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Abstract

The recent dramatic progress in machine learning is partially attributed to the availability of

high-performant computers and development tools. The accelerated linear algebra (XLA)

compiler is one such tool that automatically optimises array operations (mostly fusion to

reduce memory operations) and compiles the optimised operations into high-performant

programs specific to target computing platforms. Like machine-learning models, numerical

models are often expressed in array operations, and thus their performance can be boosted

by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical mod-

els, and the efficiency is examined stringently by comparing its performance with that of opti-

mal implementations. Two shared-memory computing platforms are examined–the CPU

platform and the GPU platform. To obtain optimal implementations, the computing speed

and its optimisation are rigorously studied by considering different workloads and the corre-

sponding computer performance. Two simple equations are found to faithfully modell the

computing speed of numerical models with very few easily-measureable parameters.

Regarding operation optimisation within XLA, results show that models expressed in low-

level operations (e.g., slice, concatenation, and arithmetic operations) are successfully

fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation

within XLA, results show that for the CPU platform of certain computers and certain simple

numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large prob-

lems and acceptable efficiency (10%~80%) for medium-size problems–the gap is from the

overhead cost of Python. Unsatisfactory performance is found for the CPU platform of other

computers (operations are compiled in a non-optimal way) and for high-dimensional com-

plex models for the GPU platform, where each GPU thread in XLA handles 4 (single preci-

sion) or 2 (double precision) output elements–hoping to exploit the high-performant

instructions that can read/write 4 or 2 floating-point numbers with one instruction. However,

these instructions are rarely used in the generated code for complex models and perfor-

mance is negatively affected. Therefore, flags should be added to control the compilation for

these non-optimal scenarios.
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1 Introduction

The pressing problems in many mathematically oriented scientific fields are ubiquitously

modelled with partial differential equations, e.g., the elastoplastic deformation of jammed

granular materials and their subsequent fluid-like flow after unjamming [1, 2], turbulent air

flow around jets [3], the dynamics of financial markets of derivative investment instruments

[4], etc. A vast majority of such research relies on numerical models to find approximate solu-

tions to the differential equations and to make reliable predictions. In the last century or so, we

have seen significant advances in numerical modelling, including multi-physics coupling with

many variables and using fine grids/meshes with massive nodes and cells [2] to achieve realis-

tic simulations. Consequently, the demand for efficiently solving numerical models with many

variables and on very fine meshes is increasing.

Traditionally, efficient numerical models are studied in computational complexity theory

[5], in which the amount of time, storage, or other resources required to perform numerical

simulations are examined theoretically. A classic example is the complexity analysis of the dif-

ferent iterative methods for large systems of linear equations. Analysis [6] shows that if the

number of non-zero matrix entries is N, and the condition number is κ, the steepest descent

method has a time complexity of O(κN) and the conjugate gradient method has a time com-

plexity of O(
p

κN), which is thus more efficient. This kind of theoretical analysis is often not

enough to model the computing speed of numerical models on modern computers because

these computers are all designed with parallel computing capabilities, and efficient implemen-

tations must account for the different features of the computers. Consequently, many pieces of

research are carried out on the efficient implementation of numerical models on specific com-

puting platforms, including the CPU platform (a shared-memory system with a multi-core

central processing unit and the associated main memory) [7, 8], the GPU platform (a shared-

memory system with a graphics processing unit and the associated GPU memory) [9], distrib-

uted systems [10], and even quantum computing [11, 12].

With the rapid development of new modelling techniques, the demand for rapid prototyp-

ing of new numerical models increases in addition to the demand for computationally efficient

numerical models. The accelerated linear algebra (XLA) compiler [13] is one of the tools that

aim to achieve these (i.e., both computational efficiency and rapid prototyping). The XLA

compiler (simply referred to as XLA) takes HLO IR (high-level operation intermediate repre-

sentation, simply referred to as HLO) as inputs (Fig 1), conducts several rounds of optimisa-

tions, and compiles the HLOs into highly efficient computer programs specific to the target

computing platform. The optimisation and compilation in XLA happened automatically such

that the modellers effortlessly get efficient programs, and they do not need to know the optimi-

sation detail. The HLO inputs to XLA are a board category of array operations and thus most

Python packages supporting array programming are XLA frontends (e.g., Tensorflow, JAX,

PyTorch, etc.) [13]. The target-independent optimisation includes common subexpression

elimination, operation fusion, and buffer analysis of memory allocation [13]. Target-depen-

dent optimisation is conducted by considering target-specific features. The target computing

platforms for XLA include the x64 CPU platform and the GPU platform (NVIDIA GPUs) in

the source tree, and new backends can always be added [13]. For the CPU and GPU backends,

the LLVM compiler [14] is used to compile the LLVM intermediate representation into effi-

cient computer programs.

XLA was originally designed to boost the performance of machine-learning models, and

performance gain was widely demonstrated. For example, Google’s submissions to MLPerf (an

industry standard for measuring machine learning performance) [15] demonstrate a seven-

fold performance gain on the training throughput of XLA-boosted BERT (a transformer-
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based model for natural language processing). Chadha and Siddagangaiah [16] conducted tests

on several different models (e.g., two-layer convolutional network, saxpy, matrix multiplica-

tion, softmax, and long short-term memory), and found that XLA successfully conducted opti-

misations for some models, but areas for further improvements were also identified. XLA has

also been used to boost the performance of other scientific computing. For example, Lewis et.
al. [17] demonstrated the efficiency of XLA in matrix multiplication, QR factorisation, linear

solution, and application of matrix functions on tensor processing units (TPUs). Sankaran et.
al. [18] examined the performance of XLA in conducting linear algebra optimisations. Never-

theless, there has been little if any research in the literature about the efficiency of XLA for

numerical models.

This study is the first of its kind to examine the efficiency of XLA for a general category of

numerical models and the efficiency is examined in a stringently way by comparing the perfor-

mance of numerical models implemented using XLA on a computing platform with the

Fig 1. Architecture of accelerated linear algebra (XLA) compiler.

https://doi.org/10.1371/journal.pone.0282265.g001
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maximum possible performance achieved on that computing platform. This study is not

meant to be comprehensive, so numerical models defined on regular grids are mainly exam-

ined. The scope of the numerical models and some examined examples are explained in Sec-

tion 2, which belong to two categories (e.g., element-wise operations and finite difference

models). JAX [19] is used as the XLA frontend and two widely used computing platforms

(backends) are examined–the CPU platform and the GPU platform. To obtain the maximum

performance on these computing platforms, the computing speed of the numerical models is

rigorously studied in Section 4 by considering the different workloads and the corresponding

computer performance. Optimal implementations are explored in Section 5, and the comput-

ing speed of element-wise operations and finite-difference models are found faithfully mod-

elled by two simple equations with very few easily-measurable parameters. The efficiency of

XLA is examined by an index of relative efficiency–the ratio of effective bandwidth between

XLA implementations and optimal implementations. XLA is found efficient for some numeri-

cal models and for some computing platforms but is not for others, and potential areas of

improvement are suggested for the non-optimal scenarios.

2 Array programming of numerical models

XLA takes array operations defined in HLO as inputs. An array (or tensor) is a collection of

homogenous elements. Matrices are a special case of 2D arrays and vectors 1D arrays. Fig 2

illustrate a 3D array (X) with the shape of (3, 2, 4). Each cell presents an element of the array.

Inside each cell is the index of that element, which is denoted by square-bracket tuples, i.e., X

[i, j, k]. All the indexing conventions of NumPy [20] are adopted here, so the first element is

indexed by 0. And the indexing X[1:,0,1::2] represents the highlighted sliced elements in Fig 2.

Array elements are stored in computer memory contiguously, and a row-major order is

Fig 2. Array, neighbourhood and representation of neighbouring elements.

https://doi.org/10.1371/journal.pone.0282265.g002
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assumed in this study–consecutive elements in the last index are contiguous in memory (indi-

cated by the arrows in Fig 2).

2.1 Scope of examined numerical models

This study focuses on numerical models on structured meshes or regular grids. Hence, after

discretisation, all the variables (either solution or auxiliary) can be conveniently expressed as

arrays–N-dimensional arrays for variables in N-dimensional problems. Arrays and variables

are thus used interchangeably in further discussions. This already represents a broad category

of numerical models that can solve many problems [2, 8, 21], that are expressed in linear and

non-linear differential equations. Some examples are the finite-difference models on regular

grids [22], finite-volume/finite-element models on structured meshes [2, 8], lattice Boltzmann

methods [23], etc.

Most numerical models are formatted in the style that in each step, the solution variables

X1
t+1, X2

t+1, . . . at next “timestep” (t + 1) are updated from the variables X1
t, X2

t, . . . at “time-

step” t. The “timesteps” not only mean the marching of solution variables in time (like most

explicit models do) but also can represent the update of solution variables in iterative methods.

For complicated models, auxiliary variables must be introduced, and their corresponding

arrays allocated in computer memory. Therefore, a substep of a numerical model is defined as

a function like Eq 1 such that its implementation is possible without introducing new vari-

ables/arrays except for the input and output variables/arrays.

Y1;Y2; . . . ;YN0
¼ FðX1;X2; . . . ;XNi

; pÞ Eq 1

Here, No is the number of output arrays, Ni is the number of input arrays, and p is to indi-

cate all model parameters (non-arrays). The total number of elements for each input/output

array depends on the mesh size and is identical for all input and output arrays of substeps

examined in this study (denoted as Ne).

2.2 Maximally fused substeps

Each model step is often fulfilled by several or many substeps. Substeps can have different

complexities, and complex ones can always be broken into simpler ones until a handful of very

basic ones are obtained like the NumPy basic array operations [20]. However, the performance

of many simple substeps is always poorer than a fused substep due to the more memory opera-

tions involved (demonstrated in Section 5.3). So, to have computationally efficient numerical

models, we want to have maximally fused substeps, for which no further optimisation of fusion

is possible, and each model step is fulfilled by only a few of these maximally fused substeps.

The detailed specification of Eq 1 is often called a numerical scheme. It depends on the dif-

ferential equations and discretisation techniques. In general, it takes the format that the ele-

ments of output arrays are only locally related to neighbouring elements of input arrays in a

fixed pattern (the stencil). Common stencils are the von Neumann neighbourhood and Moore

neighbourhood (Fig 2). If we denote X[i, j, k]<r as all the elements in the array X that have a

Manhatten distance smaller than r regarding the element X[i, j, k], then a substep is often spec-

ified by an equation like Eq 2.

Yq½i; . . .� ¼ fqðX1½i; . . .�
<r
;X2½i; . . .�

<r
; . . . ;XNi

½i; . . .�
<r
; pÞ q ¼ 1; 2; . . . ;No Eq 2

Eq 2 only defines the inner elements of Yq. For a specific numerical model, boundary con-

ditions are required to define the boundary elements.
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Eq 1 and Eq 2 are the general representation of model substeps and numerical schemes.

The implementation of the substeps as computer programs is interchangeably called func-

tions/operations/kernels/ops. In this paper, operations are simply used. Some examined opera-

tions in this study are explained in the next subsections, and a summary of them is given in

Table 1.

2.3 Element-wise operations

If the output array elements are only related to input array elements at the same place (i.e., the

Manhatten distance of neighbouring = 0), these kinds of operations are element-wise opera-

tions. Some basic ones are COPY, SCALE, and AXPY (Table 1). Both the vector version and

matrix version of these operations are examined. To examine how the number of float-point

calculations affects the computing speed, an element-wise operation as Eq 3 is examined and is

labelled as XPXPYN, where N is a variable integer number, and it controls the number of

float-point calculations.

Ytþ1 i; . . .½ � ¼ X½i; . . .� � X½i; . . .�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

repeatN
2
times

þYt i; . . .½ � Eq 3

Array programming of these operations is straightforward (JAX implementation in

Table 1).

