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Abstract  
Objective: The accurate diagnosis of mixed-type gastric cancer from pathology images presents a 
formidable challenge for pathologists, given its intricate features and resemblance to other subtypes 
of gastric cancer. Artificial Intelligence has the potential to overcome this hurdle. This study aimed 
to leverage deep machine learning techniques to establish a precise and efficient diagnostic approach 
for this cancer type which can also predict the metastatic risk using two software, QuPath and U-Net, 
which have not been trialled in gastric cancers.  
Methods: Undifferentiated components from 186 pathology images of mixed-type gastric cancer 
were annotated using the open-source pathology imaging software QuPath. A U-Net neural network 
was trained to recognise, and segment differentiated components in the same images. The outcomes 
from QuPath and U-Net were used to calculate the ratio of differentiation/undifferentiated 
components which were correlated to lymph node metastasis.  
Results: The models established by U-Net recognised ~91% of the regions of interest, with precision, 
recall, and F1 values of 90.2%, 90.9% and 94.6%, respectively, indicating a high level of accuracy 
and reliability. Furthermore, the receiver operating characteristic curve analysis showed an area under 
the cure of 91%, indicating good performance. A bell-curve correlation between the 
differentiated/undifferentiated ratio and lymphatic metastasis was found (highest risk between 0.683-
1.03), which is paradigm-shifting. 
Conclusion: QuPath and U-Net exhibit promising accuracy in the identification of undifferentiated 
and differentiated components in mixed-type gastric cancer, as well as paradigm-shifting prediction 
of metastasis. These findings bring us one step closer to their potential clinical application.   
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Introduction 

Gastric cancer remains one of the leading causes of cancer and death worldwide. According to 
GLOBOCAN 2020 global cancer statistics, gastric cancer contributed to 5.6% of all new cancer cases 
and 7.7% of all cancer-related deaths [1], which made it the fifth most common cancer and ranked the 
third leading cause of death worldwide [2]. East Asia has the world's highest incidence of gastric cancer, 
and it is the third most common new cancer case in China [3].   
 
Gastric cancer is often in advanced stages when first detected. It has a heterogeneous nature that can 
present with different histological subtypes, categorised into intestinal, diffuse, and mixed types based 
on Lauren's criteria [4]. Each cancer type has distinct morphological and molecular features, e.g. 
adenoid differentiation in the intestinal type, and irregular and diffused structure in the diffuse type 
[4]. Mixed-type gastric cancer, in particular, is characterised by the co-existence of glandular and 
undifferentiated components and is associated with a more unfavourable prognosis compared to the 
other two subtypes. Pathological assessment of tissue specimens continues to serve as the gold 
standard for diagnosis, yet it heavily relies on the expertise of pathologists and their ability to 
accurately identify the glandular and undifferentiated components in the tissue sections.  
 
As the precise diagnosis of mixed-type gastric cancer can be challenging due to its complex 
histological features and overlapping characteristics with other gastric cancer subtypes, Artificial 
Intelligence may have transformative potential to overcome this clinical challenge. Here, we 
investigated the feasibility of machine learning techniques, which have been fast developed in clinical 
oncology for diagnosis, predicting prognosis and informing clinical decisions [5]. The convolutional 
neural network is the most commonly used approach that has been implemented in cancer diagnosis 
using endoscopic images [6]. U-Net is one such model for image segmentation, which uses a U-shaped 
topology with an encoder and a decoder to extract and analyse the features of the image through 
convolution and pooling to generate segmentation results [7]. To date, U-Net has been widely used in 
developing automated medical image segmentation, especially in cancer images, with high accuracy 
and robustness [8, 9]; however, its application in diagnosing mix-type gastric cancer from pathological 
images has not been reported. On the other hand, QuPath is an open-source pathology software for 
image analysis, including visualisation, segmentation, classification, and quantitation [10], which has 
a strong potential for clinical use in the future. Therefore, we trained both QuPath and U-Net to 
automate the segmentation of undifferentiated and differentiated components in pathological images 
of mixed-type gastric cancer. 
 
