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Abstract

The benefits and opportunities offered by cloud computing are among the fastest-growing

technologies in the computer industry. Additionally, it addresses the difficulties and issues

that make more users more likely to accept and use the technology. The proposed research

comprised of machine learning (ML) algorithms is Naïve Bayes (NB), Library Support Vector

Machine (LibSVM), Multinomial Logistic Regression (MLR), Sequential Minimal Optimiza-

tion (SMO), K Nearest Neighbor (KNN), and Random Forest (RF) to compare the classifier

gives better results in accuracy and less fault prediction. In this research, the secondary

data results (CPU-Mem Mono) give the highest percentage of accuracy and less fault pre-

diction on the NB classifier in terms of 80/20 (77.01%), 70/30 (76.05%), and 5 folds cross-

validation (74.88%), and (CPU-Mem Multi) in terms of 80/20 (89.72%), 70/30 (90.28%), and

5 folds cross-validation (92.83%). Furthermore, on (HDD Mono) the SMO classifier gives

the highest percentage of accuracy and less fault prediction fault in terms of 80/20

(87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms

of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, pri-

mary data results found RF classifier gives the highest percentage of accuracy and less

fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation

(95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not

good. In terms of 80/20 (95.71%), 70/30 (95.71%), and 5 folds cross-validation (95.71%),

SMO has the second highest accuracy and less fault prediction, but the algorithm complex-

ity is good (0.3 seconds). The difference in accuracy and less fault prediction between RF

and SMO is only (.13%), and the difference in time complexity is (14 seconds). We have

decided that we will modify SMO. Finally, the Modified Sequential Minimal Optimization

(MSMO) Algorithm method has been proposed to get the highest accuracy & less fault pre-

diction errors in terms of 80/20 (96.42%), 70/30 (96.42%), & 5 fold cross validation

(96.50%).
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Introduction

Cloud computing (CC) first appeared in information technology and has since become a pop-

ular business model for providing IT infrastructure, components, and applications [1]. Cloud

computing is defined by five distinct characteristics: on-demand self-service, extensive net-

work access, resource pooling, rapid elasticity, and measured service. There are four deploy-

ment models available as well: private clouds, community clouds, public clouds, and hybrid

clouds. Furthermore, it has three service models: SaaS (software as a service), PaaS (platform

as a service), and IaaS (infrastructure as a service). Through dynamic service provisioning, CC

aims to supply computation and resources over the internet. There are numerous challenges

and issues associated with CC deployment. These are data protection, data retrieval, and avail-

ability issues, administrative capabilities, regulatory and compliance constraints, security, load

adaptability, execution monitoring, LB, FT, CC governance, interoperability, and portability.

The cloud is merely a metaphor for the internet. The internet is commonly represented as a

cloud in a computer network [2].

The Antarex secondary dataset comprises trace data acquired from the homonymous

experimental HPC system at ETH Zurich during fault injection to perform machine learning

(ML) based fault detection experiments for HPC systems. The dataset is separated into two

sections one for CPU and memory-related benchmark apps and fault programs, and another

for hard drive-related applications and fault programs. Antarex dataset has four folders, one

for each dataset block, namely CPU/Memory and HDD, in single-core and multi-core forms

[3]. To generate the primary dataset the benchmark is the Weibull distribution approach. The

Weibull distribution is also commonly used in reliability as a time-to-failure model. It extends

the exponential model to incorporate failure rate functions that are not constant. This includes

both rising and decreasing failure rate functions and has been used effectively to explain both

initial burning failures and wear-out failures [4].

ML has played an active part in the resilient method area, mapping the recovery time to a func-

tion that can be improved (i.e. by converging the recovery time to a fraction of milliseconds). The

recovery time will decrease as the system learns to deal with new errors. Researchers have recently

become more interested in resilient approaches. The resilience of a system is defined as the speed

with which it can recover and resume regular operation following a system outage or failure.

Resilient methods include techniques dealing with the ability to respond to the client despite fail-

ure, monitoring of the system state, ability to learn and adapt from faults and predictions. In

RSMs, the learning, and adaptation of a system based on Machine Learning. Techniques dealing

with the capacity to react to the client despite failure, monitoring the system status, learning and

adapting from faults, and predictions are examples of resilient approaches. The learning and

adaptability of a system based on machine learning are used in resilient approaches [5].

Materials and methods

Literature review

Shahid et al. [6] suggested that CC has emerged as a distinct trend in recent years. As a result,

distributed systems have evolved into large-scale computer networks. Cloud computing firms

like IBM, Amazon, Yahoo, and Google offer cloud services to customers all over the world.

Under this novel paradigm, end users are not required to install programs on their local PCs,

instead, apps and services are delivered to them on demand.

Shahid et al. [7] investigate how cloud designs primarily involve the exchange of computing

services among various users. Apps, hardware, and software systems are examples of shared

resources. Cloud architectures are typically composed of three major layers: IaaS, SaaS, and
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PaaS. Faults can occur at any of these layers, but software-level recovery procedures are discov-

ered and used.

Ahmed et al. [8] cloud technology is defined as the various software runtimes used on

cloud computing platforms such as Hadoop, Dryad, and communication frameworks such as

HDFS (Hadoop Distributed File System), Amazon S3, and others. Today, there are numerous

cloud service apps available that are primarily used on CC platforms such as Nimbus and

Eucalyptus, allowing various enterprises to build clouds to improve resource performance effi-

ciency. The use of cloud computing system technology broadens several parallel processing

capabilities.

Kamiri & Mariga [9] suggested, that ML is a subfield of artificial intelligence that deals with

the creation of algorithms and procedures that allow a computer to learn and gain intelligence

through experience. The research methodology used in machine learning research is critical

because it influences the accuracy and dependability of the results. Machine learning models

learn from historical data, which can be primary or secondary in nature. As a result, there is a

vast knowledge base from which robots can learn and make decisions.

Sarker [10] based on sample input-output pairs, the process of learning a function that

translates input to output was introduced. To infer a function, it uses labeled training data and

a set of training examples. Supervised learning occurs when specific goals are specified to be

achieved from a specific set of inputs, i.e., a task-driven method. Classification (data separa-

tion) and regression are the most commonly supervised tasks (fitting data). Supervised learn-

ing, for example, is used to predict the class label or sentiment of a piece of text, such as a tweet

or a product review.