2.4 Finite-difference model to the 1D heat equation (HEAT1D)

The heat equation is a parabolic partial differential equation modelling the variation of tem-

perature under thermal conduction. The following numerical scheme with only one substep

(Eq 4) is obtained if a 1D problem (from 0 to L) is discretised into Ne -1 equally spaced seg-

ments, the derivative in time is approximated with a forward finite difference, and the second

Table 1. The examined operations.

Label Input

arrays

Output

arrays

Parameters (non-

arrays)

Numerical

scheme

equations

JAX implementation FLOP

coef. α
Memory

operation coef. βlo

(= Ni+No)

Memory

operation coef. βhi

(= β—βlo)

Required

memory coef.

γ

COPY1D X Y N/A Y[i] = X[i] y = jnp.copy(x) 0 2 (= 1+1) 0 2

COPY2D Y[i,j] = X[i,j]

SCALE1D Yt Yt+1 a Yt+1[i] = aYt[i] y = a � y 1 2 (= 1+1) 0 1

SCALE2D Yt+1[i,j] = aYt[i,
j]

AXPY1D X, Yt Yt+1 a Yt+1[i] = Yt[i]
+aX[i]

y = a � x + y 2 3 (= 2+1) 0 2

AXPY2D Yt+1[i,j] = Yt[i,j]
+aX[i,j]

XPXPYN_1D X, Yt Yt+1 N/A Eq 3 y = x–x + . . . + x—x + y N 3 (= 2+1) 0 2

XPXPYN_2D

HEAT1D Tt Tt+1 r Eq 4 Three methods (see Table 2) 6 2 (= 1+1) 2 2

HEAT2D Eq 5 8 2 (= 1+1) 4 2

NS2D_P Ut, Vt, Pt Ut� , Vt� ,

Pt�
Δt/Δx, Δt/Δy, νΔt/

(Δx)2, νΔt/(Δy)2, c2Δt/
Δx, c2Δt/Δy

Eq 7 Nonlinear differential

equations, so convolution is

not possible

46 6 (= 3+3) 10 6

NS2D_C Ut, Vt, Pt,

Ut� , Vt� ,

Pt�

Ut+1, Vt

+1, Pt+1
Eq 8 52 9 (= 6+3) 10 6

NS2D N/A 98 15 20 6

https://doi.org/10.1371/journal.pone.0282265.t001
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derivative in space is approximated with a central finite difference.

Ttþ1½i� ¼ ð1 � 2rÞTt½i� þ rðTt½i � 1� þ Tt½iþ 1�Þ Eq 4

The discretised solution on the nodes is a 1D array Tt of size Ne. The parameter r = aΔt/
(Δx)2, where a is the thermal diffusivity, Δt is the time step size, and Δx = L/(Ns-1) is the seg-

ment size. This explicit scheme is stable only if r< 0.5. Fig 3A shows the solution to Eq 4 with

an initial condition of T0[i] = 6sin(πiΔx), a Dirichlet boundary condition of Tt+1[0] = 0 and Tt

+1[–1] = 0, and parameters of a = 1.0, r = 0.4, L = 1.0, Ne = 512. The analytical solution to this

problem is Tt[i] = 6sin(πiΔx)e-aππt.
Three implementations of the 1D heat model with array programming are examined

(Table 2): (1) slice and concatenation. The inner elements of Tt+1 (of size Ne—2) are defined

by Eq 4, we can use the slice operations to select three sub-arrays of Tt (of size Ne− 2) first and

use basic vector arithmetic operations to calculate the inner elements. Then concatenation is

used to combine the inner elements with boundary values to have the final Tt+1. (2) Convolu-

tion. The heat equation is a linear differential equation, so the inner elements of Tt+1 can be

obtained by applying a convolution operation to Tt with a filter of [r, (1–2.0 × r), r].

Fig 3. Boundary-value problems and solutions for the examined numerical models. (a) Solution to the 1D heat

equation with Dirichlet boundary conditions (the dashed line = initial condition; solid lines = analytical solutions;

dots = numerical solutions). (b) Solution along the midline to the 2D heat equation with Dirichlet boundary

conditions (dashed line = initial condition; solid lines = analytical solutions, dots = numerical solutions;

insets = temperature contours). (c) Calculated streamline of cavity flow with Re = 5000 (thickness indicates velocity

magnitude). (d) Velocity along the midlines (U vs. y and V vs. x; solid lines = numerical solution from this study,

dots = numerical solution from Ghia et al. [21]; black Re = 100; red Re = 1000; blue Re = 5000).

https://doi.org/10.1371/journal.pone.0282265.g003
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Concatenation is still required to have the final Tt+1. (3) Roll. We can ignore the boundary

conditions first and use the roll operation to obtain arrays of Tt (of size Ne) that are shifted by

one position to the left or to the right. Basic vector arithmetic operations are then used to cal-

culate Tt+1, and boundary values are corrected at the end.

2.5 Finite-difference model to the 2D heat equation (HEAT2D)

If a 2D square domain (side length = L) is discretised into a regular grid with a mesh size Δx =
Δy = L/(Nx-1), and the same finite-difference approximations are used for the 2D heat equa-

tion, the following numerical scheme (Eq 5) is obtained with only one substep:

Ttþ1½i; j� ¼ ð1 � 4rÞTt½i; j� þ rðTt½i � 1; j� þ Tt½iþ 1; j� þ Tt½i; jþ 1� þ Tt½i; jþ 1�Þ Eq 5

The discretised solution on nodes is a 2D array Tt with the number of elements as Ne = Nx

× Nx. Similarly, r = aΔt/(Δx)2 and Δx = L/(Nx-1). Fig 3B shows the solution to Eq 5 within a

square domain (from -1.0 to 1.0 in both directions and L = 2.0) subjected to the initial condi-

tion of Eq 6 and zero-temperature boundary conditions. Parameters are a = 1.0, r = 0.2, Nx =

512 and t0 = 0.001. The analytical solution to this problem is also shown in Eq 6.

T0 x; yð Þ ¼
e
�

x2 þ y2

4at0
4pat0

T x; y; tð Þ ¼
e
�

x2 þ y2

4aðt þ t0Þ

4paðt þ t0Þ

Eq 6

With similar techniques as in Table 2, three methods are available to implement this 2D

model with array programming, the detail is omitted here.

2.6 MacCormack scheme to 2D Navier-Stokes equation with artificial

compressibility (NS2D)

If a 2D rectangular domain (with side lengths Lx and Ly) is discretised into a regular grid with

mesh sizes Δx = Lx/(Nx-1) and Δy = Ly/(Ny-1). The solution variables/arrays to the 2D Navier-

Stokes equation are the horizontal component of velocity (Ut), the vertical component of

Table 2. Implementation of the 1D heat model with array programming.

Setup of arrays zero = jnp.array([0.0], dtype = #the chosen floating-point type#)

r = jnp.array([0.4], dtype = #the chosen floating-point type #)

x = jnp.linspace(0.0, 1.0, #No. of nodes#, #the chosen floating-point type #))

T = 6.0 � jnp.sin(math.pi � x)

Different implementations Slice and concatenation def substep(T, r, zero):

inner = (1–2.0 � r) � T[1:-1] + r � (T[:-2] + T[2:])

return jnp.concatenate([zero, inner, zero], axis = 0)

Convolution filter = jnp.array([r, (1–2.0 � r), r]).squeeze()

def substep(T, filter, zero):

inner = jnp.convolve(u,filter,mode = ’VALID’)

return jnp.concatenate([zero, inner, zero], axis = 0)

Roll def substep(T, r):

Tn = (1–2.0 � r) � T + r � (jnp.roll(T, [–1], axis = 0) + jnp.roll(T, [1], axis = 0))

Tn = Tn.at[0].set(0.0)

Tn = Tn.at[–1].set(0.0)

return Tn

https://doi.org/10.1371/journal.pone.0282265.t002
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velocity (Vt) and the pressure (Pt)–all with the shape of (Nx, Ny). The total number of elements

for each array is Ne = Nx × Ny. If the artificial compressibility method is used and the equations

are discretised using the MacCormack scheme, the model is made of two maximally fused sub-

steps [24].

For the first substep (often called the predictor substep), the input arrays are Ut, Vt, Pt and

the output arrays are "provisional" variables/arrays Ut�, Vt�, Pt�. The detailed numerical scheme

is in Eq 7, in which all the first-order derivatives in space are approximated with a forward

finite difference and second-order derivatives are approximated with a central finite differ-

ence.

Ut�½i; j� ¼ Ut½i; j�

�
Dt
Dx

Ut½i; j�ðUt½iþ 1; j� � Ut½i; j�Þ þ Pt½iþ 1; j� � Pt½i; j�ð Þ

�
Dt
Dy

Vt i; j½ � Ut½i; jþ 1� � Ut½i; j�ð Þ

þn
Dt
ðDxÞ2

Ut½iþ 1; j� � 2Ut½i; j� þ Ut½i � 1; j�ð Þ

þn
Dt
ðDyÞ2

Ut½i; jþ 1� � 2Ut½i; j� þ Ut½i; j � 1�ð Þ

Eq 7A

Vt�½i; j� ¼ Vt½i; j�

�
Dt
Dx

Ut½i; j�ðVt½iþ 1; j� � Vt½i; j�Þð Þ

�
Dt
Dy

Vt½i; j�ðVt½i; jþ 1� � Vt½i; j�Þ þ Pt½i; jþ 1� � Pt½i; j�ð Þ

þn
Dt
ðDxÞ2

Vt½iþ 1; j� � 2Vt½i; j� þ Vt½i � 1; j�ð Þ

þn
Dt
ðDyÞ2

Vt½i; jþ 1� � 2Vt½i; j� þ Vt½i; j � 1�ð Þ

Eq 7B

Pt�½i; j� ¼ Pt½i; j�

� c2
Dt
Dx

Ut½iþ 1; j� � Ut½i; j�ð Þ

� c2
Dt
Dy

Vt½i; jþ 1� � Vt½i; j�ð Þ

Eq 7C

In Eq 7, ν is the fluid dynamic viscosity, c is an artificial constant representing the speed of

sound, and Δt is the timestep, which must meet the stability criteria (Δt< CmaxΔx/c and

Δt< Cmax(Δx)2/ν).

For the second substep (often called the corrector substep), the input arrays are solution

arrays from the previous timestep Ut, Vt, Pt and the "provisional" arrays Ut�, Vt�, Pt�. The out-

put arrays are solution arrays for the next timestep Ut+1, Vt+1, Pt+1. In the corrector substep,

the first-order derivatives in space are approximated with the backward finite difference, and
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the detailed numerical scheme is in Eq 8.

Utþ1 i; j½ � ¼
1

2
fUt i; j½ � þ Ut� i; j½ �

�
Dt
Dx

Ut�½i; j�ðUt�½i; j� � Ut�½i � 1; j�Þ þ Pt�½i; j� � Pt�½i � 1; j�ð Þ

�
Dt
Dy

Vt� i; j½ � Ut�½i; j� � Ut�½i; j � 1�ð Þ

þn
Dt
ðDxÞ2

Ut�½iþ 1; j� � 2Ut�½i; j� þ Ut�½i � 1; j�ð Þ

þn
Dt
ðDyÞ2

Ut�½i; jþ 1� � 2Ut�½i; j� þ Ut�½i; j � 1�ð Þg

Eq 8A

Vtþ1 i; j½ � ¼
1

2
fVt i; j½ � þ Vt� i; j½ �

�
Dt
Dx

Ut�½i; j�ðVt�½i; j� � Vt�½i � 1; j�Þð Þ

�
Dt
Dy

Vt�½i; j�ðVt�½i; j� � Vt�½i; j � 1�Þ þ Pt�½i; j� � Pt�½i; j � 1�ð Þ

þn
Dt
ðDxÞ2

Vt�½iþ 1; j� � 2Vt�½i; j� þ Vt�½i � 1; j�ð Þ

þn
Dt
ðDyÞ2

Vt�½i; jþ 1� � 2Vt�½i; j� þ Vt�½i; j � 1�ð Þg

Eq 8B

Ptþ1 i; j½ � ¼
1

2
fPt i; j½ � þ Pt� i; j½ �

� c2
Dt
Dx

Ut�½i; j� � Ut�½i � 1; j�ð Þ

� c2
Dt
Dy

Vt�½i; j� � Vt�½i; j � 1�ð Þg

Eq 8C

A particular application of this numerical scheme is the cavity flow problem (Fig 3C and

3D). A square domain (side length = 1 m) is filled with fluids, which is driven by the top lid.

