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Abstract:  17 

To effectively weaken and control the harm of flyrock in open-pit mines, this study aims to develop 18 

a novel Harris Hawks optimization with multi-strategies-based support vector regression 19 

(MSHHO-SVR) model for predicting the flyrock distance (FD). Several parameters such as hole 20 

diameter (H), hole depth (HD), burden to spacing ratio (BTS), stemming (ST), maximum charge 21 

per delay (MC), and powder factor (PF) were recorded from 262 blasting operations to establish 22 

the FD database. The MSHHO-SVR model was compared the predictive performance with several 23 

other models, including Harris Hawks optimization-based support vector regression (HHO-SVR), 24 

back-propagation neural network (BPNN), extreme learning machine (ELM), kernel extreme 25 

learning machine (KELM), and empirical methods. The root mean square error (RMSE), the mean 26 

absolute error (MAE), the determination coefficient (R2), and the variance accounted for (VAF) 27 

were employed to evaluate the model performance. The results indicated that the MSHHO-SVR 28 

model not only performed better in the training phase but also obtained the most satisfactory 29 

performance indices in the testing phase, with RMSE values of 12.2822 and 9.6685, R2 values of 30 

0.9662 and 0.9691, MAE values of 8.5034 and 7.4618, and VAF values of 96.6161% and 31 

96.9178%, respectively. Furthermore, the calculation results of the SHAP values revealed that the 32 

H is the most critical parameter for predicting the FD. Based on these findings, the MSHHO-SVR 33 

model can be considered as a novel hybrid model that effectively addresses flyrock-like problems 34 

caused by blasting. 35 

 36 

Keywords:   37 
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values. 39 

 40 

 We are committed to improving the prediction performance of the FD in open-pit mines. 41 

 The optimization ability of HHO algorithm is significantly improved by the multi-strategies 42 

method 43 

 The proposed MSHHO-SVR model has higher accuracy than published articles in predicting 44 

the FD.  45 
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1. Introduction 46 

Blasting has been a widely used rock-breaking technique in various fields, particularly in open pit 47 

and underground mining (Monjezi et al. 2013; Wang et al. 2018a, 2018b; Li et al. 2022a; Hosseini 48 

et al. 2023). However, studies revealed that a significant portion of the energy (over 70%) produced 49 

by blasting is wasted, while the remaining energy is utilized to break and displace hard rocks 50 

(Khandelwal and Singh 2005; Singh and Singh 2005; Hosseini et al. 2022a, 2022b). Moreover, 51 

blasting also raised environmental concerns, particularly in surface mining, as depicted in Fig. 1. 52 

Among the various environmental issues, flyrock stands out as the most hazardous and destructive 53 

(Faradonbeh et al. 2016; Bakhtavar et al. 2017; Hasanipanah et al. 2017; Mahdiyar et al. 2017; 54 

Koopialipoor et al. 2019; Nguyen et al. 2019; Murlidhar et al. 2021). Bajpayee et al. (2004) 55 

reported that flyrock was the direct cause of at least 40% of fatal accidents and 20% of serious 56 

accidents in blasting accidents. Accordingly, it is extremely meaningful to calculate the flyrock 57 

distance (FD) to prevent deaths, damage to equipment, and other serious accidents. 58 

 59 

 60 

Fig. 1 Negative impacts of blasting in open-pit mines 61 

 62 

Reviewing the previous studies (Lundborg et al. 1975; Roth 1979; Gupta 1980; Olofsson 1990; 63 

Richards and Moore 2004; McKenzie 2009), a variety of empirical formulas were proposed to 64 

predict and control the FD. Bagchi and Gupta (1990) established an empirical formula between 65 

stemming (ST), burden (B) and FD. Little (2007) developed an empirical formula based on the 66 

drill hole angle, B, ST and explosive charge per meter (CPM) to predict the FD. Trivedi et al. 67 
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(2014) also used the ratio of ST to B to establish an empirical equation for estimating the FD. 68 

Nevertheless, the prediction performance of the empirical formula is not ideal. The most obvious 69 

reason is the absence of valid parameters and the simple consideration of the linear and nonlinear 70 

relationship between the parameters and the predicted target (Zhou et al. 2020a, 2020c). In addition 71 

to empirical formulas, various researchers have attempted to estimate the FD using statistical 72 

analyses, such as Monte Carlo simulation methods, and simple and multiple regression equations 73 

(Rezaei et al. 2011; Ghasemi et al. 2012; Raina et al. 2014; Armaghani et al. 2016; Faradonbeh et 74 

al. 2016; Ye et al. 2021). However, the regression and simulation models have obvious 75 

shortcomings, respectively: a) newly data other than the original data can reduce the reliability of 76 

the regression model (Marto et al. 2014); b) historical database cannot be used to control/determine 77 

input distribution of the simulation model (Little and Blair 2010). Generally, there are two types 78 

of parameters that contribute to estimating the FD: controllable and uncontrollable. The 79 

controllable parameters, commonly referred to as blast design parameters, including hole diameter 80 

(H), B, ST, CPM, powder factor (PF), spacing (S), total charge, hole depth (HD), and delay timing 81 

(Rezaei et al. 2011; Trivedi et al. 2015; Rad et al. 2018; Han et al. 2020; Zhou et al. 2020a). These 82 

parameters can be manually adjusted and have a direct impact on the generation of flyrock. Fig. 2 83 

illustrates several potential conditions and the corresponding mechanisms that induce face bursting. 84 

Furthermore, if the ratio of ST to H is small and the stemming quality is poor, it may lead to 85 

cratering and rifling (Lundborg and Persson 1975; Ghasemi et al. 2012; Saghatforoush et al. 2016; 86 

Hasanipanah et al. 2018a). In contrast, uncontrollable parameters refer to characteristic indices 87 

related to the physical properties of the rock mass, such as rock density (RD), blastability index 88 

(BI), and block size (BS) (Monjezi et al. 2010, 2012; Hudaverdi and Akyildiz 2019), geological 89 

properties of the rock mass including the geological strength index (GSI), the rock mass rating 90 

(RMR), the rock quality designation (RQD), and the uniaxial compressive strength (UCS) (Trivedi 91 

et al. 2015; Asl et al. 2018), as well as environmental factors like the weathering index (WI) 92 

(Murlidhar et al. 2021). 93 

Over the past few years, a broad spectrum of artificial intelligence (AI) algorithms represented by 94 

machine learning (ML) models has been developed and employed to forecast the FD based on both 95 

controllable and uncontrollable parameters, as summarized in Table 1. In general, a single ML 96 

method was usually employed to predict the FD, e.g., artificial neural network (ANN) (Monjezi et 97 

al., 2010, 2011; Hosseini et al. 2022; Wang et al. 2023), least squares-support vector machine (LS-98 
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SVM) (Rad et al. 2018), extreme learning machine (ELM) (Lu et al. 2020), support vector 99 

regression (SVR) (Armaghani et al. 2020; Guo et al. 2021b), back-propagation neural network 100 

