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MDF‑Net for abnormality detection 
by fusing X‑rays with clinical data
Chihcheng Hsieh 1, Isabel Blanco Nobre 2,7, Sandra Costa Sousa 2,7, Chun Ouyang 1, 
Margot Brereton 1, Jacinto C. Nascimento 3, Joaquim Jorge 4 & Catarina Moreira 1,4,5,6*

This study investigates the effects of including patients’ clinical information on the performance of 
deep learning (DL) classifiers for disease location in chest X-ray images. Although current classifiers 
achieve high performance using chest X-ray images alone, consultations with practicing radiologists 
indicate that clinical data is highly informative and essential for interpreting medical images and 
making proper diagnoses. In this work, we propose a novel architecture consisting of two fusion 
methods that enable the model to simultaneously process patients’ clinical data (structured data) 
and chest X-rays (image data). Since these data modalities are in different dimensional spaces, we 
propose a spatial arrangement strategy, spatialization, to facilitate the multimodal learning process 
in a Mask R-CNN model. We performed an extensive experimental evaluation using MIMIC-Eye, a 
dataset comprising different modalities: MIMIC-CXR (chest X-ray images), MIMIC IV-ED (patients’ 
clinical data), and REFLACX (annotations of disease locations in chest X-rays). Results show that 
incorporating patients’ clinical data in a DL model together with the proposed fusion methods 
improves the disease localization in chest X-rays by 12% in terms of Average Precision compared 
to a standard Mask R-CNN using chest X-rays alone. Further ablation studies also emphasize the 
importance of multimodal DL architectures and the incorporation of patients’ clinical data in disease 
localization. In the interest of fostering scientific reproducibility, the architecture proposed within this 
investigation has been made publicly accessible(https://​github.​com/​Chihc​hengH​sieh/​multi​modal-​
abnor​malit​ies-​detec​tion).

According to the Lancet1, 2019 witnessed a shortage of 6.4 million physicians, 30.6 million nurses, and 2.9 million 
pharmaceutics personnel across 132 countries worldwide, especially in Low and Medium Income Countries. The 
situation has worsened after the pandemic since medical staff were disproportionately affected.

Deep Learning (DL) technologies promise to benefit health systems, professionals, and the public, making 
existing clinical and administrative processes more effective, efficient, and equitable. These technologies have 
become highly popular in the medical imaging field, where a plethora of applications have been successfully 
addressed, e.g., breast imaging2,3, left ventricular assessment4,5, dermoscopy analysis6,7 and chest X-rays8–12, which 
have gained further attention due to the recent pandemic. Despite their advantages, these systems have notable 
shortcomings: they require extensive amounts of labelled data to operate correctly. Explicitly labelling anomalies 
in large amounts of medical images requires the availability of medical experts, who are scarce and expensive. 
The process is time-consuming and costly, resulting in bottlenecks in research advancements13. Additionally, 
the complex interconnected architectures make DL predictions opaque and resistant to scrutiny, hindering the 
adoption of AI systems in public health (known as the “black box” problem14–19). A system that could automati-
cally annotate or highlight relevant regions in medical images in a similar way to humans would be extremely 
useful and could save millions of dollars creating breakthroughs in research in AI adoption in Healthcare13.

Several works in the literature attempt to automatically learn regions of interest indicating the patient’s clinical 
abnormalities. These works mainly use DL approaches which have been found to be efficient and effective on a 
variety of computer vision tasks20–23. Mask R-CNN is one of the most widely used DL architectures to predict 
regions with abnormalities in images24. However, their predictive performance is still low, and these architec-
tures do not take into consideration the process of how expert radiologists assess and diagnose these images. 
The human component is completely disregarded in most DL studies to predict abnormalities in chest X-rays. 
This is relevant because when radiologists look at an X-ray image, they experience it in a multimodal world: they 
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see objects, textures, shapes, etc. It is the combination of these modalities that make humans capable of making 
mental models that generalize well with less data when compared to DL approaches.

Advancements in computer-aided diagnostics (CAD) employing radiomics and deep learning have also been 
explored in the literature. A compelling example can be seen in a study that presents an attention-augmented 
Wasserstein generative adversarial network (AA-WGAN) for fundus retinal vessel segmentation. The application 
of attention-augmented convolution and squeeze-excitation modules highlights regions of interest and suppresses 
extraneous information in the images, proving effective in segmenting intricate vascular structures25. Further, an 
attention-based glioma grading network (AGGN) for MRI data shows superior performance, highlighting the 
key modalities and locations in the feature maps even without manually labelled tumour masks26. Lastly, a CAD 
model, Cov-Net, exhibits robust feature learning for accurate COVID-19 detection from chest X-ray images, 
outperforming other computer vision algorithms27. Together, these studies underscore the potential of radiomics 
and deep learning in improved health anomaly detection, segmentation, and grading.

Multimodal DL consists of architectures that can learn, process, and link information from different data 
modalities (such as text, images, structured data, etc.)28–34. Deep learning can benefit from multimodal data in 
terms of generalization and performance compared to the unimodal paradigm (see for instance Azam et al.35 
for a comprehensive review in medical multimodal images). In terms of multimodal DL approaches for chest 
X-ray images, most works in the literature focus on combining image data with text to generate reports, predict 
diseases or even for lesion detection by training BERT-like models36–39. However, regarding disease classification, 
the medical reports associated with the images used for training already contain some information about the 
patient’s diseases, which may generate biased results.

A recent literature review40 indicated that clinical data is highly informative and essential for radiologists to 
interpret and make proper diagnoses. To the best of our knowledge, there are no multimodal DL approaches 
that combine patients’ clinical information with X-ray images to predict the location of abnormalities in chest 
X-rays. This justifies and motivates our research path in the present paper. Concretely, chest X-ray images and 
clinical data are aimed at addressing a critical gap in current object detection deep learning approaches in terms 
of fusing tabular data and image data, which are very scarce. Our interviews with radiologists reinforced the 
importance of clinical data in making accurate diagnoses from chest X-ray images because radiologists cannot 
accurately assess an X-ray image without knowing the patient’s clinical data. By integrating these two types of 
data into our model, we aim to capture the nuanced decision-making process of radiologists more effectively. 
This approach allows the model to leverage the patterns visible in the images and the rich contextual information 
available in the clinical data, leading to a more holistic and accurate disease localization.