So, the top boundary has constant velocity (U = u0 = 1 m/s and V = 0), and the other bound-

aries have zero velocities. Neumann boundary condition is used for the pressure field (i.e.,

@P/@n = 0! Pt+1[0,:] = Pt+1[1,:], . . .). Simulations start with homogenous variables (U = 0,

V = 0, and P = 0), and the final steady-state velocity field depends on the Reynolds number

Re = u0Lx/ν [24]. Fig 3C shows the streamlines for Re = 5000, which clearly shows a primary

vertex and three small vortices at corners. Fig 3D shows the velocities along the mid lines

from this study and results from Ghia et al. [21]. The speed of sound is chosen as c = 0.1u0
and a steady state is achieved after 2 × 105, 7 × 105, and 35 × 105 increments for Re = 100,

1000, and 5000, respectively. Similarly, this model can be implemented with array program-

ming. However, because this model is non-linear, the method of using convolution opera-

tions is not possible.
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3 Computer performance

In this paper, the optimal implementations of the substeps/operations on both the CPU plat-

form and GPU platform are studied. The performance of such optimal implementations is

then examined, modelled, and compared with the performance of XLA implementations.

These are conducted on two computers–one personal computer (PC) and one high-perfor-

mance computing (HPC) workstation. Computation is possible on both the CPU and GPU

platforms for these two computers. The PC has an Intel Core i7-9850H CPU and an Nvidia
Quadro P620 GPU running on Ubuntu 20.04.5 LTS. The HPC has an Intel Xeon Gold 6238R
CPU and an Nvidia Quadro RTX 5000 GPU running on Red Hat Enterprise LinuxWorkstation
7.9. The technical specification of the two computers is given in Table 3 (CPU platforms) and

Table 4 (GPU platforms).

The execution of the operations costs computer resources, and the execution time depends

on computer performance. The two relevant measurements of computer performance for

numerical models are floating point operations per second (FLOPS) and bandwidth. The two

most common floating-point numbers are the single-precision floating-point numbers (each

number occupies 32 bits or 4 bytes) and the double-precision floating-point numbers (64 bits

or 8 bytes). They are conveniently denoted as f32 and f64 in the latter discussions.

Table 3. Information of the tested CPU platforms.

General information FLOPS Bandwidth

Instructions 128-bit SSE 256-bit AVX Theoretical “burst”

rate (GB/s)Floating-point

number

f32 f64 f32 f64

FLOPs per cycle 8 4 16 8

PC CPU: Name (Intel Core i7-9850H), Sockets (1), Cores per socket (6), Frequency

(2.6 GHz), L1 data cache (192 kB), L2 cache (1.5 MB), L3 Cache (12 MB)

Theoretical FLOPS

(GFLOPS)

124.8 62.4 249.6 124.8 88.3

Memory: Frequency (2.67GHz), No. of channels (2), Bus width (64 bits), Total

size (2 � 16 GB)

Benchmarked FLOPS

(GFLOPS)

185.5 92.2 281.7 140.3

HPC CPU: Name (Intel Xeon Gold 6238R), Sockets (26), Cores per socket (1),

Frequency (2.2 GHz), L1 data cache (32 kB), L2 cache (1 MB), L3 Cache (38.5

MB)

Theoretical FLOPS

(GFLOPS)

457.6 228.8 915.2 457.6 256.0

Memory: Frequency (2.67GHz), No. of channels (6), Bus width (64 bits), Total

size (88 GB)

Benchmarked FLOPS

(GFLOPS)

548.2 272.5 956.9 487.3

https://doi.org/10.1371/journal.pone.0282265.t003

Table 4. Information of the tested GPU platforms.

General information FLOPS Bandwidth

Single precision

(GFLOPS)

Double precision

(GFLOPS)

Theoretical “burst”

rate (GB/s)

PC GPU: Name (Nvidia Quadro P620), CUDA capability (6.1), Multiprocessors (4), CUDA

Cores per multiprocessors (128), Frequency (1.266 GHz), L2 Cache (512 kB), Shared

memory per multiprocessor (96 kB)

1490 46.6 96.1

GPU Memory: Frequency (1.003 GHz), No. of channels (2), Bus width (128 bits), Total size

(4 GB)

HPC GPU: Name (Nvidia Quadro RTX 5000), CUDA capability (7.5), Multiprocessors (48),

CUDA Cores per multiprocessors (64), Frequency (1.62 GHz), L2 Cache (4 MB), Shared

memory per multiprocessor (64 kB)

11151 348.5 448.0

GPU Memory: Frequency (1.75 GHz), No. of channels (4), Bus width (256 bits), Total size

(16 GB)

https://doi.org/10.1371/journal.pone.0282265.t004
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3.1 Floating point operations per second (FLOPS)

As the name indicates, the FLOPS measures the number of floating-point operations (FLOPs)

a processor can execute within a second. A typical unit is GFLOPS (i.e., gigaFLOPS and 109

FLOPS).

On the CPU platform, it can be calculated as FLOPS = No. of sockets × No. of cores per

socket × CPU frequency × No. of FLOPs per cycle [25]. The number of FLOPs per cycle

depends on instruction sets. For example, the 128-bit SSE (streaming SIMD extensions) is one

of the SIMD (single instruction multiple data) instruction sets, it can execute 8 FLOPs per

cycle for single precision and 4 FLOPs per cycle in double precision (Table 3). The 256-bit

AVX (advanced vector extensions) doubles the FLOPs per cycle (Table 3). High FLOPS of the

CPUs are achieved by these SIMD instruction sets, and the corresponding values are calculated

from the equation and shown in Table 3. It is shown that the FLOPS of 256-bit AVX is twice

that of 128-bit SSE, and the FLOPS of single precision calculation is twice that of double preci-

sion. The FLOPS can also be benchmarked by computer programs. Table 3 includes the

benchmarked FLOPS by an open-source program called Flops [26], which is slightly higher

than the theoretical values.

The FLOPS of the GPU platforms is provided by Nvidia [27] and is listed in Table 4. For

the two GPUs, the FLOPS of single precision calculation is significantly higher than that of

double precision.

In summary, the FLOPS for each processor can be written as a function of two arguments–

FLOPS(sf, xis), where sf is the size of a floating-point number (i.e., 4 bytes for f32 and 8 bytes

for f64) and xis denotes the instruction sets.

3.2 Bandwidth (BW)

The typical architecture of the CPU and GPU computing platforms is illustrated in Fig 4. On

both platforms, the calculations (i.e., FLOPs) are performed by the arithmetic logic unit. The

data to be operated by the arithmetic logic unit (called operands) reside on the register and so

do the operation results. However, the size of the register is very small, most data are stored in

Fig 4. Architecture of the CPU and GPU computing platforms.

https://doi.org/10.1371/journal.pone.0282265.g004
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the memory or cache. So, to finish FLOPs, operands must be read to the register, and the oper-

ation results written back to the memory or cache after calculation. Bandwidth is a measure of

the rate how data is read or written. A typical unit is GB/s (i.e., gigabytes per second). For

many applications, the processor (CPU or GPU) tends to access the same set of memory loca-

tions repetitively over a short period (called the locality of reference), so both computing plat-

forms are optimised with a hierarchical memory system (Fig 4)–from L1 cache, L2 cache, L3

cache to the memory with an increasing storage size but decreasing bandwidth.

The theoretical bandwidth of the memory can be calculated as BW = memory

frequency × No. of data transfers per cycle × No. of channels × bus width [28]. Here the num-

ber of data transfers per cycle is two for double data rate memory (i.e., DDR, DDR2. . .). This

theoretical bandwidth is often referred to as "burst rate” (calculated and listed in Tables 3 and

4) because it is not sustainable. It is more realistic to benchmark the bandwidth with computer

programs. Fig 5A gives some results from the open-source software bandwidth-benchmark
[29] for the CPU platform of the PC. The core routines of this software are written with the

low-level assembly language, so the benchmarked result is a good measure of the hardware

performance and does not depend on the compiler version or options. The following five

observations are typical for CPU platforms:

1. The bandwidth depends on how much data is read/written for each instruction. Sequen-

tially read in 256 bits (i.e., 256-bit AVX; black filled circles in Fig 5A) is faster than read in

128 bits (i.e., 128-bit SSE; black hollow triangles), and the slowest is read in 64 bits (black

hollow circles).

2. The bandwidth of reading is slightly faster than writing but the gap is small (black filled cir-

cles vs. black filled triangles in Fig 5A).

3. The bandwidth depends on how much total memory is required. When the required mem-

ory size is smaller than the L1 cache size, the source and/or the destination can reside on

the L1 cache, so the bandwidth is the fastest (~250 GB/s for reading in 256-bit AVX in Fig

5A). With an increased size of required memory, the bandwidth decreases and Fig 5A

Fig 5. Benchmarked bandwidth. (a) from bandwidth-benchmark on the PC. (b) CPU platform from bandwidth-benchmark for sequential 256-bit read and

GPU platform from bandwidthTest of CUDA samples with “shmoo” mode.

https://doi.org/10.1371/journal.pone.0282265.g005
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clearly shows the abrupt drop of bandwidth at three critical positions (i.e., L1, L2 and L3

cache sizes). When the required memory size is larger than the L3 cache size, the copy oper-

ation cannot resort to the caches, so the benchmarked bandwidth is the sustained band-

width of the main memory (about 20 GB/s), which is significantly smaller than its “burst”

rate (88 GB/s). Moreover, the bandwidth of the L1 cache is more than 10 times faster than

that of the main memory (i.e., 250 GB/s vs. 20 GB/s). Because of this dependence on

required memory size, in the latter discussions, a numerical model is roughly classified to

be small if the required memory size is smaller than the L1 cache size, medium if between

the L1 and L3 cache sizes, and large if larger than the L3 cache size.

4. The bandwidth depends on the memory access pattern. CPU threads are independent and

may execute at their own pace. So, the CPU threads prefer cached access (Fig 6A)–if a

thread’s current access is at a specific position, its preferred next access should be at the

sequential next position in memory. From the comparison of the black lines and red lines

in Fig 5A, it is seen that the bandwidth of sequential read/write (cached access) is signifi-

cantly faster than that of random read/write (uncached access).

5. The bandwidth depends on the number of threads used. The bandwidth of reading in

256-bit AVX for both the PC and HPC is shown in Fig 5B. Because the benchmark tool

uses only one thread, the measured bandwidth of the HPC is even slower than that of the

PC. It is shown in Section 5.1 that using multiple threads can increase the bandwidth.

The bandwidth of the GPU platform has similar five observations:

1. The bandwidth of the GPU platform also depends on how much data is read/written for

each instruction. It is shown in Section 5.2 that using the CUDA built-in type float4 and

double2 (i.e., read/write four f32 or two f64 numbers with one instruction) can gain minor

improvement compared with using f32 or f64 (i.e., read/write one f32 or f64 number with

one instruction).

2. There is no evidence of a noticeable difference regarding the bandwidth of reading and

writing on the GPU platform, so reading and writing are assumed to have equal bandwidth.