In recent years, mixed-type gastric cancer has been found to be associated with higher risks of lymph 
node metastasis at both early and advanced stages compared with the other two types [11, 12]. The 
metastatic risk may be closely related to the differentiation status of the cancer cells rather than the 
staging, where undifferentiated components have a higher likelihood of migrating to the lymph nodes 
and thereafter, remote organs [13]. The prediction of lymph node metastasis is crucial for deciding the 
extent of lymphadenectomy by surgeons. Insufficient lymphadenectomy may result in cancer 
recurrence and metastasis, whereas over-lymphadenectomy can lead to complications, such as 
oedema and lymphatic fistula, affecting post-operational recovery [14]. Therefore, in this study, we 
correlated the ratio of differentiated/undifferentiated components to lymphatic metastasis identified 
during surgery to determine whether this ratio is a good predictor for the risk of metastasis of mixed-
type gastric cancer during treatment planning.   

 

Subjects and Methods 

Subjects 
A total of 186 pathology images from 70 cases were selected from patients undergoing gastrectomy 
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and lymphadenectomy from September 2019 to September 2022 who were subsequently diagnosed 
with mixed-type gastric cancer by pathologists at the First Affiliated Hospital of Gannan Medical 
University. All slides were stained by hematoxylin and eosin (H&E), scanned as a whole slide image 
containing the entire area of the lesion (KF-PRO-005-EX, 40x mag, 0.25mm/pixel), and saved as 
Scalable Vector Graphics (SVS) files. The inclusion criteria were: no large area of necrosis within 
cancer tissue; confirmed diagnosis of mixed-type gastric adenocarcinoma by both H&E and 
immunohistochemistry staining; complete removal of cancer tissue; ≥ 15 lymph nodes collected from 
perigastric, D2 and D3 regions; and having complete admission record. The exclusion criteria were: 
patients receiving additional anti-cancer therapies before the surgery; low quality of the original 
staining and slides; and incomplete admission record.   
 
Deep learning of mixed-type gastric adenocarcinoma 
Training segmentation of regions of interest (ROI)   
The differentiated components in the entire slide of a mixed-type gastric adenocarcinoma were 
isolated as ROI in QuPath software using the 'Create Threshold' function (circled by a red line in 
Figure 1a). This resulted in 13006 ROI with a total area between 122 – 47264 µm2 (Figure 1b). U-
Net architecture, including an encoding module and a decoding module, was used to segment the 
areas outside the ROI into small patches, which were trained together with the ROI (Figure 1c). ROI 
was covered by cv2.fillPoly during patch segmentation. The patch sizes were also adjusted (1028 x 
1028 µm) to prevent overlapping between the ROI and non-ROI areas. The empty spaces or 
unoccupied areas were excluded during the analysis by setting a minimum threshold in U-Net (Figure 
1d). The training also considered multiple sections in the same image during segmentation. 
 
During the analysis of the distinguished components within the ROI using QuPath, it was observed 
that the presence of glandular structures exhibiting various levels of differentiation could potentially 
impact the accuracy of segmentation. To mitigate this issue, the aforementioned region was 
individually annotated, resulting in the generation of distinct categories of ROI regions. These 
differentiated components were subsequently exported for further analysis. Regarding the diffused 
poorly differentiated components in U-Net, signet ring cells and acellular mucin pools were 
considered poorly differentiated components. The 'Create Threshold' function also was used to 
distinguish cancerous cells from other cell types, such as smooth muscle, immune cells, and neurons. 
This process involved adjusting the threshold, which would have imposed a substantial workload if 
performed manually. The differences in pixel values among different cell types enable accurate 
identification. For example, for immune cells, the resolution was selected as full (0.27 μm/px), which 
can retain the original image and make the classification more accurate. The channel was selected as 
red, and the prefilter was selected as Gaussian. For the smooth muscle cells, which tend to have higher 
pixels than the undifferentiated cancer cells, lowering the threshold can exclude the muscle cells 
during analysis. For neurons, the Smoothing Sigma value was finely adjusted manually to exclude 
them from cancer cells. Smoothing Sigma value was also tuned when there was a significant variation 
in tumour distribution and morphology. Connective tissue and adipose tissue normally yield 
extremely high pixel values, and therefore did not require special settings. In some cases, a few 
perigastric lymph nodes were present in the outskirt of the images, which can contain undifferentiated 
and differentiated metastatic cancer cells. Those lymph nodes were recorded as perigastric lymph 
node metastases. 
 