In this paper, we propose the Multimodal Dual-Fusion Network (MDF-Net), which is a novel architecture 
inspired and extended from Mask R-CNN24. MDF-Net can fuse chest X-ray images and clinical features simul-
taneously to detect regions in chest X-rays with abnormalities more accurately. The proposed architecture uses 
a two-stage detector comprising a Region Proposal Network (RPN) of Mask R-CNN followed by an attention 
mechanism to extract information only from Regions of Interest (RoIs). Figure 1 presents a general description 
of the proposed framework. Figure 1a shows the overall architecture of the proposed model. The prediction 
process can be divided into three phases.

The initial phase is dedicated to extracting semantic representations, known as feature maps, from the input 
data. This involves the distinct processing of the two data modalities. One model subsystem calculates a feature 
map utilizing the input images, whereas a different subsystem computes a feature map based on clinical data. In 
the second phase, we conduct a fusion operation to fuse the two feature maps above to obtain a joint represen-
tation. Then, the third phase deploys the final classifier, the purpose of which is to predict the bounding boxes 
corresponding to any detected abnormalities. In Fig. 1b, we integrated the triage data from MIMIC-IV ED with 
REFLACX, which contains bounding box annotations, to get corresponding clinical data for each CXR image. 
The integrated (multimodal) dataset, MIMIC-EYE43, allows us to perform multimodal learning with the model 
shown in Fig. 1a. In the end, we performed two ablation studies: one that investigated the impact of the different 
fusion methods in our architecture; and another that investigated the impact of different sets of clinical features 
for abnormality detection. The performance of the models was measured using Average Precision (AP) and 
Intersection Over predicted Bounding Boxes (IoBB) (Fig. 1c).

The key contributions of this work are as follows: 

(1)	 We propose a strategy to extract corresponding clinical data for CXR images from the MIMIC42,44,45 dataset. 
This strategy is then used to construct our multimodal dataset for the abnormality detection task43;

(2)	 We propose a multimodal learning architecture and two fusion methods to fuse tabular and image data;
(3)	 We demonstrate the effectiveness and importance of clinical data in abnormality detection through ablation 

studies.

Results
Overall, our experiments show that clinical data plays an important role in abnormality detection. Using clinical 
data together with chest X-ray images, the proposed MDF-Net architecture achieved a significant improvement 
in terms of both average precision (AP) (31.69%) and average recall (AR) (54.76%) when compared to the 
baseline Mask R-CNN model that relies solely on X-ray imaging, which achieved 19.61% AP and 54% AR. This 
translates into an improvement of 12.08% AP and 0.86% AR. Figure 2(a) shows an example where the proposed 
MDF-Net was able to correctly predict bilateral pulmonary edema while the Mask R-CNN (baseline) did not 
identify any abnormality. In terms of the number of false negatives/false positives, the proposed MDF-Net with 
both fusion methods always generated fewer false positives (FP) and false negatives (FN) for the majority of the 
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chest abnormalities that it was trained on: 148 FP and 51 FN for MDF-Net compared to 231 FP and 53 using 
Mask R-CNN alone (Fig. 2b).

We conducted a series of ablation studies to further validate the efficacy and robustness of the proposed MDF-
Net. These systematic experiments were designed to dissect and independently evaluate different components 
of the proposed system.

Firstly, the effectiveness of our fusion methods was scrutinized together with the different backbone architec-
tures. Fusion methods within the MDF-Net are pivotal as they integrate the distinct feature maps extracted from 
the chest X-ray images and clinical data, creating a unified representation for the final prediction. By modifying 
or omitting these fusion methods, we gauged their impact on the model’s overall performance, thereby assessing 
their contribution to the successful disease localization in chest X-rays (Figs. 3, 4).

Figure 1.   Panel (a) An overview of the proposed MDF-Net architecture. Panel (b) Integration of the CXR 
images from MIMIC-CXR41 with the clinical data of MIMIC IV42. Panel (c) IoBB is used to evaluate the model 
between ground truth and predictions.
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To evaluate the effectiveness of each fusion method proposed in our MDF-NET, we created two Multimodal 
Single Fusion Networks (MSF-Net), which only apply 1-D or 3-D fusion to conduct ablation studies. Figure 2c 
presents the performance of Mask R-CNN (Baseline), MDF-Net and the two MSF-Nets. Figure 6b presents the 
evaluation results across different IoBB thresholds.

Secondly, we investigated the impact of employing different sets of clinical features. Recognizing that each 
clinical feature may contribute variably to the diagnostic process, we selected varying combinations of these 

Figure 2.   (a) The groundtruth and predictions from Mask R-CNN (Baseline) and MDF-Net. In this figure, 
MDF-Net successfully identified the presence of pulmonary edema, a condition for which our consulting 
radiologists indicated the beneficial influence of clinical data in its detection. (b) Confusion matrix per 
abnormality (Note: The number of true negative cases is infinite in the object detection task). (c) Evaluation 
results (Score threshold = 0.05, IoBB threshold = 0.5).
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features to feed into the model. By observing how the model’s performance fluctuated with different feature sets, 
we gained insight into the salience of specific clinical features and their role in accurate abnormality detection 
(Fig. 5).

Impact of different backbones
To thoroughly evaluate the performance of our proposed MDF-Net model and its robustness across different 
architectures, we conducted an ablation study focusing on different backbones.