(BPNN) (Yari et al. 2016), adaptive neuro-fuzzy inference system (ANFIS) (Armaghani et al. 101 

2016), random forest (RF) (Han et al. 2020; Ye et al. 2021), and deep neural network (DNN) (Guo 102 

et al. 2021a). Nonetheless, most single ML models, particularly ANN, SVR, RF, and ANFIS, who 103 

have low learning rates and are easy to fall into local optimum (Wang et al. 2004; Moayedi and 104 

Armaghani 2018; Li et al. 2022a, 2022b). However, it is extremely time-consuming and difficult 105 

to select hyperparameter parameters of a single ML model by manual methods for solving complex 106 

problems (Li et al. 2022d). In other words, the hyperparameter selection problem can also be 107 

considered as an optimization problem. Recently, the use of metaheuristic algorithms is an 108 

effective method for solving optimization problems (Monjezi et al. 2012; Armaghani et al. 2014; 109 

Kumar et al. 2018). Besides, the metaheuristic algorithms have been noticed and used to improve 110 

the predictive ability of traditional ML models in solving engineering problems, including 111 

evolution-based (Majdi and Beiki 2010; Yagiz et al. 2018; Zhang et al. 2022), physics-based 112 

(Khatibinia and Khosravi 2014; Liu et al. 2020; Momeni et al. 2021), and swarm-based methods 113 

(Zhou et al. 2019, 2020a, 2020b, 2021b, 2021c; Li et al. 2022a, 2022b; Adnan et al. 2023a, 2023b; 114 

Ikram et al. 2023a). Swarm-based optimization methods, such as the Grey wolf optimization 115 

algorithm (GWO), Sparrow search algorithm (SSA), and Harris Hawks optimization (HHO), offer 116 

the advantage of requiring only a few parameters, namely population and iteration, to be adjusted 117 

in order to enhance the optimized performance (Kardani et al. 2021; Li et al. 2021d; Zhou et al. 118 

2021a). To improve the accuracy of single ML model for predicting the FD, researchers have 119 

applied various metaheuristic algorithms-based swarm to the hyperparameter optimization of ML 120 

models (Hasanipanah et al. 2016, 2018b; Murlidhar et al. 2020, 2021; Guo et al. 2021b; Kalaivaani 121 

et al. 2020; Nguyen et al. 2021; Fattahi and Hasanipanah 2022). However, the performance of 122 

metaheuristic algorithms-based swarm is limited by the lack of initial population diversity (Zhou 123 

et al. 2022). Meanwhile, the low precision convergence and convergence time of such 124 

metaheuristic algorithms in the optimization of multi-dimensional complex problems have already 125 

become traditional weaknesses (Li et al. 2021c).  126 

Therefore, the objective of this study is to develop a novel and comprehensive optimization model, 127 

which combines multi-strategies (MS) and HHO algorithm to optimize SVR model for predicting 128 

the FD. The proposed model is named the MSHHO-SVR model. A database was created based on 129 
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the monitoring of 262 blasting operations from various open-pit mines, where a series of influence 130 

parameters related to the FD were collected. Three other ML models and an empirical equation 131 

were also developed to predict the FD and were compared with the HHO-SVR model and 132 

MSHHO-SVR model. The prediction performance of all models was evaluated using root mean 133 

square error (RMSE), mean absolute error (MAE), determination coefficient (R2), and variance 134 

accounted for (VAF) in both training and testing phases. Additionally, the Shapley additive 135 

explanations (SHAP) method, an emerging additive explanatory method, was employed to 136 

calculate the influence of the input parameters on FD in the sensitivity analysis.  137 

 138 

 139 

Fig. 2 Three important Flyrock generation mechanisms 140 

 141 

Table 1 Reviewed ML models for predicting the FD 142 

ML models Parameter No. data Reference 

Controllable Uncontrollable  

ANN PF, HD, BTS, MC, 

SD, N, ST 

RD 250 Monjezi et al. (2010) 

ANN PF, H, B, ST, BTS, 

MC, SD, HD 

BI 192 Monjezi et al. (2011) 

ANN H, HD, B, S, Q, CPM UCS, RQD 125 Trivedi et al. (2015) 
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ANFIS 

ANN 

DNN 

PF, S, B, H, ST, MC,  - 240 Guo et al. (2021a) 

BPNN PF, B, S, CPM UCS, RQD 120 Trivedi et al. (2016) 

SVR 

LS-SVM 

BH/B, BTS, SD, PF, 

MC 

RD 90 Rad et al. (2018) 

ELM S, B, PF, ST RD 82 Lu et al. (2020) 

RF PF, H, BS, MC, HD, 

ST 

- 262 Ye et al. (2021) 

GA-ANN PF, B, S, SD, MC, 

HD, ST 

RMR 195 Monjezi et al. (2012) 

PSO-ANN B, S, MC, SD, H, ST, 

N, PF 

RD 44 Armaghani et al. (2014) 

PSO-RFNN B, MC, S, ST - 72 Kalaivaani et al. (2020) 

PSO-ANN HD, ST, PF, MC, B, S - 65 Zhou et al. (2020c) 

FA-ANN BTS, ST, HD, MC, 

PF 

RD, Rn 113 Li et al. (2021f) 

WOA-DNN PF, MC, S, B, ST, HD - 240 Guo et al. (2021a) 

HHO-MLP PF, H, ST/B, HD, 

CPM 

GSI, RQD, WI 152 Murlidhar et al. (2021) 

WOA-SVM PF, B, W, S, ST - 210 Nguyen et al. (2021) 

GOA-ANFIS PF, S, B, ST RD 80 Fattahi and 

Hasanipanah (2022) 

Note: No. data: the number of considered samples in dataset; BTS= Burden to Spacing ratio; MC= Maximum charge 143 

per delay (kg); SD= Specific drilling (m/m3); BH= Bench height (m); Q= Charge per blast hole (kg); N= Number of 144 

rows; Rn= Schmidt hammer rebound number; ST/B= Stemming to burden ratio; W= Per blast; GOA-Grasshopper 145 

optimization algorithm; GA-Genetic algorithm; FA-Firefly algorithm; RFNN-recurrent fuzzy neural network; WOA-146 

Whale optimization algorithm; HHO-Harris Hawks optimization; PSO-Particle swarm optimization. 147 

 148 

2. Methodologies 149 

2.1 Support vector regression 150 



8 
 

SVR is a specialized algorithm within the support vector machines (SVM) family that was 151 

developed by Vapnik (1995) for resolving regression problems. For the SVR algorithm, the 152 

structural risk minimization (SRM) is the core of the optimizer algorithm used to obtain the 153 

minimum training error (Li et al. 2021b). In other words, the nonlinear regression prediction is 154 

also a function fitting problem by using SVR model, which can be described as follows: 155 