Butt et al. [11] investigate that ML is the logical evaluation of computations and quantifiable

models used by computer systems to perform a particular attempt without the need for explicit

instructions, based on models, and acceptance. It falls under the umbrella of computerized rea-

soning. Machine learning is so important in the cloud that it will be used by all clouds soon.

Sun et al. [12] suggested that ML has recently grown at a breakneck pace, attracting a large

number of academics and practitioners. It has emerged as one of the most prominent research

areas, with applications in a wide range of industries, including machine translation, speech

recognition, image recognition, recommendation systems, and so on.

Kochhar et al. [13] the NB classifier are one of the most useful machine learning algorithms.

The NB classifier is based on the Bayes theorem, which requires significant independence

(nave) between qualities or features (predictors). Because it requires little work to develop and

has no complicated repeating parameter setting or computation, the Naive Bayesian classifica-

tion model is very useful for very large datasets. Despite its simplicity, the Nave Bayes classifier

is one of the most widely used algorithms because it frequently outperforms and outperforms

more complicated and refined classification algorithms.

Chang & Lin [14] proposed that LIBSVM is a Support Vector Machines library (SVM). The

goal is to make applying SVM to applications as simple as possible for users. LIBSVM has been

widely used in machine learning and other fields. LIBSVM has grown to be one of the most

widely used SVM programs. LIBSVM provides support for a variety of SVM formulations for

classification, regression, and distribution estimation. LIBSVM is widely used in numerous

fields.

Mohamad [15] proposed that Proposed based on many independent factors, multinomial

logistic regression is used to estimate the probability of multiple possible outcomes for a cate-

gorical dependent variable with more than two categories. The MLR model compares various

categories using a combination of binary logit models. The multinomial logit model is com-

posed of k-1 binary logit models that assess the influence of predictors on the likelihood of suc-

cess in that category for k response variable categories.
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C.R. LI & J. GUO [16] proposed that the SMO limits B to only two multipliers that can be

calculated analytically and don’t require any extra matrix storage. There are two methods for

determining which multipliers to optimize. The first heuristic prioritizes unbound multipliers

that are more likely to violate the KKT specifications. The second choice heuristic, after select-

ing the first Lagrange multiplier, selects the second Lagrange multiplier that maximizes the dif-

ference between the two prediction errors. To save training time, the SMO technique is based

on a single program multiple data (SPMD) paradigm. It divides the entire dataset into smaller

subsets and uses several processors to update the error array of each subset in parallel.

Sen et al. [17] suggested that the K-nearest neighbor saves all available records and predicts

the class of new occurrences in probability using similarity measures from the nearest neigh-

bors. Unlike other classification techniques that construct a mapping function or internal

model, this classification technique is known as a lazy learning method because it stores the

data members in inefficient data structures such as hash tables, reducing the computation cost

to check and apply the appropriate distance function between the new observation and all k

number of different data points stored and then come to any conclusion about the label of the

new data point. The results are generated by applying simple majority support to the K-nearest

neighbors of each new data point.

Sarker [10] proposed a Random Forest classifier as a well-known ensemble classification

approach used in machine learning and data science in a variety of application fields. This

method uses a parallel ensemble, which involves fitting multiple decision tree classifiers to dif-

ferent data sets sub-samples in parallel with the conclusion or final result determined by

majority voting or averages. Over-fitting is reduced as a result, and forecast accuracy and con-

trol are improved. As a result, the RF learning model with multiple decision trees frequently

outperforms a single decision tree model. It employs a combination of bootstrap aggregation

(bagging) and random feature selection to generate a series of decision trees with controlled

variance.

Khazaei & Rezvani [18] this study proposes a multi-objective VM placement strategy to

reduce energy costs and optimize scheduling. They present a modified memetic algorithm and

compare its performance to baseline and state-of-the-art methods. The proposed method can

lower energy costs, carbon footprints, SLA violations, and total IoT response time.

Bharany et al. [19] this paper critically examines FT techniques in CC systems and discusses

the error, fault, and failure taxonomy. Furthermore, the purpose of this paper is to investigate

many critical research topics and advanced techniques, such as AI, deep learning, the Internet

of Things, and ML, that could be used as an intelligent FT strategy in the cloud environment.

Shahid et al. [20] this study compares the performance of existing load-balancing algo-

rithms such as PSO, RR, ESCE, and throttled load balancing. Using a cloud analyst platform,

this study provides a detailed performance evaluation of various load-balancing algorithms.

Many of the previous papers mentioned in the literature focused on round robin and equally

distributed current execution, as well as throttled load-balancing algorithms, and were based

on efficiency and response time in virtual machines without taking into account the task-vir-

tual machine relationship or the practical significance of the application. Table 5 in S1 Appen-

dix shows a summary of the literature review in S1 Appendix section.

Problem statement

Reliability is a continuous metric that changes with each computing step. One of the most

important service characteristics is reliability, which must be met in cloud computing for a sta-

ble operation. The dependability of overall task completion is the result of specific activities, &

for too many thousands or millions of computing operations, this can quickly become a fading
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variety. A cloud system’s reliability is an assessment of how effectively the cloud system pro-

vides the service to the user based on the criteria listed above [21].

There is a need to design & implement ML models that can resolve low accuracy and high

fault prediction error issues by acquiring high accuracy, and less fault prediction error.

The objective of the research

This study aims to help users with QoS in a CC environment by using ML to achieve high

accuracy and lower fault prediction error. To accomplish this, the following goals must be met:

• There is a need to identify the best ML-based fault prediction model to improve the accuracy

and failure prediction.

• Propose an ML-based model to address low accuracy and high fault prediction errors.

Research methodology

This section focuses on research methodology. Classification, research design, data collection

procedure, exploratory data analysis, data pre-processing, data analysis techniques, and pro-

posed algorithm have all been thoroughly explained in this section.

Research design. The following research design has been followed:

Proposed model. In this subsection, we propose our fault classification & prediction

model. Fig 1 visualizes the whole research process reported in this paper. We will train our

model using secondary & primary datasets and will do fault classification & prediction on the

target datasets. By following this approach, we will identify which ML classifiers give the high-

est accuracy and less fault prediction error in terms of accuracy, prediction, & data validation

by classes.

Furthermore, in this section, the data collection & data generated procedure has been

explained in detail as well. Fig 1 shows the implementation view of the research framework.

(Fig 1) demonstrates that a genuine, competent, and effective solution has been designed to

achieve more accuracy and less fault prediction error in cloud computing from the secondary

and primary datasets.