Figure 3 presents the obtained results. Backbone architectures play a pivotal role in deep learning models as 
they are responsible for the feature extraction process. For this study, we incorporated well-known architectures, 
including MobileNet, EfficientNet, ResNet, DenseNet, and ConvNextNet, which exhibit diverse architectural 
designs. We systematically analyzed and compared their performance when incorporated as the backbone of 

Figure 3.   Ablation study results for different backbone architectures in the MDF-Net. This table provides 
the average precision (AP) and average recall (AR) values obtained using MobileNet, EfficientNet, ResNet, 
DenseNet, and ConvNextNet and also the overall number of True Positives (TP), False Positives (FP), and (False 
Negatives).
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our MDF-Net model for different settings: baseline (image only), using 3D fusion only, and using both 3D and 
1D fusion. This analysis aims to demonstrate the versatility of our proposed approach and to identify the back-
bone that can further enhance the performance of MDF-Net in disease localization tasks using chest X-rays and 
patients’ clinical data. The ablation results indicate that MobileNet outperformed all other backbones with an 
increase of performance of 10.94% AP and 12.75% AR when compared to the second best-performing backbone, 
the ConvNext net. The characteristics of MobileNet, such as its reduced complexity and efficient learning with 
small datasets, were likely key contributors to its success in our MDF-Net model over other backbone candidates.

Impact of different fusion methods
Fusion methods play an instrumental role in multimodal deep learning models, acting as a bridge that intertwines 
the information derived from different data modalities. To scrutinize the effectiveness and compatibility of vari-
ous fusion methods within our proposed MDF-Net, we conducted an ablation study where we tested different 
fusion strategies. The strategies assessed included element-wise sum, concatenation followed by a linear opera-
tion, concatenation followed by a convolution operation, and the Hadamard product. Each method amalgamates 
information in distinct ways, carrying unique assumptions about the interplay between the features derived from 
the image and clinical data. The results of our ablation study illustrate that the element-wise sum fusion method 
yielded the best performance within our MDF-Net model. This method, which combines features by adding 
them together element by element, seemingly outperforms state-of-the-art methods at fusing the information 
from chest X-ray images and clinical data, thus improving the model’s ability to localize disease in chest X-rays 
accurately.

Figure 4 presents our results where one can see that the element-wise outperforms the baseline by 24% in 
terms of average Recall and average Precision by 62%. Compared to the second-best fusion method, the Had-
amard product, the element-wise sum still achieved an increase of 23% in terms of average Recall and 51% in 
terms of average Precision. The element-wise sum fusion method is likely to have successfully harnessed the 
complementary information available in our study’s chest X-ray images and clinical data, allowing for a more 
effective fusion and hence better localization of disease in chest X-rays. Its ability to retain original feature infor-
mation and its computational efficiency further enhance its suitability for this task.

Impact of different clinical features
This section of the study examines the role different sets of clinical features play in the context of our MDF-Net 
architecture.

Firstly, we sought the expertise of radiologists, leveraging their vast domain knowledge to dissect the relation-
ships between specific clinical features and their associations with certain chest abnormalities. For instance, there 
was a consensus among radiologists that clinical features such as body temperature could serve as a significant 
indicator of particular diseases which typically cause infections, including abnormalities like consolidation or 
pleural anomalies.

This initial consultation with radiologists allowed us to gain an intuitive understanding of these relation-
ships, as illustrated in Fig. 5a. However, in order to solidify these findings and corroborate them with empirical 
evidence, we extended our investigation.

Secondly, we endeavoured to discern if this domain-specific knowledge mirrored the patterns present within 
our dataset. To this end, a correlation analysis was conducted that evaluated the associations between the chest 
abnormalities manifest in individual patients and their corresponding clinical data. These findings are graphically 
demonstrated in Fig. 5b, providing a clear, data-driven correlation between specific clinical features and disease 
manifestations, such as the correlation between the patient’s age and the probability of developing an enlarged 
cardiac silhouette (older patients are more susceptible to heart problems and therefore to enlarged hearts), or 
pulmonary diseases such as atelectasis, consolidations or pleural abnormalities.

Finally, we focused on the impact of these clinical feature sets on the performance of the learning model itself. 
By applying MDF-Net to varied assortments of these clinical features, we could observe how each set influenced 

Figure 4.   Ablation study results showcasing the impact of different fusion methods on the performance of 
the MDF-Net model. The table compares the performance metrics, namely, average precision and average 
recall, for the four fusion methods examined: element-wise sum, concatenation followed by a linear operation, 
concatenation followed by a convolution operation, and the Hadamard product.
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Figure 5.   Panel (a) The importance of clinical features for detecting each abnormality as reported by our 
radiology partners. Seven clinical features are highlighted for detecting pleural abnormality, consolidation, 
and pulmonary edema. Four out of seven highlighted features are considered the most significant. Panel (b) 
Correlation matrix between clinical features and abnormalities. Panel (c) Results of several ablation studies with 
different sets of features. Bold values indicate the best-performing model in terms of AP, and the underlined 
values indicate the best-performing model in terms of AR.
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the model’s learning capabilities. The performance of the MDF-Net model under these different conditions is 
displayed in Fig. 5c. Results show that the set of all features contributes to the model’s best performance, which 
reinforces the value of clinical data and how it can significantly influence our MDF-Net’s capacity to detect and 
localize abnormalities within chest X-ray images accurately.

Discussion
The comprehensive evaluation elucidated in the prior section underpins the establishment of the following 
noteworthy observations. The proposed MDF-Net surpasses the standard Mask R-CNN (used as our baseline) 
in both Average Precision (AP) and Average Recall (AR) metrics. Specifically, MDF-Net demonstrates superior 
AP on four out of the five assessed lesions, with only a marginal shortfall (− 0.17% AP) relative to the baseline 
model when detecting the Pleural Abnormality.

In terms of global performance, MDF-Net contributes to an enhancement of + 12% AP. Panel (a) in Fig. 6 
illustrates the comparative performance of the model on the training set (depicted in red) and the test set (repre-
sented in green). Despite the similar performance levels achieved on the training set by both models, MDF-Net 
demonstrates superior generalization on the test set in contrast to the Mask R-CNN (baseline).

