
Computer Networks 236 (2023) 109991

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Robust open-set classification for encrypted traffic fingerprinting
Thilini Dahanayaka a,∗, Yasod Ginige b, Yi Huang c, Guillaume Jourjon d, Suranga Seneviratne a

a School of Computer Science, The University of Sydney, Australia
b Department Electronics and Telecommunication Engineering, University of Moratuwa, Sri Lanka
c University of Technology Sydney, Australia
d CSIRO-Space & Astronomy, Australia

A R T I C L E I N F O

Keywords:
Traffic analysis
Traffic fingerprinting
Open-set classification
Deep neural network quantization

A B S T R A C T

Encrypted network traffic has been known to leak information about their underlying content through side-
channel information leaks. Traffic fingerprinting attacks exploit this by using machine learning techniques to
threaten user privacy by identifying user activities such as website visits, videos streamed, and messenger app
activities. Although state-of-the-art traffic fingerprinting attacks have high performances, even undermining
the latest defenses, most of them are developed under the closed-set assumption. To deploy them in practical
situations, it is important to adapt them to the open-set scenario, which allows the attacker to identify its
target content while rejecting other background traffic. At the same time, in practice, these models need
to be deployed on in-networking devices such as programmable switches, which have limited memory and
computation power. Model weight quantization can reduce the memory footprint of deep learning models while
at the same time, allowing inference to be done as integer operations as opposed to floating point operations.
Open-set classification in the domain of traffic fingerprinting has not been explored well in prior work and
none of them explored the effect of quantization on the open-set performance of such models. In this work, we
propose a framework for robust open-set classification of encrypted traffic based on three key ideas. First, we
show that a well-regularized deep learning model improves the open-set classification and then we propose a
novel open-set classification method with three variants that perform consistently over multiple datasets. Next,
we show that traffic fingerprinting models can be quantized without a significant drop in both closed-set and
open-set accuracy and therefore, they can be readily deployed on in-network computing devices. Finally, we
show that when the above three components are combined, the resulting open-set classifier outperforms all
other open-set classification methods evaluated across five datasets with a minimum and maximum increase
in F1_Score of 8.9% and 77.3% respectively.
1. Introduction

Despite being end-to-end encrypted, network traffic flows can leak
information through side-channels [1]. For example, previous works
have demonstrated that visited websites [2,3], watched videos [4,5],
messenger app activities [6], or even spoken words in VoIP calls [7]
can be inferred by leveraging the statistical properties of encrypted
traffic flows. The key idea was to use the features such as packet
sizes, packet direction, or inter-packet times and train various machine
learning models. Recent advances in deep learning further increased
the accuracy of such inferences [2,3].

Using machine learning-based traffic fingerprinting in practice re-
quires addressing the open-set problem. That is, the traffic classifier must
be able to separate the traffic flows it can classify (known–knowns) from
all other traffic flows (unknown–unknowns). In Fig. 1, we illustrate a

∗ Corresponding author.
E-mail addresses: tdah5330@uni.sydney.edu.au (T. Dahanayaka), yasodginige98@gmail.com (Y. Ginige), yi.huang-3@student.uts.edu.au (Y. Huang),

guillaume.jourjon@data61.csiro.au (G. Jourjon), suranga.seneviratne@sydney.edu.au (S. Seneviratne).

typical traffic fingerprinting use case that highlights the necessity of
having an open-set classification component.

Assume the law enforcement is trying to prevent illegal trade over
the anonymous network Tor and has the ability to passively observe
encrypted Tor traffic in transit (e.g., at a vantage point of an ISP). They
have identified a list of URLs for illegal online stores (i.e., the target
list) and they want either to identify users who are browsing those
URLs or simply to terminate those connections. Other than that, law
enforcement does not have any interest in connections to all the other
URLs (i.e., URLs that are not in the target list) happening over Tor.

To achieve this, law enforcement could first collect a dataset of
traffic flows by visiting the target URLs themselves (i.e., the known
classes or known–knowns) and train a classification model. However,
vailable online 23 August 2023
389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access
c/4.0/).

https://doi.org/10.1016/j.comnet.2023.109991
Received 21 March 2023; Received in revised form 31 May 2023; Accepted 20 Aug
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

ust 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:tdah5330@uni.sydney.edu.au
mailto:yasodginige98@gmail.com
mailto:yi.huang-3@student.uts.edu.au
mailto:guillaume.jourjon@data61.csiro.au
mailto:suranga.seneviratne@sydney.edu.au
https://doi.org/10.1016/j.comnet.2023.109991
https://doi.org/10.1016/j.comnet.2023.109991
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109991&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
Fig. 1. Open-set traffic classification.

this naive closed-set model will have the limitation of predicting any
traffic flow given to it as one of the URLs in the target list. For
example, a benign user such as User B in Fig. 1 will also be classified as
visiting an illegal URL. Existing work in encrypted traffic fingerprinting
either (i) focused only on the closed-set problem [4,5], (ii) addressed the
problem by adding a background class or a binary classifier to separate
knowns from unknowns [2,7,8], or (iii) used thresholding on classifier
confidence to filter unknowns [3]. Accordingly, law enforcement can
collect samples of visiting other URLs that are not in the target set
(i.e., known–unknowns) to be used with options (ii) or (iii) from
above.and add all of these samples as a single class during the training
process (i.e., the background class) or use them to decide a rejection
threshold (i.e., binary classification). However, these methods have
their own limitations. First, they require samples from background
traffic (known-unknowns) during training time and there is no guarantee
that such available samples at training time will cover all unknown-
unknowns the classifier may come across in the future. Thresholding
on the classifier’s confidence is based on the idea that the classifier
must have high confidence for known classes. However, current deep
learning models are known to have high confidence even if they are
making a mistake [9]. As such, encrypted traffic fingerprinting models
must be able to handle the open-set classification more realistically,
where the model can correctly identify samples from known classes
(i.e., known traffic flows) while effectively rejecting any samples from
classes not seen during model training (i.e., background traffic flows).

