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ABSTRACT: Deep learning (DL) has proven effective in extracting damage-sensitive features by training neural network models 
with extensive numerical and experimental data. However, these models typically perform well only when the test samples come 
from data with the same distribution as the training data, which is often unrealistic in practical scenarios due to numerical modeling 
errors and operational variations. Furthermore, collecting data on the damage state is challenging due to the rarity and 
irreversibility of structural damage in real-world situations. To address these challenges, a novel method called maximum 
discrepancy adversarial domain adaption (MDAD) is proposed by jointly aligning the distributions of damage-sensitive features 
across different domains at both the class and domain levels. It consists of a feature generator, two classifiers, and one 
discriminator. The MDAD method employs a domain discriminator and feature generator to merge the distributions at the domain 
level, overcoming the problem of insufficient data from real structures. Additionally, the generator and two classifiers align at the 
class level by leveraging the classification discrepancy between them. 
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1 INTRODUCTION 
Vibration-based methods are commonly used to detect 
structural damage or deterioration in civil infrastructure. These 
methods can be categorized into model-based and data-driven 
approaches [1]. Model-based approaches rely on accurate 
numerical modeling but are affected by uncertainties [2]. Data-
driven approaches, especially deep learning (DL) based 
methods, have gained popularity due to their ability to 
automatically extract structural damage features [3]. Deep 
learning models, such as convolutional neural networks 
(CNNs), recurrent neural networks, recursive neural networks, 
and unsupervised pre-trained networks (UPNs), have been 
developed for structural damage detection. UPNs and CNNs 
are commonly used in vibration-based methods. Researchers 
have used deep CNNs to extract damage features and identify 
damage locations from sensor data with noise effects [4]. Deep 
autoencoders have been employed for effective feature learning 
and mapping input modal information to output structural 
stiffness parameters for damage identification. The 
effectiveness of DL-based damage detection methods relies on 
two assumptions [5]: having training data with the same 
distribution as the test data and having a large amount of 
labelled training data. However, obtaining real structural 
damage data is challenging, and training data are often 
generated from numerical models with different damage 
scenarios [6,7]. Due to uncertainties such as modelling errors, 
operational and environmental variations, and measurement 
noise, the generated data may not align with real measurement 
data [8].  Consequently, when applying DL models trained 
based on generated data to real structures, their performance 
may significantly degrade [9]. In this study, a transfer learning-
based method is proposed for structural damage detection with 
limited measurements. The goal is to overcome the challenges 
of inconsistent data distributions and limited real measurement 

data to enhance the performance of DL models for practical 
applications. 

Transfer learning (TL) is a valuable technique in machine 
learning that addresses the challenge of limited training data 
[10]. It involves leveraging knowledge learned from one 
domain and applying it to a related but different domain, even 
when the target domain lacks labeled data [11]. Domain 
adaptation (DA) is a specific area of transfer learning that 
focuses on aligning the distributions between the source and 
target domains [12]. DA has been successfully applied in 
various real-world tasks such as video analysis and natural 
language processing to improve performance [13,14,15].  

In the context of machinery diagnosis, transfer learning has 
also been utilized. For example, in bearing fault diagnosis, 
unsupervised deep transfer learning has been explored to 
enhance diagnostic accuracy. Adversarial training is one 
technique that aids in aligning domain shifts and improving the 
effectiveness of transfer learning models [5]. Researchers have 
investigated the application of transfer learning in bearing 
diagnosis, considering aspects such as source domain data 
selection, data transformation techniques, and the selection of 
appropriate transfer learning models [16]. This opens up 
possibilities for utilizing information from numerical models to 
address the challenge of limited real-world damage data in 
structural health monitoring and damage detection. 