Figure 6.   Panel (a) Model generalisation analysis. This graph shows that clinical data and MDF-Net improve 
the generalization ability on the test set. Panel (b) Average precision analysis for different IoBB thresholds: This 
chart shows MDF-Net reached the best performance when using both fusion methods. Using 1-D or 3-D fusion 
methods alone can already show some improvements in the model among all IoBB thresholds.
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Additionally, as represented in panel (b) of Fig. 6, MDF-Net (indicated in blue), along with the other two MSF-
Nets markedly outperform the Mask R-CNN (illustrated in purple) across nearly all Intersection over Bounding 
Box (IoBB) thresholds. While Mask R-CNN (baseline) performance declines at higher IoBB thresholds, MDF-
Net maintains a reasonable performance standard, reinforcing that MDF-Net can effectively pinpoint lesions 
irrespective of the IoBB threshold.

Collectively, these empirical observations substantiate the pivotal role of clinical data, contravening the 
prevailing notion that image data alone suffices for robust medical diagnosis.

Ablation study for different fusion processes
The Average Precision (AP) and Average Recall (AR) of each model are shown in Fig. 2c. In the previous subsec-
tion, we demonstrated the effectiveness of MDF-Net, and in this section, we use MSF-Net (1D) and MST-Net 
(3D) to conduct an ablation study. This experiment allowed us to test the effectiveness of each fusion method. 
The results are as follows. Figure 2c shows MSF-Net (3D) has a larger improvement in performance (+ 7.96%AP, 
+ 6.47%AR) than MSF-Net (1D), which indicates the 3-D fusion is more effective than 1-D fusion. Compared to 
Mask R-CNN (Baseline), MSF-Net (3D) performs better on 4 out of 5 lesions, the same as MDF-Net. And, We 
also noticed this model has the highest AR compared to all other models.

The MSF-Net (1D) has a slight improvement on AP by + 2.58% but loss − 4.508% on AR, as shown in Fig. 2c. 
In MDF-Net (1D), the clinical data are only used to be concatenated with flattened RoIs, which means the 
clinical data are not involved in deciding where the Regions of Interest are (RPN output). In other words, if we 
split Mask-RCNN into two stages, the first stage determines the regions of interest (RoIs); and the second stage 
identifies the lesions inside those RoIs. In 1-D fusion, the clinical data is only perceived by the second stage, so 
the clinical data is not used for identifying RoIs. Consequently, this 1-D fusion only helps the final classifier to 
filter out regions misclassified by RPN; hence, AP increased while AR decreased. When using both 1-D and 3-D 
fusions together, the 3-D fusion can help RPN to pick up abnormal regions better while 1-D fusion can help the 
final classifier to determine whether a lesion exists in the given region.

Ablation study for different backbones
Since the performance of our model is sensitive to the underlying deep learning mechanism, we examined the 
influence of different backbones in terms of the overall performance and robustness of the model. Backbone 
architectures play a central role in deep learning models since they are responsible for the feature extraction 
process and consequently influence the subsequent layers’ performance. Figure 3 shows that MobileNet achieved 
the best results with an increase of performance of 10.94% AP and 12.75% AR when compared to the second best-
performing backbone, the ConvNext net. MobileNet is likely to have achieved this performance due to several 
factors. Firstly, MobileNet is designed around the principle of depthwise separable convolutions, a technique that 
significantly reduces the model complexity and computational cost while preserving the performance level46,47. 
This design feature makes MobileNet particularly well-suited for scenarios where the training data are limited. In 
the presence of a smaller dataset, the lower complexity model mitigates the risk of overfitting, which often leads to 
better generalization performance when testing on unseen data. Secondly, since MobileNet is an architecture with 
fewer parameters and operations than other larger, more complex models like ResNet or DenseNet, this enables 
the model to learn meaningful representations even from a limited amount of data. Lastly, the computational 
efficiency and the smaller model size of MobileNet can potentially lead to faster convergence during training46. 
This might result in a more optimal model when the amount of training data and training iterations are limited, 
further explaining its superior performance in our study.

Ablation study for different fusion methods
Additionally, when investigating different fusion methods, we found that the element-wise sum achieved the best 
results (Fig. 4). The superior performance of the element-wise sum fusion method in our MDF-Net model can 
be attributed to several factors that are intrinsically linked to the nature of this method and the characteristics 
of the data we are working with, such as the complementarity of features, the information preservation, and the 
computational efficiency. For the complementarity of features, the element-wise sum operation assumes that 
the features from chest X-ray images and clinical data are largely complementary, meaning that the relevant 
information in each feature does not overlap significantly. This operation allows the model to preserve and 
combine the unique information contained in both sets of features, resulting in a more comprehensive feature 
representation. Additionally, the element-wise sum does not introduce additional transformation of the features 
apart from scaling. This means that it preserves the original feature values to a greater extent (information pres-
ervation). This simplicity could prevent the introduction of unnecessary complexity into the model, thereby 
reducing the risk of overfitting, which is particularly important when dealing with a small dataset such as ours. 
Finally, element-wise operations are computationally less demanding compared to operations such as matrix 
multiplication used in other fusion methods. This could lead to a more efficient learning process and potentially 
better optimization, contributing to improved performance. This is particularly suitable when combined with 
smaller backbones, such as MobileNet.

Ablation study for clinical features
In order to understand the contribution and significance of clinical features, we also conducted an ablation study 
by giving a different combination of clinical features to MDF-Net. The performance of different combinations is 
shown in Fig. 5c. When comparing the ablation result with the necessity table (Figs. 5a,c and correlation matrix 
(Fig. 5b, we found that radiologists stated that heartrate is less important than temperature and resprate in diag-
nosing a pleural abnormality (Fig. 5a). According to our ablation experiments (Fig. 5c), we found
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which follows the importance shown in the necessity table (Fig. 5a). However, when we introduce the age feature, 
we obtain the following inequalities,

which indicates that temperature and resprate did not bring more improvement to the model compared to 
heartrate when age is also used.

In terms of diagnosing pulmonary edema, radiologists consider temperature less important than heartrate 
and resprate. The same pattern as diagnosing pleural abnormality is shown. Heartrate and resprate have higher 
AP than temperature when age is not used.