3. The bandwidth of the GPU platform also depends on how much total memory is required.

The red lines in Fig 5B show the benchmarked bandwidth by the open-source software

Fig 6. Memory access pattern and bandwidth. (a) Cached access for CPU. (b) Coalesced access for GPU.

https://doi.org/10.1371/journal.pone.0282265.g006
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bandwidthTest (with option “shmoo”) from the CUDA samples [30]. When the required

memory size is small (< 64 kB), the bandwidth is very small (< 5 GB/s). The bandwidth

gradually increases with the increase of the required memory size from 64 kB to about 16

MB. There is a peak bandwidth of about 900 GB/s for the HPC (at about 4 MB required

memory size). When the required memory size is larger than 16 MB, the bandwidth is con-

stant (about 82.4 and 372.3 GB/s for the PC and HPC, respectively) and is slightly smaller

than the “burst” rate (96.1 and 448.0 GB/s, respectively). Similarly, on the GPU platform, a

numerical model is roughly classified to be small if the required memory size is smaller

than 64 kB, medium if between 64 kB and 16 MB, and large if larger than 16 MB.

4. The bandwidth of the GPU platform also depends on the memory access pattern. CPU

threads are independent and may execute at their own pace. In contrast, the GPU threads

execute synchronously (i.e., threads in groups must execute instructions together), and all

threads in a group (warp) must finish their work before any thread can move on [31].

Therefore, the GPU threads prefer coalesced access (Fig 5B)–if a thread’s current access is

at a specific position, the next thread’s preferred current access should be at the sequential

next position in memory. It is shown in Section 5.6 that the bandwidth of coalesced access

is significantly faster than that of uncoalesced access.

5. The GPU platform is designed to run multiple threads synchronously, and the number of

threads is often a multiple of the warp size (32 for both the PC and HPC). So, the commonly

used setting is running with 128, 256, 512, or 1024 threads concurrently. In contrast to the

CPU platform, the bandwidth of the GPU platform is not affected by the number of threads

(at least for the commonly used settings), as shown in Section 5.

In summary, if the small bandwidth gap between reading and writing is ignored, the band-

width can be written as a function of four arguments–BW(st, xis, xap, xth), where st is the total

size of required memory, xis indicates the instruction set, xap indicates the memory access pat-

tern, and, xth indicates the use of parallel threads.

4 Modelling the computing speed and optimisation strategies

4.1 Computing latency of operations

The total number of FLOPs for one execution of the operations can be roughly estimated. If

there are αq FLOPs for the qth equation in Eq 2, then approximately αqNe FLOPs are needed to

calculate Yq by ignoring the special equations for the boundary conditions. Here, Ne is the

number of elements in an array. The total number of FLOPs is then α1Ne + α2Ne + . . . + αNoNe

= αNe. α is a dimensionless constant determined by the numerical scheme (Eq 2). For the oper-

ations in this study, the α values are presented in Table 1. The time spent on FLOPs is then

approximately tflop = αNe/FLOPS(sf, xis).
The required memory size is also approximately proportional to the number of elements by

ignoring the non-array parameters, i.e., the required memory size is γNesf. Here sf is the size of

a floating-point number (i.e., 4 bytes for f32 and 8 bytes for f64) and γ is a dimensionless con-

stant. In most applications, operations are implemented as in-place updates to reduce the

required memory size. For example, for the NS2D operation, six arrays (γ = 6) are allocated in

memory. In the corrector step, the output arrays Ut+1, Vt+1, Pt+1 and input arrays Ut, Vt, Pt use

the same arrays in computer memory and the outputs are updated in place. Similarly, in-place

updates are used for AXPY and XPXPYN, so γ = 2 for them.

The total number of memory operations can also be estimated. For all the No equations like

Eq 2, the number of writing operations (i.e., write variables from the register to the memory or
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cache) is No, and the number of reading operations Nr equals the number of non-duplicate

array elements in the right-hand of the equations (non-duplicate because an element only

needs to be read to the register once). For example, to calculate the "provisional" arrays ele-

ments Ut�[i,j], Vt�[i,j], Pt�[i,j] (No = 3) with Eq 7 in the predictor substep, 13 (Nr) reading oper-

ations are needed– 5 for Ut (i.e., Ut[i,j], Ut[i+1,j], Ut[i-1,j], Ut[i,j+1], Ut[i,j-1]), 5 for Vt, and 3

for Pt (i.e., Pt[i,j], Pt[i+1,j], Pt[i,j+1],). Therefore, the total number of memory operations is

approximately NoNesf + NrNesf = βNesf. For element-wise operations, the number of non-dupli-

cate elements in the right-hand equals the number of input arrays Ni, so β = Ni +No. In imple-

mentations, it is not optimal to conduct these memory operations at the same bandwidth, so

the workload is split into two parts–one part operated at a lower bandwidth (βloNesf), the other

part at a higher bandwidth (βhiNesf), and β = βlo + βhi. The time spent on memory operations is

then approximately tm = tmlo+tmhi = βloNesf/BWlo(st = γNesf, xis, xap, xth) + βhiNesf/BWhi(st =

γNesf, xis, xap, xth).
An operation is called memory-bound if the time spent on memory operations (mostly on

low-bandwidth operations) is larger than that on FLOPs (i.e., tmlo> tflop). Otherwise, it is

FLOP-bound. Therefore, an operation is memory-bound if α/βlo< sfFLOPS/BWlo. The left-

hand side of the inequality is a ratio of workloads between FLOPs and memory operations,

which is determined by the numerical scheme. The right-hand side is a hardware parameter,

and a new symbol is used for it–(α/βlo)c. This hardware parameter represents a critical ratio,

and an operation is memory-bound if α/βlo< (α/βlo)c. Additionally, the ratio of time spent on

FLOPs and low-bandwidth memory operations is tflop/tmlo = [α/βlo]/[(α/βlo)c].

Similarly, the time spent on memory operations is mostly due to low-bandwidth read/write

(i.e., tmlo> tmhi) when βhi/βlo< BWhi/BWlo. Similarly, the left-hand side is a ratio of workload,

the right-hand side is a hardware parameter, and a new symbol is used for it–(βhi/βlo)c. The

ratio of time spent on high- and low-bandwidth memory operations is tmhi/tmlo = [βhi /βlo]/
[(βhi/βlo)c].

In parallel computing, the coordination of all the parallel threads costs computer resources

and thus time. Additionally, the read of non-array parameters costs bandwidth. These and

many other tasks do not scale with the mesh/grid size (Ne), and the time spent on them is col-

lectively denoted as the overhead time toh. Because of this non-scaling, the overhead time is

often negligible compared to the time on low-bandwidth memory operations (toh/tmlo<< 1)

when the mesh size Ne is large.

The computing speed of an operation can be measured in latency (LT; the time in seconds

needed for one execution of the operation) and throughput (THP; the number of operations

executed within a second). In most scenarios of the present study, the computing time is

mostly spent on low-bandwidth memory operations, i.e., tmlo = max(tflop, tmlo, tmhi, toh), and LT

� tmlo. Additionally, these workloads may run in parallel (e.g., the processor may conduct

FLOPs, and at the same time read array elements needed for the next FLOPs), so the LT is

smaller than the sum of these estimated times, i.e., LT� tflop+tmlo + tmhi + toh. The following

equation is therefore obtained.

bloNesf
BWlo

¼ tmlo � LT ¼
1

THP
� tflop þ tmlo þ tmhi þ toh

¼
aNe

FLOPS
þ
bloNesf
BWlo

þ
bhiNesf
BWhi

þ toh

Eq 9

4.2 Optimisation strategies

The size Ne is determined by the discretised mesh/grid and is thus fixed. The memory size of a

floating-point number sf (4 bytes for f32 and 8 bytes for f64) is determined by the accuracy
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requirements. So, the required memory size of a numerical model is fixed (γNesf), and so does

its relative size (e.g., small, medium, or large).

From Eq 9, to reduce latency and to increase throughput, there are two categories of

approaches: optimise the numerical scheme (the coefficients α and β are determined by the

numerical scheme) and optimise the implementation on target computing platforms (the

FLOPS and BW are hardware parameters that depend on implementation details).

The optimisation of the numerical scheme is similar to the target-independent optimisation

in XLA and includes the following strategies: (1) Optimisations to have maximally fused sub-

steps, which is explained in Section 2. Fused operations can reduce memory operations and

are one of the best ways to improve performance (demonstrated in Section 5.3). (2) Optimisa-

tions to reduce the number of FLOPs, i.e., reduce α. (3) Optimisations to reduce the number

of memory operations, i.e., reduce β. The numerical models examined in this study are already

optimised with maximally fused substeps and Eq 4~Eq 8 are already expressed in the optimal

format with the smallest values regarding α and β. The element-wise operations are also opti-

mal except for XPXPYN. After optimisation, XPXPYN is Yt+1 = Yt, which has smaller α (0)

and β (2). However, XPXPYN is designed to examine how the number of FLOPs influences

computing speed. So, in this study, the numerical scheme equations are assumed already opti-

mised, and α and β are simply used to denote the smallest values of the optimised numerical

schemes.

The optimisation of implementation depends on the target computing platform and

includes the following strategies: (1) Optimisations to increase FLOPS. It is shown in Section

3.1 that the FLOPS is a function of two arguments–FLOPS(sf, xis). The size of the floating-

point number sf is determined by the accuracy requirements, so the optimal implementation

should choose the appropriate instruction sets to have FLOPSmax(sf) = max{FLOPS(sf, xis)}. (2)

Optimisations to increase bandwidth. Similarly, it is shown in Section 3.2 that the bandwidth

is a function of four arguments–BW(st = γNesf, xis, xap, xth). The total required memory size st
= γNesf is fixed by the problem. So the optimal implementation should choose the appropriate

methods to have BWlo
max(st = γNesf) = max{BWlo(st = γNesf, xis, xap, xth)}and BWhi

max(st =

γNesf). (3) Optimisations to reduce low-bandwidth memory operations: After the optimisation

of the numerical scheme, the total number of memory operations (i.e., β) is fixed. Higher com-

puting speed is still achieved by reducing memory operations at lower bandwidth (i.e.., reduc-

ing βlo and increasing βhi). (4) Optimisations to reduce the overhead time.

After optimisations, the latency is minimised, and the throughput is maximised. They can

be estimated by substituting the optimal hardware parameters (e.g., FLOPSmax, BWlo
max, and

BWhi
max) in Eq 9.

4.3 Effective bandwidth

The input arrays are at least read once at low bandwidth and the output arrays are at least writ-

ten once, so the minimal possible value for the coefficient βlo is at least Ni+No. It is shown in

Section 5 that optimal implementations do have βlo = Ni+No and βhi = β–(Ni+No). Therefore,

for a fixed mesh size (Ne) with a fixed accuracy requirement (sf), the minimum workload of

low-bandwidth memory operations is fixed at βloNesf = (Ni+No)Nesf. The computing speed can

then be measured by another quantity–the effective bandwidth BWe = βloNesf/LT = (Ni+No)

Nesf/LT = (Ni+No)Nesf ×THP, which is a measure of throughput in terms of memory opera-

tions. From the equation, the latency, throughput, and effective bandwidth are all equivalent

and it is easy to calculate one from another. However, the use of effective bandwidth has the

advantage that it can be compared with some reference values (e.g., benchmarked bandwidth,

theoretical burst rate, etc.).
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With these definitions, the following equation regarding the effective bandwidth BWe is

obtained from Eq 9.

zBWlo � BWe � BWlo

z ¼
1

1þ
tflop
tmlo
þ

tmhi

tmlo
þ

toh
tmlo

¼
1

1þ
a=blo

ða=bloÞc
þ

bhi=blo

ðbhi=bloÞc
þ

toh
tmlo

Eq 10

where the definitions of (α/βlo)c and (βhi/βlow)c have been substituted in. Therefore, the effec-

tive bandwidth lies between the low bandwidth BWlo and a fraction of it. After optimisations,

the effective bandwidth is maximised (BWe
max), and it can be estimated by substituting the

optimal hardware parameters (e.g., FLOPSmax, BWlo
max, and BWhi

max) in Eq 10.