This paper introduces a novel approach for structural 
damage detection called Maximum Classifier Discrepancy 
Domain Adaptation (MDA). MDA addresses the challenge of 
significant domain discrepancy and limited high-quality data 
by using two-label classifiers to detect discrepancies at the class 
level. However, relying on class-level alignment may be 
limited when domain divergence is substantial and high-quality 
data is scarce. To overcome this, a joint approach called 
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Discriminative Domain Adaptation (MDAD) is proposed. 
MDAD combines domain-level distribution alignment, which 
calibrates domain divergence caused by modeling errors, with 
class-level alignment that addresses uncertainty between 
numerical simulations and experimental models. The main 
contributions of this paper are as follows: 
1. The MDAD method, consisting of two classifiers and a 

discriminator, aligns distributions at both class and domain 
levels to adapt to divergence between numerical and 
experimental models. 

2. Two-level distribution alignment enables the utilization of 
limited field data with unknown damage states in structural 
health monitoring tasks. 

3. Two case studies are presented to validate the proposed 
method: knowledge transfer from one structure to another 
with uncertainty and from numerical to experimental 
models.  

 
2 MAXIMUM DISCREPENCY ADVERSARIAL 
DISCRIMINATIVE DOMAIN ADAPTATION (MDAD) 
FOR STRUCTURAL DAMAGE DETECTION 
2.1 Problem definition 
This study focuses on the transfer of knowledge from a 
numerical model (source domain, 𝐷!) to a real structure (target 
domain, 𝐷" ) for structural damage detection. The source 
domain consists of n labeled samples, denoted as 𝐷! =
{(𝒙#$ , 𝑦#$)|	𝑥#$ ∈ 𝑋!, 𝑦#$ ∈ 𝑌!, 𝑖 = 1,2, … , 𝑛} , where 𝑋! =
{𝑥#$ , 𝑖 = 1,2, …𝑛}  represents the input data and 𝑌! represents 
the output damage labels. The target domain, on the other hand, 
has limited measurement data, particularly for the structural 
damage states. It is defined as 	𝐷" = {(𝒙%$)|𝑥%$ ∈ 𝑋" , 𝑖 =
1,2, …𝑚} , where 𝑋%  represents the input data for the target 
domain. 

The distributions of the source and target domains are 
represented by P(X) and Q(X), respectively, where X refers to a 
specific learning sample from either 𝑋!  or 𝑋% . Additionally, 
there are conditional probability distributions, P(Y|X) and 
Q(Y|X), which represent the relationship between the input data 
and the corresponding damage labels. Due to uncertainties such 
as modeling errors, operational and environmental variations, 
and measurement noise, there exists a discrepancy between the 
data from the real structure and its numerical model. As a result, 
the distributions of the source and target domains are not 
identical. Consequently, a pre-trained deep learning network 
using the source domain data cannot perform well on the target 
domain data, and DL networks trained on data from the 
numerical model cannot directly predict the structural damage 
of the real structure. To address this challenge, the study 
proposes a new method based on maximum discrepancy 
discriminative adversarial domain adaptation for structural 
damage detection. 

The MDAD framework for structural damage detection 
consists of a feature generator, two classifiers, and a 
discriminator, as shown in Figure 1. It addresses the challenge 
of limited data from the real structure by aligning distributions 
at both the domain and class levels. The feature generator and 
domain discriminator handle domain-level alignment, while 
the feature generator and classifiers align features at the class 

level. This alignment process helps eliminate modelling errors 
and uncertainties, allowing for the extraction and alignment of 
damage-sensitive features. 

 
Figure 1. The architecture of the proposed framework 

 
2.2 MDAD domain adaptation framework for structural 
damage detection 
Aligning the distributions is essential for utilizing source 
domain knowledge to predict target domain data. However, 
calibrating the conditional distribution for different damage 
locations is challenging, limiting the ability to accurately 
predict damage locations. While previous work successfully 
calibrated conditional distributions for various damage 
severities in the same locations, predicting multiple damage 
locations in practice becomes difficult due to rough conditional 
probability matching between source and target domains. 