Considering the effect of the feature age, (gender, heartrate) is the only combination that has a slight perfor-
mance drop (− 0.298% AP) when age is introduced. The age improves the ability to detect Atelectasis but damages 
the performance of diagnosing Consolidation. In terms of overall performance, age gains improvement in most 
of the combinations, which is the same pattern shown in Fig. 5b that age has a higher correlation to most of the 
abnormalities. Moreover, in the same correlation matrix, we noticed the correlation between Consolidation and 
resprate is higher than heartrate and o2sat, and the ablation results also show resprate improves models the most. 
Lastly, although resprate has a high correlation with enlarged cardiac silhouette, the feature heartrate seems more 
important in determining this abnormality.

Conclusion
In this paper, we proposed a novel multimodal deep learning architecture, MDF-Net, and two fusion methods for 
multimodal abnormality detection, which can perceive clinical data and CXR images simultaneously. In MDF-
Net, a spatialisation module is introduced to transform 1-D clinical data to 3-D space, which allows us to predict 
proposals with multimodal data. Additionally, the 1-D fusion is also used to provide clinical information to the 
final classifier in a residual manner. To test the performance of MDF-NET, we also propose a joining strategy to 
construct a multimodal dataset for MIMIC-IV. The experiments show that MDF-Net consistently and consider-
ably outperforms the Mask R-CNN (Baseline) mode. Both fusion methods show significant improvements in 
Average Precision (AP) while applying them together can achieve the best performance.

Overall, our MDF-Net improves upon the baseline Mask R-CNN by enhancing its ability to localize diseases in 
chest X-ray images and extending its capabilities to incorporate vital clinical context, which is, at the moment, an 
important missing ingredient in the Deep Learning literature. This results in a more comprehensive and accurate 
diagnostic tool that can better support healthcare professionals and provide a better rationale for subsequent 
interpretations of the models.

In the future, we will explore the following two main directions:
In this work, we can only retrieve 670 instances for our multimodal dataset, which is considered small com-

pared to other popular datasets used for X-ray diagnosis. If there are larger-scaled datasets with clinical data 
available in the future, our work should also be tested on them to have a more objective evaluation.

Our fusion methods can also be applied to other models, such as YOLO48, SSD49 and DETR50. We will incor-
porate other architectures to evaluate the effectiveness of our fusion methods.

Methods
The methods employed in this research comprise a combination of image processing and machine learning 
techniques to achieve effective disease detection in chest X-ray images. We have chosen a robust and well-tested 
algorithm as our foundation and modified it to better suit our specific objectives. This has led to the develop-
ment of an innovative model that takes advantage of the synergy between traditional image data and structured 
clinical data. This combined use of data sources significantly enhances the model’s diagnostic performance by 
providing more contextual information for accurate disease localization. The following subsection provides a 
detailed explanation of the model architecture used in this study.

Model architecture
In this paper, we propose an extension of Mask R-CNN, MDF-Net. We chose Mask R-CNN as our baseline 
model for the following two reasons. First, Mask R-CNN is a simple state-of-the-art model for object detection 
and instance segmentation, with proven and established success in localizing and classifying objects within 
images in a variety of contexts (see for instance51–53 that testifies its success with a wide range of applications). 
Given our task of disease localization in chest X-ray images, Mask R-CNN’s ability to provide both the class 
and location of disease indications made it a suitable choice. Furthermore, Mask R-CNN’s flexible and modular 
structure (that is, easy to train) allowed us to extend and modify it to better suit our specific task and incorporate 
our novel elements.

The main innovation in our MDF-Net is the dual-fusion architecture that allows for the integration of image 
and structured clinical data (i.e., tabular data). This is a significant departure from traditional Mask R-CNN 
models, which primarily work with or combine image and text data alone. By integrating clinical data, our model 
can consider the additional context that is crucial for accurate disease localization, thus making it more aligned 
with the actual diagnostic process of radiologists. Our model also includes a novel spatialization strategy, which 
converts clinical data into a ’pseudo-image’ format that can be processed by the same convolutional layers as the 
image data. This significant innovation allows for a more seamless and effective integration of the two data types.

APgender,heartrate < APgender,resprate < APgender, temperature,

APgender,age,temp < APgender,age,heartrate < APgender,age,resprate,
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Figure 7a shows the architecture of the original Mask R-CNN, which is the baseline model used in this work. 
The backbone can be any neural network that can extract feature maps from an image. The architecture of MDF-
Net is shown in Fig. 7b. Considering the size of the dataset, a small pre-trained backbone model, MobileNetv347, 
is used in both Mask R-CNN (baseline) and MDF-Net to prevent overfitting.

Input layer

The proposed network receives as input two different modalities: a front (AP or anterior-posterior view) view 
of CXR images and the respective clinical data. They are defined as:

•	 a set of CXR images: XCXR ∈ R
W×H×C;

•	 a set of clinical data (numerical features): XCnum ∈ R
n1×1;

•	 a set of clinical data (categorical features): XCcat ∈ {0, 1}n2×1.

Figure 7.   Panel (a) Mask R-CNN architecture. Panel (b) Our proposed architecture and fusion methods.
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In the proposed architecture, we set the dimensions of our image input space to W = H = 512,C = 1 (since the 
CXR image is grey-scale). In terms of the clinical data, our input space corresponds to the number of features: 
n1 = 9 (continuous variables) and n2 = 1 (categorical variable: gender).

Since the input contains modalities with different dimensions, to perform fusion, we need first to implement 
feature engineering in this data to have the same dimensions before attempting any localized object detection 
learning.

