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1. INTRODUCTION 

Inspired by the charming result 

tdPi=FnFn¥l, (1.1) 
k=l 

Clary and Hemenway [3] discovered factored closed-form expressions for all sums of the form 
Z/Ui FX > where r is an integer. One of their main aims was to find sums that could be expressed 
neatly as products of Fibonacci and Lucas numbers. At the end of their paper they mentioned the 
result 

n i 

X FkFk+\ = ̂ 44+l4+2 > 0 -2) 
k=\ L 

published by Block [2] in 1953. 
Motivated by (1.1) and (1.2), we have discovered an infinity of similar identities which we 

believe are new. For example, we have found 
n i 

X FkFk+lFk+2Fk+3Fk+4 = -JFnFn+lFn+2Fn+3Fn+4Fn+5^ 0 - 3 ) ^ 
and 

n i 

X FkFk+lFk+2Fk+3Fk+4Fk+5Fk+6Fk+lFk+S = TT 4 4 + 1 • • • Fn+9 • (1 - 4 ) 
i(r=l 11 

In Section 2 we prove a theorem involving a sum of products of Fibonacci numbers, and in 
Section 3 we prove the corresponding theorem for the Lucas numbers. In Section 4 we present 
three additional theorems, two of which involve sums of products of squares of Fibonacci and 
Lucas numbers. 

We require the following identities: 
Fn+k + Fn-k = 4 4 , * even, (1.5) 
Fn+k+Fn_k = LnFk, *odd, (1.6) 
Fn+k-Fn_k=F„Lk, kodd, (1.7) 
Fn+k-Fn_k = LnFk, £even, (1.8) 
4+* + Ln-k = 4 4 , * even, (1.9) 
Ln+Jc + Ln_k=5F„Fk, £odd, (1.10) 
4+*-4-* = 44> *odd, (l.ii) 
4+jk - 4-* = 5 4 4 , k even, (1.12) 
L2

n-I^n = -2 = -L0, nodd, (1.13) 
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5 /2-4, =-4 = -/?, (1.14) 
5F£1-L4n = -2 = -L0. (1.15) 

Identities (1.5)-(1.8) occur on page 59 of Hoggatt [4], while (1.9)-(1.12) occur as (9)-(12), 
respectively, in Bergum and Hoggatt [1]. Identities (1.13)-(1.15) can be proved with the use of 
the Binet forms. 

2. A FAMILY OF SUMS FOR THE FIBONACCI NUMBERS 

Theorem 1: Let mbea positive integer. Then 

Z J7 17 J72 J7 - AiAi+1 • - • Ai+4/w+l (2 -1) 
rkrk+l' • • rk+2m • * • rk+4m ~ j • k=l ^2m+l 

Proof: We use the elegant method described on page 135 in [3] to prove (1.2). Let ln and 
rn denote the left and right sides, respectively, of (2.1). Then ln -l„_x = FnFn+l...F*+2m...Fn+4m. 
Also, 

FT* lh 
r —r — n n+l''' n+4m r 17 — J7 1 
fn rn-\ j lrn+4m+l rn-\\ 

_ rnrn+l' * ° rn+4m r 17 _ 17 1 
~ r lr(n+2m)+(2m+l) r{n+2m)-{2m+l)l 

^2m+\ 

= 4-4-1 using (1.7). 

Hence, to prove that ln - rn it suffices to show that ll = rl. But 
(since F2n = FnLn) rxr2 . . . Mm+P2ffl+1^2ffi+l 

1 / 

= ll, and this completes the proof. D 

When m-\ and 2, identity (2.1) reduces to (1.3) and (1.4), respectively. However, while 
(1.1) and (1.2) can be proved in a similar way, they are not special cases of (2.1). 

3. CORRESPONDING RESULTS FOR THE LUCAS NUMBERS 

Corresponding to (1.1) we have 

X 4 = 44+,-2, (3.i) 

which occurs as I4 in Hoggatt [4]. The Lucas counterpart to (1.2) is 

2L A A + I = x A? AH-IAH-2 "" 3- (3.2) 
k=i z 

The constants on the right sides of (3.1) and (3.2) can be obtained by trial, and also in the same 
manner as in our next theorem, demonstrating a certain unity. 