Figure 2 illustrates a novel MDAD domain adaptation 
framework for structural damage detection. The framework 
consists of a generator G, two classifiers C1 and C2, and a 
domain discriminator D. To address both class and domain 
level discrepancies, two types of discriminators are 
incorporated [17,18]. The generator is trained to extract target 
features that minimize discrepancies at both levels. Through 
adversarial training, the generator aligns the source domain 
classifier boundary to generate damage-sensitive features from 
the target domain. Classifiers C1 and C2, along with domain 
discriminator D, distinguish each class and identify domain-
invariant features to enhance classification accuracy (see 
Figures 3 (a) and (b)).  

 
Figure 2. Maximum Discrepancy Discriminative Adversarial 

(MDDA) domain adaptation architecture 

  
(a) At Class level      (b) At Domain level 

Figure 3. Class and domain discrepancy alignments 
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3 CASE STUDY 
3.1 Knowledge transfer between two structures with modelling 
errors 
In this section, we explore the transfer of knowledge between 
structures of different sizes. We utilize a three-storey building 
model shown in Figure 6 as a representative sample. Model 2 
refers to an existing model that possesses labelled damage data, 
while Model 1 is our proposed model aimed at predicting 
damage. The objective is to leverage the knowledge gained 
from Model 2 to enhance the damage prediction capabilities of 
Model 1. 

Structural damage is characterized by a reduction in 
stiffness. In this study, damage scenarios are simulated in 
different locations of the structure, including undamaged and 
single damage locations on each floor. Model 2 is used to 
simulate damage severities by reducing the structural stiffness 
from 0-30%. Each damage level is tested with one hammer 
excitation on each floor, resulting in a total of 243 data samples 
per damage case. The details are summarized in Table 4. The 
undamaged case also has 243 repeated test samples. In total, 
there are 972 labelled samples covering the undamaged case 
and three damage scenarios, classified as 0, 1, 2, 3. The target 
domain data are collected from Model 1. The MDAD network 
is evaluated for single-damage identification, which aligns with 
real engineering practices. The lumped model simulation and 
data processing were conducted using Matlab 2022b. 

 
i. Identically damage dataset (Identical damage label 

spaces) 
The target domain data consists of 972 samples collected from 
numerical Model 1, with identical damage severities as the 
source domain data. Initially, the networks were trained on the 
labeled source data from Model 2 without knowledge transfer. 
However, when the trained CNN model was applied directly to 
the target domain without domain adaptation (DA), the 
classification accuracy of the two classifiers was significantly 
reduced, as shown in Figure 4. This indicates that the model's 
performance suffers when applied to the target domain. 

To visualize the feature extraction process, Principal 
Component Analysis (PCA) was performed on the source and 
target domains, specifically on PCA components 1, 2, and 3. 
Figure 5(a) presents the distribution of each PCA component 
for the source and target domains, highlighting the divergence 
in the main features. For clarity, only one excitation location 
was selected from each model. The x-axis represents the PCA 
value, while the y-axis represents the damage scenario class. 
The legend indicates the number of distributions for each class. 
It can be observed that, before domain adaptation, the global 
distribution of each PCA component in both domains does not 
align well. Additionally, the local distribution for each class is 
separate and unaligned between the source and target domains. 

In Figure 4(a), the testing classification accuracy of the two 
classifiers in the target domain is represented by the red line. It 
can be observed that the accuracy improves over epochs, 
indicating the learning process of the model. In Figure 4(b), the 
damage classification results of the target domain are 
displayed. It shows that the damage location classification 
achieves an accuracy of 83%, which is a significant 

improvement compared to the CNN model trained only with 
the source domain data. This demonstrates the effectiveness of 
the proposed approach in improving the classification 
performance in the target domain. 

Figure 5(b) illustrates the impact of domain adaptation 
(DA) on the PCA distribution. With the MDAD method, the 
global distribution of PCA components between the source and 
target domains becomes well-aligned, as opposed to the 
misalignment observed in Figure 5(a) without DA. The local 
distributions for each class also undergo calibration through 
knowledge transfer and feature merger. This successful 
alignment of both global and local distributions enhances 
transfer learning performance and improves classification 
accuracy in the target domain. 

