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1. INTRODUCTION 

The charming identity 

i(-^\j\FnAl-j = * ...FkF(k+l){n+i) (1.1) 

is a special case of identity (5) of Torretto and Fuchs [7]. Here [*] is the Fibonomial coefficient 
defined for integers 0 < j < k by 

\k 

u 
According to H. W. Gould, generalized binomial coefficients were first suggested by Georges 

Fontene in 1915, and were rediscovered by Morgan Ward in 1936. These writers simply replaced 
the natural numbers by an arbitrary sequence {An\ of real or complex numbers. The idea of con-
sidering An = Fn seems to have originated with Dov Jarden in 1949. For an excellent discussion 
on these matters, and a comprehensive list of references, see Gould [3]. 

For k = 1,2,3, and 4, identity (1.1) becomes, respectively, 

# 1 + ^ = ^ 1 . (1-2) 

^ 2 + ^ 1 - ^ = ^ + 3 , 0-3) 
^ 3 + 2 ^ - 2 ^ - ^ = 2 ^ , , (1.4) 

FL+IFL-SFL-IFL+K5 = « W (1-5) 
To make the right sides of (1.3) and (1.5) more compact, we may replace n by n-\ and n-2, 
respectively. 

In this paper we present analogs of (1.2)—(1.5) for the so-called Tribonacci and Tetranacci 
sequences, which we define in Sections 3 and 4. We consider more general third- and fourth-order 
sequences, and identities associated with them, in Section 5. Our method of discovering these 
identities is outlined in Section 2, and generalizations and proofs are given in Section 6. 

2* THE METHOD 

To demonstrate our method, we use it to "discover" identities (1.2) and (1.3). To arrive at 
(1.2), we consider the sequence 

{^2-^iU? = {-u-u,-i,...}. 
This sequence satisfies the recurrence rn = -rn_p and so we have 

EK...R 
= 1. 
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Ai ^n+l^n-l ~ V*Vl Ar «-2/ 
or 

F:+Fl^Fn+xFn_^FnFn_2. (2.1) 

Finally, we observe by trial that the right side of (2.1) is F2n_v and this yields (1.2). 
To obtain (1.3), we consider the sequence 

I ^ - V / H } ? ={0,1,-1,2,-3,5,-8, . . .}. 
This sequence satisfies the recurrence rn = -rn_x +rn_2, so that 

K3 -F^Ff^ = - { / t r V ^ J + ( ^ -Fn^Fn_2Fn_3) 
or 

A» + A i - 1 ~*in-2 = Ai+rn^n-l +^n^n-r «-2 ~ ^n-Fn-l^n-i- (2-2) 

Again, after making several substitutions, we see that the right side of (2.2) is F3n_3, and this 
yields (1.3). 

To obtain (1.4), we could consider the sequence generated by F4 -Fn+1F^Fn_1, or perhaps 
F4 -Fn+3FnFn_xFn_2, or many other such expressions. To decide which product to subtract, we 
consider two things. First, the product must have "degree" four. Second, the sum of the sub-
scripts of the terms which make up the product must be 4«. To obtain the analogous identities 
which involve higher powers, we proceed in a similar manner. 

3. THE TRIBONACCI SEQUENCE 

As a third-order analog of the Fibonacci sequence, Feinberg [2] considered the Tribonacci 
sequence, defined for all integers by 

Pn=Pn-l+Pn-2+Pn-3> Po = °> A = *> P2 = l 

Proceeding as in Section 2, and with the help of the computer algebra package Mathematica 3.0, 
we have obtained identities analogous to (1.2)—(1.5) for the Tribonacci sequence. We have found 
the following: 

PL3 + Pl+2 + PL ~ Pi = 2Pm + 3/Wi + 3/>2„+2 > (3-1) 

Pl+7 + 3Pl+6 + 7PLS + Pl*4 - PL$ - 7P3n+2 ~ 3Pl+l ~ Pi 
= 6758ftfl + 10432/73n+1 + 12430/73n+2; 

(3.2) 

Pin +4^4
+ii + 1 6^+io -26p„4

+9 -5p4
n+s ~ 128p„4

+7 

+ l00p4
+6 +4p4„+5 + 43p4

+4 -44p4
+3 + 4p4

n+2 -2p4
n+1+p4 (3.3) 