Deep learning 
Before training the model, it is necessary to divide the dataset into a training set and a test set. The 
"train-test-split" function was used to separate the patch-based SVS image information from the 
extracted ROI regions. The training set accounted for 90% of the data, while the remaining 10% data 
were in the test set. Then, the U-Net model was used to train the differentiated glandular area in the 
SVS image and perform automatic segmentation. During the training, the setting of batch size was 4, 
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the learning rate was 1e-4, and the number of iterations was 50. The accuracy was improved through 
multiple training iterations. The U-Net model adopted the classic Convolutional Neural Networks 
structure, which can segment the differentiated cancer components in advanced mixed-type gastric 
cancer. The U-Net model constructed in this project included four downsampling paths and four 
upsampling paths. Each downsampling path consisted of two convolutional layers and one max-
pooling layer, while each upsampling path consisted of an upsampling layer, two convolutional layers, 
and a ReLU activation function. The Softmax Activation function was used for the output layer. The 
input was the original image, and the output was the segmented result. The learning curve is shown 
in Figure 2. 
 
For tissues that are difficult to distinguish, segmentation was performed through multiple 
comparisons to achieve the best outcome using different thresholds and Smoothing Sigma values. 
After determining the ROI by the Annotation function, each region was exported one by one into 
a .xlsx file to achieve the final threshold for training. 
 
It is necessary to evaluate the performance of the U-Net model using the output results. The receiver 
operating characteristic (ROC) curve and area under the curve (AUC) value were used. The ROC 
curve was plotted using the correlation between the true positive and false positive rates to reflect the 
model performance at different thresholds. As a result, the higher the AUC value, the better the model 
performance. 
 
The trained model was also subjected to model calibration. In model calibration, the un-analysed SVS 
images of advanced mixed-type gastric cancer (without manual annotation of ROI) were segmented 
following the above method using a 1024 x 1024 window. After the U-Net model was trained, the 
predicted image was used to evaluate the model performance. 
 
Quantifying the ratio of differentiated/undifferentiated components in mixed-type gastric cancer 
Through the model construction, differentiated and undifferentiated components were identified in 
advanced mixed-type gastric cancer images. All the ROI data were exported by Annotation 
measurements, including image information, area, and pixel coordinates. Then, the area values were 
used to calculate the differentiated/undifferentiated ratio (DUR). This ratio was subsequently 
correlated with age, gender, tumour status, and lymph node metastasis (LNM) for all 70 patients. Age, 
gender ("male" = 0, "female" = 1), tumour size, tumour stage, and DUR were used as independent 
variables, and LNM was used as a dependent variable ("no lymph node metastasis" = 0, "lymph node 
metastasis" = 1). A random forest model was used to evaluate the correlation between the independent 
and the dependent variables. Random Forest Regressor from Sklearn in the Python library was used 
to build the random forest model. Then the index of each variable was obtained by Feature Importance 
to assess whether the DUR is an independent risk factor for LNM, and compare the effect of each 
variation on LNM. 
 