 

 

 
(a) Testing accuracy over 

Epochs 

(b) Confusion Matrix of 

Classification results 

Figure 4. MDAD method performance for Identical damage 

datasets 

 
(a) 

 
(b) 

Figure 5. Comparisons of PCA data distribution without 

DA (a) and with DA (b) for identical damage dataset 

(damage class 1-4 indicate the label 0, 1, 2 and 3) 

 
3.2 Knowledge Transfer from the Numerical Simulation to the 
Real Structure 
The limited availability of data and the discrepancy between 
numerical models and real structures pose challenges in 
transferring knowledge from numerical models to actual 
structures. To address this, we applied the proposed MADA 
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method to predict damage locations on a laboratory-tested 
three-storey building model. The model consists of three 
identical beams connected by two columns, with specific 
dimensions and material properties. 

The laboratory-tested building model (Figures 6 and 7) 
comprises three identical beams, with the dimension of 394 mm 
length, 50 mm width, and 30 mm thickness, connected by two 
columns, with the dimension of cross-section of 50 mm × 3 mm 
and the length of 900 mm. The material used has a Young's 
modulus of 435 MPa and a density of 7.5 × 103 kg/m3. 

 
Figure 6. Configuration of building model (Front view and 

side view) 

 

Figure 7. Experimental arrangement 

 
The source domain data for training the CNN model 

consisted of 972 samples. Undamaged scenarios were 
generated by simulating impact hammers on three floors, each 
repeated 81 times. Damage scenarios included 58 severity 
levels on each floor. The labels for the source data indicated the 
damage location: 0 (undamaged), 1 (first floor damage), 2 
(second floor damage), and 3 (third floor damage). Target 
domain contains only scenarios 0 and 2 (10% and 20%) from 
laboratory-tested building model with 49 times repeat tests for 
each floor.  

The CNN model was initially trained on the source domain 
data without domain adaptation (DA). The batch size was set 
to 256, and the model was trained for 50 epochs. The test 
accuracy on the target domain, without knowledge transfer, 
was 69%. 

After applying the MDAD method for knowledge transfer, 
the damage prediction accuracy improved to 89% (Figure 8). 
The MDAD method showed a significant increase in 
classification accuracy of around 20% using the limited 
experimental data. 

The study also analysed the effect of sample numbers on 
classification accuracy. It was observed that reducing the 
number of repeated tests and the augmentation times had an 
impact on accuracy. The proposed MDAD method 
demonstrated better performance in transferring knowledge 
between numerical and experimental models. It effectively 
dealt with boundary conditions and experimental uncertainties, 
which are often overlooked when building simulation models. 

 

 

 

(a) Testing accuracy and 
error over epochs 

(b) Confusion 
Matrix of 
Classification 
results  

  Figure 8. MDAD method performance for single-damage 
damage datasets 

4 CONCLUSIONS 

The proposed method uses an MDAD-based approach for 
knowledge transfer and merging in structural damage 
detection. It involves a CNN generator, two classifiers, and a 
discriminator. By pre-training a deep learning model on one 
structure, the method allows for damage detection on other 
structures without labelled data. It addresses limited damage 
classes and data samples by combining local and global 
divergence levels to merge sensitive features across structures. 
The network is trained to detect damage by aligning and 
extracting damage-sensitive features. The effectiveness of the 
method is demonstrated in transfer learning scenarios between 
simulation models with uncertainty and from simulation to 
experimental structures, for the transfer learning between two 
numerical models with uncertainty, the damage is enabled to be 
detected with their damage locations accurately. For the 
transfer learning between the simulation and experimental 
model, the damage also can be localized even if the 
experimental data is limited, and classification is incomplete. 
The purposed method overcoming data limitations in practical 
applications. 
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