( ) ( )f z w z b                                                            (1)  156 

where w represents a weight vector. ( )z  describes a nonlinear mapping between input space and 157 

high-dimensional space. b represents a model error also called threshold value. Then, the 158 

minimization of w and b can be calculated according to the SRM as in Eq. (2). 159 

2*
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                        (2)  160 

Finally, the Eq. (1) is rewritten as follows: 161 

   *

1
( ) ,

M

i i i jj
f z z z b  


                                              (3) 162 

where C represents penalty factor for balancing the model smoothness. i  and *
i  represent the 163 

slack parameters. M denotes the number of pattern records. 
2

/ 2W represents the smoothness, 164 

and the   is set to the default value of 0.1.  , ( ) ( )i j i jz z z z     indicates the kernel function. 165 

In this study, the radial basis function (RBF) is employed as a widely used kernel function to solve 166 

the prediction problem. Therefore, C and the kernel parameter ( ) are the main hyperparameters 167 

of SVR model in this study. 168 

 169 

2.2 Harris Hawks optimization  170 

The HHO algorithm, developed by Heidari et al. (2019), is an emerging metaheuristic optimization 171 

algorithm, which is inspired by the unique cooperative hunting activities of Harris’s hawk in nature 172 

called “surprise pounce”. For solving the optimization problems, each Harris’s hawk can be 173 

considered as a candidate solution, and the best solution is faulty when considered as the prey. As 174 
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shown in Fig. 3a, the standard HHO is split into two parts named the exploration and the 175 

exploitation, as well as different perching and attacking strategies. 176 

Exploration is the beginning of a successful foraging campaign. Harris’s hawks use their dominant 177 

eyes to search for and track prey. Especially when prey is highly alert, they wait, observe, and 178 

monitor for about 2 hours. There are two different perching strategies that can be executed with 179 

the same probability or chance, which are expressed mathematically as: 180 

 
 

 
1 2

3 4

( ) ( ) 2                     0.5
1

( ( ) ) ( ( ))      0.5

rand rand

prey m B B B

X n r X n r X n q
X n

X n X n r L r U L q

     
    

                 (4)  181 

where  X n  and  1X n  denote the positions of hawks in the n-th iteration and the n+1-th 182 

iteration, respectively. ( )randX n  and ( )preyX n  illustrate the positions of the randomly selected 183 

hawk and prey in n-th iteration, respectively. The parameters q, r1, r2, r3, and r4 represent random 184 

numbers varying from 0 to 1 in each iteration. LB and UB delegate the lower and upper boundaries 185 

of the internal parameters, respectively. Notably, the mean position of the hawks (  mX n ) is 186 

expressed in Eq. (5). 187 

 
1

1
( )

I

m ii
X n X n

I 
                                                           (5)  188 

where I is the number of Harris’s hawks, and ( )iX n  illustrates the position of the i-th individual 189 

hawk in the n-th iteration. 190 

After identifying the prey and its location, the hawks can select from a range of attacking strategies 191 

based on the available energy. The energy consumption during the attack is mathematically 192 

expressed as follows: 193 

02 (1 )
n

E E
T

                                                                (6)  194 

where E and E0 represent the escaping energy and initial energy of the prey, respectively. n 195 

indicates the current iteration, and the maximum number of iterations is illustrated by T in the 196 

HHO algorithm. When E is less than 1, hawks continue to stay in exploration phase to obtain a 197 

better prey. On the contrary, hawks start to execute different attack strategies to hunt prey in 198 

exploitation phase. 199 

In exploitation phase, hawks can choose the appropriate attacking strategy according to the 200 

different escape behaviors and energy surplus of prey. Assuming the prey has an escape chance of 201 
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prey is Ec, then the chances of successful escape and capture are expressed as 0.5cE   or 0.5cE  . 202 

Combining the escaping energy of prey, there are four possible attacking strategies selected by 203 

hawks to hunt prey, as written in Eqs. (7)- (10). 204 

No. 1. Soft besiege: This attack strategy is triggered once the prey (e.g., rabbit) has enough escape 205 

energy ( 0.5E  ) but still did not escape out of hawk's territory ( 0.5cE  ). 206 

   
 

1 ( ) ( )

( ) ( )

prey

prey

X n X n E JX n X n

X n X n X n

    

  
                                   (7)  207 

No. 2. Hard besiege: Once the escape energy of prey is exhausted ( 0.5E  ) but it still does not 208 

escape the hawk's territory ( 0.5cE  ), hawks initiate the hard besiege strategy to capture the prey. 209 

   1 ( )preyX n X n E X n                                                    (8) 210 

No. 3. Soft besiege with progressive rapid dives (see Fig. 3b): When the prey has enough escape 211 

energy ( 0.5E  ) and can use different deceptive behaviors to escape the hawk's territory 212 

( 0.5cE  ). 213 

 

 
    
    

( ) ( )

( )

   if 
1

  if 

prey preyY X n E JX t X n

Z Y S LF D

Y Fitness Y Fitness X n
X n

Z Fitness Z Fitness X n

  

  

   


                              (9) 214 

 No. 4. Hard besiege with progressive rapid dives (see Fig. 3c): If the prey has less escape energy 215 

( 0.5E  ) while can take different deceptive behaviors to escape the hawk's territory ( 0.5cE  ), 216 

hawks try to save more moving distance for hunting the prey. This trigger condition of No. 4 217 

strategy is similar to No. 3. 218 

 

 
    
    

*

* *

* *

* *

( ) ( )

( )

   if 
1

  if 

prey prey mY X n E JX t X n

Z Y S LF D

Y Fitness Y Fitness X n
X n

Z Fitness Z Fitness X n

  

  

   


                           (10) 219 

where ( )X n  represents the difference of position between prey and hawk in the n-th iteration. J 220 

represents the intensity of escape movement, which is changed randomly between 0 and 2. D and 221 
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S express the dimension of searching space and a random vector, respectively. Fitness () represents 222 

the fitness evaluation function in iteration. LF describes the levy flight function, which can be 223 

written as: 224 

1

1 1
( )

2

(1 ) sin
2

( ) 0.01 ,
1

( ) 2
2

LF x







  

 


            
    

 

                        (11)  225 

where   and   represent random values changed in the range of [0, 1].   represents a constant, 226 

which is set to 0.5 by default in the HHO algorithm. 227 

 228 

 229 

Fig. 3 A standard HHO algorithm: (a) All phases; (b) Soft besiege with progressive rapid dives; 230 

(c) Hard besiege with progressive rapid dives 231 

 232 

2.3 Harris Hawks optimization with Multi-strategies (MSHHO) 233 

Despite the extensive use of the HHO algorithm in solving various engineering problems by many 234 

researchers (Moayedi et al. 2020; Murlidhar et al. 2021; Zhang et al. 2021; Zhou et al. 2021d; 235 