At the same time, another key challenge in using deep learning-
based traffic classifiers in real-world problems is that these models often
need to be deployed on resource-constrained devices. More specifically,
deploying traffic classification models on in-networking devices can
provide the maximum use of their output in real-time compared to
deploying the models on centralized servers. This is because, if traffic
captured at network devices needs to be transferred to centralized
servers for classification, it can only facilitate post-event-completion
analysis. While post-event-completion analysis is useful in long-term
network management tasks, real-time traffic classification is more ben-
eficial as it can be used for real-time network management tasks. For
example, rather than identifying a connection to an illegal store long
after the store was accessed, real-time traffic classification can identify
it while the illegal store is still being loaded and hence the connection
can be terminated before the being fully loaded.

We identified two main resource restrictions on in-network de-
vices that limit the deployment of deep-learning models on them.
First, switches like Programming Protocol-independent Packet Proces-
sors (P4) [10] or Juniper Trio [11] that can be used as programmable
switches for traffic classification, do not facilitate floating-point op-
erations, but, trained parameters of deep learning models are often
2

floating point numbers and require floating point operations. Second,
the memory available on these devices for storing deep learning models
is very limited [11], but deep learning models generally have high
memory footprints due to their large number of parameters (floating
point). For example, while the maximum capacity of SRAM and cache
available on the Juniper Trio [11] is 8 MB and 24 MB, a typical website
fingerprinting CNN can have a footprint of 8.5 MB (cf. Table 8) which
would consume a significant portion of the available memory that
needs to be shared with core routing functions of the switches as well
as the above-mentioned prediction models. However, previous work on
traffic fingerprinting has not placed enough emphasis on addressing
these issues, and hence, a solution that adapts deep learning models
to work with integers only and minimize the memory footprint of deep
learning models needs to be developed.

To this end, we propose a framework that simultaneously addresses
the open-set setting and the resource constraints of practical envi-
ronments. First, we show that many of the existing traffic classifiers
are not well-regularized and therefore result in poor performance in
the open-set. Next, we propose a novel open-set classification method,
k-LND based on k-logit neighbor distances with three variants, that
perform reliably across all datasets considered. Finally, we show that
traffic fingerprinting models can be quantized without a significant
drop in accuracy and that the novel k-LND method has the least
effect on performance due to model quantization. To the best of our
understanding, this work is the first work to explore open-set classifica-
tion in a resource-constrained setting that closely resembles real-world
environments.

More specifically, we make the following contributions.

• We observe that many of the previous works that attempted open-
set methods in traffic fingerprinting either used naive methods
that resulted in poor performance or used closed-set classifiers
that are not well-regularized, again resulting in poor open-set
performance. Using five publicly available datasets, we show
that having a well-regularized underlying closed-set classifier
improves open-set results irrespective of the specific open-set
classification method used, with an increase of F_Score in the
range 2.99%–35.48%.

• We propose a novel open-set classification method based on
k-logit neighbor distances with three variants that perform consis-
tently across multiple datasets when compared to other methods.
We show that k-LND methods always maintain consistent per-
formance with kLND1, kLND2 and kLND3 methods maintaining
>85%, >85% and >95% closed-set and >65%, >75% and >75%
open-set accuracies respectively.

• We evaluate the performance of open-set classification methods
when the underlying deep learning model has been quantized.
We show that traffic fingerprinting models can be quantized
without a significant drop in accuracy while reducing the memory
footprint of classifiers by at least 60%. We highlight that the novel
k-LND methods always record the highest F_Scores when using
quantized models across all datasets (with an increase in F1_Score
in the range 8.9%–77.3%) while the best-performing variant k-
LND3 maintains closed-set and open-set accuracy of >90% and
70% respectively. Overall, we show that the combined contri-
bution from a well-regularized closed-set classifier, novel k-LND
open-set classification method, and model weight quantization
outperforms all other methods compared across all datasets for
open-set classification.

Overall, our framework supports open-set classification and model
weight quantization which reduces model footprint and ensures com-
patibility with in-network computing devices that support only integer
arithmetic.

The rest of the paper is organized as follows. Section 2 explains the
traffic fingerprinting scenario considered in this work and introduces

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

u
t
e
c
t

a
a
b
c
t
m
p
w

2

t
c
t
a
s
m
t
t
s
o
a
t

b
p
f
F
d
t
o

2

o
f
l
a
s
(
o
a
d
t

a
p
o
s
w
i
V
n
t
r
d
a
p
(

2

o
c
b
t
t
a
s
l
b
t
m
s
l
e
a
o
w
a
b

2

o

the datasets, baseline model architectures, and existing open-set classi-
fication methods used in this work as comparisons. Section 3 presents
our framework for robust open-set classification and the underlying key
ideas while Section 4 presents the results. Section 5 discusses related
work and Section 6 concludes the paper.

2. Background

In this section, we first provide a brief overview of the existing
open-set classification methods that are most commonly used in en-
crypted traffic fingerprinting. Next, we introduce five publicly available
datasets and the corresponding deep CNN classifier architectures that
we use in our experiments.

2.1. Open-set classification methods

Next, we describe existing open-set classification methods that are
commonly used by prior work in traffic fingerprinting and are used as
baselines in this work.

2.1.1. Background class
As mentioned before, the background class method is the most naive

way of handling open-set classification. It assumes that a subset of
the open-set (i.e., samples from known-unknown classes) are available
during model training, and they are combined to form a single known-
nknown or background class. Given an input, the classifier learns either
o put it into one of the known classes or into the background class,
ssentially making an 𝑛 class classification problem into an 𝑛 + 1 class
lassification problem. Works in traffic classification such as [2,8] used
his method to tackle the open-set problem.