= 27720670104p4n + 42792093 864/?4n+1 + 50986261368/?4n+2, 

PLH + 8 ^ + i 7 + 59^5
+16 -126/,„5

+15 -154^ + 1 4 -2758/£1 3 

+ 2 1 4 2 ^ I 2 +2394/>„5
+n + 6552/>„5

+10 -7182^ + 9 -4284p„5
+8 - 2394^ + 7 

+1386^+6 +686^+ 5 + 322/>fl
5
+4 -98/^ + 3 - 9 ^ + 2 -2P

5
n+1 +p5„ (3.4) 

= 1252886775213004795584p5n + 1934067549043522783296/75n+1 

+ 2304418051432261675008/J5n+2. 
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We have found the next identity in this list. The left side has 26 sixth powers, and following 
the pattern of the previous identities the coefficients are 1, 15, 204,-724, -1946, -58710, 65968, 
182480, 921767, -1448495, -2215192, -2814392, 1090180, 2032604, 2528400, -9744, -25313, 
-238687, -15828, -4372, 9814, 1786, 224, -32, -7, - I . On the right side, the coefficients of 
P6«> / W a n d Pen+2 are> respectively, 

3211910334796649669373174107089155840, 
4958190693577716567222696970358499840, 

and 5907624137726959710208258726172348160. 

We have been unable to discern a pattern to the coefficients in the identities above. How-
ever, on the basis of our results, we predict that the next identity will involve 34 seventh powers. 
More generally, we conjecture that for k > 2 such identities for the Tribonacci sequence involve 
\ (k2 + 3k - 2) £* powers. 

4. THE TETRANACCI SEQUENCE 

As a fourth-order analog of the Fibonacci sequence, Feinberg [2] also considered the Tetra-
nacci sequence, defined for all integers by 

?„=?«-i+?»-2+9»-3+?„-4> %=0,ql=l,q2=l,q3=2-
In the same manner, for the Tetranacci sequence, we have found 

= 46q2n + 70q2n+l + 82 W + 88?2||+3-
and 

<7«+i6 + 3?„3
+i5 + 8 d i 4 +18<7„3

+i3 - 26</»+i2 - * 5 & i i - ^ + i o - 5613
n+9 

+ 36ql+,+^l7-2lql6+2lql5-l6ql4-6q3
n+3 + 2ql2-ql+l+q3

n (4.2) 
= 273507715816tf3n +415400801120^3n+1 + 489013523880^3n+2 +527203073008^3n+3. 

The next identity involves 32 fourth powers whose coefficients are 1, 7, 38, 174, -154, 
-1150, -1368, -7226, -1926, 32582, 22851, 56387, 36788, -34100, -23540, -78932, -56080, 
6372, 18724, 50476, 39447, 13621, 2822, -2234, -2290, -910, -280, -10, 34, 14, 5, 1. On the 
right side, the coefficients of q4n, q4n+l, q4n+2, and q4n+3 are, respectively, 

402934710032647317503725654362880, 
611973233907708364378185877905536, 
720420343019564129073011409939840, 

and 776681625661169345246132510366848. 

We have found that the next identity in this list involves 53 fifth powers. On the basis of our 
observations, we conjecture that for k > 2 such identities for the Tetranacci sequence involve 
{(A;3 + 6k2 +1 Ik -12) ** powers. 

5. MORE GENERAL SEQUENCES 

Consider now the more general sequence {Un} defined for all integers by 
Un=aUn_l+bUn_2+cUn_3, U0 = 0M{ = l,U2=a, (5.1) 
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where a, b, and c are complex numbers with c^G. The sequence {Un} is one of the three 
fundamental sequences (as in Bell [1]) generated by the recurrence in (5.1). We have found that 

U2„+3 +bU2
n+2 +acU2

+1-c2U2 = bU.U^ + U.U^. (5.2) 

We accomplished this by considering many instances of (a, h, c) and constructing the correspond-
ing identity. This process was tedious, to say the least. 