Kaveh et al. 2022), it still faces the challenge of low convergence accuracy and premature 236 

convergence while dealing with high-dimensional and complex optimization problems. To address 237 
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these issues, several methods have been proposed to enhance the performance of the HHO 238 

algorithm, including chaotic local search (Elgamal et al. 2020), self-adaptive technique (Wang et 239 

al. 2021; Zou and Wang 2022), hybridizing supplementary algorithms (Fan et al. 2020; Hussain et 240 

al. 2021). In any case, the goal of improving HHO is to optimize the initial HHO algorithm's 241 

exploration and exploitation. In this study, three strategies named chaotic mapping, Cauchy 242 

mutation, and adaptive weight are used to enhance the performance of the initial HHO algorithm. 243 

 244 

(1) Chaotic mapping 245 

Several studies have shown that chaotic mapping can be used to create a more diverse population 246 

by using chaotic sequences (Kohli and Arora 2018). Among chaotic mapping functions, logistic 247 

mapping is widely used to rich the diversity of population for improving the performance of 248 

metaheuristic algorithms (Hussien and Amin 2022). Therefore, the initial population of the HHO 249 

was generated by using a logistic mapping as written as Eq. (12). Then, the novel candidate 250 

solution generated can be obtained as: 251 

1 (1 )   0 4s s sLog Log Log                                        (12) 252 

(1 ) ,   1,2, ,iCs TP C i s                                            (13)  253 

where 1sLog   and sLog  represent the s+1 and s order chaotic sequence, respectively.   254 

represents a constant between 0 and 4. Cs delegates the candidate solution. TP illustrates the target 255 

position. C represents the maps. And   represents a factor related to the iteration, which is 256 

calculated as follows: 257 

 
1iteration iteration

iteration

Max Cur

Max
  
                                            (14)  258 

where iterationMax  represents the maximum number of iterations, and iterationCur  indicates the 259 

current iteration.  260 

 261 

(2) Cauchy mutation 262 

The Cauchy distribution function is a simple yet effective method to address the problem of 263 

metaheuristic algorithms being susceptible to local optima (Yang et al., 2018). The Cauchy 264 

variation can augment the diversity of the population in the search space of hawks, thereby 265 
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improving the global search capability of the original HHO algorithm. The mathematical 266 

representation of Cauchy mutation is written as: 267 

  2

1 1
( )

π 1
f x

x



                                                 (15)  268 

After applying the Cauchy mutation, the search algorithm can explore more global optima: 269 

* (0,1)best best bestX X X Cauchy                                    (16) 270 

 271 

(3) Adaptive weight 272 

In this study, an adaptive weight method was employed to update the position of prey during the 273 

exploitation phase in the HHO algorithm. The adaptive weight factor (wf) has different functions 274 

in improving the performance of local optimization, such as a smaller wf can increase the 275 

exploitation time and result in a better solution. This process is represented by Eq. (17) and Eq. 276 

(18). 277 

π
sin π 1

2
iteration

f
iteration

Cur
w

Max

 
   

 
                                           (17) 278 

 * ( ) ( )prey f preyX t w X t                                                        (18)  279 

The framework of using Harris Hawks optimization with Multi-strategies (MSHHO)- based SVR 280 

model to predict the FD is shown in Fig. 4. Besides, four comparison models were established to 281 

compare the predictive performance with the HHO and MSHHO- based SVR models, including 282 

ELM, KELM, BPNN, and empirical models. The principles of these models above were described 283 

in detail as follows literature (Roth 1979; Huang et al. 2006; McKenzie 2009; Chen et al. 2016; 284 

Yari et al. 2016; Zhang and Goh 2016; Wang et al. 2017; Elkatatny et al. 2018; Luo et al. 2019; 285 

Shariati et al. 2020; Jamei et al. 2021). To accurately learn relationship between the input 286 

parameters and the FD, the database was divided into two subsets, i.e., training set and test set (30% 287 

of the total data). Noted that all data should be normalized into the range of 0 to 1 or -1 to 1. The 288 

latter is considered in this study. Furthermore, the fitness function built by Root mean square error 289 

(RMSE) is set as the only criterion for evaluating the performance of each hybrid model. The better 290 

model with the suitable hyperparameters has lower value of fitness than other models. Finally, all 291 

developed models should be evaluated using performance indices or other evaluation approaches 292 

(e.g., regression analysis, Taylor diagrams). 293 

 294 
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 295 

Fig. 4 The framework of FD prediction 296 

 297 

3. Study site and Dataset 298 

In order to forecast the flyrock phenomenon, six open pit mines (i.e., Taman Bestari, Putri Wangsa, 299 

Trans Crete, Ulu Tiram, Masai, and Ulu Choh) were investigated in Malaysia. Their locations are 300 

shown in Fig. 5. A big data survey showed that the total amount of blasting in these mines reached 301 

240,000 tonnes a year, with an average of 15 large-scale blasting operations carried out every 302 

month (Han et al. 2020). The blasting operation with high charge and high frequency is bound to 303 

cause a serious flyrock phenomenon (see Fig. 5). According to Table 1, different controllable and 304 

uncontrollable parameters were used as predictors in previous flyrock studies. In this study, we 305 

monitored 262 blasts and recorded six individual influence parameters, namely H, HD, BTS, ST, 306 

MC, and PF, as input parameters to predict the FD. Although uncontrollable parameters of RQD 307 
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and Rn were also measured, only the range values were recorded and could not be adopted in this 308 

study. Fig. 6 shows the distribution of the input parameters. 309 

 310 

 311 

Fig. 5 Locations of six open pit mines in Malaysia used for predicting the FD 312 

 313 

 314 

Fig. 6 Distribution pattern of input parameters 315 

 316 
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Fig. 7 displays the correlation coefficients and data distributions of the input parameters and output 317 

parameters. The purpose of correlation analysis is to select the appropriate parameters to build the 318 

prediction model. If two parameters that are highly correlated with each other are a burden to build 319 

the model because their contributions to the target prediction are approximate. On the other hand, 320 

the direct correlation coefficient (R) between an input parameter and the predicted target is large, 321 

it indicates that the input parameter has a key influence on whether the target can be accurately 322 

predicted. As shown in this picture, the values of R between input parameters are low, and each 323 

input parameter has a good linear relationship with the FD. Therefore, the six parameters selected 324 

can be used to build the prediction model. 325 

 326 

 327 

Fig. 7 Correlations between input and output parameters 328 

 329 

4. Model evaluation 330 

To evaluate the reliability and accuracy of the proposed model, as well as three other ML models 331 

and an empirical formula for predicting the FD, it is necessary to apply statistical indices to 332 

quantify their predictive performance. RMSE, R2, mean absolute error (MAE), and variance 333 
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accounted for (VAF) are widely utilized as performance indices in model evaluation, as reported 334 

in several published studies (Hasanipanah et al. 2015; Armaghani et al. 2021; Li et al. 2022c; 335 