The background class method is based on the strong assumption that
ll the samples from unknown classes will have similar characteristics
s the samples from known–unknown classes. This may not necessarily
e true all the time as there might be samples of unknown–unknown
lasses that are closer to a known class than the combined representa-
ion of known–unknown classes. Therefore, while the background class
ethod performs well in some cases like the DF dataset [2], it performs
oorly with others such as the DC dataset as we have demonstrated
ith an example in Appendix A.1.

.1.2. Softmax thresholding
The majority of current deep neural networks use softmax activa-

ion in the last layer to obtain a probability vector representing the
onfidence of a given sample belonging to each known class. Softmax
hresholding-based open-set classification is built on the intuition that
ny model trained on a set of classes will output a very low softmax
core (confidence) for samples from the open-set. More specifically, this
ethod simply uses a threshold over the softmax probability score of

he predicted class and rejects samples with a probability lower than
he threshold as open-set samples. Additionally, the attacker may use a
mall dataset from known unknowns to decide the threshold value to
btain a preferred balance between closed-set accuracy and open-set
ccuracy. Rimmer et al. [3] is one example of work that used softmax
hresholding in traffic fingerprinting.

Nonetheless, since the softmax activation skews the output proba-
ilities to favor the class with the highest probability and the training
rocedure does not explicitly push the model to output low confidence
or open-set samples, this method cannot be expected to work always.
or example, it is known that neural networks have very high confi-
ence even if they make a wrong prediction [9]. As a result, softmax
hresholding works well with some datasets but, performs poorly with
3

thers such as SETA as illustrated with an example in Appendix A.2.
.1.3. OpenMax
OpenMax was originally proposed by Bendale and Boult [9] for

pen-set image classification. It is built on the intuition that the values
rom the penultimate layer (i.e., the layer before the softmax activation
ayer) of a deep neural network provide a distribution of how classes
re related to each other as opposed to being independent per-class
core estimates. Specifically, OpenMax uses Extreme Value Theory
EVT) modeling on the distance between a given sample and the mean
f its predicted class to identify open-set samples. OpenMax has the
dded advantage that it does not require samples from the open-set
uring model training at all. Webb [12] and Yang et al. [13] explored
he possibility of using OpenMax for traffic fingerprinting tasks.

When using OpenMax in our experiments, we make two main
lterations to the original method proposed for computer vision ap-
lications to get better performance on network traffic data. First, we
bserved that for traffic fingerprinting networks, the Activation Vector
ometimes contains negative logit values and when used for rescaling
ith EVT modeling, causes the score for being from the open-set to be

ncreased. Therefore, we do min–max normalization on the Activation
ector (AV) before calculating the revised AV to minimize the effect of
egative values in the AV on rescaling. Second, instead of using a fixed
hreshold for OpenMax probabilities, we used class-wise thresholds to
eject open-set samples. The reasoning behind this decision is that the
istribution of OpenMax probabilities differs between classes and using
common threshold may cause classes with generally lower OpenMax
robabilities as the highest OpenMax score to have more false negatives
more closed-set samples rejected as open-set).

.1.4. Ensemble learning
Wang et al. [14] proposed ensemble learning as a way of handling

pen-set traffic classification. More specifically, the authors assume that
ombining the outputs from multiple model instances based on a simple
ase learner would learn different sets of features and hence can help
he overall model generalize better towards unknown data as opposed
o a single model. Accordingly, the authors use a threshold on the
veraged output from N different model instances to build an open-
et website fingerprinting attack. During model training, a dynamic
earning rate is used to separate model locations in the loss function
y immediately increasing the learning rate at fresh starts, so that
he learning point displaces by a large distance resulting in a new
odel having a different set of parameters and learning a different

et of features. Additionally, the authors use squeeze and excitation
ayers as an attention technique to weigh features according to their
ffectiveness in the final result and increase the robustness of the model
nd separable convolution layers to reduce the computational cost. In
ur work, we implement the full ensemble model as in the original
ork but do not use the Denoising Auto Encoder to pre-process data
nd extract features since we want to make the data feed the same
etween all the methods we compare.

.2. Datasets

We use five publicly available datasets corresponding to three types
f encrypted network traffic as described below.

1. Website fingerprinting over Tor: Automated website fingerprint-
ing (AWF) [3] and Deep fingerprinting (DF) [2] datasets contain
network traffic traces for visiting homepages of top-200, and
top-95 Alexa websites over Tor, respectively. In these datasets,
each site visit is represented by the first 5000 (DF)/3000 (AWF)
Tor packets in either direction. That is, in these datasets, a data
sample is a sequence of +1 s (uploads) and −1 s (downloads). If
a particular homepage visit did not generate a total respective
number of packets in either direction, the remainder of the

sequence was padded with zeros.

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

e

3

t
d
N

3

d
t
u
k
t
a
w
s
i

1
l
A
e
f
a
s
o
a
A
b
u
o
t
h

Table 1
Summary of datasets.

Dataset Type Details Open-set

AWF [3] Website 200 target websites
(2500 traces/class)

400,000
classes

DF [2] Website 95 target websites
(1000 traces/class)

40,716
classes

DC [4] Video 10 target YouTube videos
(320 traces/class)

N/Aa

SETA [5] Video 20 target Netflix videos
(100 traces/class)

N/Aa

IoT [7] Voice 98 target Google Home comms.
(1500 traces/class)

N/Aa

aWe split the classes so that 40% of classes are in the closed-set.

2. Video fingerprinting: Deep content dataset (DC) [4] contains
traffic traces for streaming the first three minutes of selected
YouTube videos, while SETA [5] dataset contains the same for
selected Netflix videos. In both the datasets, the three-minute
interval is binned into 500 time slots (0.36 s each) and each
time slot is represented by summary statistics of the packets
observed during that time. While the original datasets comprised
24 features per trace, the authors of DC observed that the
number of uplink packets of video streaming produced the most
accurate model and hence we only use that feature in our work.
Therefore, these datasets represent a traffic trace as a sequence
of 500 integers.