Classification. Classification will be used to identify the fault status (True/False and Repair/

Failure) with greater accuracy and lower fault prediction error. Classification is a supervised learn-

ing approach in machine learning that refers to a predictive modeling problem that predicts a

class label for a given sample. It converts an input variable (X) to an output variable (f) as a goal,

label, or category (Y). For example, spam detection by email service providers, such as "spam" and

"not spam," could pose a classification challenge [11]. Various algorithms will be used to deter-

mine the best result among four directories of the secondary dataset for classification. For the pri-

mary dataset, we will use one CSV file to classify various algorithms to find the best algorithm for

modification.

Acquired secondary data. We acquired (Antarex HPC Fault Dataset) secondary data

through the ZENODO website and this dataset is published in articles. This dataset and all test

environment details are publicly available for use by the community. The Antarex secondary

dataset is based on trace data from the homonymous experimental HPC system at ETH Zurich

during fault injection, which is used to undertake ML-based fault prediction studies for

researchers [22].

Tables 6–9 in S1 Appendix shows the details of the CPU-Mem Mono (Instances 4005),

CPU-Mem Multi (Instances 4380), HDD Mono (Instances 3244), and HDD Multicores

(Instances 2493) dataset in S1 Appendix section. This dataset block has 8 attributes

PLOS ONE Improved accuracy and less fault prediction errors via modified sequential minimal optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0284209 April 13, 2023 5 / 63

https://doi.org/10.1371/journal.pone.0284209


(timestamp, type, args, seqNum, duration, cores, error, and isFault) and various instances.

These instance types are numeric and nominal bases [22].

Exploratory data analysis on secondary dataset. We performed Exploratory Data Analy-

sis (EDA) on Antarex secondary dataset. The purpose of EDA is essential to tackle specific

tasks such as spotting missing and erroneous data, mapping and understanding the underlying

structure of your data, and identifying the most important variables in the dataset. The dataset

is separated into two sections, one for CPU and memory-related benchmark apps and fault

programs, and another for hard drive-related applications and fault programs. Antarex data-

sets have four folders, one for each dataset block, namely CPU/Memory and HDD, in single-

core and multi-core forms [22].

Data pre-processing on the secondary dataset. Data pre-processing is necessary before

applying ML algorithms to secondary datasets. This dataset has duplicate values in 3 attributes

named args, seqNum, and duration. Furthermore, this dataset has some none values and

empty rows. All duplicate values, none values, and empty rows are removed using the Remove

Duplicates option in excel. Tables 10–13 in S1 Appendix shows the details after applying data

pre-processing of the CPU-Mem Mono (Instances 1740), CPU-Mem Multi (Instances 1408),

HDD Mono (Instances 568), and HDD Multicores (Instances 551) in S1 Appendix section.

Generated primary data. We have generated a primary dataset through the Weibull dis-

tribution approach. The Weibull distribution is also often employed as a time-to-failure model

for reliability. It extends the exponential model by including non-constant failure rate func-

tions. This contains both rising and falling failure rate curves and has been successfully utilized

to explain both initial burnings and wear-out failures [4]. We have coded different parameters

Fig 1. Implementation view of the research framework.

https://doi.org/10.1371/journal.pone.0284209.g001
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in the java platform for primary data generated using the Weibull distribution approach.

Table 1 is a summary of the parameters of the primary dataset generation. The primary dataset

is shown in Table 2.

Table 2 shows the details of the primary dataset. This primary dataset has 7 attributes (Fail-

ure Host ID (FHID), Host Failure Time (HFT), Last Failure Time (LFT), Distribution (Dis),

Distribution Happen Time (DHT), Failure Time/Repair Time (FTime/RTime), and Status)

and total (1400) instances. These instance types are numeric and nominal bases.

Data analysis techniques

Different ML-based techniques have been used in this study for fault classification and predic-

tion. Fault classification and prediction are carried out using various classifiers from NB,

LibSVM, MLR, SMO, KNN, and RF algorithms.

Naïve bayes. The NB classifier represents, employs, and learns probabilistic knowledge

with well-defined semantics. The method is intended for supervised induction tasks where the

performance goal is to correctly predict the class of test cases and the training examples include

class information. A naive classifier is a type of Bayesian network that is built on two basic sim-

plifying assumptions. It assumes, in particular, that the predictive qualities are conditionally

independent of the class and that no hidden or latent features influence the prediction process.

As a result, the graphic shape of a naive Bayesian classifier is shown in (Fig 2), with all arcs

pointing from the class attribute to the observable, predictive attributes [23].

The Bayes’ rule is used in Eqs 1 to 3 to compute the probability of each class given a vector

of observed values for the predictive qualities and then predicts the most likely class.

p C ¼ cjX ¼ xð Þ ¼
pðC ¼ cÞpðX ¼ xjC ¼ cÞ

pðx ¼ xÞ

pðX ¼ xjC ¼ cÞ ¼ pð îXi ¼ xijC ¼ cÞ

¼ Pi pðXi ¼ xijC ¼ cÞ

ð1Þ

Let C be the random variable representing the class of an instance, & X be a vector of ran-

dom variables representing the observed attribute values. Furthermore, let c denote a specific

class label & x denote an observed attribute value vector.

p ¼ ðX ¼ xC ¼ cÞ ¼ gðx; mc; scÞ;where ð2Þ

g x; m;sð Þ ¼ x ¼
1
ffiffiffiffiffiffiffiffi
2ps
p e �

nðx � sÞ2

2xs2
ð3Þ

For continuous attributes, we can write the probability density function for a normal (or

Gaussian) distribution.

Library support vector machine. LIBSVM is a library for SVMs. The goal is to make it as

simple as possible for users to apply SVM to their applications. LIBSVM has been widely

adopted in ML and a variety of other fields. LIBSVM is frequently used in two steps: training a

data set to generate a model, followed by using the model to predict information from a testing

data set. LIBSVM supports numerous SVM formulations for classification, regression, and dis-

tribution estimation. (Fig 3) depicts the code organization of LIBSVM for training [14].

Table 1. Overview of the parameters of primary data generation.