More generally, let {Rn} be any sequence generated by the recurrence in (5.1) and with arbi-
trary initial terms R0, Rl9 R^. Then, in the same manner, we have found that 

^+3^R2
n+2+acR2

+1-c2R2 

= ((ac-b^-abR, +bR2)R2n+2 +(-abR, + (b-a2)Rl ^aR2)R2n+3 +(bR„ + ^1)i?2w+4. 

It is interesting to note that the coefficients on the left side of (5.2) match those on the left side of 
(5.3). Horadam [5] proved the analog of (5.3) for second-order sequences very elegantly with the 
use of generating functions, but we have been unable to adapt his method to prove (5.3). How-
ever, we have discovered another method of proof which we demonstrate in the next section. 

As the fourth-order analog of {Un}, we define the sequence {Vn} by 

K=^K-1+bV„_2+cV„_3+dV„_4, V0=0,V1 = \,V2=a,V3=a2+b. (5.4) 

We have found that 

VL +WL H*c+d)V„\4 + {a2d-c2 +2bd)V„2
+3-(d2 +acd)V„2

+2 +bd2V2
+l -d3V2 

= (a2d-c2 +lbd)VxV2n,5 +(ac+d)V2V2n+6 + bV3V2n+7 +V4V2n+%. 

In (5.5), it is interesting to compare the coefficients of V2
+3, V2

+4, V2
+5, and V2

+6 with those of 
2̂w+5> 2̂w+6> 2̂«+7> anc* 2̂«+8> respectively. Similar comparisons should be made in (5.2), and also 

in the known identity 
Ul+l +bul = U2n+l = *¥Wl- ( 5 6 ) 

Here {un} is the second-order sequence defined by un = aun_x +bun_2, u0 = 0,ux = l. 
Our attempt to construct identities similar to those in this section for sequences of order five 

has proved fruitless. The polynomial coefficients became unwieldy, as can be appreciated when 
we compare (5.2) with (5.5). The same can be said for higher powers. However, our work with 
specific examples suggests that identities analogous to those that we have constructed in this 
paper exist for all sequences, and for all powers. We have looked only at sequences generated by 
linear recurrence relations with constant coefficients. 

We mention that further experimentation with specific examples suggests that, for linear 
recurrences of order m, identities analogous to (1.2) contain j(m2 -m + 2) squares, and identities 
analogous to (1.3) contain ±(m3 + 3m2 -4m+ 6) cubes. 

6. GENERALIZATIONS AND PROOFS 

At the beginning of Section 2 we started with the identity F2 -F^F^ = (-!)". Instead, 
suppose we consider the more general identity 

Fn,aFn+b-FnFn^b = {-\TFaFb. (6.1) 
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Then, considered as a function of w, the sequence {Fn+aFn+b -FnFn+a+b} satisfies the recurrence 
Tn = ~rn-r H e n C e

? 

^n+l+a^n+\+b ~~ n+r'n+l+a+b ~ y^n+a^n+b ~~ ^n^n+a+b' 
or 

Af+l+a Ai+1+6 + ^n+a^n+b = ^n+l^n+l+a+b + K^n+a+b' V>-2) 

With m in place of n+a9 and n in place of JI+h, the left side of (6.2) becomes Fm+lFn+l + FWFW. 
But, by I26 in [4], we know that 

(6.3) 
which generalizes (1.2). 

This suggests that to generalize (1.3) we might try 

which is indeed the case. In fact, this mode of generalization extends to (1.1), where the corre-
sponding generalization is a special case of identity (5) of Torretto and Fuchs [7]. 

Based on numerical evidence, the method of generalization we have just described seems to 
carry over to all the identities in Sections 3-5. For example, we now prove that 

Pm*Pn* +Pm+2Pn+2 + / W W ~ PmPn = 2Pm+n+3Pm+n+l+3Pm+n+2> ( 6 ' 5 ) 

which generalizes (3.1). 
Proof of (6.5): Fix m. Each of the sequences {pn+k}, where k G Z is fixed, satisfies the 

recurrence for the Tribonacci numbers. Hence, by linearity, the sequences 

{Pm+3Pn+3+Pm+2Pn+2+Pm+lPn+l-PmPj a n d i2Pm+n + 3Pm+n+l + 3A*+*+2> (66) 

also satisfy this recurrence. So, to prove that these sequences are identical, it suffices to prove 
that they have the same initial terms. That is, it suffices to show that 