3. Voice command fingerprinting: The IoT [7] dataset contains
the traffic traces generated by Google Home devices for 98
specific voice commands. It represents a trace by the first 475
packets in either direction and for each packet, a −1 would
denote a download and a +1 would denote an upload. If a
particular voice command did not generate a total of 475 packets
in either direction, the remainder of the sequence was padded
with zeros.

We provide a summary of our datasets in Table 1. Here, target
classes refers to the number of known/closed-set classes. For datasets
that provide a separate open-set, we denote the number of classes
in the open set under the last column and split datasets without a
separate open-set (DC, SETA, and IoT) to create open-sets as discussed
in Section 2.2.1 below.

2.2.1. Data preparation
The original works of AWF and DF considered the open-set scenario

and hence already have a separate open-set. Therefore we did not have
to manually split the dataset. In contrast, the original versions of DC,
SETA, and IoT datasets did not have open-set samples. Therefore, to
use these in our open-set experiments, we split the original datasets
into two parts so that 40% of the original number of classes is used as
the closed-set while the rest is considered as the open-set. To negate
any effect on results from specific splits, we use multiple random splits
for each dataset and report the average performance. The number of
splits depends on the datasets. For DC and SETA datasets which have
a smaller number of classes, we created five splits and for the IoT
dataset, we created 10 splits. Later, when we report the results for these
datasets, we report the average and standard deviation values of each
metric across all splits of a given dataset.

Unless otherwise specified, for all the methods, the training, testing,
and validation splits from the closed-set contain 200, 200, and 100
traces per class, respectively. While more data samples were available
in the datasets, the original work, as well as subsequent work [15],
showed that 200 training samples per class are sufficient to train a
model with high test accuracy.

For the background class method, which is the only method that
4

requires open-set samples during training (i.e., known-unknowns), we a
separate out 20% of classes as known-unknowns and use 200 and 100
traces from each known-unknown class in the training and validation
sets, respectively. We ensured there is no overlap between the classes
used for open-set during training and testing procedures. The test set
comprised all the known and unknown class samples from the original
test set.

2.3. Deep learning models

All of the open-set methods we use require an underlying deep neu-
ral network. For each dataset except AWF and SETA, the original work
proposed the most suitable model architectures and hyperparameters,
and hence we use those models as it is in our work. For the AWF
dataset, we use the model proposed for DF [2] since Sirinam et al. [2]
showed that the DF model is more effective for website fingerprinting.
The original work for SETA did not use deep learning models and hence
we use a deep CNN similar to that of DC. The model architectures used
for DC and SETA datasets are shown in Figs. 3(a) and 3(b) respectively
while the model architecture used with IoT is presented in Appendix B
(Fig. 14).

We note that we increase dropout rates of original model archi-
tectures (for DC, SETA, and IoT only) to regularize models and the
appropriate dropout rates are decided through tuning the model to have
a high validation accuracy. Accordingly, for DC, SETA, and IoT models,
the increased dropout rates are indicated in green in the respective
figures. We further discuss this later in Section 3.1 Additionally, the
ensemble model architectures used for the ensemble method of open-set
classification (cf. Section 2.1.4) corresponding to all five datasets are
xplained in Appendix B.1.

. Framework for robust open-set traffic fingerprinting

Our proposed framework for robust open-set classification targeted
owards encrypted traffic fingerprinting in resource-restricted network
evices is based on three key ideas. (1) Regularized models, (2) k-Logit
eighbor Distance for open-set classification and (3) Model Quantization.

.1. Regularized model

All open-set classification methods we explore in our work use un-
erlying closed-set classifiers (a deep learning model). We hypothesize
hat the performance of an open-set classifier depends on how well the
nderlying deep-learning model can identify class boundaries for the
nown classes. For instance, if the underlying closed-set classifier iden-
ifies a sub-optimal class boundary or is overfitted to a given dataset
nd class boundaries even accommodate for noise and irregularities, it
ould cause the subsequent open-set classifier to identify even open-set

amples as samples from a known class. We illustrate such a scenario
n Fig. 2.

Assume two closed-set classifiers trained on two classes with Feature
and Feature 2 referring to the features learned by the classifier (logit

ayer). Fig. 2 shows the distribution of Class A in this logit space.
lthough both Classifier 1 and 2 each have learned a boundary that
ncompasses all samples from Class A and would give 100% accuracy
or Class A in the closed-set setting, we see that Classifier 1 has learned
sub-optimal boundary that covers a region that includes only noise

amples and no actual samples from Class A. Hence, when used for
pen-set classification, Classifier 1 will label the open-set samples that
re within the sub-optimal boundary but away from the actual Class
samples as Class A. In contrast, Classifier 2 has learned an optimal

oundary that covers only the correct samples from Class A and when
sed for open-set classification can correctly reject all open-set samples
utside the boundary of Class A. Due to the simplicity of network
raffic data that allows a simple model to be easily trained to achieve
igh accuracies, if proper hyperparameter tuning is not done, there is

likelihood that the resulting model simply learns sub-optimal class

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
Fig. 2. Optimal class boundary.

boundaries good enough to improve accuracy. For instance, in [4],
the authors directly use the CNN model architecture proposed in [16]
for traffic captured at the network level, on their traffic captured
at data-link layer (WiFi) and still achieve high training and testing
accuracies. As we show later, although the DC model performs well,
it does not identify optimal class boundaries, and therefore tuning the
model further improves open-set results.

Another possible source of such over-fitting is the number of closed-
set classes. Out of the five datasets we explore, DC, SETA, and IoT did
not have a separate open-set and therefore we had to split the original
dataset to create an open-set. By doing so, we reduce the total number
of classes (closed-set) the original model architecture was tuned for,
and using the exact same model architecture as in the original work on
the smaller dataset would result in overfitting.