User Port No Host No Network Host Distribution

1 16 192 Mips, Ram, Storage, and Bandwidth Weibull (this includes both rising and decreasing failure rate functions).

https://doi.org/10.1371/journal.pone.0284209.t001
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In Eq 4 where e = [1,. . ., 1]T is the vector of all ones, Q is an l by l positive semidefinite

matrix, Qij� yiyjK(xi, xj), and the kernel function is as follows:

Kðxi; xjÞðxiÞTðxjÞ ð4Þ

Multinomial logistic regression. Softmax is an abbreviation for MLR. Because of the

hypothesis function it employs, regression is a supervised learning technique that can be used

to solve a variety of problems, including text categorization. It is a regression model that

applies logistic regression to classification problems with multiple possible outcomes [24]. The

Multinomial Logistic Classifier is depicted in (Fig 4).

L1 wð Þ ¼
l

2

XK

k¼1

jjwkjj
2
�

1

N

XN

i¼1

XK

k¼1

yikwT
k xi

þ
1

N

XN

i¼1

log
XK

k¼1

expðwT
k xiÞ

 ! ð5Þ

In Eq 5 MLR is employed where the objective function of the classifier is given as above.

Table 2. Short overview of the primary dataset.

FHID HFTIME LFT DIS DISHT FTIME/RTIME STATUS

328 1 -74003 Weibull 0.75:20 11965 Failure

328 1 -74003 Weibull 0.75:20 22765 Repair

453 2 -280036 Weibull 0.75:20 16299 Failure

453 2 -280036 Weibull 0.75:20 27099 Repair

227 1 -133119 Weibull 0.75:20 8498 Failure

227 1 -133119 Weibull 0.75:20 19298 Repair

190 1 -18201 Weibull 0.75:20 7236 Failure

190 1 -18201 Weibull 0.75:20 18036 Repair

688 3 -17508 Weibull 0.75:20 24386 Failure

688 3 -17508 Weibull 0.75:20 35186 Repair

333 1 -143411 Weibull 0.75:20 12150 Failure

333 1 -143411 Weibull 0.75:20 22950 Repair

848 3 -123990 Weibull 0.75:20 29921 Failure

848 3 -123990 Weibull 0.75:20 40721 Repair

1013 3 -29678 Weibull 0.75:20 35590 Failure

1013 3 -29678 Weibull 0.75:20 46390 Repair

454 2 -14341 Weibull 0.75:20 16339 Failure

454 2 -14341 Weibull 0.75:20 27139 Repair

992 3 -15158 Weibull 0.75:20 34875 Failure

992 3 -15158 Weibull 0.75:20 45675 Repair

343 2 -105315 Weibull 0.75:20 12513 Failure

343 2 -105315 Weibull 0.75:20 23313 Repair

277 1 -35992 Weibull 0.75:20 10225 Failure

277 1 -35992 Weibull 0.75:20 21025 Repair

186 1 -288717 Weibull 0.75:20 7068 Failure

186 1 -288717 Weibull 0.75:20 17868 Repair

411 2 -20145 Weibull 0.75:20 14836 Failure

411 2 -20145 Weibull 0.75:20 25636 Repair

https://doi.org/10.1371/journal.pone.0284209.t002
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Sequential minimal optimization

To train an SVM, a very large quadratic programming (QP) optimization problem must be

solved. SMO divides the enormous QP problem into the smallest feasible QP problems. These

minor QP issues are handled analytically, which eliminates the need for a time-consuming

numerical QP optimization as an inner loop. SMO’s memory requirements scale linearly with

Fig 2. Naïve bayes classifier [23].

https://doi.org/10.1371/journal.pone.0284209.g002

Fig 3. LibSVM classifier [14].

https://doi.org/10.1371/journal.pone.0284209.g003
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training set size, allowing it to handle extremely large training sets. SMO scales the training set

size for various test problems somewhere between linear and quadratic because matrix compu-

tation is avoided, whereas the traditional chunking SVM technique scales the training set size

somewhere between linear and cubic. Because SVM evaluation consumes the majority of

SMO’s computing time, SMO is the fastest for linear SVMs and sparse data sets. SMO can be

more than 1000 times faster than chunking in real-world sparse data collections [26]. (Fig 5)

depicts the overall architecture of SMO inference and training.

In Eqs 6 to 8 the QP problem for training an SVM is:

w lð Þ ¼
XI

i¼1

li �
1

2

XI

i¼1

XI

i¼1

yiyjKðxi � xjÞlilj ð6Þ

0 � li � C; i ¼ 1; . . . ; 1; ð7Þ

Xl

i¼l

yili ¼ 0 ð8Þ

In Eq 6 the QP problem for training an SVM is maximized and subject to 7 & 8.

K-nearest neighbor. The KNN classification method is widely used. It is widely used

because of its simplicity and quick calculation time [28]. The choice of value k is critical in this

method, as shown in (Fig 6). The two parameters that must be accessible to different k values

are training and validation error rates [29].

• Determine the parameter K defining the number of nearest neighbors [29].

• Calculate the distance between the query and all training examples [29].

• Using the kth minimum, sort the distance and find the closest neighbors [29].

• Gather the closest neighbors’ category [29].

• Use the majority in the category of nearest neighbors as the instance’s prediction value [29].

Fig 4. Multinomial logistic classifier [25].

https://doi.org/10.1371/journal.pone.0284209.g004
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KNN classifiers such as Fine, Medium, Coarse, Cosine, Cubic, and Weighted KNN use data

to categorize new data points based on similarity measurements.

• Fine and Medium KNN: The Fine and Medium KNN algorithms use the Euclidean distance

function to calculate the nearest neighbors, as shown in Eqs 9 and 10.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � y1Þ
2
þ ðx2 � y2Þ

2

q

ð9Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1
ðxi � yiÞ

r

ð10Þ

To calculate the NNs, the Fine and Medium KNN algorithms employ the Euclidean dis-

tance function, as indicated in Eqs 9 and 10.

Random forest. This method generates a large number of collaborative decision trees. In

this algorithm, decision trees serve as pillars. RF is a set of decision trees that were defined dur-

ing the pre-processing stage. After constructing many trees, the best feature from a random

subset of features is chosen. Another idea generated by the decision tree algorithm is the crea-

tion of a decision tree. As a result, these trees combine to form a random forest, which is used

to classify new objects based on the input vector. Each built decision tree is used to categorize.

(Fig 7) depicts the flowchart of a random forest classifier [30].