After confirming that the DUR is an independent risk factor for LNM, a naive Bayes classifier was 
used to investigate the correlation between them. DUR was divided into 20 intervals, labelled as L1 
to L20. All values were converted into one-hot encoding, and interval information was converted into 
model input. These codings were used as feature variables for classification. The best alpha value was 
selected through ten-fold cross-validation, usually set to 0.1. After importing all the data, the 
GridSearchCV function was used to optimise the hyperparameter for training the naive Bayes 
classifier. The trained model was then used to predict the probability of LNM in each DUR interval. 
Such prediction can assist the decision-making process on the extent of lymphadenectomy. 
 
Results 
Model evaluation 
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Among 13006 ROI, U-Net recognised 11,822 True Positive (TP), 936 False Positive (FP), 184 False 
Negative (FN), and 64 True Negative (TN) results. The precision was calculated as TP / (TP + FP) = 
0.9266, suggesting a strong capability of categorising. The recall was calculated as TP / (TP + FN) = 
0.9847, suggesting a strong recognition ability of positive samples. The F1 score was calculated 2 x 
(precision x recall) / (precision + recall) = 0.9548, suggesting the model has a strong overall 
performance. The AUC of the ROC curve was 0.91 suggesting a good performance of U-Net (Figure 
3). During model calibration, SVS images were segmented into patches without annotated ROI before 
the analysis using U-Net. Some differentiated components (~ 9%) were not recognised, which may 
be due to a small number of negative components during training. 
 
When evaluating the recognition and segmentation of undifferentiated components, the Smoothing 
Sigma value was typically between 0-5, with a typical value of 2.5, while the threshold was usually 
between 80-200. Figure 4a shows the segmentation of normal glands and cancer tissue through 
threshold adjustment (same Smoothing Sigma value for the same slide), where the cancer component 
was labelled in red. Figure 4b shows the cancer tissue (in red) infiltrating inside muscle tissue was 
segmented from smooth muscle accurately. Figure 4c shows the identified undifferentiated 
components (in red) in the mucus of the mixed-type cancer tissue by adjusting the threshold. Using a 
similar method, lymphoid tissue (in blue) can be easily segmented from surrounding cancer tissue 
(Figure 4d). 
 
Variable to predict the risk of LNM  
The age, gender, tumour size, tumour stage, DUR and LNM information from each case are 
summarised in Table 1. The risk of LNM is lower before the age of 58, but increases significantly 
with age, indicating that LNM is more likely to occur in elderly patients (Figure 5a). The incidence 
of LNM in male patients was higher than in female patients (Figure 5b). The risk of LNM is the 
highest when the tumour diameter is between 3-5cm (Figure 5c), with a much higher risk of LNM in 
stage 4 than in stage 3 (Figure 5d), as expected. Also, the correlation between the DUR and the risk 
of LNM exhibits a bell curve, with a higher risk in the middle range (Figure 6a). Very low and very 
high DUR correlate with a low risk of LNM occurrence (Table 2). The likelihood of LNM reached 
its peak when the DUR was between 0.683 and 1.03. Figure 6b also shows that the middle value of 
DUR correlates with the highest lymph node metastatic ratio (the number of metastatic lymph nodes 
/ total number of lymph nodes). These findings suggest that in advanced mixed-type gastric cancer, 
the fewer mixed components, the lower the risk of LNM. In summary, there is a correlation between 
LNM and age, gender, tumour size, tumour stage, and DUR. 
 
Importance index of independent values 
A random forest prediction model rated the importance of each parameter (Figure 7). The DUR has 
the highest index, suggesting the greatest impact on LNM; while gender has the smallest impact, 
suggesting no strong gender difference in the risk of LNM. The precision of the model was 0.79, the 
recall rate was 0.57, and the F1 value was 0.73, indicating a reasonable accuracy of the prediction 
model. With the above model, it can be determined that DUR is an independent risk factor for LNM, 
and the relationship between them is non-linear. 
 