Accordingly, we hypothesize that if a more robust model (i.e., a
more generalized model that identifies optimal class boundaries with-
out overfitting) is used as the underlying classifier, it will improve the
results of any open-set classification method. To ensure that the under-
lying closed-set classifier has learned better class boundaries and is not
overfitted to a particular dataset, we propose to properly regularize a
closed-set classifier before using them for open-set classification. We
use DC, SETA, and IoT datasets to test our hypothesis and regularize
the baseline models (models from corresponding original work) by
increasing the dropout rates. Then, we compare the open-set classifi-
cation results for using the baseline model vs. the regularized model.
We note that the original models used with AWF and DF datasets
have undergone thorough hyperparameter tuning to ensure optimal
performance and the original datasets are used in our work without
splitting as they already contain open-sets. Therefore, we do not use
those datasets in this experiment.

In Fig. 3, we have illustrated the deep CNN model architectures
used for the DC dataset (Fig. 3(a)) proposed by [4], and SETA dataset
(Fig. 3(b)). As explained before, we regularize the baseline model by
increasing the dropout rates used in the baseline model. In Fig. 3, we
have denoted the dropout rates to the right of each dropout layer, with
the value in red referring to the baseline model parameter and the value
in green referring to the value in the regularized model. We follow
the same approach for the IoT dataset, and the corresponding figure
is given in Appendix B.

3.2. k-Logit Neighbor Distance-based open-set classification

The second element of our framework is a novel distance-based
open-set classification method named k-Logit Neighbor Distance (k-
LND) Method with three variants. It is built on the intuition that the
output of the logit layer (the layer before softmax activation) of a deep
neural network represents how classes are related to each other as
opposed to being independent per-class score estimates.

More specifically, if 𝑁 is the number of closed-set classes, the output
of the logit layer is a vector of length 𝑁 that represents an 𝑁 dimen-
sional space where samples from the same class would be clustered
5

Fig. 3. Model architectures. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. k-LND method.

together around its class center. Here, the class center is the average
over the logit layer outputs of correctly classified training samples
from the corresponding class, referred to as the Mean Activation Vector
(MAV). Hence, if a sample is from the closed-set, we expect it to be
closer to the MAV of its predicted class while being as far away from
the MAVs of the 𝑘 neighbor classes of the predicted class. In contrast,
if a sample is from the open-set, we expect it to be distant from the
MAV of its predicted class and be relatively closer to the MAVs of the
𝑘 neighbor classes of the predicted class. Based on this intuition, k-
LND methods use the distance between a new sample and the MAVs of
known classes to identify open-set samples.

We further explain this idea using an example in Fig. 4. Consider
a two-class closed-set classifier. The output from the logit layer of the
closed-set classifier would be a vector of length two, with logit 1 and
logit 2. Fig. 4 demonstrates the space spanned by logit 1 and logit 2
where the reddish dotted line shows the decision boundary learned by
the classifier, and 𝐶1 and 𝐶2 represent the MAVs of Class 1 and Class 2,
respectively. The circle around each MAV represents the cluster around
it where a majority of samples (>90%) from its class fall into. If we
define 𝑟𝑖 as the radius of the cluster around 𝐶𝑖, k-LND1 (the first k-LND
variant) assumes that if a sample is predicted as class 𝑖 by the closed-set
classifier and the distance between that sample and 𝐶𝑖 is greater than
𝑟𝑖, that sample is from the open-set. For instance, consider that point P
and point A in Fig. 4 are both classified as class 𝐶1 by the classifier. If
𝑑𝑋𝐶𝑖

defines the distance between a point 𝑋 and 𝐶𝑖, we see that 𝑑𝑃𝐶1
is less than 𝑟1 while 𝑑𝐴𝐶1

is greater than 𝑟1. Hence, k-LND1 will label
sample 𝑃 as Class 1 and sample 𝐴 as an open-set sample. Similarly if
both samples 𝑄 and 𝐵 are classified by the closed-set classifier as Class
2, k-LND1 will label sample 𝑄 as Class 2 since 𝑑𝑄𝐶2

is less than 𝑟2 and
reject sample 𝐵 as 𝑑𝐵𝐶2

is greater than 𝑟2.
k-LND1 only considers the distance to the MAV of the predicted

class to identify open-set samples. k-LND2 and k-LND3 improve on the
intuition of k-LND1 such that they additionally assume that a sample
from a known class would be distant from the MAVs of the neighbors of

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

t
a

s
o

its class, in addition to being closer to its own MAV. Accordingly, the
three variants of k-LND differ in the way they calculate the distance
between a sample and MAVs of closed-set classes. In Eqs. (1), (2), and
(3) we show how distances are calculated in k-LND1, k-LND2, and k-
LND3 respectively. Here, 𝑑𝐴 denotes the Euclidean distance between
the sample and the MAV of class 𝐴, 𝑝 denotes the class predicted for
the sample by the closed-set classifier and 𝑘 denotes the number of
neighboring closed-set classes considered. The only difference between
k-LND2 and k-LND3 is that they use different methods to incorporate
the distances with neighboring MAVs into the final distance metric so
that to get a lower distance value, a sample needs to be closer to its
own MAV and far away from the MAVs of its neighboring classes.

It should be noted that for datasets where the number of closed-
set classes is small, 𝑘 is equal to the number of closed-set classes, and
otherwise, 𝑘 will be less than the total number of closed-set classes
and would be considered as a hyperparameter of the method. The
reason for this decision is that if the logit layer output is of longer
length, euclidean length calculations become less effective [17] and the
computation times also increase.

𝐷1 = 𝑑𝑝 (1)

𝐷2 =
𝑘
∑

𝑖=1
(𝑑𝑖 − 𝑑𝑝) ; 𝑖 ≠ 𝑝 (2)

𝐷3 =
𝑑𝑝

∑𝑘
𝑖=1 𝑑𝑖

; 𝑖 ≠ 𝑝 (3)

In Algorithm 1, we describe the common procedure to follow for all
hree methods prior to inference to calculate the Mean Class Vectors
nd corresponding threshold for each closed-set class.