Fig 5. The general architecture of SMO inference and training [27].

https://doi.org/10.1371/journal.pone.0284209.g005
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The mathematical formula for random forest classifiers is shown below in Eq 11.

nij ¼ wiCj � wleftjCleftj � wrightjCrightj

ni subðjÞ ¼ the importance of node j

w subðjÞ ¼ weighted number of samples reaching node j

C subðjÞ ¼ the impurity value of node j

leftðjÞ ¼ child node from left split on node j

rightðjÞ ¼ child node from right split on node j

ð11Þ

Parameters configuration of ML classifiers. ML classifiers have been configured by

Fig 6. KNN architecture [29].

https://doi.org/10.1371/journal.pone.0284209.g006
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applying different parameters to achieve accuracy and fault prediction by class. Table 3 shows

the different parameters of ML classifiers with values.

Modified sequential minimal optimization

The original SMO algorithm has low accuracy & a high fault prediction error. This research

has to resolve low accuracy & high fault prediction errors by acquiring high accuracy with

less fault prediction error from MSMO. The block diagram of an MSMO classifier is shown

in (Fig 8). High accuracy & less fault prediction errors are based on the primary dataset that

has been generated. High accuracy & less fault prediction error have been evaluated min

α1, α2 using an objective function. High accuracy & less fault prediction error have been

made by applying objective functions through algorithm parameters & kernel parameters.

The C parameter has been determined as a trade-off between fitting the training data &

maximizing the separating margin. C has a value between 0.01 & 100. The random seed

has been set at 2. The only parameter for the polynomial kernel is the exponent, which has

controlled the degree of the polynomial. By default, the kernel has computed the exponent

as (x * y).

The mathematical formula for modified sequential minimal optimization classifiers is

shown below in Eqs 12–15.

ðx1; y1Þandðx2; y2Þ ð12Þ

In Eq 12 training, testing & validation is defined as above.

a1:a2 ð13Þ

In Eq 13 the objective function is defined as above.

kðxi;xjÞ ¼ ðxi∗xj þ 1pÞ ð14Þ

In Eq 14 polynomial kernel is defined as above.

ðxþ yþ 1Þ̂ ð15Þ

In Eq 15 exponent & lower order are defined as above.

Results and findings

This section includes data analysis and classification results from NB, LibSVM, MLR, SMO,

and RF with a confusion matrix, as well as graphical representations of the results. Finally, the

MSMO results, which are the main algorithm of this research study, are included here. This

study compares conventional ML algorithms to achieve high accuracy and less fault prediction

errors.

The secondary dataset archive contains four directories, one for each dataset block, namely

CPU/Memory and HDD in single-core and multi-core variants [3]. Based on the results, a sig-

nificant difference has been observed in the four directories of the secondary dataset, with

CPU-Mem Multi cores outperforming the remaining directories such as CPU-Mem Mono,

HDD Mono, and HDD Multi.

According to the comparisons, the primary dataset outperforms the secondary dataset, so

in this study, the primary dataset results were sufficient to consider when modifying the ML

algorithm.

Data was trained on 80/20, 70/30, and 5-fold cross-validation using NB, LibSVM, MLR,

SMO, KNN, and RF classifiers, and the desired classification results were obtained (Secondary
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Fig 7. Flowchart of random forest classifier [30].

https://doi.org/10.1371/journal.pone.0284209.g007
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& Primary). The results of NB, LibSVM, MLR, SMO, KNN, and RF are compared in terms of

accuracy, fault prediction error, and data validation by class using Eqs 16 to 26. Results from a

secondary dataset (CPU-Mem Multi) demonstrated that NB outperformed LibSVM, MLR,

SMO, KNN, and RF. Furthermore, the results of the primary dataset demonstrated that RF

outperformed, but the time complexity is poor. According to the primary dataset results, RF

and SMO have minor point value differences, but SMO has good time complexity. The soft-

ware environment we used is WEKA 3.8.6 with Remove Percentage Filter.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð16Þ

Table 3. Parameter configuration of ML classifiers.

Classifiers Configuration Parameters Values

Naïve Bayes Batch size 100

Debug False

Display model in old format False

Do not check capabilities False

Num decimal places 2

Use kernel estimator False

Use supervised discretization False

Library Support Vector Machine SVM type C-SVC (Classification)

Degree 3

EPS 0.001

Gamma 0.0

Kernel type radial basic function

Normalize False

Seed 1

Multinomial Logistic Regression Batch size 100

Do not check capabilities False

Num decimal places 4

Ridge 1.0 × 10−8

Sequential Minimal Optimization C complexity parameter 1.0

Epsilon 1.0 × 10−12

Filter type normalize training data

Kernel Polykernel −10 1.0−C 25,007

Num folds 1

Random seed 1

Tolerance parameter 0.001

K-Nearest Neighbor KNN 1

Batch size 100

Cross validate False

Nearest neighbor search algorithm linear NN search

Random Forest Batch size 100

Max depth 0

Num decimal places 2

Num features 0

Num iterations 100

Seed 1

https://doi.org/10.1371/journal.pone.0284209.t003
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In Eq 16 the accuracy is defined as above.

Recall or True� Positive Rate ¼
TP

TPþ FN
ð17Þ

In Eq 17 the recall or true positive rate is defined as above.

True� Negative Rate ¼
TN

TNþ FP
ð18Þ

Fig 8. Block diagram of MSMO classifier.

https://doi.org/10.1371/journal.pone.0284209.g008
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In Eq 18 the true negative rate is defined as above.

Precision ¼
TP

TPþ FP
ð19Þ

In Eq 19 the precision is defined as above.

False� Positive Rate ¼
FP

TNþ FP
ð20Þ

In Eq 20 the false positive rate is defined as above.

MCC ¼
TP:TN � FP:FN

p
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

ð21Þ

In Eq 21 the Matthews correlation coefficient is defined as above.

F� Measure ¼
2PPV� TPR
PPVþ TPR

ð22Þ

In Eq 22 the F-measure is defined as above.

• The RMSE is a commonly used measure of the difference between predicted & observed val-

ues by a model or estimator [31].

• MAE is a distinct measure of two continuous variables [31].

• The relative absolute error normalizes the total absolute error by dividing it by the total abso-

lute error of the simple predictor [32].

• The relative squared error normalizes the total squared error by dividing it by the simple pre-

dictor’s total squared error [32].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ

s

ð23Þ

In Eq 23 the RMSE is defined as above.

MAE ¼
1

n

Xn

i¼1

jyi � ŷi j ð24Þ

In Eq 24 the MAE is defined as above.