Discussion 
Advanced mixed-type gastric adenocarcinoma requires accurate staging to determine the extent of 
the disease and the appropriate treatment plan. With the accelerated development of Artificial 
Intelligence, it has been increasingly used to develop reliable and accurate automated diagnostic 
models for tumour diagnosis based on pathological images. This approach can be advantageous in 
reducing errors caused by human factors. In this study, we used deep learning techniques to train U-
Net and QuPath in diagnosing mixed-type gastric adenocarcinoma, which displayed good efficiency 
in recognising differentiated and undifferentiated components from pathology images. We also 
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showed that the DUR can predict the metastatic risk of such cancer type reasonably well.  
 
While early-stage gastric adenocarcinomas can be eliminated by endoscopic procedures due to their 
invasion confined to the gastric mucosa and submucosa without lymph node metastasis, poorly 
differentiated type and late-stage cancers require resection in addition to chemotherapy and 
radiotherapy. Albeit the guidelines on resection procedure for gastric adenocarcinomas at different 
stages, the practice varies from surgeon to surgeon, and different countries have different standards 
too. Among them, the extent and need for lymphadenectomy continue to be debated and studied. 
According to the 2022 version of the resection for gastric adenocarcinomas in China [15], there are 
two types of lymphadenectomy, D1 (lymph nodes around the stomach, i.e. groups 1-7) and D2 (all 
lymph nodes in D1, and those along the hepatic artery, left gastric artery, celiac trunk, splenic artery, 
and splenic hilum). It is common to perform D2 in Asian countries, while D1 is a standard in Western 
countries [16]. However, a study has shown that there is no significant difference in 5-year survival 
rates between D1 and D2 lymphadenectomy [17, 18]; whereas there has been some benefit of D2 
lymphadenectomy in the survival rate for late-stage patients [19]. However, an increased mortality rate 
may also occur after D2 lymphadenectomy. 
 
The challenge in treating mixed-type gastric cancer in the early stage lies in whether 
lymphadenectomy is required when the tumour size is relatively small. Here, we showed that 
metastasis to nearby lymph nodes did occur in small-size tumours and patients at early stages. As 
such, the precise prediction of metastasis through the quantification of distinct cancer cell types can 
assist surgeons in making informed treatment decisions, ultimately reducing the risks of remote organ 
metastasis and recurrence. In previous studies, ImageJ has been commonly used to measure the areas 
of different cell types manually, which can be labour-intensive even with small-size early-stage 
cancers. This task becomes almost impossible when facing much larger size and late-stage cancers. 
The availability of advanced high-definition imaging methods empowers deep learning to construct 
diverse models and train them with data, thereby facilitating the acquisition of new data in a non-
conventional manner. Here, we used U-Net neural network architecture based on fully convolutional 
networks. The additional modifications make it suitable for image segmentation tasks [20, 21]. This 
system can complement the complex operational skill needed for QuPath, albeit the coding for 
QuPath is openly available [22]. However, U-Net is more efficient in segmenting structured and 
relatively standardised components, while the QuPath software demonstrates superior adaptability in 
handling various scenarios. 
 
The most important segmentation aspect is to distinguish between cancerous and immune cells. It can 
be difficult to achieve by a simple threshold adjustment. In such a scenario, the threshold can be 
adjusted to select all tissues except muscle and fibre tissues, followed by the indirect calculation of 
cancer tissue by filtering out immune cells and normal tissue with similar pixel values. Nevertheless, 
this situation is relatively rare; in most cases, cancer tissue can be readily identified.  
 
The findings presented in this paper have unveiled a significant paradigm shift, which is the bell curve 
correlation between the DUR and the risk of LNM. Future studies need to investigate the mechanisms 
underlying this correlation in mixed-type gastric cancer, which may suggest new markers for early 
diagnosis, treatment targets or post-treatment surveillance. Artificial Intelligence-based automated 
cancer diagnostic models can rapidly and accurately analyse large volumes of data, providing 
clinicians with more comprehensive information within shorter time frames, thereby reducing waiting 
times for patients, particularly during surgical procedures. This can also support precision medicine, 
assisting the development of a personalised treatment plan tailored to an individual's needs, leading 
to improved survival rates.  
 