Murlidhar et al. 2021; Jamei et al. 2021; Ikram et al. 2022a, 2022b, 2023b; Du et al. 2022; Dai et 336 

al. 2022; Mikaeil et al. 2022). These aforementioned indices are defined in equations (19) to (22). 337 
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where U represents the number of used samples in the training or testing phase. ,o uFD  and oFD  342 

indicate observed FD value of the u-th sample and mean of observed FD values, respectively. 343 

,p uFD  indicates the predicted FD value of the u-th sample. 344 

 345 

5. Developing the models for predicting FD 346 

In this study, an enhanced HHO algorithm with multi-strategies was employed to select the 347 

hyperparameters of SVR model for predicting the FD. The other five different models, i.e., HHO-348 

SVR, ELM, KELM, BPNN, and empirical formula, have also been considered and compare the 349 

predictive performance with the proposed MSHHO-SVR model. The procedures for model 350 

development and assessment are described in the following sections. 351 

5.1 Evaluation performance of MSHHO model 352 

As previously mentioned in Section 2.3, the logistic mapping of chaotic sequences is used to 353 

initialize the population of HHO for increasing swarm diversity, the Cauchy mutation is utilized 354 

to expand the search space and improve the global search capability (i.e., exploration) of HHO, 355 

and the local optimization capability (i.e., exploitation) is improved by assigning the adaptive 356 

weight strategy. Three MSHHO algorithms are generated by using the aforementioned strategies, 357 
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namely, HHO-Logistic mapping (HHO-Log), HHO-Cauchy mutation and adaptive weight 358 

(MHHO), and MHHO-Log. To compare the performance of MSHHO algorithms with the initial 359 

HHO, six benchmark functions consisting of three unimodal functions and three multimodal 360 

functions are used to obtain the objective function values as shown in Table 2. The performance 361 

of different algorithms can be demonstrated by the average (Aver) and standard deviation (St. D) 362 

values of their objective functions. To balance out the interference of other conditions, the 363 

dimension and iteration time are set as 30 and 200 in each algorithm. Besides, the initial population 364 

is given three values (25, 50 and 75) to increase the complexity and reliability of the verification. 365 

The results of performance evaluation for all algorithms are shown in Table 3. As can be seen in 366 

this table, all enhanced HHO algorithms obtained better performance than the unchanged HHO 367 

algorithm by resulting in lower values of Aver and St. D of objective functions, especially for the 368 

MHHO-Log algorithm. It can be noted that each algorithm has the best performance with a 369 

population of 50 in different functions. Fig. 8 and Fig. 9 reflect the dynamic convergence 370 

performance of all algorithms based on the unimodal and multimodal benchmark functions during 371 

200 iterations, respectively. It is obvious that the MHHO-Log has the lowest values of objective 372 

function in F6 when the population is 50. Furthermore, the performance of all MSHHO algorithms 373 

has been improved to be superior to HHO by adjusting the population, the capability of global 374 

search and local optimization. 375 

 376 

Table 2 Benchmark functions adopted in this study 377 

Type Function Name Function description Initial range 

Unimodal Sphere 2
1 1

d

ii
F x


   [-100, 100] 

Unimodal Noise  4
2 1

0,1
d

ii
F ix random


    [-1.28, 1.28] 

Unimodal Rosenbrock 1 2 2 2 2
3 11

100( ) ( 1)
d

i i ii
F x x x




        [-30, 30] 

Multimodal Schwefel's 2.26  4 1
sin

d

i ii
F x x


    [-500, 500] 

Multimodal Rastrigin  2
5 1

10cos 2 10)
d

i ii
F x x


       [-5.12, 5.12] 

Multimodal Griewank 
2

6 1 1

1
cos 1

4000

dd i
ii i

x
F x

i 

    
 

    
[-600, 600] 
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Table 3 Results of six testing bench functions with different HHO algorithms 378 

Algorithms Pop F1  F2  F3  

Aver St. D Aver St. D Aver St. D 

HHO 25 958.30 9819.90 3147268.49 37724594.73 1.25 8.95 

HHO-Log 25 884.88 9062.11 2664563.15 37682586.34 1.25 8.91 

MHHO 25 553.68 7830.15 1660512.01 21134739.95 0.70 6.34 

MHHO-Log 25 543.57 5503.58 1082928.33 14059789.16 0.50 6.89 

Algorithms Pop F4  F5  F6  

Aver St. D Aver St. D Aver St. D 

HHO 25 -11868.84 1873.87 10.12 62.45 7.86 77.15 

HHO-Log 25 -12035.37 1813.46 6.65 47.89 5.26 68.42 

MHHO 25 -12082.34 1801.08 4.63 46.13 4.03 43.36 

MHHO-Log 25 -12297.91 1319.68 4.42 36.54 3.35 38.24 

Algorithms Pop F1  F2  F3  

Aver St. D Aver St. D Aver St. D 

HHO 50 685.80 7988.11 2613611.52 34632259.44 0.99 7.70 

HHO-Log 50 553.68 7830.15 1983466.58 28050439.55 0.76 7.67 

MHHO 50 390.24 4523.87 1444017.08 19812892.09 0.48 6.75 

MHHO-Log 50 319.37 4516.29 1074024.53 15186980.00 0.40 5.68 

Algorithms Pop F4  F5  F6  

Aver St. D Aver St. D Aver St. D 

HHO 50 -11942.22 1928.83 9.68 57.17 2.95 41.64 

HHO-Log 50 -12315.82 1179.94 4.62 43.61 0.29 2.03 

MHHO 50 -12305.10 1184.75 4.49 35.62 0.42 2.34 

MHHO-Log 50 -12362.58 1174.31 3.20 33.85 0.11 1.49 

Algorithms Pop F1  F2  F3  

Aver St. D Aver St. D Aver St. D 

HHO 75 740.03 8283.89 2856687.80 35933361.47 1.16 8.42 

HHO-Log 75 633.58 7566.86 2289411.71 32377154.01 0.96 8.26 

MHHO 75 452.39 4858.62 1898283.72 21744332.20 0.65 5.69 
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MHHO-Log 75 353.31 4996.37 1244797.51 15878824.11 0.44 6.09 

Algorithms Pop F4  F5  F6  

Aver St. D Aver St. D Aver St. D 

HHO 75 -11910.08 1801.17 14.33 49.16 6.19 70.05 

HHO-Log 75 -12046.67 1314.03 8.45 48.63 4.06 47.07 

MHHO 75 -11986.09 1650.95 6.70 47.96 4.74 67.08 

MHHO-Log 75 -12431.06 1107.52 6.63 38.11 2.87 34.54 

 379 

 380 

Fig. 8 Comparisons between HHO and MSHHO by using the unimodal benchmark functions 381 

 382 
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 383 

Fig. 9 Comparisons between HHO and MSHHO by using the multimodal benchmark functions 384 

 385 

5.2 Development of MSHHO- SVR model 386 

After verifying the performance of all MSHHO algorithms, a series of hybrid models combing 387 