Algorithm 1: Before Inference for k-LND
Require: Closed-set classifier without Softmax: 𝜃, Number of closed-set

samples 𝑁
Input: Set [𝑋𝑠𝑒𝑡𝐴

𝑖 , 𝑌 𝑠𝑒𝑡𝐴
𝑖], with 𝑠𝑒𝑡𝐴 as subset 𝐴 of dataset

Define: 𝑋𝑠𝑒𝑡𝐴
𝑐𝑖

: the set of correctly classified samples of class 𝑐𝑖 from set
A by closed-set classifier

Define: 𝑛(𝑋) ∶ no. of samples in 𝑋
Define: 𝑠𝑜𝑟𝑡(𝐿𝑖𝑠𝑡𝐴) ∶ 𝐿𝑖𝑠𝑡𝐴 sorted in ascending order
for 𝑐𝑖 = 1.....𝑁 do

Calculate 𝑀𝐴𝑉𝑐𝑖 = 𝑀𝑒𝑎𝑛(𝜃(𝑋𝑡𝑟𝑎𝑖𝑛
𝑐𝑖

))
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑖 =[]
for 𝑗 = 1.....𝑛(𝑋𝑣𝑎𝑙

𝑐𝑖
) do

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑖 .append(𝐷𝐾 (𝑋𝑣𝑎𝑙
𝑐𝑖𝑗

))

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑖 = 90𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑖)
return 𝑀𝐴𝑉 𝑐𝑖 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑖

At inference time, a sample will first be fed to the closed-set clas-
ifier to get its predicted class and logit layer output. Next, depending
n which method is used, the distance values (𝐷1 or 𝐷2 or 𝐷3) are

calculated using its predicted class and MAVs calculated in Algorithm
1. Finally, the calculated distance will be compared with the threshold
value of the predicted class from 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑖 , and if the value is less than
the threshold value, the predicted label will be accepted and otherwise,
it will be rejected as an open-set sample.

3.3. Quantization

The third key component in our framework is model quantization.
Quantization in general refers to mapping continuous values to a
smaller set of discrete finite values. Usual neural network weights
are real values (continuous infinite and represented as 32-bit or 64-
bit floating point numbers) and quantization of neural networks maps
these model parameters to 8-bit integer values within the range (−128
to 127).
6

q

As a result, deep learning models can be adapted to work with in-
tegers only (instead of floating point numbers) and the model footprint
in terms of storage and memory is decreased. Additionally, inference
becomes faster due to integer computations, making such models ideal
to be deployed in in-network computing devices.

Since there is some information loss when the real-valued neural
network weights are converted to integers, model quantization can
cause a drop in performance. In our application, in addition to the
drop in closed-set performance, we also need to consider the effect
on open-set performance and ensure that the performance drop due to
quantization is not significant. While there are many options for model
quantization (e.g., quantization-aware training, post-training dynamic
range quantization), here we used post-training integer quantization
techniques provided by Tensorflow1 to map all values from floating
point numbers to int8 format reducing the model size and perform
open-set classification using the quantized model as the underlying
classification method.

4. Results

In this section, we explore the efficiency of the proposed framework.
We start by introducing the evaluation metrics used and then analyze
the open-set performance of the framework when each one of its three
key components is added. First, we show how a well-regularized model
gives better open-set accuracy and then use the regularized method to
evaluate the performance of four existing open-set methods against the
three variants of the novel kLND method proposed. Finally, we evaluate
the performance of all seven open-set methods (four baseline methods
softmax thresholding, background class, OpenMax, and ensemble learn-
ing, and the newly proposed methods k-LND1, k-LND2 and k-LND3)
with a quantized classifier to show how the proposed framework that
combines a well-regularized model with its model weights quantized,
with the proposed k-LND method, gives the best open-set performance.

4.1. Evaluation metrics

For performance evaluation, we use closed-set accuracy which rep-
resents the percentage of closed-set samples correctly classified into
relevant classes, and open-set accuracy which denotes the percentage
of open-set samples correctly identified. Since we need a single metric
that can be used to identify the better-performing model, we also
calculate the F1_Score. More specifically, we use Micro F1 score since it
is more suited to handling class imbalance caused by the significantly
larger size of the open-set compared to the closed-set that reflects the
real-world scenario.

When calculating Micro F1, we consider only the correctly classified
closed-set samples as True Positives (TP) since the classifier is trained
only on closed-set data. For True Negatives (TN) and False Positives
(FP), the open-set is considered as another class because samples mis-
classified from or to the open-set class reflect the performance of
the classifier. Accordingly, Micro F1 score is calculated as the given
in Eq. (6) using precision and recall calculated according to Eq. (4)
and Eq. (5), respectively, where 𝑁 is the number of known classes.

However, it should be noted that as the open-set is significantly
larger compared to a closed-set class, a small drop in the open-set
accuracy will have a significantly large effect on the precision com-
pared to that from the closed-set accuracy, thereby reducing the overall
F1_Score. As a result, the F1_Score calculated as described above will be
biased towards a better open-set accuracy than a closed-set accuracy.
A more detailed explanation of the behavior of F1_Score is provided in
Appendix C. From here onwards, Micro F1 score is referred to as F_Score.

1 https://www.tensorflow.org/lite/performance/post_training_integer_
uant.

https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://www.tensorflow.org/lite/performance/post_training_integer_quant

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
Table 2
Closed-set classifier performance.