Conclusion 
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The utilisation of an automated diagnostic model combining QuPath and U-Net holds the potential to 
enhance the precision and efficiency of diagnosing and predicting the prognosis of mixed-type gastric 
cancer. The significance of our findings brings us closer to incorporating such technology into routine 
clinical practice. By enabling clinicians to make more informed treatment decisions, this 
advancement has the potential to improve patient outcomes significantly. 
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Tables 

Table 1: Case information 

ID Age Gender Tumor size Tumor stage LNM DUR 

1 49 1 2.0  4 1 80.0000  

2 59 1 1.5  4 0 0.5000  

3 64 0 1.8  4 1 9.5509  

4 72 1 2.5  3 1 0.2585  

5 73 1 3.0  3 0 0.0190  

6 64 0 4.5  4 1 9.5112  

7 50 0 8.0  4 1 7.5980  

8 67 0 3.0  4 1 0.3366  

9 74 1 3.0  4 1 1.8992  

10 75 1 4.0  4 1 9.6487  

11 75 0 4.0  4 1 5.2703  

12 73 1 5.0  4 1 131.0717  

13 71 0 1.5  3 0 2190.3160  

14 68 0 4.5  4 1 2060.9830  

15 66 1 2.0  4 0 0.1336  

16 58 0 5.0  4 1 0.2459  

17 63 1 1.0  3 1 1.6882  

18 53 0 3.5  4 1 5.7361  

19 62 0 3.4  4 1 0.5412  

20 29 1 7.0  4 1 7.5846  

21 67 1 7.0  4 1 0.9231  

22 74 0 2.0  4 1 0.2350  

23 49 1 7.0  3 0 0.1666  

24 50 0 5.5  4 1 0.2070  

25 52 1 4.0  4 0 978.0299  

26 70 0 5.0  4 1 6.7684  

27 66 1 3.0  4 1 0.4571  

28 62 0 7.0  4 1 0.4519  



 

 

29 67 1 7.0  4 0 2168.7980  

30 66 0 3.0  4 1 0.7827  

31 70 0 3.4  4 1 0.2444  

32 68 0 3.0  4 0 0.1509  

33 39 1 5.0  4 1 0.3565  

34 48 1 5.5  4 1 2.2289  

35 45 0 2.5  3 0 0.1250  

36 64 0 7.5  4 1 0.5740  

37 59 0 2.0  4 1 2275.9250  

38 72 0 3.0  4 1 0.3562  

39 63 0 6.5  4 0 2494.9110  

40 68 0 3.5  4 1 1775.3960  

41 61 0 2.5  4 0 0.1153  

42 65 0 4.0  4 1 5.3192  

43 65 0 2.5  3 1 0.3883  

44 61 0 3.5  4 0 2199.1930  

45 62 0 2.0  4 1 0.3394  

46 81 0 1.0  4 0 0.1374  

47 52 0 8.0  4 1 2.2020  

48 59 0 4.0  4 1 2.9745  

49 68 0 2.5  4 0 2050.1630  

50 56 1 3.0  4 1 11290.0000  

51 65 1 5.0  4 1 0.3327  

52 64 0 5.0  4 1 1.3638  

53 68 0 3.0  4 1 1570.0740  

54 72 0 8.5  4 1 0.3762  

55 47 1 2.2  4 1 5.2038  

56 70 1 3.0  4 1 0.6794  

57 55 1 8.0  4 0 2577.2910  

58 53 0 3.0  4 0 0.2765  

59 75 0 3.5  4 1 2207.1190  



 

 