5 Optimal implementations and XLA performance

In this section, the optimal implementations of the operations on various platforms and com-

puters are examined. The computing speed is modelled and compared with that of the XLA

implementations. The codes used to reproduce the results of the present study are available in

the GitHub repository (https://github.com/xuzhen-he/XLA_numerical_models) and the pseu-

docodes are shown in Table 5.

On the CPU platform, parallel computing is fulfilled by compiling the source codes with

the GNU C/C++ compiler (version 9.4.0 for the PC and 10.2.1 for the HPC), which is sup-

ported by the GCC’s implementation of OpenMP. Shared-memory parallelism is achieved by

simply using OpenMP directives on the C/C++ loops. Executables are compiled with the high-

est level of optimisation (i.e., with option -O3) and optimised with all the instruction sets of

the local machine (i.e., with option -march = native). Additionally, auto-vectorisation is

enabled by default with this level of optimisation, the information about vectorisation is

dumped with the option -fopt-info-vec.
On the GPU platform, parallel computing is fulfilled by compiling the source codes with

the CUDA C/C++ (version 11.7 for the PC and 11.6 for the HPC). Pseudocodes of the opera-

tions (called kernels in CUDA) are shown in Table 5. In CUDA, the kernels are invoked with

grids of thread blocks, which mimics how GPU processors are physically grouped. Grids and

thread blocks can be 1D, 2D or 3D. It is natural to use 1D grids and thread blocks for 1D prob-

lems and 2D grids and thread blocks for 2D problems. Within the CUDA kernel, the index of

Table 5. Pseudocodes for the operations.

CPU platform (Fulfilled with OpenMP) GPU platform (Fulfilled with CUDA)

1D inline void substep(X1, X2,. . .,XNi,Y1,Y2,. . .,YNo, p) __global__ void substep(X1, X2,. . .,XNi,Y1,Y2,. . .,YNo,

p)

#OpenMP directive int_type j = blockIdx.x�blockDim.x+threadIdx.x;

for (int_type j = 0; j < total_size; j++) if (j< total_size)

#loop body to calculate Yq[j], q = 1,2,. . .,No #kernel body to calculate Yq[j], q = 1,2,. . .,No

2D inline void substep(X1, X2,. . .,XNi,Y1,Y2,. . .,YNo, p)

#Outer-loop OpenMP directive __global__ void substep(X1, X2,. . .,XNi,Y1,Y2,. . .,YNo,

p)

for (int_type i = 0; i < total_size; i++) int_type i = blockIdx.x � blockDim.x + threadIdx.x;

#Inner-loop OpenMP directive int_type j = blockIdx.y � blockDim.y + threadIdx.y;

for (int_type i = 0; i < total_size; i++) if (i < Nx and j < Ny)

#loop body to calculate Yq[i,j] or Yq[j,i], q = 1,2,. . .,

No

#kernel body to calculate Yq[i,j], q = 1,2,. . .,No

https://doi.org/10.1371/journal.pone.0282265.t005
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the thread, the dimension of the thread block and the index of a thread block within the grid

are accessed through the built-in variables threadIdx, blockDim, and blockIdx, respectively

(Table 5).

The latency is measured by running the operations for at least 5 seconds and at least 20

times, an average latency is recorded. Array programming of the operations is achieved with

the Python package JAX (version 0.3.17 for both the PC and HPC) and JAXLIB (version 0.3.15

for both the PC and HPC). The first run of the JAX implementation is not timed because it

contains optimisations and compilation with XLA.

5.1 Element-wise vector operations: Optimal implementations on the CPU

platform

For element-wise operations, all the calculations are independent and a particular input ele-

ment Xl[i,. . .] is only requested when calculating the corresponding output elements at the

same position (Yq[i,. . .]). This homogeneity makes it impossible to split the memory opera-

tions into two parts at different speeds. So, all the memory operations are at the same band-

width with βlo = No + Ni and βhi = 0.

On the CPU platform, two types of implementations are examined: The first is single-

thread SIMD (256-bit AVX) implementation. This is achieved by using OpenMP directive

omp simd. Or equivalently, without the OpenMP directive, the highest level of optimisation

(-O3) will automatically vectorise (256-bit AVX) the loop. With one thread, the 256-bit AVX

can achieve the highest FLOPS and bandwidth considering observations (1)~(4) of Section 3.2,

and the benchmarked bandwidth from the tool bandwidth-benchmark is shown as black solid

lines in Fig 7(A) and 7(B). The effective bandwidth of COPY1D with this implementation

(black hollow triangles) is very close to the benchmarked bandwidth except for the relatively

larger gap when the required memory size is small (γNesf< L1 cache size). This gap is because

the benchmark tool is written with a low-level assembly language, but the present single-thread

SIMD implementation uses a high-level programming language (C/C++), and thus more

Fig 7. Optimal implementation of vector operations on the CPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; black = COPY1D; red = XPXPY20_1D; filled circles = OpenMP parallel for with the maximal no. of threads, hollow

circles = OpenMP parallel for with one thread; hollow triangles = single-thread SIMD; filled squares = XLA). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g007
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overhead is involved. The results also show that this overhead is negligible (toh /tmlo<<1) for

medium and larger problems (γNesf> L1 cache size).

The second implementation is using the OpenMP directive omp parallel for with N threads.

In this method, the array is divided into N sub-arrays (each is still continuous) and 256-bit

AVX is used by each thread on each such sub-array. When only one thread is used, this imple-

mentation should be identical to the single-thread SIMD implementation. However, the tested

effective bandwidth (hollow circles) is slightly below that (hollow triangles), which implies that

using the omp parallel for directive involves more overhead.

When the maximal number of threads is used (12 for PC and 26 for HPC), the two CPU

platforms show different features. When the problem (γNesf) is small, the overhead involved in

using many threads is large (i.e., toh/tmlo is large), so the effective bandwidth (filled circles) is

very small. Particularly, it is smaller than using a single thread (hollow triangles). The effective

bandwidth with the maximal number of threads starts to surpass that of a single thread when

approximately γNesf> L1 cache size on the PC and γNesf> L3 cache size on the HPC. The

overhead cost of using multiple threads does not scale with the problem size (γNesf) but rather

scales with the number of threads. So, on the HPC with more threads, a larger problem size

(γNesf) is required to make the overhead cost negligible (toh/tmlo<< 1). Another interesting

feature is that, for the PC, the effective bandwidth shows an abrupt drop for extremely large

problems (γNesf> 16 GB), which is likely because the main memory (32 GB) is made of two

pieces (each has 16 GB). When γNesf is larger than 16 GB, the 1D array is not physically contin-

uous anymore.

The latter discussions are mainly about medium (L1 cache size < γNesf< L3 cache size)

and large problems (L3 cache size < γNesf< 16 GB) on the PC and large problems (γNesf> L3

cache size) on the HPC because (1) the latency of small problems is often small and their com-

puting speed is less a concern and (2) the overhead cost for these problems is not negligible

and the analysis in this study will not apply to them. So, for medium and large problems on

the PC and large problems on the HPC, the optimal implementation is parallel computing

with the maximum number of threads and each thread handles a continuous sub-array with

SIMD instruction sets (256-bit AVX for the tested CPUs).

Element-wise operations have βlo = Ni +No and βhi = 0. Additionally, the COPY1D opera-

tion has α = 0. Hence, the time spent on COPY1D is only the low-bandwidth memory opera-

tions (tmlo) and overhead cost (toh). However, for medium and large problems on the PC and

for large problems on the HPC, the overhead cost is negligible (toh/tmlo<<1), so z = 1 in Eq 10

and BWe
max = BWlo

max for COPY1D, which means that the measured effective bandwidth for

the optimal implementation of COPY1D equals the maximum bandwidth. From Fig 7, for

medium-size problems on the PC, the maximum bandwidth BWlo
max is variable but reaches a

peak value of about 350 GB/s at γNesf� 2 MB. It is constant for large problems on both the PC

and HPC–about 28 and 55 GB/s, respectively. These data are summarised in Table 6. The max-

imum bandwidth BWlo
max is much higher for medium-size problems than that for large prob-

lems (350 vs. 28 GB/s) on the PC because the CPU platform can take advantage of the fast L1/

L2/L3 caches for medium-size problems.

5.2 Element-wise vector operations: Optimal implementations on the GPU

platform

On the GPU platform, a straightforward implementation is allocating continuous memory as

arrays of floating-point numbers (f32 or f64), and each array element is handled by a GPU

thread (as the pseudocode in Table 5). From observations (2)~(5) in Section 3.2, this imple-

mentation gives optimal bandwidth just without considering observation (1). The obtained
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effective bandwidth of COPY1D and XPXPY20_1D with single precision is shown in Fig 8

(filled circles). When the thread block size is either 128, 256, 512 or 1024, the effective band-

width is the same, so Fig 8 gives only the results with 512 threads.

Another implementation is to exploit the CUDA built-in types float4 or double2. In the

CUDA kernels, the f32 and f64 arrays are converted (reinterpret_cast) to arrays of float4 and

double2, respectively. Each GPU thread then conducts the calculation of four (f32) or two (f64)

output elements. With these built-in types, the compiled program can take advantage of the

instruction sets ld.global.v4.f32 and ld.global.v2.f64 that can read/write four f32 numbers or

two f64 numbers with one instruction. The obtained effective bandwidth is shown in Fig 8 as

hollow triangles.

Table 6. Hardware parameters of optimal implementations.

Computer Platform Required memory size γNesf BWlo
max (GB/s) Floating-point number FLOPSmax (GFLOPS) (α/βlo)c (βhi/βlo)c

PC CPU Medium (1.5 ~ 12 MB) Variable, peak of ~350 at γNesf� 2 MB f64 140.3 3.2 ~1

f32 281.7

Large (256 MB ~ 16 GB) ~28 f64 140.3 40.0 ~10

f32 281.7

GPU Medium (64 kB ~ 16 MB) Increase with γNesf, ~58.1 at γNesf�1 MB f64 46.6 6.4 ~5

f32 1490 93.2

Large (> 16 MB) ~82.4 f64 46.6 4.5 ~5

f32 1490 72.3

HPC CPU Large (> 38.5 MB) ~55.0 f64 487.3 70.0 ~10

f32 956.9

GPU Medium (64 kB ~ 16 MB) Increase with γNesf, ~900.0 at γNesf�4

MB

f64 348.5 3.1 ~5

f32 11151 50.0

Large (> 16 MB) ~372.3 f64 348.5 7.5 ~5

f32 11151 119.8

https://doi.org/10.1371/journal.pone.0282265.t006

Fig 8. Optimal implementation of vector operations on the GPU platform (single precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; black = COPY1D; red = XPXPY20_1D; filled circles = CUDA f32, hollow triangles = CUDA float4; filled

squares = XLA). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g008
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The use of these CUDA built-in types can give minor improvements for medium-size prob-

lems (64 kB< γNesf< 16 MB). However, for large problems (γNesf> 16 MB), the effective

bandwidth is the same except for some minor gains for only COPY1D and SCALE1D on the

PC (79 vs 72 GB/s). For other operations on the PC, both implementations give similar results

(Fig 8 only shows XPXPY20_1D). Because the gain is minor, but the complexity of program-

ming is significantly increased, the first straightforward implementation is considered optimal

in this study.