Ei ¼

Pn
j¼1
jPðijÞ � Tjj

Pn
j¼1
jTj �

�T j
ð25Þ

In Eq 25 the RAE is defined as above.

Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
ðPðijÞ � TjÞ

2

Pn
j¼1
ðTj �

�TÞ2

v
u
u
t ð26Þ

In Eq 26 the RSE is defined as above.
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Comparison of classification models on a secondary dataset

We are presenting results associated with different classifiers using ISFAULT in secondary

data and STATUS in primary data. As classification models, we opted for an NB, LibSVM,

MLR, RF, KNN, and SMO with a poly kernel.

The secondary data and primary data results of each classifier are shown in (Figs 9–72) with

the 80/20, 70/30, and 5 folds cross-validation in terms of high accuracy and less fault predic-

tion. Furthermore, data validation of 60% of training, 20% of testing, and 20% of validation. In

secondary data results (CPU-Mem Mono) gives the highest percentage of accuracy and less

fault prediction on the NB classifier in terms of 80/20 (77.01%), 70/30 (76.05%), and 5 folds

cross-validation (74.88%), and (CPU-Mem Multi)) in terms of 80/20 (89.72%), 70/30

(90.28%), and 5 folds cross-validation (92.83%). Furthermore, on (HDD Mono) the SMO clas-

sifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20

(87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of

80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%).

Secondary dataset CPU-mem mono block-I. (Figs 9–12) depict a comparison of the

results of NB, LibSVM, MLR, SMO, KNN, and RF in CPU-Mem Mono-related detailed accu-

racy by class (True/False) and prediction on test split additional data validation.

The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Figs 13–18) show the confusion matrix related to accuracy & fault prediction,

achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following confusion matrix

indicates that the NB classification model gives the highest percentage of accuracy & less fault

prediction on CPU-Mem Mono.

(Figs 19–24) represent the error of the classifier which shows the values corresponding to

true positive, true negative, false positive, and false negative values. In (Figs 19–24) the square

box represents the errors in the actual class versus the predicted class.

Secondary dataset CPU-mem multi block-II. (Figs 25–28) depicts a comparison of the

results of NB, LibSVM, MLR, SMO, KNN, and RF in CPU-Mem Multi related to detailed

accuracy by class (True/False) and prediction on test split additional data validation.

The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Figs 29–34) show the confusion matrix related to accuracy & fault prediction,

Fig 9. Accuracy by class (true/false) of CPU-mem mono on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g009
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achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following confusion matrix

indicates that the NB classification model gives the highest percentage of accuracy & less fault

prediction on CPU-Mem Multi.

(Figs 35–40) represent the error of the classifier which shows the values corresponding to

true positive, true negative, false positive, and false negative values. In (Figs 35–40) the square

box represents the errors in the actual class versus the predicted class.

Secondary dataset HDD mono block-III. (Figs 41–44) depicts a comparison of the

results of NB, LibSVM, MLR, SMO, KNN, and RF in HDD Mono related to detailed accuracy

by class (True/False) and prediction on test split additional data validation.

Fig 10. Fault prediction by class (true/false) of CPU-mem mono on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g010

Fig 11. Accuracy by class (true/false) of CPU-mem mono on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g011
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The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Figs 45–50) show the confusion matrix related to accuracy & fault prediction,

achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following confusion matrix

indicates that the SMO classification model gives the highest percentage of accuracy & less

fault prediction on HDD Mono.

Fig 12. Fault prediction by class (true/false) of CPU-mem mono on ML classifiers related to data validation

results.

https://doi.org/10.1371/journal.pone.0284209.g012

Fig 13. Confusion matrix of NB classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g013

PLOS ONE Improved accuracy and less fault prediction errors via modified sequential minimal optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0284209 April 13, 2023 20 / 63

https://doi.org/10.1371/journal.pone.0284209.g012
https://doi.org/10.1371/journal.pone.0284209.g013
https://doi.org/10.1371/journal.pone.0284209


Fig 14. Confusion matrix of LIBSVM classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g014

Fig 15. Confusion matrix of MLR classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g015
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Fig 16. Confusion matrix of SMO classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g016

Fig 17. Confusion matrix of KNN classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g017
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(Figs 51–56) represent the error of the classifier which shows the values corresponding to

true positive, true negative, false positive, and false negative values. In (Figs 51–56) the square

box represents the errors in the actual class versus the predicted class.

Fig 18. Confusion matrix of RF classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g018

Fig 19. Classifier errors of NB classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g019
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Secondary dataset HDD multi block-IV. (Figs 57–60) show the result comparison of NB,

LibSVM, MLR, SMO, KNN, and RF in HDD Multi-related detailed accuracy by class (True/

False) and prediction on test split further data validation.

The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Figs 61–66) show the confusion matrix related to accuracy & fault prediction,

Fig 20. Classifier errors of LIBSVM classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g020

Fig 21. Classifier errors of MLR classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g021
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achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following confusion matrix

indicates that the SMO classification model gives the highest percentage of accuracy & less

fault prediction on HDD Multi.

(Figs 67–72) represent the error of the classifier which shows the values corresponding to

true positive, true negative, false positive, and false negative values. In (Figs 67–72) the square

box represents the errors in the actual class versus the predicted class.

Fig 22. Classifier errors of SMO classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g022

Fig 23. Classifier errors of KNN classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g023
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Comparison of classification models on a primary dataset

We are presenting results associated with different classifiers using the STATUS class in the

primary dataset. For classification models, we opted for NB, LibSVM, MLR, RF, KNN, & SMO

with the poly kernel.

The RF classifier gives the highest percentage of accuracy and less fault prediction in terms

of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data

results, but the algorithm complexity (0.17 seconds) is not good. In terms of 80/20 (95.71%),

70/30 (95.71%), and 5 folds cross-validation (95.71%), SMO has the second highest accuracy

and less fault prediction, but the algorithm complexity is good (0.3 seconds). The difference in

accuracy and less fault prediction between RF and SMO is only (.13%), and the difference in

time complexity is (14 seconds).

Fig 24. Classifier errors of RF classifier based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g024

Fig 25. Accuracy by class (true/false) of CPU-mem multi on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g025
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(Figs 73–76) show a comparison of the results of NB, LibSVM, MLR, SMO, KNN, and RF

in the Primary Dataset for detailed accuracy by class (Repair/Failure) and prediction on test

split additional data validation.