Model Accuracy (%)

DC SETA IoT

Baseline 99.08 ± 0.88 98.17 ± 1.70 97.49 ± 0.48
Regularized 99.82 ± 0.85 98.87 ± 1.77 97.33 ± 0.51

and when comparing two open set classifiers, we consider the classifier
with the highest F_Score as the better classifier.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 =
∑𝑁

𝑛=1 𝑇𝑃𝑖
∑𝑁

𝑛=1 𝑇𝑃𝑖 + 𝐹𝑃𝑖
(4)

𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜 =
∑𝑁

𝑛=1 𝑇𝑃𝑖
∑𝑁

𝑛=1 𝑇𝑃𝑖 + 𝐹𝑁𝑖
(5)

𝐹 _𝑆𝑐𝑜𝑟𝑒𝑀𝑖𝑐𝑟𝑜 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜

(6)

4.2. Regularized models

In Section 3.1 we explained that for a better open-set classification,
the closed-set classifier needs to be well regularized. This is majorly
required if the closed-set classifier is trained with a subset of the dataset
used by the initial work to propose the original model. To show the
effect of regularization, we trained a baseline model (taken from the
original work) and a regularized model with high dropout rates for
each dataset. Here, note that since AWF and DF datasets have separate
open-sets, we do not have to consider data splits and hence the models
proposed in the original work are considered the optimized models.

First, we compare the performance of each closed-set classifier
where we do not consider the open-set and report the results in Table 2.
According to Table 2, we see that for any of the three datasets, the
performance of the two models is almost the same in the closed-set
setting.

Next, we evaluate the performance of the two models in the open-
set setting. Fig. 5 shows the percentage increase in F_score due to
regularized model and in Table 3 we report the closed-set and open-
set accuracy values for open-set classification when using the two
models. Observing Fig. 5, we see that across all three datasets and
four open-set methods, the regularized model achieves a higher F_score
compared to the baseline model where the gap between the baseline
and regularized models lies in the range of 2.99%–35.48%. For the DC
dataset, the highest increase in F_score of 20.69% is observed for the
ensemble method while the lowest increase of 2.99% is seen for the
OpenMax method. Similarly, for the SETA dataset, the highest increase
in F_score of 35.48% corresponds to the ensemble method while the
lowest increase of 15.38% is observed with OpenMax. For the IoT
dataset, the maximum improvement of F_score of 8.33% is observed
for OpenMax while the lowest increase of 3.23% is for the ensemble
learning.

According to Table 3, in most cases, the regularized model increases
the open-set accuracy with a less than 1% decrease in the closed-set
accuracy. For the DC dataset, increasing the dropout rates improved
the open-set accuracy by a maximum of 21.24% (background class) and
a minimum of 4.65% (ensemble). However, OpenMax for DC dataset
deviates from the above trend where the closed-set increases by 5.19%
while the open-set decreases by 1.14% for the regularized model. Even
then, the F_score of OpenMax for the regularized model is still higher.
With the SETA dataset, the open-set accuracy increases by a minimum
of 4.02% (OpenMax) and a maximum of 38.36% (background class)
with less than a 1% drop in the closed-set when the underlying model
is regularized. Similarly for the IoT dataset, for a less than 1% drop
in the closed-set, the open-set increases by a maximum of 32.7%
(background) and a minimum of 4.63% (ensemble) for the regularized
model compared to the baseline model. Based on the results across all
datasets and methods, we conclude that our hypothesis that suggests
regularizing the underlying deep learning model improves the results
7

of open-set classification is accurate.
Fig. 5. Effect of regularized model.

Fig. 6. Default model F_scores.

4.3. k-Logit Neighbor Distance method

We next present the results of evaluating the performance of the
three novel open-set methods (k-LND1, k-LND2, k-LND3) we propose
in Section 3.2 against four existing methods and report the closed-
set and open-set accuracies of each method on all five datasets in
Tables 4 and 5. We have also shown the corresponding F_score values
in Fig. 6. According to F_score values in Fig. 6, we see that k-LND3
outperforms all other methods for AWF, SETA, and IoT datasets while
background class and OpenMax give the best results for DF and DC
datasets respectively.

Furthermore, we observe that k-LND1, k-LND2, and k-LND3 methods
show consistent results across all the datasets. k-LND1 and k-LND2
maintain >85% closed-set and >65% open-set accuracy while k-LND3
performs the best and maintains >90% closed-set and >70% open-set
accuracy regardless of the dataset. In contrast, the performance of other
methods fluctuates between datasets. For example, softmax threshold-
ing and OpenMax both have relatively lower open-set accuracy for
IoT compared to other datasets. While the background class method
performs very well on the DF dataset with >95% in both closed and
open-sets, it performs very poorly in the open-set of all other datasets.

In k-LND2 and k-LND3 we calculate the single parameter consider-
ing distances to all the class centers (MAV) which embeds the complete
information about the output vector placement in the logit space. In
other words, they calculate a comparative value from the penultimate
layer output and use a threshold to do open-set classification. We
attribute the consistently better behavior of novel methods to the fact
that in novel methods, the open-set samples are identified by being
compared with all closed-set classes in the logit space as opposed to just
using a threshold for a single element (maximum value) or comparing
with just the predicted class in the logit space.

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

s
m
b
t
t
w
w

4

l
v
w
a
m
b

c
w
d
W
t
o
r
o
t
w
o
q
s
>

Table 3
Effect of regularized model.

Dataset Model Softmax Thresh. Background class OpenMax Ensemble learning

Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc

DC Base. 90.85 ± 1.9 87.7 ± 3.8 98.70 ± 1.0 36.87 ± 15.9 89.22 ± 2.7 92.16 ± 2.7 84.80 ± 4.0 63.88 ± 22.2
Reg. 89.41 ± 2.1 89.4 ± 4.1 98.69 ± 0.8 44.7 ± 11.0 93.85 ± 2.1 91.11 ± 5.5 84.25 ± 4.1 66.85 ± 13.3

SETA Base. 86.25 ± 4.6 71.59 ± 7.2 96.45 ± 2.4 33.71 ± 11.4 83.75 ± 5.4 79.51 ± 6.1 79.51 ± 1.6 69.16 ± 17.5
Reg. 85.41 ± 3.6 79.21 ± 9.3 95.62 ± 2.7 46.64 ± 13.0 83.33 ± 4.0 82.71 ± 9.8 78.8 ± 2.4 77.05 ± 19.9

IOT Base. 87.55 ± 0.7 59.23 ± 2.8 96.91 ± 0.4 26.21 ± 8.3 87.28 ± 0.7 55.22 ± 6.8 84.78 ± 2.9 68.95 ± 7.3
Reg. 87.04 ± 0.6 62.35 ± 4.6 96.21 ± 0.5 34.78 ± 8.6 86.86 ± 0.5 58.92 ± 8.3 84.16 ± 1.5 72.14 ± 9.6

Notes: ‘Base.’ and ‘Reg.’ refer to the baseline and regularized models respectively.
Table 4
Open-set method performance — Existing methods.