Similarly, the latter discussions are mainly about medium and large problems, for which

the overhead cost is negligible (toh/tmlo<<1). So the measured effective bandwidth for the

optimal implementation of COPY1D equals the maximum bandwidth (i.e., z = 1 and BWe
max

= BWlo
max for COPY1D). It should be noted that the effective bandwidth of optimal COPY1D

implementation is very close to the benchmarked bandwidth (black solid lines). From Fig 8,

for medium-size problems (64 kB< γNesf< 16 MB), the maximum bandwidth BWlo
max is var-

iable and increases with the increase of γNesf. For the PC, it is about 58.1 GB/s at γNesf� 1 MB.

For the HPC, there is a peak of about 900 GB/s at γNesf� 4 MB. For large problems (γNesf>
16 MB), the maximum bandwidth BWlo

max is constant (about 82.4 and 372.3 GB/s for the PC

and HPC, respectively).

From Fig 8, the effective bandwidth of XPXPY20_1D (red) is very close to that of COPY1D

(black), which suggests that tflop/tmlo<< 1 for XPXPY20_1D with single-precision calculations

on the GPU platform.

5.3 Element-wise vector operations: Fused operations vs. simple operations

How fused operations can improve performance is illustrated with two vector operations

(AXPY1D and VEC XPXPY6_1D). First consider AXPY1D. For fused operations, the scale of

X[i] by the parameter a and the addition of the result onto Yt[i] is finished within one opera-

tion (i.e., in the same for-loop on CPU and in the same kernel on GPU). The AXPY1D opera-

tion can also be achieved by conducting two simple operations–in-place scale of X[i] first and

then adding the result to Yt[i] with another vector addition operation. For the fused AXPY1D,

the array X is read once, and the array Y (in-place update, so for both Yt and Yt+1) is read once

and written once. However, if two simple operations are conducted, X is read twice and writ-

ten once, and the array Y is read once and written once. So, fewer memory operations for the

fused operations (3Nesf vs. 5Nesf). Fig 9 shows the measured effective bandwidth. For large

problems, the effective bandwidth of fused operations (black filled circles) is ~22.8 GB/s

(CPU) and ~79 GB/s (GPU). However, the simple operations have only ~14 GB/s (CPU) and

~45 GB/s (GPU)–about 60% that of fused operations and thus 67% more latency, which

exactly matches the ratio of memory operations (3:5). Similar reduction of effective bandwidth

is observed for medium-size problems.

VEC XPXPY6 is next examined, and results are shown as red circles in Fig 9 In this case,

the ratio of memory operations is (1:6). For large problems, the effective bandwidth is 3.8 GB/s

vs. 26.7 GB/s on the CPU platform, and 13.1 GB/s vs 79 GB/s on the GPU platform–the effec-

tive bandwidth of simple operations is only 16.7% of that using a fused operation and a 500%

more latency. These results demonstrated that fused operations can reduce memory opera-

tions, and significantly improve the computing speed.

5.4 Element-wise vector operations: Modelling the optimal computing speed

Element-wise operations have βlo = Ni +No and βhi = 0. So, for medium or large problems for

which the overhead cost is negligible, the execution time is only spent on FLOPs (tflop) and

low-bandwidth memory operations (tmlo).
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On the CPU platform, for large problems, the effective bandwidth of XPXPY20_1D with

many FLOPs (α = 20) is almost the same as that of COPY1D with no FLOPs (α = 0) from Fig

7. But a visible reduction of effective bandwidth is observed for medium-size problems. Similar

observations are found for f32 calculations shown in Fig 10A, in which the effective bandwidth

of six operations (with various α/βlo) is presented.

Fig 8 shows that, with f32 calculations on the GPU platform, the effective bandwidth of

XPXPY20_1D is almost the same as that of COPY_1D for both medium and large problems.

Fig 10B gives results of f64 calculations, where a clear reduction of effective bandwidth is

observed for XPXPY12_1D and XPXPY20_1D compared with COPY1D.

It is explained in Section 4.1 that the ratio of the time spend on FLOPs and memory opera-

tions is tflop/tmlo = [α/βlo]/[(α/βlo)c], where (α/βlo)c = sfFLOPS/BWlo is a hardware parameter

Fig 9. Fused operations (filled circles) vs. simple operations (hollow circles) and XLA (filled squares) vs. without XLA (hollow squares)

(black = AXPY1D; red = XPXPY6_1D). (a) CPU platform of PC (f64). (b) GPU platform of PC (f64).

https://doi.org/10.1371/journal.pone.0282265.g009

Fig 10. Maximal effective bandwidth of various vector operations. (a) PC CPU platform (f32). (b) PC GPU platform (f64).

https://doi.org/10.1371/journal.pone.0282265.g010
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measuring the relative performance of FLOPS and bandwidth. It is also a critical ratio that dif-

ferentiates if an operation is memory-bound or FLOP-bound.

The critical ratio (α/βlo)c is calculated for the optimal implementations and listed in

Table 6. For some scenarios, the maximum bandwidth BWlo
max is not constant but variable, a

typical value at a fixed γNesf is used. For the CPU platform, the FLOPSmax of single precision is

twice that of double precision, but sf is 4 bytes for f32 and 8 bytes for f64. So, the critical ratio

(α/βlo)c is independent of which floating-point number is used. However, for the GPU plat-

forms, the FLOPS of f32 calculations is significantly higher than that of f64, so the critical ratio

(α/βlo)c is highly sensitive to the choice of floating-point numbers.

It can be seen that (α/βlo)c is very large (> 40) for large problems on the CPU platform and

for f32 calculations on the GPU platform. So, for these cases, the time spent on FLOPs is

almost negligible for the examined vector operations (tflop/tmlo = [α/βlo]/[(α/βlo)c]<20/3/

40 = 0.167). In contrast, the critical ratio (α/βlo)c is relatively small (3~8) for medium-size

problems on the CPU platform and for f64 calculations on the GPU platform. That is why in

these cases, a clear reduction of effective bandwidth is observed for operations with larger

workload ratios α/βlo.
The element-wise operations in this study all have< 2 operands. the FLOPs cannot start

until all operands are read into the register, and the writing operation cannot start until the

FLOPs are finished. Hence, the time spent on FLOPs and memory operations cannot overlap,

and the latency is the sum of the time spent on FLOPs, memory operations, and overhead (i.e.,

LT = tflop+tmlo + toh). For medium or large problems where toh/tmlo<<1, the following model

regarding the effective bandwidth is then obtained.

BWe ¼ zBWlo ¼
1

1þ
a=blo
ða=bloÞc

BWlo Eq 11

If the hardware parameters for optimal implementations (e.g., FLOPSmax and BWlo
max) are

used, the maximum effective bandwidth BWe
max is obtained for Eq 11.

The relationship between the effective bandwidth and the workload ratio α/βlo is shown in

Fig 11. The measured maximum effective bandwidth of various element-wise operations is

shown as symbols, which include tests on various platforms and computers, and with both f32

and f64 calculations. The solid lines are the model predictions by Eq 11, which agree well with

the measured results. A steeper slope of the lines means a small critical ratio (α/βlo)c and the

lines are almost horizontal for cases with larger critical ratios, i.e., (α/βlo)c > 40.

The model (Eq 11) therefore suggests a useful method to roughly predict the maximum

computing speed of element-wise operations, which is valid for various platforms and comput-

ers. The ratio α/βlo is easily found from numerical scheme equations. The FLOPSmax(sf) can be

estimated from hardware specifications or benchmarked. The maximum bandwidth BWlo-
max(st = γNesf) can be benchmarked by running the optimal implementation of COPY1D (On

the GPU platform, the result from bandwidthTest is the same).

5.5 Element-wise vector operations: The performance of XLA

With the JAX Just In Time (JIT) compilation, JAX Python functions are optimised and com-

piled by XLA into optimal implementations specific to the target platform (e.g., CPU or GPU

platforms). If the JIT transformation is not used (without XLA), the JAX Python functions are

executed with many built-in high-performant simple operations. With XLA, the element-wise

operations expressed in array operations are fused together into an optimal operation, which

is confirmed by checking the generated HLOs in the debug mode. In Fig 9, with AXPY1D and

XPXPY6_1D as examples, it is shown that compared with the effective bandwidth without
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XLA (hollow squares), a significant performance gain is observed with XLA (filled squares).

Additionally, the performance of XLA closely resembles the maximum performance of fused

operations compiled with C/C++ (OpenMP or CUDA), and the performance without XLA is

very close to that of using simple operations compiled by C/C++. Another observation is that

the effective bandwidth of JAX Python implementations (with or without XLA) is lower than

the corresponding ones compiled with C/C++, which is largely due to the relatively higher

overhead cost in Python.

The performance of XLA is examined in a stringent way by comparing it with the optimal

implementations discovered in the previous subsections. The effective bandwidth of six ele-

ment-wise operations (COPY, SCALE, AXPY, XPXPY6, XPXPY12, XPXPY20) is measured on

various platforms and computers, and with both f64 and f32 calculations. The relative effi-

ciency, a ratio of effective bandwidth between XLA and optimal implementations, is presented

in Fig 12. Some individual results regarding the effective bandwidth of XLA are also shown in

Figs 7 and 8. Some observations are:

1. On the CPU platform of the PC, the optimised HLOs are compiled with LLVM in an opti-

mal way. For large problems (γNesf> L3 cache), the effective bandwidth of XLA is only

slightly below that of the optimal implementation (e.g., 22.1 vs. 28.5 GB/s for XPXPY20_1D

in Fig 7A). However, for medium-size problems (L1 cache< γNesf< L3 cache), XLA is less

efficient (e.g., 34.0 vs. 90.0 GB/s for XPXPY20_1D in Fig 7A). Fig 12 shows that the relative

efficiency (black symbols) is over 80% for large problems, but low (10% ~ 80%) for

medium-size problems. This is likely because the overhead cost in Python programs is

higher than that of C/C++ programs. This cost is still relatively negligible for large prob-

lems, but will not so for medium-size problems.

Fig 11. Model for the effective bandwidth of element-wise operations (lines = model prediction by Eq 11; symbols = measured maximal effective

bandwidth; filled symbols = matrix operations; hollow symbols = vector operations; circles = CPU; triangles = GPU; black = medium f64; red = medium

f32; blue = large f64; magenta = large f32). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g011
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2. On the CPU platform of the HPC, the operations are successfully fused in XLA optimisa-

tion (confirmed by checking the HLOs), but the optimised HLOs are not optimally com-

piled with LLVM. Fig 7B shows that the effective bandwidth of XLA closely resembles that

of single-thread SIMD implementation. Therefore, XLA performs well for small and

medium problems, but is very inefficient for large problems (XLA� 7 GB/s and optimal�

50 GB/s for XPXPY20_1D in Fig 7B), resulting in a very low relative efficiency (< 20%;

blue symbols in Fig 12).

3. On the GPU platform (either PC or HPC), the performance of XLA is very close to that of

optimal implementations for large problems (relative efficiency > 90%; red and magenta

symbols in Fig 12), but not very efficient for medium-size problems (5% ~ 90%), which is

similarly due to the relatively higher overhead cost in Python. Some data in Fig 12 indicate a

relative efficiency of over 100% on the GPU platform but not more than 120%. An exami-

nation of the generated ptx files (a low-level assembly language) reveals that XLA takes

advantage of the instruction sets ld.global.v4.f32 and ld.global.v2.f64, which can read/write

four f32 numbers or two f64 numbers with one instruction. Recall that the use of these

instruction sets does gain minor improvement, but is not considered optimal due to the

complexity of programming.