Feature engineering {XCnum ,XCcat} → C ∈ R
W ′×H ′×D′

XCXR → I ∈ R
W ′×H ′×D′

The goal of this step is to transform both the image input data and the clinical data to the same shapes. To 
achieve this, we do the following:

(1) Image transform: We extracted feature maps from I using a CNN backbone, fCXR , which in this case 
corresponds to MobileNetv347: 

 where the resulting dimensional space is I ∈ R
W ′×H ′×D′ . In our implementation, MobileNetv3 produced 

the features maps W ′ = H ′ = 16 , D′ = 64 . We recognise that MobileNetv3 makes a significant reduction of 
our feature space; however, when we tried other CNN backbones, such as ResNet, we obtained worse results 
and overfitting. MobileNetv3 provided the best results in our preliminary tests, hence our reason for choos-
ing this backbone.
(2) Clinical data encoding: In terms of the feature maps for clinical data, the goal is to concatenate numerical 
and categorical feature representations. To do so, we applied an embedding layer to the categorical features, 
fEmb , so as to obtain a latent vector with the same dimensions of the numerical data. Next, we concatenate 
the resulting latent vector fEmb(X

Ccat ) with XCnum as follows: 

 where in our implementation n = 64 , n1 corresponds to the number of continuous features ( n1 = 9 ) and n2 
to the number of categorical features after being processed by an embedding layer ( n2 = 55 ); ∪ is the vector 
concatenation operation. Since the dimensionality C is different from the generated image feature maps, I,  
this required an operation of transforming the dimensions of the clinical data from n times to W ′ ×H ′ × D′ . 
To achieve this, we propose a method of spatialisation of the clinical data.
(3) Spatialisation: We define a spatialisation layer, fspa , as a deconvolutional layer54 followed by a convolution 
operation. The deconvolution takes as input the n× 1 dimensional clinical data vector and learns an upscaled 
representation using a sparse encoded convolution kernel55,56. This is given by 

 where fLspa(ZC) = fconv(fdeconv(Z
C)) , and e is the number of spatialised layers (in this work, we set e = 9 ). 

After applying spatialisation, the size of S will become W ×H × C , which is the size of input image XCXR.
The primary purpose of using deconvolution, also known as transposed convolution, in this context is to 
facilitate the upsampling of clinical data to a dimensionality that aligns with the input chest X-ray images. 
Achieving parity of dimensions between these two data types is crucial as it enables us to acquire feature 
maps of the same size from both datasets, thereby paving the way for a more effective fusion operation in the 
subsequent stages of our model.
One of the significant benefits of deconvolution layers within this process is that they render the upsampling 
procedure trainable. In effect, this means that our model can learn the most efficient transformation strategy 
for converting the clinical data into a spatial ‘pseudo-image’, thereby enhancing its ability to integrate with 
the chest X-ray images and learn from the data concurrently.
(4) Clinical data transform: The last step for clinical data is to extract the feature maps from spatialised clini-
cal data S . By applying a CNN fclinical , which uses the same architecture as fCXR , we can obtain the clinical 
feature maps by: 

In the end, with the proposed spatialisation operation fspa and the following CNN fclinical , the resulting 
C ∈ R

W ′×H ′×D′ , which matches the dimensions of I . From this step, one can proceed to the fusion of both 
modalities.

Input 3D fusion: {I ,C } → Z ∈ R
W ′×H ′×D′

The final feature map Z representing the element-wise sum fusion of both modalities is obtained by

where ffused is another CNN module used for obtaining the features maps from the fused modalities, and ⊕ cor-
responds to the element-wise sum operation that is used for fusion. The final Z corresponds to the 3D feature 
map representation of the combined patient information. Next, we use this data representation as input to a 
Mask-RCNN architecture to perform abnormality detection.

I = fCXR(X
CXR),

ZC = fEmb(X
Ccat) ∪ XCnum , where ZC ∈ R

n×1, with n = n1 + n2,

(1)S = fspa(Z
C) = f eLspa(Z

C),

C = fclinical(S ).

(2)Z = ffused(C ⊕I ), z ∈ R
H ′×W ′×D′

,
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Region proposal network: {Z } → Z̃
RoI ∈ R

Wr×Hr

To perform localized abnormality detection, we use the Region Proposed Network, frpn , of Mask-RCNN 
architecture to generate candidate object bounding boxes also known as proposals P given by

RPN learns the coordinates of the generated bounding boxes (xi , yi ,wi , hi) , and the corresponding confidence 
score, cobj , of having an abnormality (object) in the localization of the bounding boxes. This confidence score is 
used to sort the generated proposals by their predictive relevance.

Using the coordinates of the computed bounding boxes, a RoIPool operation is performed to extract the 

corresponding Regions of Interest (RoIs), Z̃ RoI
= RoIPool(P ,Z) . The RoIs result in a data structure with 

dimensions Z̃ RoI ∈ R
Wr×Hr , where Wr and Hr are hyper-parameters. In our experiments, we set Wr and Hr to 7.

Output: {ZC , Z̃ RoI} → ŷ:
After learning the candidate RoIs, we flatten this data to serve as input to a normal dense neural network, 

which will perform the final classification. In order to emphasize the role of the clinical data in this classification 
process, we concatenate the clinical data representation, ZC , with the flattened candidate RoIs, Z̃ RoI , before clas-
sification takes place. The role of the 1-Diffusion in the MDF-Net is to provide residual information to further 
pass the clinical data to deeper layers in our architecture. The final prediction ŷ is then obtained by:

where ∪ represents the vector concatenation operation, Z̃RoI = RoIPool(P ,Z) , and ŷ contains predicted classes 

ŷcls , bounding boxes ŷbb , binary masks ŷmask , and fcls is the final classification layer.
Number of classes In this study we make object detection over five different classes: Enlarged Cardiac Sil-

houette, Atelectasis, Consolidation, Pleural Abnormality, and Pleural Edema. We chose to focus on five classes 
because they were the most representative in our dataset. We also took into account the constraints imposed 
by the dataset’s class imbalance. The classes we have not included had insufficient examples, which would have 
posed significant challenges in training and evaluating our deep learning model. Training a deep learning model 
with insufficient data for some classes could lead to overfitting and poor generalization performance for those 
classes. Moreover, it could bias the model towards the classes with more data. Therefore, to ensure a reliable and 
robust model, we chose to focus on the five most representative classes.

Model complexity analysis
The overall computational complexity of the proposed architecture approximates the original Mask R-CNN 
model, which corresponds to the sum of the complexities of its components:

where, N is the number of region proposals, C is the number of classes (five classes, in our case), H is the feature 
map height, and W is the feature map width

The Faster-R CNN is composed of 5 main parts as follows: (1) a deep fully convolutional network, (2) region 
proposal network, (3) ROI pooling and fully connected networks, (4) bounding box regressor, and (5) classifier.