60 57 0 5.0  4 1 0.3062  

61 61 0 4.0  4 1 5.2319  

62 58 1 3.5  4 1 170.2422  

63 59 0 2.5  4 1 0.7517  

64 59 0 4.0  4 1 0.4855  

65 73 0 4.0  4 1 6.5969  

66 73 0 2.5  4 0 0.2920  

67 65 1 7.0  3 0 0.1970  

68 39 1 3.0  4 1 1.1375  

69 65 0 2.5  4 1 0.6689  

70 67 0 5.5  4 0 0.1896  

Gender: "male" = 0, "female" = 1; LNM: "no lymph node metastasis" = 0, "lymph node metastasis" 

= 1. DUR: the differentiated/undifferentiated ratio; LNM: lymph node metastasis.  

 



 

 

Table 2: Risk of LNM based on the DUR interval 

L  DUR interval Risk probability 

L1 DUR_interval_[0.019, 0.135] 0.0105 

L2 DUR_interval_[0.135, 0.187] 0.0357 

L3 DUR_interval_[0.187, 0.238] 0.7105 

L4 DUR_interval_[0.238, 0.273] 0.7885 

L5 DUR_interval_[0.273, 0.334] 0.8311 

L6 DUR_interval_[0.334, 0.356] 0.8885 

L7 DUR_interval_[0.356, 0.453] 0.8885 

L8 DUR_interval_[0.453, 0.525] 0.8785 

L9 DUR_interval_[0.525, 0.683] 0.9105 

L10 DUR_interval_[0.683, 1.03] 0.9205 

L11 DUR_interval_[1.03, 1.889] 0.9185 

L12 DUR_interval_[1.889, 3.866] 0.9105 

L13 DUR_interval_[3.866, 5.312] 0.5347 

L14 DUR_interval_[5.312, 7.013] 0.6374 

L15 DUR_interval_[7.013, 9.541] 0.6311 

L16 DUR_interval_[9.541, 138.906] 0.6885 

L17 DUR_interval_[138.906, 1703.533] 0.5885 

L18 DUR_interval_[1703.533, 2170.95] 0.4105 

L19 DUR_interval_[2170.95, 2244.962] 0.3105 

L20 DUR_interval_[2244.962, 11290.0] 0.0885 

DUR: the differentiated/undifferentiated ratio; LNM: lymph node metastasis. 

 



 

 

Figures 

 
 
Figure 1: Representative images of segmentation of ROI. The differentiated component inside 
mixed-type gastric cancer tissue is idsolated using a red-solid line which is surrounded by 
undifferentiated components (poorly differentiated adenocarcinoma) (a). Distribution of ROI areas in 
all slides (b). Representative images of segmentation of non-ROI areas into patches (c) and re-adjust 
to better exclude the empty areas (d). ROI: region of interest. 
 



 

 

 
Figure 2: The learning curve of the U-Net model. 
 
  
 

 
Figure 3: The AUC of the ROC curve. AUC: area under the curve; ROC curve: the receiver operating 

characteristic curve. 

 
 



 

 

 
Figure 4: Segmentation of normal tissue and cancer tissue (red: cancer tissue, a), smooth muscle and 
cancer tissue (red: cancer tissue, b), undifferentiated components (red) in cancer tissue (c), and 
lymphoid tissue (blue) inside the cancer tissue (d). 
 



 

 

 
Figure 5: Risk of LNM across age (a), gender (b), tumour size (c), tumour stage (d). Gender: "male" 

= 0, "female" = 1; LNM: "no lymph node metastasis" = 0, "lymph node metastasis" = 1. LNM: lymph 

node metastasis. 

 
 



 

 

 
Figure 6: The correlation between LNM and DUR. (a) the risk of LNM across DUR, (b) the LNMR 

value across DUR. DUR: the differentiated/undifferentiated ratio; LNM: lymph node metastasis; 

LNMR: lymph node metastatic ratio (each bar representing a case). 

 



 

 

 
Figure 7: The index of the importance for each parameter rated by a random forest prediction model. 

DUR: the differentiated/undifferentiated ratio. 
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