Pm*Pz +Pm+2P2 + / W l ~ PmPo = 2Pm + 3A*+1 + 3 / V 2 > 

Pm+3P4 +Pm+2P3 + Pm+J>2 ~PmPl = 2Pm+l+3Pm+2 +3Pm+3> 

Pm*Pl +Pm+2P4+Pm+lP3 ~ PmP2 = 2Pm+2 + 3Pm+3 + ^ + 4 • 

We prove only the last of these, since the proofs of the others are similar. Using the recur-
rence satisfied by the Tribonacci numbers, we see that /?m+3 = Pm+2+Pm+i+Pm anu* Pm+4 = 

2Pm+2 +2Pm+\ +Pm- ^ s o> s*nce P2 ~ *> ft = 2, /?4 = 4, and p5 = 7, we substitute and observe 
that both sides reduce to H^OT+2 +9/?OT+1 +6/?OT. Since m is arbitrary, this proves (6.5) and hence 
also (3.1). • 

This method of proof applies also to identities (4.1), (5.2), (5.3), and (5.5), since they involve 
squares. As shown above, we proceed by proving the more general identities obtained by intro-
ducing the parameter m. The proof of the generalized version of (5.3), for example, is not much 
more complicated than the proof demonstrated above. With m fixed, we need to prove 

= ARm+n+2+BRm+n+3+CRm+n+4, (6.7) 
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where A, B, and C are as in (5.3). As in the proof of (6.5), our task is to show that (6.7) holds for 
n = 0,1, and 2. Thus, for n = 2, we need to show 

R9Rm,3 +bR4Rm+2 + acR3Rm+1 -c2R2Rm = ARm+4 +BRm+5 +CRm+6. (6.8) 

Using the recurrence in (5.1), we express R3,R4, and R5 in terms of i^, Rl9 and i^. Likewise, 
we express Rm+J for 3 < j < 6 in terms of Rm, Rm+1, and Rm+2. Finally, making these substitutions 
and using a suitable computer algebra package (in our case Mathematica 3.0), it is straightforward 
to verify the validity of (6.8). The verifications for n = 0 and 1 are treated similarly. 

Now to the identities which involve higher powers. We tried to prove (3.2) by first proving 
7 2 

7=0 7=0 

where the at and bi are given in (3.2). Our attempts failed because of the presence of an extra 
parameter. However, we found that we could prove the following "intermediate" identity: 

7 2 

Y<aiPm+iP2n+i=lLbiPm+2n+i' ( 6 1 0 ) 
7=0 7=0 

Our proof, which is similar to the proofs demonstrated previously, requires the following lemma 
which is contained in [6]. 

Lemma: Let {wn} be a sequence of complex numbers defined by 
k 

w
n=Tciw

n-i> (6-11) 
7 = 1 

where cl9..., ck and w0,..., wk_l are given complex numbers with ck > 0. Let h > 1 be an integer. 
Then {w^} is generated by a linear recurrence of order (/2+^~1). 

Using the lemma with h = 2 and k = 3, we see that {p^} satisfies a linear recurrence of order 
6, and, by solving a system of linear equations, we find that this recurrence is 

rn = 2 V l +K-2 + 6 V 3 -rn-A-rn-f C 6 ^ ) 
Furthermore, {p2n} satisfies the recurrence 

rr,=3rn-l+rn-2+rr,-3> ( 6 1 3 ) 

and, since the auxiliary polynomial of (6.13) divides the auxiliary polynomial of (6.12), the 
sequence {p2n} is also generated by (6.12). To complete the proof, we proceed as before. That 
is, we fix m and verify the validity of (6.10) for six consecutive values of n. 

By using this approach, we have also succeeded in proving (3.3), (3.4), and (4.2) by first 
proving the more general identities obtained by the introduction of the parameter m. From the 
lemma, the number of verifications required to prove each of these identities is 10, 15, and 10, 
respectively. 

While we acknowledge that this method of proof is tedious for identities that involve higher 
powers, given the nature of these identities, it seems unreasonable to expect anything else. 
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