MSHHO algorithms and SVR can be developed to search the optimized hyperparameters for 388 

predicting the FD. To confirm the optimization performance of MSHHO, the populations are also 389 

set equal to 25, 50 and 75 in 200 iterations, respectively. Fig. 10 displays the iteration curves of 390 

all hybrid models with the different populations. The lowest fitness value of each hybrid SVR 391 

model is obtained in the population of 50, the same as the aforementioned results in Section 5.1. 392 
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In particular, the MHHO-Log-SVR model with 50 populations has the best performance by means 393 

of the lowest value of fitness among all models. The rest of the results of the minimum values of 394 

fitness are written in Table 4. Therefore, the MHHO-Log-SVR model is considered as the optimal 395 

MSHHO model for forecasting the FD, namely the MSHHO-SVR model. 396 

 397 

 398 

Fig. 10 Development results of HHO-SVR and MSHHO-SVR models 399 

 400 

Table 4 Statistical analysis of fitness of all hybrid models with different populations 401 

Models Minimum fitness 

Population=25 Population=50 Population=75 

HHO 0.1879 0.1773 0.1862 

HHO-Log 0.1561 0.1456 0.1484 
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MHHO 0.1562 0.1454 0.1522 

MHHO-Log 0.1452 0.1443 0.1501 

 402 

5.3 Development of ELM model 403 

The ELM model's development solely depends on the number of neurons present in a single hidden 404 

layer (Li et al. 2022a, 2022b). In order to obtain the most accurate ELM model for estimating the 405 

FD, seven models were constructed using varying number of neurons ranging from 20 to 200. R2 406 

was utilized to evaluate the predictive ability of these models. The results of the seven models 407 

during both the training and testing phases have been reported in Table 5. The results indicated 408 

that increasing the number of neurons in the training phase results in an increased value of R2. 409 

However, the 3rd ELM model achieved the highest R2 value (0.8173) using the test data with 80 410 

neurons in a hidden layer. Accordingly, the final ELM model with 80 neurons in a hidden layer 411 

can be employed to predict the FD in this study. 412 

 413 

Table 5 Performance evaluation of ELM models with different number of neurons  414 

Models No. Neurons R2 

Training phase Testing phase 

1 20 0.4188 0.2988 

2 50 0.7861 0.6946 

3 80 0.8197 0.8173 

4 110 0.8812 0.6578 

5 140 0.8810 0.5002 

6 170 0.9051 0.4468 

7 200 0.9162 0.5541 

 415 

5.4 Development of KELM model 416 

KELM model eliminates the need for selecting and determining the number of neurons in the 417 

hidden layer, instead relying on kernel function (such as the RBF) parameters to optimize the 418 

performance of the ELM model (Huang et al. 2011). Similar to the SVR model, the range of 419 

regularization coefficient (K) and   of KELM model must be manually defined. Zhu et al. (2018) 420 

used a range of 2-20 to 220 for K and  . Baliarsingh et al. (2019) considered the K and   in the 421 
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range of 2-8 to 28 to solve their problem. Therefore, the variation range of hyperparameters of 422 

KELM model is considered as 2-2, 2-1, …, 27, 28 to predict the FD. The development results of 423 

KELM models in the training and testing phases are shown in Fig. 11. As can be shown in Fig. 424 

11a, the R2 has a positive relationship with K in any values of  . However, if K is smaller than 21, 425 

the R2 increases first and then decreases as   increases, and the turning point is when  =21. 426 

However, the highest value of R2 is obtained in the testing phase when K is 24 and   is 2-1. As can 427 

be realized, the best hyperparameters of KELM model are 24 (K) and 2-1 ( ) for predicting the FD. 428 

 429 

 430 

Fig. 11 Development of KELM model: (a) training phase; (b) testing phase 431 

 432 

5.5 Development of BPNN model 433 

BPNN model was devised with the purpose of minimizing predictive errors through the application 434 

of back-propagation to regulate the weights and biases of the neural network. This technique has 435 

gained widespread usage in addressing a range of engineering problems (Li et al. 2021a). The 436 

BPNN is also a typical multilayer neural network with input, hidden, and output layers. To develop 437 

a BPNN model, the numbers of hidden and neurons are the major concerns. Although a better 438 

performing BPNN model has more hidden layers and neurons, it may result in overfitting and 439 

increase unnecessary computation time (Yari et al. 2016). Serval formulas can be used to calculate 440 

the neurons of hidden layers (Han et al. 2018). The values of R2 are used to describe the BPNN 441 

performance in the training and testing phases, as shown in Fig. 12a and 12b, respectively. 442 

Ultimately, the neural network model with a configuration of 6-5-4-1 (i.e., 6 neurons in the input 443 

layer, 5 neurons in the first hidden layer, 4 neurons in the second hidden layer, and 1 neuron in the 444 
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output layer) achieved the highest R2 value in the testing phase. This model was determined to be 445 

the most optimal BPNN model for predicting the FD in this study. 446 

 447 

 448 

Fig. 12 Performance of the BPNN model: (a) training phase; (b) testing phase 449 

 450 

5.6 Development of Empirical equation 451 

There are many empirical formulas for predicting the FD by using blast design parameters 452 

(Lundborg et al. 1975; Roth 1979; Gupta 1980; Olofsson 1990). Nevertheless, the accuracy of 453 

empirical models is extremely dependent on input parameters (Richards and Moore 2004; Little 454 

2007; Ghasemi et al. 2012; Trivedi et al. 2014). Therefore, a multiple linear regression formula 455 

was established as shown in Eq. (22), which describes the relationship between the considered six 456 

controllable parameters and FD. 457 

D 0.39 H 0.44 HD 46.4 BTS 0.27 ST 0.21 MC 121.65 PF 31.6flyrock                (22) 458 

where Dflyrock represents the FD. 459 

 460 

6. Results and Discussion 461 

After obtaining the ideal hyperparameters of all models, each model was run based on the same 462 

database and their prediction performances were evaluated by RMSE, R2, MAE and VAF. Table 463 

6 presents the performance comparison results of the proposed model and other five models in the 464 

training phase. It can be seen intuitively that the performance indices of SVR models optimized 465 

by HHO and MSHHO are obviously superior to other models. The best and worst models are the 466 
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MSHHO-SVR model and the ELM model, with RMSE of 12.2822 and 28.3539, R2 of 0.9662 and 467 

0.8197, MAE of 8.5034 and 21.6415, and VAF of 96.6161 % and 81.965 %, respectively. 468 

Following the MSHHO-SVR model, other models, including the HHO-SVR model, KELM model, 469 

BPNN model, and empirical equation, exhibited favorable performance based on the 470 

aforementioned evaluation metrics for predicting the FD. 471 

 472 

Table 6 Comparison of the performance of models (in the training phase) 473 

Models Performance 

 RMSE R2 MAE VAF (%) 