The deep fully convolution network consists of five convolution layers. It is based on Zeiler and Fergus’s fast 
(smaller) model57. From an image I, this step extracts 256× N × N  feature maps (given the five convolution 
layers57). This is the input of the RPN network and ROI pooling layer. In the RPN network, for each point of the 
feature map, there are, say K, anchors (or candidate window, typically 2000) with different scales and rations. 
Thus, there will be a total of N × N × K candidate widows. Non-maximum suppression allows us to obtain typi-
cally 200058 candidate windows. This yields a complexity of O(N2).

Using the candidate windows and the feature map above, the RoI pooling layer divides the varied size candi-
date windows into an H ×W grid of sub-windows, then max-pooling the values in each sub-window into the 
corresponding output grid cell. The complexity of this process is O(1).

Training
Once the model architecture has been established, the next crucial step involves training the model using a care-
fully designed loss function to achieve optimal performance. In the context of Mask R-CNN, the loss function 
plays a pivotal role in learning the optimal parameters of the model. A well-constructed loss function balances 
multiple objectives, including accurate classification of abnormalities, precise bounding box regression, and 
efficient object proposal.

In our training process, we incorporate five loss terms, each addressing a specific aspect of the model’s learning 
objectives. These loss terms aim to guide the model toward achieving high precision in identifying and localizing 
diseases in chest X-ray images. In the following, we provide a detailed explanation of each of these loss terms.

•	 Lcls : Cross-entropy between groundtruth abnormality ycls and predicted abnormalities ŷcls . This loss term 
requires the model to predict the class of abnormalities correctly in the output layer.

•	 Lbb : Bounding box regression loss between ground-truth bounding boxes ybb and predicted bounding boxes 
ŷcls calculated using smooth-L1 norm: 

(3)P = frpn(Z ), ∀pi ∈ P : pi = (xi , yi ,wi , hi , c
obj
i ).

(4)ŷ = fcls(Flatten(Z̃
RoI) ∪ ZC),

O(NHW)+ O(NCHW)+ O(NCHW) ≈ O(NCHW),
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β is a hyperparameter. In our implementation, β = 1
9
 . To minimise this loss, the model has to locate abnor-

malities in the correct areas in the output layer.
•	 Lmask : Binary cross-entropy loss between ground-truth segmentation ymask and predicted masks ŷmask , which 

requires the model to locate abnormalities at the pixel level.
•	 Lobjrpn : Binary cross-entropy loss between ground-truth objectness yobj and predicted objectness cobj (con-

fidence score), which requires RPN to correctly classify whether the proposals (candidate bounding boxes) 
contain any abnormality.

•	 Lbbrpn : Proposal regression loss between proposals (candidate bounding boxes) p : p ∈ P and ground-truth 
bounding boxes ybb , which is also calculated using the same smooth-L1 norm function for Lbb . This loss term 
aims to improve RPN on localising abnormalities.

We used homoscedastic (task) uncertainty59 to train the proposed model using these five loss terms by dynami-
cally weighting them for better convergence. Let L = {Lcls, Lbb, Lmask, Lobjrpn , Lbbrpn} , we used SGD (stochastic 
gradient descent) to optimise the overall loss function

where θ is the wights of MDF-Net, and αl is a trainable parameter to weigh each task/loss.
The validation of this architecture required a multimodal dataset. In this study, we used medical data, more 

specifically chest X-ray images from MIMIC-CXR44 and patient’s clinical data from MIMIC-IV-ED45. However, 
these datasets are offered separately in the literature, and a thorough data integration had to be conducted before 
evaluating our architecture.

Dataset
Modern medical datasets integrate both imaging and also tabular data. The latter refers to medical history and 
lifestyle questionnaires, where clinicians have the responsibility to combine the above two sources of informa-
tion. Note also that beyond diagnosis, multimodal data (i.e., comprising tabular and image data) is crucial to 
the advance and understanding of diseases, motivating the creation of the so-called biobanks. There are several 
examples of biobanks, for instance, German National Cohort60 or the UK Biobank61 that includes thousands of 
data fields from patient questionnaires including data from questionnaires, physical measures, sample essays, 
accelerometry, multimodal imaging, genome-wide genotyping. However, these datasets do not contain local 
image annotations of lesions. Therefore, we propose a strategy to combine MIMIC-IV42 and REFLACX62 to 
create our dataset, MIMIC-Eye, from scratch that meets the requirement of this work which can be accessed 
in physionet43. The Medical Information Mart for Intensive Care (MIMIC) IV dataset is from two in-hospital 
database systems, a custom hospital-wide EHR and an ICU-specific clinical information system, in Beth Israel 
Deaconess Medical Center (BIDMC) between 2011 and 2019. The MIMIC-IV database is grouped into three 
modules, including core, hosp, and icu. This work uses only the patient’s data in the core module.

As well as the MIMIC-IV dataset, two other MIMIC-IV subsets, MIMIC-IV ED (Emergency Department)45, 
and MIMIC-IV CXR (Chest X-ray)44, are used to create the multimodal dataset. These two datasets can be linked 
to the MIMIC-IV dataset with subject_id and stay_id. The MIMIC-IV ED dataset was extracted from the Beth 
Israel Deaconess Medical Center emergency department. It contains data for emergency department patients 
collected while they are in the ED. The triage data of the MIMIC-IV ED dataset is one source providing patients’ 
health condition in this work, such as temperature, heart rate, resprate, etc. MIMIC-CXR is another subset of 
MIMIC-IV consisting of 227,835 radiographic studies and 377,110 radiographs from BIDMC EHR between 
2011 - 2016. In the original MIMIC-CXR dataset, the CXR images are provided in DICOM format, which 
allows radiologists to adjust the exposure during reading. However, the JPG file is preferred to train a machine 
learning model. The author of MIMIC-IV CXR then presented the MIMIC-CXR JPG dataset41 to facilitate the 
training process. REFLACX dataset is another subset of MIMIC-IV ED, which provides extra data from differ-
ent modalities, such as eye tracking data, bounding boxes, and time-stamped utterances. The bounding boxes 
in REFLACX are used as ground truth in this work. The aggregation of this dataset into a single multimodal 
dataset constitutes the MIMIC-EYE dataset43.

