alternatively, the survey outlines the initial
steps for the potential research area evolved at the intersection
of BCI and the Metaverse technologies, e.g., VR/XR, 3D
environment construction, and real-time communication and
synchronization.
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