HHO-SVR 17.5967 0.9305 10.3371 93.1426 

MSHHO-SVR 12.2822 0.9662 8.5034 96.6161 

ELM 28.3539 0.8197 21.6415 81.9652 

KELM 19.3470 0.9160 13.6868 91.6069 

BPNN 24.4488 0.8659 18.0935 86.5910 

Empirical 27.6668 0.8283 20.8974 82.8521 

 474 

The regression diagrams were used to evaluate the performance of the six models in the training 475 

phase as shown in Fig. 13. The horizontal axis represents the observed FD values, while the 476 

predicted values are listed on the vertical axis. Each diagram includes a line at 45°, which is colored 477 

differently for each model (black, red, green, yellow, purple, and blue). The points on these lines 478 

indicate that the error between the predicted and the observed values is zero. A greater number of 479 

points on or close to the line of 45° indicates that the model has better predictive accuracy. 480 

Meanwhile, the dotted lines with the equation of y=1.1x and y=0.9x were set as the prediction 481 

boundaries, and those points outside these boundaries have the lowest performance. As can be 482 

seen in this picture, the predicted values by MSHHO-SVR model are more concentrated on the 483 

color line of 45, followed by HHO-SVR model, KELM model, BPNN model, empirical and ELM 484 

model. Meanwhile, it can be seen that the MSHHO-SVR model has better performance indices 485 

than other models. 486 

 487 
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 488 

Fig. 13 Regression diagrams of all models using the training set: (a) HHO-SVR; (b) MSHHO-489 

SVR; (c) ELM; (d) KELM (e) BPNN; (f) Empirical 490 

 491 
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It is worth noting that a model that performs well in the training phase cannot be directly applied 492 

to predict the FD. In order to verify their efficacy, the proposed model, along with five others, 493 

should undergo validation using the test set. It is important to note that the models may not 494 

necessarily reproduce the same luminous results in the testing phase. Table 7 displays the results 495 

of the four performance indices generated by all the models. The MSHHO-SVR model emerges 496 

as the most effective among them, yielding the highest values of R2 value (0.9691) and VAF 497 

(96.9178%), as well as the lowest values of RMSE (9.6685) and MAE (7.4618). Conversely, the 498 

empirical model displays poor prediction accuracy with an RMSE value of 26.4389, R2 value of 499 

0.7689, MAE value of 20.4681, and VAF value of 76.9583%. Furthermore, the empirical equation 500 

also generates predictive values that deviate significantly from the 45° color line. Conversely, the 501 

MSHHO-SVR model's prediction performance is the most superior, as demonstrated in Fig. 14, 502 

where all the predicted values fall within the prediction boundary and are positioned closer to the 503 

45° color line. The HHO-SVR model, followed by the BPNN model and the KELM model, 504 

perform less effectively than the MSHHO-SVR model in the FD prediction. 505 

 506 

Table 7 Comparison of the performance of models (in the testing phase) 507 

Models Performance 

 RMSE R2 MAE VAF (%) 

HHO-SVR 13.9193 0.9359 8.5762 93.6147 

MSHHO-SVR 9.6685 0.9691 7.4618 96.9178 

ELM 23.5062 0.8173 18.3581 82.5412 

KELM 22.5800 0.8314 15.9271 83.3616 

BPNN 21.6496 0.8450 15.5799 84.5856 

Empirical 26.4389 0.7689 20.4681 76.9583 

 508 
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 509 

Fig. 14 Regression diagrams of all models using the test set: (a) HHO-SVR; (b) MSHHO-SVR; 510 

(c) ELM; (d) KELM (e) BPNN; (f) Empirical 511 

 512 
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Fig. 15 presents the graphical Taylor diagrams that comprehensively compare the predictive 513 

performance of all models in both the training and testing phases. The horizontal and vertical axes 514 

represent St. D of predicted values based various models, which are draw by blue circular lines. 515 

The green circles in these diagrams represent the RMSE of different models, and the black line 516 

from the origin (0, 0) to the outermost circle shows the R in the range of 0 to 1. In the Taylor 517 

diagrams, the RMSE and R of observed value are set by default to 0 and 1, respectively. The St. 518 

D values can be calculated from the raw data of the training and test sets. Then, the positions of 519 

all models can be determined according to the values of St. D, RMSE, and R from the respective 520 

prediction results. Accordingly, the best model has a less movement to the observed value than 521 

any other model. As can be seen in these diagrams, the MSHHO-SVR model is certainly closer to 522 

the observed value in both the training and testing phases, which indicates the best model is the 523 

MSHHO-SVR model for predicting the FD. 524 

  525 

 526 

Fig. 15 Graphical Taylor diagrams for comparison of all models 527 

 528 

Fig. 16 illustrates the curves of both observed and predicted FD using the test set, enabling a 529 

detailed assessment of the predictive performance of the six models. On the whole, there is little 530 

difference between the predicted and observed curves of all models. However, local observation 531 

shows that the predicted values by empirical models have a large error from the observed values 532 

of No.33-35 samples, the errors obtained by ELM, KELM, and BPNN models are almost the same 533 
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but obviously larger than that obtained by HHO-SVR model. Compared to the HHO-SVR model, 534 

there is little error between the predicted and observed values of No. 20 to No. 30 samples based 535 

on the MSHHO-SVR model, which means that the MSHHO-SVR model is more suitable for 536 

predicting the FD than other models by means of higher prediction accuracy. 537 

 538 

 539 

Fig. 16 The curves of predicting FD in the testing phase by all models 540 

 541 

In order to further compare prediction performance between the HHO-SVR model and the 542 

MSHHO-SVR model, the relative deviation is defined to measure the difference in prediction 543 

performance of the proposed models in the training and testing phases, respectively. If the relative 544 

deviation is greater than 10% or less than -10%, the prediction is considered wrong. According to 545 

the obtained results as shown in Fig. 17, the relative deviation of the MSHHO-SVR model is more 546 

concentrated in [-10%, 10%] than the HHO-SVR model in both of the training and testing phases. 547 

This is strong evidence that MSHHO can help SVR do a much better job of predicting the FD. 548 



32 
 

 549 

Fig. 17 Variation of the relative deviation for evaluating the performance of HHO-SVR and 550 

MSHHO-SVR mode 551 

 552 

Although six controllable parameters related to the blasting design are considered as input 553 

parameters in this study, the importance of them still needs to be checked using the MSHHO-SVR 554 

model. The SHAP method inspired by cooperative game theories has been widely used to calculate 555 

the parameter importance (Lundberg and Lee 2017). The result of the importance scores obtained 556 

by mean SHAP values is shown in Fig. 18. As can be seen in this figure, the order of parameter 557 

importance is H, PF, MC, HD, ST, and BTS with mean SHAP values of 40.25, 19.98, 10, 3.81, 558 