The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Figs 77–82) show the confusion matrix related to accuracy & fault prediction,

achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following confusion matrix

indicates that the RF classification model gives the highest percentage of accuracy & less fault

prediction on the primary dataset, but the algorithm complexity (0.17 seconds) is not good.

SMO gives the second-highest accuracy and less fault prediction but the algorithm com-

plexity is good (0.3 seconds). The accuracy and less fault prediction difference between RF and

Fig 26. Fault prediction by class (true/false) of CPU-mem multi on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g026

Fig 27. Accuracy by class (true/false) of CPU-mem multi on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g027
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SMO are just (.13%) and the time complexity difference is (14 seconds). (Figs 83–88) represent

the error of the classifier which shows the values corresponding to true positive, true negative,

false positive, and false negative values. In (Figs 83–88) the square box represents the errors in

the actual class versus the predicted class.

Fig 28. Fault prediction by class (true/false) of CPU-mem multi on ML classifiers related to data validation

results.

https://doi.org/10.1371/journal.pone.0284209.g028

Fig 29. Confusion matrix of NB classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g029
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Fig 30. Confusion matrix of LIBSVM classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g030

Fig 31. Confusion matrix of MLR classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g031
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Fig 32. Confusion matrix of SMO classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g032

Fig 33. Confusion matrix of KNN classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g033
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Fig 34. Confusion matrix of RF classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g034

Fig 35. Classifier errors of NB classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g035
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Modified sequential minimal optimization results

In this subsection, the results of the classification of the primary dataset results are shown in

(Figs 89–92) indicating that the MSMO classification model gives the highest accuracy & less

fault prediction errors in terms of 80/20 (96.42%), 70/30 (96.42%), & 5 fold cross validation

(96.50%). The MSMO time complexity of the algorithm is (0.44 seconds) after modification.

Fig 36. Classifier errors of LIBSVM classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g036

Fig 37. Classifier errors of MLR classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g037
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(Figs 89–92) depicts a comparison of the results of NB, LibSVM, MLR, SMO, MSMO,

KNN, and RF in the Primary Dataset in terms of detailed accuracy by class (Repair/Failure)

and prediction on test split additional data validation.

The confusion matrix is used to calculate Accuracy, Precision, Recall, and F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. (Fig 93) shows the confusion matrix related to accuracy & fault prediction, achieved

Fig 38. Classifier errors of SMO classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g038

Fig 39. Classifier errors of KNN classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g039
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through MSMO. The following confusion matrix indicates that the MSMO classification

model gives the highest percentage of accuracy & less fault prediction error on the primary

dataset against NB, LibSVM, MLR, SMO, KNN, and RF.

(Fig 94) represents the error of the classifier which shows the values corresponding to true

positive, true negative, false positive, and false negative values. In (Fig 94) the square

box represents the errors in the actual class versus the predicted class.

Discussion

This study was carried out to achieve high accuracy and less fault perdition to achieve reliabil-

ity. The MSMO classifier was created to ensure the smooth execution of the research.

Fig 40. Classifier errors of RF classifier based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g040

Fig 41. Accuracy by class (true/false) of HDD mono on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g041
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An MSMO classifier was applied to the primary data. According to the MSMO classifier

results, the proposed strategy outperforms the existing classifier in terms of accuracy and fault

prediction. The obtained results in the primary data were compared to the existing NB,

LibSVM, MLR, SMO, KNN, and RF classifiers. High accuracy with low fault prediction is the

most important parameter for judging the classifier’s performance level.

Simulated results were compared to NB, LibSVM, MLR, SMO, KNN, and RF classifiers,

and it was demonstrated that the proposed classifier performed more accurately and quickly,

with 96.5% of instances correctly classified than the available classifiers. The proposed

research’s innovation is a collection of techniques that have been linked to high accuracy and

less fault prediction to achieve reliability. MSMO was proposed using parameter tuning, which

is considered a novel approach.

Fig 42. Fault prediction by class (true/false) of HDD mono on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g042

Fig 43. Accuracy by class (true/false) of HDD mono on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g043
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Contributions

Our work makes numerous contributions. We began by acquiring the HPC fault dataset and

evaluating a fault classification method based on supervised machine learning. This dataset

and all test environment details are publicly available for use by the community. The Antarex

secondary dataset will be based on trace data from the homonymous experimental HPC sys-

tem at ETH Zurich during fault injection, which will be used to undertake machine learning-

Fig 44. Fault Prediction by class (true/false) of HDD mono on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g044

Fig 45. Confusion matrix of NB classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g045
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Fig 46. Confusion matrix of LIBSVM classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g046

Fig 47. Confusion matrix of MLR classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g047
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Fig 48. Confusion matrix of SMO classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g048

Fig 49. Confusion matrix of KNN classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g049
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Fig 50. Confusion matrix of RF classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g050

Fig 51. Classifier errors of NB classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g051
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based fault prediction studies for researchers. The dataset will be separated into two sections,

one for CPU and memory-related benchmark apps and fault programs, and another for hard

drive-related applications and fault programs. Antarex dataset will have four folders, one for

each dataset block, namely CPU/Memory and HDD, in single-core and multi-core forms [3].

Second, we generated a primary dataset through the Weibull distribution approach. The

Weibull distribution is also often employed as a time-to-failure model for reliability. It extends

Fig 52. Classifier errors of LIBSVM classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g052

Fig 53. Classifier errors of MLR classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g053
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the exponential model by including non-constant failure rate functions. This contains both ris-

ing and falling failure rate curves and has been successfully utilized to explain both initial

burnings and wear-out failures [4]. We have coded different parameters in the java platform

for primary data generated using the Weibull distribution approach.

Fig 54. Classifier errors of SMO classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g054

Fig 55. Classifier errors of KNN classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g055
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Third, our analysis is based on (Antarex Secondary Datasets) obtained from the ZONODO

website and (Primary Datasets) generated using the Weibull distribution approach [3, 4]. We

present the results of our experiments, which were designed to determine which ML algo-

rithms provide better results in terms of high accuracy and less fault prediction.

As a fourth & final contribution, high accuracy, and less fault prediction error, have been

achieved using the MSMO classifier which has a good impact on users related to the CC

environment.

Conclusions

The results of this study were associated with various classifiers using ISFAULT in secondary

data and STATUS in primary data to achieve high accuracy and less fault prediction errors.