In total, ten clinical features are used in this research. The MIMIC-IV Core patients data include only two 
clinical attributes, age, and gender. And the other eight clinical features are extracted from the MIMI-IV ED 
triage data. The explanations for these eight clinical features in the MIMIC-IV documentation are: 

1.	 Temperature: The patient’s temperature is in degrees Fahrenheit.
2.	 Heartrate: The patient’s heart rate in beats per minute.
3.	 Resprate: The patient’s respiratory rate in breaths per minute.
4.	 o2sat: The patient’s peripheral oxygen saturation as a percentage.
5.	 sbp, dbp: The patient’s systolic and diastolic blood pressure, respectively, were measured in millimetres of 

mercury (mmHg).
6.	 Pain: The patient self-reported pain level on a scale of 0-10.
7.	 Acuity: An order of priority. Level 1 is the highest priority, while level 5 is the lowest priority.

(5)Lbb =

n
∑

i=1

li , where li =

{

0.5(ŷbbi − ybbi )2/β , if ŷbbi − ybbi < β

|ŷbbi − ybbi | − 0.5 ∗ β , otherwise
,

argmin
θ ,αl

∑

l∈L

1

2α2
l

l(θ)+ logα2
l ,
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Before explaining the creation process, it is necessary to introduce some important IDs and data tables in the 
MIMIC-IV dataset. Four important IDs are used in MIMIC-IV to link the information across tables. They are:

•	 subject_id (patient_id): ID specifying an individual patient.
•	 stay_id: ID specifying a single emergency department stay for a patient.
•	 study_id: ID specifying a radiology report written for the given chest x-ray. It is rarely mentioned because 

we do not use the report as the ground truth label in this paper.
•	 dicom_id: ID specifying a chest x-ray image (radiograph).

And the following four tables in MIMIC-IV are used to create our multimodal abnormality detection dataset:

•	 MIMIC-IV Core patients: Information that is consistent for the lifetime of a patient is stored in this table, 
including age and gender.

•	 MIMIC-IV ED triage: This table contains information about the patient when they were first triaged in the 
emergency department, including temperature, heart rate, and more clinical data.

•	 MIMIC-IV Core edstays: Provides the time the patient entered the emergency department and the time they 
left the emergency department, which helps us to identify the stay_id for CXR images.

•	 MIMIC-IV CXR metadata: Contains the information about the CXR image (radiograph), including the time 
taken, height, and width.

Limitations and ethical considerations
Although our study presents promising results, several limitations should be acknowledged. As with all scientific 
research, our study contains inherent limitations, primarily revolving around data selection, fusion methods, 
and ethical considerations:

Dataset choice
The effectiveness of our proposed model relies heavily on the quality and comprehensiveness of the input infor-
mation, both images and clinical data. While using publicly available and well-established datasets such as 
MIMIC-CXR, MIMIC IV-ED, REFLACX, and MIMIC-EYE minimizes the risk of data quality issues, these 
datasets may only partially represent diverse global populations. The performance of our model could vary 
when applied to different demographic groups, and potential biases in the datasets could influence the results.

Dataset size
Although many public datasets contain both CXR images and manual lesion annotations, unfortunately, to the 
best of our knowledge, we are unaware of any dataset that also contains the patients’ clinical data. Due to privacy 
concerns, most publicly available medical image datasets do not include this kind of clinical information. Patient 
clinical data are sensitive and protected by strict privacy regulations. As a result, researchers often face significant 
challenges in obtaining datasets that combine imaging data with relevant clinical information. This policy limits 
the effectiveness and ability of our MDF-Net to generalize.

Limitations in fusion methods
For our study, we considered other fusion methods, such as the Laplacian pyramid and adaptive sparse 
representation63, for the 3D fusion component in the proposed MDF-Net. However, these methods are not dif-
ferentiable, which makes them incompatible with our end-to-end deep learning architecture. The backpropaga-
tion process used to train deep learning models requires the gradients (derivatives) of the loss concerning the 
model parameters. Non-differentiable operations disrupt this gradient flow, which could lead to suboptimal or 
untrainable models.

While the development and application of multimodal deep learning technologies have the potential to 
enhance disease diagnosis significantly, several ethical considerations must be addressed to ensure that such 
technologies are used responsibly and effectively.

Impact on healthcare professionals
While applying deep learning technologies may streamline diagnostic procedures and alleviate the workload of 
healthcare professionals, we must consider the potential impact on their roles and responsibilities. In this study, 
we align our work with the perspective that these technologies are tools that can support, not replace, healthcare 
professionals. Our interviews with radiologists highlighted the importance of integrating clinical data in the 
image diagnosis process, emphasizing the continued need for expert knowledge and more human-centred deep 
learning architectures as proposed in this paper.

Impact on trust
The black-box nature of deep learning models raises concerns about transparency and trust in AI decisions. 
Our multimodal DL architecture seeks to improve the interpretability of predictions by using clinical informa-
tion alongside image data, providing a context for the decisions made by the model. Further development of 
these technologies must emphasize explainability, so healthcare professionals and patients can understand and 
trust the diagnoses provided by these models. By providing lesion detection of the predicted lesions, we are 
already promoting one layer of interpretability. For future work, we are already developing methods to translate 
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the symbolic representation of identified lesion bounding boxes into human-level explanations incorporating 
domain knowledge.

Biases
Potential biases in the model’s predictions, resulting from biased or unrepresentative training data, can lead to 
disparities in healthcare outcomes. Care must be taken to ensure that datasets used to train such models are 
representative of the diverse patient populations they will serve. In cases where data is imbalanced, techniques 
such as oversampling, undersampling, or synthetically augmenting the minority class should address this issue. 
However, this may reinforce potential selection biases in the dataset. For this reason, we restricted our study to 
the most frequent classes in the dataset (ending up in a much smaller dataset that impacted our model’s perfor-
mance, rather than introducing selection and sampling biases from data augmentations techniques. ‘

Data availability
The code for this work is available on GitHub at https://​tinyu​rl.​com/​multi​modal-​abn-​detec​tion.
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