3.76, and 2.81, respectively. The biggest advantage of the SHAP method is that the influence of 559 

features can be reflected in each sample, which also shows the positive and negative influence. 560 

Fig. 19 displays the influence of each parameter on FD prediction. In this picture, the overlap 561 

points depict the SHAP value distribution for each parameter. The higher the positive or negative 562 

SHAP values, the greater the impact on FD prediction. The influence results illustrate that the FD 563 

significantly increases with H and PF. Meanwhile, all input parameters are positively correlated 564 

with the FD. 565 
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 566 

Fig. 18 Importance scores of input parameters 567 

 568 

 569 

Fig. 19 Influence results of each parameter on FD prediction 570 

 571 

In this study, the MSHHO-SVR model has confirmed as the effective model to predict the FD with 572 

an excellent performance, which is similar with most of published hybrid models from 2012-2022 573 

as shown in Table 8. It can be seen that the best model was HHO-MLP proposed by Murlidhar et 574 

al. (2021) by means of the highest value of R2 (0.998). However, the difference in the used number 575 

of samples in database and considered input parameters is the root cause of the difference in model 576 
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performance. Based on the same data set considered in this study, Ye et al. (2021) developed 577 

genetic programming (GP) and RF models to predict the FD with good prediction accuracy of R2 578 

are 0.908 and 0.9046, respectively; Armaghani et al. (2020) proposed a SVR model to estimate 579 

the FD with high accuracy (R2= 0.9373); Murlidhar et al. (2020) used biogeography-based 580 

optimization (BBO) to optimize the ELM model for predicting the FD, with R2= 0.94. The current 581 

study has yielded superior results for predicting the FD, as determined by the use of the most 582 

effective model, the MSHHO-SVR, which yielded higher R2 values (0.9662 for the training set 583 

and 0.9691 for the test set). Therefore, the authors are confident that the proposed MSHHO-SVR 584 

model exhibits superior performance compared to the existing models on the same dataset. 585 

 586 

Table 8 Comparison of the proposed models with other hybrid models in FD prediction. 587 

References Models Input Data set no. Performance 

Monjezi et al. 

(2012) 

GA-ANN B, S, HD, ST, 

SD, PF, MC, 

RMR 

195 R2=0.976 

Armaghani et al. 

(2014) 

PSO-ANN B, PF, SD, MC, 

H, S, ST, N, RD 

44 R2=0.930 

Koopialipoor et al. 

(2019) 

ICA-ANN 

PSO-ANN 

GA-ANN 

BTS, H, PF, MC, 

HD, ST 

262 R2
ICA-ANN=0.958 

R2
ICA-ANN=0.959 

R2
ICA-ANN=0.932 

Kalaivaani et al. 

(2020) 

PSO-RFNN B, S, ST, MC 72 R2=0.933 

Hasanipanah et al. 

(2020) 

HS-ANN 

PSO-ANN 

ADHS-ANN 

S, B, ST, PF, r 82 R2
HS-ANN=0.871 

R2
PSO-ANN=0.832 

R2
ADHS-ANN=0.929 

Nikafshan Rad et al. 

(2020) 

GA-RFNN S, B, ST, MC 70 R2=0.9667 

Li et al. (2021f) GA-ANN 

PSO-ANN 

ICA-ANN 

ABC-ANN 

BTS, HD, ST, 

MC, PF, RD, Rn 

113 R2
GA-ANN=0.9466 

R2
PSO-ANN=0.9608 

R2
ICA-ANN=0.9598 

R2
ABC-ANN=0.9666 
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FA-ANN R2
FA-ANN=0.9719 

Murlidhar et al. 

(2020) 

PSO-ELM 

BBO-ELM 

BTS, H, PF, ST, 

MC, HD 

262 R2
PSO-ELM=0.93 

R2
BBO-ELM=0.94 

Murlidhar et al. 

(2021) 

HHO-MLP H, ST/B, HD, 

CPM, PF, GSI, 

RQD, WI 

152 R2
HHO-MLP=0.998 

Nguyen et al. (2021) WOA-SVM B, S, ST, PF, W 210 R2=0.977 

Fattahi and 

Hasanipanah (2022) 

GOA-ANFIS 

CA- ANFIS 

S, B, ST, PF, RD 80 R2
GOA-ANFIS=0.974 

R2
CA-ANFIS=0.953 

This study HHO-SVR 

MSHHO-SVR 

BTS, H, PF, ST, 

MC, HD 

262 R2
HHO-SVR=0.9359 

R2
MSHHO-SVR=0.9691 

Note: r= density of rock; RFNN-Recurrent fuzzy neural network; MLP-Multi-layer perceptron; BBO-Biogeography-588 

based optimization; HS-Harmony search; CA-Cultural algorithm; ICA-Imperialist competitive algorithm; ACO-Ant 589 

colony optimization; ADHS-Adaptive dynamical harmony search; ABC-Artificial bee colony. 590 

 591 

7. Conclusion  592 

Flyrock has long been a significant safety concern in open-pit mines. This study examines a rich 593 

database from six open pit mines in Malaysia, comprising 262 blasting operations. A novel 594 

optimization model combining HHO and MS was developed to fine-tune the SVR model, named 595 

the MSHHO-SVR model. This model was compared the predictive performance with other models, 596 

including the HHO-SVR, ELM, KELM, BPNN, and empirical models for predicting the FD. Then, 597 

the main conclusions of this study are listed as follows: 598 

(1) Evaluation results indicated that the MSHHO-SVR model has the highest predictive accuracy 599 

among all models, as reflected by its RMSE values of 12.2822 and 9.6685, R2 values of 0.9662 600 

and 0.9691, MAE values of 8.5034 and 7.4618, and VAF values of 96.6161% and 96.9178% in 601 

the training and testing phases, respectively. 602 

(2) It is verified that multi-strategies can significantly improve the performance of the HHO 603 

algorithm for tunning the hyperparameters of the SVR model. Furthermore, the combination of 604 

MSHHO and SVR model has a superior prediction accuracy than precious developed models using 605 

the same FD database.  606 

(3) The result of sensitivity analysis showed that the H is the most sensitive and the BTS is the 607 

least sensitive parameter to FD, respectively. The importance ranking of rest input parameters is 608 
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PF, MC, HD, and ST. Noted that all input parameters are positively correlated with the FD, 609 

especially the H and PF. 610 

Although the proposed novel hybrid model is able to predict the FD with a satisfactory predictive 611 

accuracy, if the range of input parameter values extends beyond those employed in this study, the 612 

findings may be subject to bias. Therefore, it is necessary to obtain more data from field 613 

investigation and inspection to enrich the database and improve the model generalization. 614 

Furthermore, some physics rules between input parameters and the model output could be included 615 

in future flyrock studies. In this regard, predicted FD by using previous empirical formulas can be 616 

considered as model inputs. This idea might be more interesting for mining and civil engineers 617 

because they can learn more about how data is prepared and how input and output parameters are 618 

related. 619 
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