Fig 56. Classifier errors of RF classifier based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g056

Fig 57. Accuracy by class (true/false) of HDD multi on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g057

PLOS ONE Improved accuracy and less fault prediction errors via modified sequential minimal optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0284209 April 13, 2023 42 / 63

https://doi.org/10.1371/journal.pone.0284209.g056
https://doi.org/10.1371/journal.pone.0284209.g057
https://doi.org/10.1371/journal.pone.0284209


Secondary data results (CPU-Mem Mono) give the highest percentage of accuracy and less

fault prediction on the NB classifier in terms of 80/20 (77.01%), 70/30 (76.05%), and 5 folds

cross-validation (74.88%), and (CPU-Mem Multi) give the highest percentage of accuracy and

less fault prediction on the NB classifier in terms of 80/20 (89.72%), 70/30 (90.28%), and 5

folds cross-validation (92.83%). Furthermore, the SMO classifier gives the highest percentage

of accuracy and the least amount of fault prediction fault on (HDD Mono) in terms of 80/20

(87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of

80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%).

In the primary data results, the RF classifier has the highest percentage of accuracy and less

fault prediction 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%), but the

Fig 58. Fault prediction by class (true/false) of HDD multi on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g058

Fig 59. Accuracy by class (true/false) of HDD multi-on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g059
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algorithm complexity (0.17 seconds) is poor. SMO has the second highest accuracy and less

fault prediction in terms of 80/20 (95.71%), 70/30 (95.71%), and 5 folds cross-validation

(95.71%), but the algorithm complexity is good (0.3 seconds). The difference in accuracy and

fault prediction between RF and SMO is only (.13%), and the difference in time complexity is

only (.13%). (14 seconds).

Fig 60. Fault prediction by class (true/false) of HDD multi-on ML classifiers related to data validation results.

https://doi.org/10.1371/journal.pone.0284209.g060

Fig 61. Confusion matrix of NB classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g061
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Fig 62. Confusion matrix of LIBSVM classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g062

Fig 63. Confusion matrix of MLR classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g063
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Fig 64. Confusion matrix of SMO classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g064

Fig 65. Confusion matrix of KNN classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g065
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Fig 66. Confusion matrix of RF classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g066

Fig 67. Classifier errors of NB classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g067
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Achievements of the objectives

Research objectives have been achieved successfully as shown in Table 4 with the help and lit-

erature review to achieve high accuracy and less fault prediction errors in CC.

Fig 68. Classifier errors of LIBSVM classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g068

Fig 69. Classifier errors of MLR classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g069
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Contribution towards cloud computing

The SMO classifier has been modified. Our proposed approach improves accuracy and gets

fewer fault prediction errors for users in cloud computing environments. It was not an easy

task to achieve high accuracy and less fault prediction to reliability to the existing approach.

Almost all tuning parameters C parameter, random seed, kernel exponent, and lower order

values have been adjusted to get better results in terms of accuracy, mean square error, and

better fitness.

Fig 70. Classifier errors of SMO classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g070

Fig 71. Classifier errors of KNN classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g071
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This research work has proven that the ML-based approach can be greatly contributed to

cloud computing to achieve high accuracy and fewer fault prediction errors for cloud comput-

ing users.

Limitations

1. Antarex secondary data collection is possible, but more computational resources are

required because this is an HPC fault dataset, however, we can download this dataset

through the ZONODO website.

2. The Weibull distribution was not provided to generate a fault dataset for primary data

generation.

Fig 72. Classifier errors of RF classifier based on HDD multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g072

Fig 73. Accuracy by class (repair/failure) of the primary dataset on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g073
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3. An effort was made to achieve the primary dataset using the Weibull distribution.

Future directions

1. Using the Weibull distribution approach, a graphical user interface can be created to gener-

ate the primary dataset in CloudSim.

2. Tuning parameters can be automatically adjusted using code, but keep in mind that to find

the best tuning parameter value, the code must not become stuck.

Fig 74. Fault prediction by class of (repair/failure) of the primary dataset on ML classifiers.

https://doi.org/10.1371/journal.pone.0284209.g074

Fig 75. Accuracy by class (repair/failure) of the primary dataset on ML classifiers related to DV results.

https://doi.org/10.1371/journal.pone.0284209.g075
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3. Random Forest can be implemented to achieve high accuracy and less fault prediction

errors, but more work on the algorithm’s complexity is required. Comparative analysis can

also be performed with this proposed work.

4. Deep Learning algorithms can also be used to achieve high accuracy while predicting less

faults. The sample size should be increased. The larger the sample size, the more accurate

and reliable the results. When the dataset is large, DL techniques outperform ML

techniques.

Fig 76. Fault prediction by class of (repair/failure) of the primary dataset on ML classifiers related to DV results.

https://doi.org/10.1371/journal.pone.0284209.g076

Fig 77. Confusion matrix of NB classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g077
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Fig 78. Confusion matrix of LIBSVM classifier basd on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g078

Fig 79. Confusion matrix of MLR classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g079
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Fig 80. Confusion matrix of SMO classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g080

Fig 81. Confusion matrix of KNN classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g081
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Fig 82. Confusion matrix of RF classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g082

Fig 83. Classifier errors of NB classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g083
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Fig 84. Classifier errors of LIBSVM classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g084

Fig 85. Classifier errors of MLR classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g085
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Fig 86. Classifier errors of SMO classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g086

Fig 87. Classifier errors of KNN classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g087
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Fig 88. Classifier errors of RF classifier based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0284209.g088

Fig 89. Comparison of ML classifiers with MSMO accuracy by class (repair/failure) of the primary dataset.

https://doi.org/10.1371/journal.pone.0284209.g089
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Fig 90. Comparison of ML classifiers with MSMO fault prediction by class (repair/failure) of the primary dataset.

https://doi.org/10.1371/journal.pone.0284209.g090

Fig 91. Comparison of ML classifiers with MSMO accuracy by class of primary dataset related to DV results.

https://doi.org/10.1371/journal.pone.0284209.g091
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Fig 92. Comparison of ML classifiers with MSMO fault prediction by class of primary dataset related to DV

results.

https://doi.org/10.1371/journal.pone.0284209.g092

Fig 93. Confusion matrix of MSMO classifier based on primary data in high accuracy & less fault prediction

error.

https://doi.org/10.1371/journal.pone.0284209.g093
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