5.6 Element-wise matrix operations

All the matrices tested in this study are square matrices. On the CPU platform, two nested

loops are used for 2D problems. How the two loops are mapped to the two indices of matrice

is critical. A row-major order is assumed, so consecutive elements in the last index are

Fig 12. Relative efficiency of XLA for element-wise operations (hollow = vector operations; filled = matrix

operations; circles = f64; triangles = f32; black = PC CPU; red = PC GPU; blue = HPC CPU; magenta = HPC

GPU).

https://doi.org/10.1371/journal.pone.0282265.g012
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contiguous in memory. If the last index is mapped to the inner loop, the first index is mapped

to the outer loop, and the outer loop is decorated with the OpenMP directive omp parallel for,
cached memory access is achieved. In this implementation, the array is divided into Nx sub-

arrays (each still continuous) and each CPU thread uses SIMD instruction sets on each such

sub-array. Here Nx is the size of the first index. With the maximal number of threads, the mea-

sured effective bandwidth of COPY2D and XPXPY20_2D is presented in Fig 13 as filled cir-

cles. The performance is the same as the optimal performance of the corresponding vector

operations (i.e., COPY1D and XPXPY20_1D; filled diamonds in Fig 13) because these two

implementations are similar, the only difference is that the array is divided by the number of

threads for vector operations, but is divided by Nx for matrix operations. If the loops and indi-

ces are not correctly mapped (i.e., the last index is mapped to the outer loop), the memory

access pattern is uncached (Fig 6), and a significant reduction of effective bandwidth is

observed (hollow triangles in Fig 13). Fig 13B shows that cached or uncached implementations

are the same for small and medium problems on the HPC, which is because the overhead cost

dominates for them.

On the GPU platform, CUDA kernels for matrix operations are invoked by 2D grids and

thread blocks. The shape of the thread block (Bx × By) affects the memory access pattern and

thus effective bandwidth. Here, Bx and By are the size of the thread block for the first and last

indices, respectively. When Bx is 1, the memory access by GPU threads is coalesced and thus

optimal. When Bx is larger than 1, it is uncoalesced. Fig 14 shows that the effective bandwidth

is maximised when Bx is 1 (black circles in Fig 14; Bx = 2 also works fine), it decreases with the

increase of Bx (from black to red, blue, magenta, and green). Additionally, Fig 14 shows that

with an optimal memory-access pattern (coalesced access for GPUs), the maximum effective

bandwidth of matrix operations (black filled circles) is the same as the corresponding vector

ones (filled diamonds).

The results above show that on both the CPU and GPU platforms, the maximum effective

bandwidth of matrix operations is the same as the corresponding vector ones, which is also

Fig 13. Optimal implementation of matrix operations on the CPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; black = COPY2D; red = XPXPY20_2D; filled circles = OpenMP parallel for with cached access; hollow triangles =

OpenMP parallel for with uncached access; filled diamonds = optimal implementation for corresponding vector operations; filled squares = XLA). (a)

PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g013
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implied by the model Eq 11 because it contains no information regarding the dimension of

arrays. The data in Fig 11 also support this–filled symbols are from matrix operations and they

collapse with the hollow symbols from vector operations.

The performance of XLA is shown as filled squares in Figs 13 and 14. Comparing these with

the filled squares in Figs 7 and 8 which are for the corresponding vector operations, it is found

that the performance of XLA for matrix operations is the same as that of corresponding vector

operations–simples operations are successfully fused in XLA, and the optimised HLOs are

compiled optimally for the CPU platform of the PC and also for the GPU platforms, but is

compiled in a non-optimal way for the CPU platform of the HPC. Therefore, the relative effi-

ciency is the same for both vector and matrix operations, which is supported by the data (filled

symbols in Fig 12 are from matrix operations and they collapse with the hollow symbols from

vector operations).

5.7 1D finite-difference model: Optimal implementations

The optimal implementation of the 1D model (HEAT1D) is examined in this section. On the

CPU platform, two implementations are assessed: (1) Single-thread 256-bit AVX implementa-

tion, and (2) the use of OpenMP directive omp parallel for with multiple threads. Similar to

vector operations, using omp parallel for with one thread (hollow circles in Fig 15) is almost

the same as single-thread 256-bit AVX implementation (hollow triangles), but involves slightly

higher overhead. Using omp parallel for with the maximum number of threads (filled circles in

Fig 15) is optimal for medium and large problems on the PC and for large problems on the

HPC.

HEAT1D and COPY1D both have βlo = 2 (βlo = Ni +No and Ni = No = 1 for them as in

Table 1). So, for a fixed mesh size (Ne) and floating-point accuracy (sf), the workload of low-

bandwidth memory operations (βloNesf) is the same for them. Fig 15 shows that the effective

Fig 14. Optimal implementation of COPY2D on the GPU platform of the PC (double precision; solid black

line = benchmarked bandwidth; circle symbols = effective bandwidth with different shapes of thread block;

black = 1 × 512, 1 × 128, 2 × 256, or 2 × 64; red = 4 × 128; blue = 16 × 32; magenta = 128 × 4; green = 512 × 1; filled

diamonds + line = optimal for COPY1D; filled squares + line = XLA).

https://doi.org/10.1371/journal.pone.0282265.g014
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bandwidth of the optimal implementations for them is almost the same (red filled circles vs.

black filled circles), which means that the computing time for them is almost the same. How-

ever, HEAT1D involves much more FLOPs (6 vs. 0 for α) and memory operations (4 vs. 2 for

β). The reason is that the optimal implementation achieves locality of reference and uses the

much faster CPU caches to conduct certain memory operations (Fig 16A). For HEAT1D, each

inner element is needed to be read in the register three times. For example, Tt[i] are loaded

three times to calculate Tt+1[i-1], Tt+1[i], and Tt+1[i+1], respectively. In the optimal implemen-

tation, these three output elements are processed by the same thread (CPU thread 1 in Fig

16A) one after another within a very short time. When the required memory size γNesf is larger

than the L3 cache size–inputs and output arrays cannot always reside on the caches, Tt[i] is

required to be read from the main memory only once when calculating Tt+1[i-1]. Afterwards,

Tt[i] is saved on the caches and subsequent reading is from the much faster caches when calcu-

lating Tt+1[i], and Tt+1[i+1]. So, the three reading operations are operated with one reading at

low bandwidth from the main memory and two readings at high bandwidth from caches,

which leads to βlo = 2 and βhi = 2. When the required memory size γNesf is smaller than the L3

cache size–inputs and output arrays can both reside on the caches, and then the three reading

are all operated at high bandwidth. But for the convenience of discussion, we still have βlo = 2

and βhi = 2, but rather set BWlo
max� BWhi

max.

On the GPU platform, two types of implementations are examined. In the first one, each

output element is processed by a GPU thread like the pseudocode for 1D problems in Table 5.

The measured effective bandwidth is shown as filled circles in Fig 17. Similarly, the effective

bandwidth of HEAT1D (black filled circles) is only slightly smaller than that of COPY1D (red

filled circles), and they have almost the same computing time. So, this implementation also

benefits from the locality of reference (Fig 16B). Tt[i] is required to be loaded to the register

three times to calculate Tt+1[i-1], Tt+1[i], and Tt+1[i+1], respectively. In this GPU implementa-

tion, the three output elements are processed by three GPU threads in the same thread block

(i.e., Tt[i] is requested at the same time by three threads). So, it only needs to be read from the

Fig 15. Optimal implementation of HEAT1D on the CPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; red = COPY1D; black = HEAT1D; filled circles = OpenMP parallel for with the maximal no. of threads, hollow circles =

OpenMP parallel for with one thread; hollow triangles = single-thread SIMD; filled squares = XLA with slice and concatenation; hollow diamonds = XLA

with convolution; hollow pentagons = XLA with roll). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g015
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GPU memory once at low bandwidth, the other two reading is from the L2 cache with high

bandwidth, leading to βlo = 2 and βhi = 2.

Another implementation is to exploit the GPU shared memory, and the code structure is

the same as the pseudocode in Table 5. Suppose the output elements processed by a thread

block are from Tt+1[i] to Tt+1[i+blockDim-1], input elements with the size of blockDim + 2 are

then read into the shared memory (i.e., from Tt[i-1] to Tt[i+blockDim]), and subsequent read-

ing of the input elements is from the shared memory, which is must faster than reading from

the GPU memory (Fig 4B). With this implementation, the effective bandwidth is shown as hol-

low triangles in Fig 17, which is slightly smaller than that of the first one utilising the L2 cache.

Fig 16. Locality of reference in optimal implementations. (a) Locality for 1D problems on the CPU platform. (b)

Locality for 1D problems on the GPU platform. (c) Locality for 2D problems on the CPU platform. (d) Locality for 2D

problems on the GPU platform.

https://doi.org/10.1371/journal.pone.0282265.g016

Fig 17. Optimal implementation of HEAT1D on the GPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; red = VEC COPY; black = HEAT1D; filled circles = CUDA utilising L2 cache; hollow triangles = CUDA utilising shared

memory; filled squares = XLA with slice and concatenation; hollow diamonds = XLA with convolution; hollow pentagons = XLA with roll). (a) PC. (b)

HPC.

https://doi.org/10.1371/journal.pone.0282265.g017
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The reason is that some input elements staying at the boundaries of thread blocks may be read

into the shared memory twice, and the high-bandwidth memory operations are also larger (βhi
= 3 from the shared memory vs. βhi = 2 from the L2 cache). Therefore, the first implementation

utilising the L2 cache is considered optimal. Besides, the complexity of coding is substantial

when using shared memory.

5.8 2D finite-difference models: Optimal implementations

The optimal implementations of the two 2D models (HEAT2D and NS2D) are examined in

this section. NS2D has two substeps. In the section, an overall latency (LT = LTpredictor + LTcor-

rector) and an overall effective bandwidth (BWe = 15Nesf/LT) of the two substeps are reported.

On the CPU platform, two implementations are assessed, which differ only by how the two

indices are mapped to the two C/C++ loops. Similar to the findings in Section 5.5 about matrix

operations, the implementation with cached access (filled circles in Fig 18) is optimal and per-

forms better than that with uncached access (hollow triangles). Comparing Fig 18 with Fig 13

shows that the effective bandwidth of the optimal implementations for HEAT2D and NS2D is

only slightly lower than that of optimal COPY2D even though the two 2D models involve

much more FLOPs and memory operations. Similarly, the optimal implantation benefits from

the locality of references, which is illustrated in Fig 16C (with HEAT2D as an example but the

same is valid for all other similar 2D models). For HEAT2D, Tt[i,j] are requested five times to

calculate the output elements Tt+1[i,j], Tt+1[i,j-1], Tt+1[i,j+1], Tt+1[i+1,j], and Tt+1[i-1,j],
respectively. The three elements Tt+1[i,j], Tt+1[i,j-1] and Tt+1[i,j+1] are processed by the same

CPU thread sequentially in a very short time. The other two elements Tt+1[i+1,j] and Tt+1[i-1,

j] are processed by neighbouring CPU threads. Because all threads start with the elements

whose second index is 0, even though the CPU threads work independently, they will reach

the three elements Tt+1[i,j], Tt+1[i+1,j] and Tt+1[i-1,j] (their second indices are all j) approxi-

mately the same time. Therefore, even though Tt[i,j] is requested five times, the five readings

happen within a very short period, leading to βlo = 2 and βhi = 4.