Theorem 2: Let m be a positive integer. Then 
n I I I 

\* T T T2 J — " n+1 '' ° ^n+Am+l o / o o \ 
AjI^kI^k+l-"H+2m"-£jk+4m ~ r ^Hh \J.J) 
k=l ^2m+l 
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where 

^2m+l 

Proof: Again, let ln denote the left side of (3.3). Then 

D D _ ^n^n+l''' ^n+4m r T _J 1 

^2m+l 

_ ^n^n+l' • ' ^n+4m r T _T 1 
~ T lJ^(n+2m)+(2m+l) n(n+2m)-(2m+l) J 

^2m+l 

~ ^n^n+l'•' Ln+2m • • • A?+4m V^Y \ \ •*•*•)] 
= 4 ~ Vl-

From this we see that ln-Rn=c, where c is a constant. Now, 
c = Il-Rl 

- LXL2.. 

- A^2 * • 

• Aw+1 

• ^4m+l 

r ^4w+2 
^ 2 w + l r 

^ 2 w + l _ 

r2 - T 

^2m+l 

= _L0LlL2..-.L4m.l [ b y ( 1 1 3 ) ] 

This concludes the proof. • 
Since this method of proof applies to (3.1) and (3.2), we see that the appropriate constants 

on the right sides are -2 = -LQLX and -3 = -\L^^2, respectively. Accordingly, we write (3.1), 
for example, as 

£u^k -LA:M:+lJo-
A;=0 

We use this notation throughout the remainder of the paper. 

Remark: If for m-Q we interpret the summands in (2.1) and (3.3) to be F£ and l | , 
respectively, then we can realize (1.1) and (3.1) within the framework of our two theorems. 
However, the same cannot be said for (1.2) and (3.2). 

4. MORE SUMS OF PRODUCTS 

In this section we state three additional theorems, two of which involve sums of products of 
squares. Using (1.5)-(1.15), they can be proved in the same manner as Theorems 1 and 2, and so 
we leave this task to the reader. In each theorem, m is assumed to be a nonnegative integer. 

Theorem 3: 
n 77 17 17 

Z T7 T7 T? I _ rnrn+\ '•' rn+4m+3 SA 1\ 
rkrJc+l•'• rk+4m+2^k+2m+\ ~ ^ ~ > V*-l) 
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4: 

n 

2a AA+1 • 
k=l 

'' ^k+4m+2^k+2m+l ~ 
^k-^k+1 '•• ^k+4m+3 

^2m+2 

n 7^2 772 172 

Z Tj2~p2 172 77 _ rn rn+l • • • rn+4m+l 
rk rk+\''' rk+4mr2k+4m ~ ^ , 

k=l P4m+2 

V j2 j2 j2 77 
Z^d ^k^k+1''' JLk+4mr2k+4m 
k=l 

J2 J2 r2 

5K 4m+2 

(4.2) 

(4.3) 

(4.4) 

In the proof of (4.3), when finding rn -rn_1, we obtain the expression F*+4m+1 - F?_u which by 
(1.6) and (1.7) can be written as 

~~ Pn+2m^2m+l ' ^n+2m*>2m+\ ~ P2n+4m^4m+2• 

l-^(n+2m)+(2m+l) ^(n+2m)-(2m+l) J l^(n+2 w)+(2/w+l) + ^{n+2m)-{2m+\) J 

Similar expressions that arise in the proof of (4.4), and in the proof of the next theorem, can be 
treated in the same manner. 

A simple special case of (4.3), which occurs for m = 0, is E£=1 F2F2k - F2F2
+l. 

Theorem 5: 

2a**k **k+l • • • Pk+4m+2^2k+4m+2 ' 
k=l 

r?2 E-2 r?2 
rn rn+\ ''' rn+4m+3 

1 4w+4 

2u ^k^k+l '•' ^k+4m+2^2 2k+4m+2 
k=\ 

' r2 72 i2 
^h^h-^A • • • -M uk^k+\ • 'k+4m+3 

5F 4m+4 

(4.5) 

(4.6) 

wby 
To conclude we mention that, for/? real, the sequences {£/„} and {Vn}, defined for all integers 

U„ = pU„„l + Un_2, C/0 = 0, C/I = l, 
Vn=pK_l+Vn_2, V0 = 2, Vv=p, 

generalize the Fibonacci and Lucas numbers, respectively. The results contained in Theorems 1-5 
translate immediately to Un and V„. The reason is that if we replace Fn by Un, Ln by Vn9 and 5 by 
p2 +4, then Un and V„ satisfy (1.5)-(1.15). 
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