Fig 18. Optimal implementation of HEAT2D and NS2D on the CPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; black = HEAT2D; red = NS2D; filled circles = OpenMP parallel for with cached access; hollow triangles = OpenMP
parallel for with uncached access; filled squares = XLA with slice and concatenation; hollow diamonds = XLA with convolution; hollow pentagons = XLA

with roll). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g018
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On the GPU platform, two implementations like those for the 1D model are examined. In

the first one, each output element is processed by a GPU thread, and the CUDA kernel is

invoked with 2D grids and thread blocks (Bx = 1 and By = 512). The choice of Bx = 1 is because

it will ensure the optimal memory access pattern for GPU threads (i.e., coalesced access as

demonstrated in Section 5.5). The effective bandwidth is shown as filled circles in Fig 19

(black = HEAT2D and red = NS2D), which is only slightly below that of optimal COPY2D

(equals the benchmarked bandwidth). This implementation also benefits from the locality of

references and is demonstrated in Fig 16D. The arrows indicate the order of output elements

in memory and also the execution order of thread blocks for 2D models. Similarly, each input

element Tt[i,j] is requested five times to calculate the output elements Tt+1[i,j], Tt+1[i,j-1], Tt

+1[i,j+1], Tt+1[i+1,j], and Tt+1[i-1,j], respectively. With Bx = 1, the three elements Tt+1[i,j-1], Tt

+1[i,j] and Tt+1[i,j+1] are continuous in memory and are processed by neighbouring threads in

a thread block at the same time. But the other two elements Tt+1[i-1,j] and Tt+1[i+1,j] are pro-

cessed before and after the three continuous elements. After Tt+1[i,j] is processed, a whole row

of output elements (number = Ny) needs to be processed before Tt+1[i+1,j] can be processed.

So, if the L2 cache can store a whole row (Ny) of inputs elements, then when processing Tt+1[i
+1,j], the input element Tt[i,j] still resides on the L2 cache and can be read into the register

faster. For the largest problem tested on the GPU platforms, Ny is 8 × 1024 for the PC and Ny is

32 × 1024 for the HPC, which will require 64 kB (PC) and 256 kB (HPC) to store a whole row

of Tt in f64. However, the L2 cache is much larger– 512 kB for the PC and 4 MB for the HPC.

Therefore, this optimal implementation also has βlo = 2 and βhi = 4.

Another implementation on the GPU platform is to exploit the shared memory. For 2D

problems, the size of thread blocks is Bx = 1 and By = 512 to have an optimal memory access

pattern. Input elements with the shape of (Bx + 2) × (By + 2) are required to be loaded into the

shared memory, and subsequent reading of the input elements is from the shared memory. Fig

19 shows that the performance of this implementation (hollow triangles) is slightly poorer

than that of the first one utilising the L2 cache (filled circles), so the first one is optimal.

Fig 19. Optimal implementation of HEAT2D and NS2D on the GPU platform (double precision; solid black line = benchmarked bandwidth; lines

+ symbols = effective bandwidth; black = HEAT2D; red = NS2D; blue = XPXPY12_2D; filled circles = CUDA utilising L2 cache; hollow triangles = CUDA
utilising shared memory; filled squares = XLA with slice and concatenation; hollow diamonds = XLA with convolution; hollow pentagons = XLA with

roll). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g019
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5.9 Finite-difference models: Modelling the optimal computing speed

Sections 5.6 and 5.7 show that for the optimal implementations of the numerical models on

either the CPU or the GPU platform, the computing time is mostly spent on low-bandwidth

memory operations and the effective bandwidth is only slightly lower than the COPY

operations.

An examination of the generated computer instructions (in assembly language; asm for

GNU C/C++ and ptx for CUDA C/C++) reveals that FLOPs and memory operations are exe-

cuted alternately for these numerical models. It is not like the element-wise operations exam-

ined in this study that FLOPs cannot start until all operands are read in the register and the

writing of operation results cannot start until the calculations are done (Section 5.4). There-

fore, the execution of FLOPs and memory operations may overlap each other for numerical

models. Moreover, memory operations often take longer time than FLOPs, so the time spent

on FLOPs is less important for numerical models. This can be demonstrated with the data.

HEAT2D and XPXPY12_2D both have α/βlo = 4 but HEAT2D involves more high-bandwidth

memory operations (βhi/βlo = 2 vs. 0). However, the effective bandwidth of HEAT2D (black

filled circles in Fig 19) is surprisingly higher than that of XPXPY12_2D (i.e., faster). With the

findings above, the latency for numerical models can be assumed to be the sum of the time

spent on low- and high-bandwidth memory operations, and overhead (i.e., LT = tmlo + tmhi +

toh). For medium or large problems where toh/tmlo<<1, the following model is obtained.

BWe ¼ zBWlo ¼
1

1þ
bhi=blo
ðbhi=bloÞc

BWlo Eq 12

For large problems on the CPU platform, the low-bandwidth memory operations are from/

to the main memory and the high-bandwidth memory operations are from/to caches, the criti-

cal ratio (βhi/βlo)c = BWhi
max/BWlo

max is therefore estimated to be about 10. For medium-size

problems, BWhi
max� BWlo

max (Section 5.6) and so (βhi/βlo)c is about only 1. On the GPU plat-

form, the low-bandwidth memory operations are from/to the GPU memory and the high-

bandwidth memory operations are from/to the L2 cache, so (βhi/βlo)c = BWhi
max/BWlo

max is

larger than 1. A value of about 5 is assumed to fit the data in Fig 20. These values of (βhi/βlo)c
are listed in Table 6.

Fig 20 shows the relationship between the effective bandwidth and the workload ratio βhi/
βlo for numerical models. The measured maximum effective bandwidth is shown as symbols,

which include tests on various platforms and computers, and with both f32 and f64 calcula-

tions. The solid lines are the model predictions by Eq 12, which agree fairly with the measured

results. A noticeable discrepancy is for large problems on the CPU platform, the model predic-

tions (red lines) are always larger than the measured effective bandwidth (red symbols). The

model Eq 12, therefore, suggests a useful method to roughly predict the maximum computing

speed of numerical models. The ratio βhi/βlo is easily found from numerical scheme equations,

and the hardware parameters can be easily found or benchmarked.

5.10 Finite-difference models: The performance of XLA

It is shown in Section 2 that three methods are available for the array programming of

HEAT1D and HEAT2D. With XLA, the measured effective bandwidth of the three methods is

shown in Fig 15A (HEAT1D; CPU), Fig 17A (HEAT1D; GPU), Fig 18A (HEAT2D; CPU), and

Fig 19A (HEAT2D; GPU). Results show that the method of using slice and concatenation

(filled squares) has the highest effective bandwidth for all tests while the methods of using con-

volution (hollow diamonds) and roll (hollow pentagons) operations are less efficient. An
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examination of the generated HLOs reveals that when using slice and concatenation, the sim-

ple operations are correctly fused into one optimal operation, but the high-level operations

like convolution and roll are not fused with other operations in an optimal way.

In terms of compilation with LLVM in XLA, it is shown that the optimised HLOs (from the

slice and concatenation method) are optimally compiled for the CPU platform of the PC (Figs

15A and 18A) such that the performance of XLA (filled squares) closely resembles that of the

optimal implementations (filled circles). However, on the CPU platform of the HPC (Figs 15B

and 18B), optimised HLOs are compiled in a non-optimal way, and the performance of XLA

(filled circles) is close to that of single-thread SIMD implementation (hollow triangles).

On the GPU platforms, the performance of XLA depends on the numerical models. For

HEAT1D, the performance (filled squares in Fig 17) matches that of the optimal implementa-

tion (filled circles) and is even better than that on the PC (Fig 17A). An examination of the

generated ptx files for HEAT1D shows that, in XLA, each GPU thread processes four (f32) or

two (f64) output elements–taking advantage of the instructions ld.global.v4.f32 and ld.global.
v2.f64, but each GPU thread processes only one output element in the optimal implementa-

tion. For HEAT2D and NS2D, the effective bandwidth of XLA (filled squares in Fig 19) is

lower than that of the optimal implementations (filled circles), and the gap for NS2D is higher

than that for HEAT2D. The only difference between XLA and the optimal implantations is the

number of output elements processed by a GPU thread, i.e., four (f32) or two (f64) in XLA,

but one in the optimal implementation. From the generated ptx files for HEAT2D and NS2D,

it is found that even though four (f32) or two (f64) output elements are processed by a GPU

thread in XLA, the instructions ld.global.v4.f32 and ld.global.v2.f64 are rarely used due to the

complexity of these 2D numerical models.

Fig 21 shows the relative efficiency of XLA for numerical models. The three observations

(1)~(3) for element-wise operations are still valid, but one additional observation is that the

relative efficiency of XLA on the GPU platform depends on the numerical model. For 1D

Fig 20. Model for the maximal effective bandwidth of numerical models (lines = model prediction by Eq 12; symbols = measured maximal effective

bandwidth; filled = f64; hollow = f32; black = CPU medium; red = CPU large; blue = GPU medium; magenta = GPU large). (a) PC. (b) HPC.

https://doi.org/10.1371/journal.pone.0282265.g020
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models with a limited number of inputs and outputs (e.g., HEAT1D), it is high (> 90%; and

can even reach 120%) for large problems, and less efficient for medium-size problems. For 2D

models, particularly the ones with many input and output arrays (NS2D), the relative effi-

ciency is unsatisfactory even for large problems (70%~80% for HEAT2D and as low as

20~40% for NS2D).

6 Conclusions

This paper studies the efficiency of XLA in implementing computationally efficient numerical

models. XLA is a compiler that automatically conducts optimisations (most importantly fusion

to reduce memory operations) for array operations and compiles the optimised operations

into target-specific programs. Speed-up is often easy to prove, this study stringently examines

its efficiency by comparing the performance of XLA implementations with that of optimal

implementations.

Examined models include element-wise operations (e.g., COPY, SCALE, AXPY, and

XPXPYN) and numerical models (e.g., HEAT1D, HEAT2D, and NS2D). These models/opera-

tions represent a broad category of numerical models commonly encountered in the scientific

computing community, hence the conclusions should easily transcend to other similar

models.

Two computing platforms (backends in XLA) are examined–the shared-memory CPU plat-

form and the shared-memory GPU platform. To obtain optimal implementations of the mod-

els on these platforms, the computing speed and its optimisation are rigorously studied by

considering the different workloads and the corresponding computer performance. On the

Fig 21. Relative efficiency of XLA for numerical models (hollow = f64; filled = f32; circles = HEAT1D;

triangles = HEAT2D; squares = NS2D; black = PC CPU; red = PC GPU; blue = HPC CPU; magenta = HPC GPU).

https://doi.org/10.1371/journal.pone.0282265.g021
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CPU platform, optimal implementations are parallel computing with the maximum number of

threads and each thread handles a continuous sub-array of output elements with SIMD instruc-

tion sets. On the GPU platform, optimal implementations are using multiple concurrent GPU

threads to calculate output elements that are part of a continuous array, and each output ele-

ment is processed by each such GPU thread. All optimal implementations for numerical models

achieve the locality of reference such that certain memory operations are operated at high band-

width via the caches. Two models are proposed to estimate the computing speed of element-

wise operations (Eq 11) and numerical models (Eq 12) and are supported by the data.

In terms of optimisation with XLA, an examination of the generated HLOs in debug mode

reveals that models expressed in low-level operations such as slice, concatenation, and array

arithmetic operations are successfully fused into optimal operations, while high-level opera-

tions such as convolution and roll cannot be fused with other operations optimally.

Regarding compilation within XLA, results show that, for all examined models for the CPU

platforms of certain computers (e.g., the PC), and for certain simple numerical models for the

GPU platform of all computers, XLA achieves a very high efficiency (> 80%) for large prob-

lems and acceptable efficiency (10%~80%) for medium-size problems–the gap is mainly due

to the larger overhead cost of Python.

XLA obtains unsatisfactory performance for (1) all models compiled for the CPU platform

of certain computers (e.g., the HPC) where the optimised operations are compiled in a non-

optimal way; and (2) for high-dimensional models with many input and output arrays for the

GPU platform of all computers, where XLA takes the strategy of processing 4 (single precision)

or 2 (double precision) output elements with a GPU thread–hoping to use the instructions

that can read/write 4 or 2 floating numbers with one instruction. However, these instructions

are rarely used in the generated computer instructions due to the complexity of the models,

and the performance is negatively affected. Therefore, areas for potential improvements are

adding more flags to control the compilation for these non-optimal scenarios.
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