Dataset Softmax Thresh. Background class OpenMax Ensemble learning

Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc

AWF 87.35 88.16 81.60 25.11 87.32 87.93 83.30 85.90
DF 90.69 84.66 95.20 97.40 88.56 83.99 87.80 69.90
DC 89.41 ± 2.1 89.40 ± 4.1 98.69 ± 0.8 44.70 ± 11.0 92.15 ± 2.5 90.87 ± 5.6 84.25 ± 4.1 66.85 ± 13.3
SETA 85.41 ± 3.6 79.21 ± 9.3 95.62 ± 2.7 46.64 ± 13.0 83.33 ± 4.0 82.71 ± 9.8 78.80 ± 2.4 77.05 ± 19.9
IOT 87.04 ± 0.6 62.35 ± 4.6 96.21 ± 0.5 34.78 ± 8.1 86.86 ± 0.5 58.92 ± 8.3 84.16 ± 1.5 72.14 ± 9.6
Table 5
Open-set method performance — kLND methods.
Dataset k-LND1 k-LND2 k-LND3

Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc

AWF 89.37 85.43 89.88 88.12 97.98 89.23
DF 88.45 83.99 88.29 88.04 97.84 87.21
DC 91.63 ± 1.7 87.78 ± 6.9 94.24 ± 1.4 86.26 ± 7.1 94.51 ± 1.8 86.92 ± 7.3
SETA 85.41 ± 1.6 84.69 ± 9.8 85.21 ± 1.1 85.16 ± 6.7 95.42 ± 1.7 87.84 ± 9.1
IOT 85.62 ± 0.6 65.92 ± 5.1 85.49 ± 0.9 76.19 ± 2.4 97.33 ± 0.5 74.47 ± 3.5
a
a

To summarize, all three variants of k-LND method perform con-
istently across all datasets with the best-performing variant k-LND3
aintaining >95% closed-set and >75% open-set accuracy. It should

e noted that all three variants of k-LND are lightweight compared
o the background class method that requires open-set samples for
raining and OpenMax which needs additional EVT modeling. Hence
e highlight that k-LND performs well consistently across all datasets
hile consuming the least resources.

.4. Quantization

Next, we investigate the effect of quantizing the underlying deep
earning model on open-set classification. Fig. 7 shows the F_score
alues for using the above-mentioned open-set classification methods
ith an underlying quantized model. Accordingly, we see that across
ll datasets, the kLND methods perform the best when the underlying
odel is quantized, with an increase of F_Score compared to the

est-performing baseline in the range of 8.9%–77.3%.
In Tables 6 and 7, we present the closed-set and open-set accura-

ies of the four existing methods and the three novel kLND methods
hen the weights of the underlying models are quantized. For each
ataset, we have indicated the method with the highest F_Score in bold.
hen using the quantized models for the AWF dataset, only softmax

hresholding and the k-LND methods achieve >85% in both closed and
pen-set accuracies. Out of those four methods, the k-LND3 method
ecords the best performance with 97.98% and 84.02% as closed and
pen-set accuracy respectively. With the DF dataset, only the novel
hree methods obtain >85% in both closed-set and open-set accuracy
ith k-LND3 method achieving the best performance with closed and
pen-set accuracies of 97.9% and 87.2% respectively, when using the
uantized models. For the DC dataset when using the quantized models,
oftmax thresholding, OpenMax and all three novel methods obtain
85% in both closed-set and open-set accuracy. However, the k-LND
8

Fig. 7. Quantized model F_scores.

methods record the best F_scores with the k-LND1 reporting the highest
F_score of 0.75. After quantizing the models for the SETA dataset, k-
LND3 performs the best with 89.6% closed-set and 70.7% open-set
ccuracy while none of the other methods achieve >85% closed-set
ccuracy with >70% open-set accuracy. Similarly for the IoT dataset,

k-LND3 performs the best with 95.9% closed-set and 76.2% open-set
accuracy while none of the other methods achieve >85% closed-set
accuracy with >70% open-set accuracy. If we consider the overall re-
sult, we observe that k-LND methods perform best on quantized models
achieving the highest F_score for all datasets. More specifically, k-LND2
performs best for DC while for all other datasets, k-LND3 performs the

best.

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

b

Table 6
Quantized model performance — Existing methods.

Dataset Softmax Thresh. Background class OpenMax Ensemble learning

Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc

AWF 89.10 86.90 80.20 73.50 81.90 73.60 85.2 31.8
DF 94.40 78.22 92.50 67.45 94.88 61.75 90.20 58.90
DC 93.72 ± 1.9 90.89 ± 5.0 96.20 ± 2.1 44.10 ± 15.3 89.80 ± 4.7 89.84 ± 6.4 77.22 ± 8.8 59.54 ± 9.4
SETA 81.54 ± 11.7 52.17 ± 20.2 78.75 ± 8.9 34.88 ± 12.2 51.55 ± 14.7 77.62 ± 16.3 69.30 ± 14.26 68.48 ± 21.19
IOT 89.18 ± 5.6 46.70 ± 11.2 91.31 ± 3.4 42.50 ± 8.9 78.09 ± 6.2 18.87 ± 9.8 72.53 ± 5.9 21.30 ± 10.1
Table 7
Quantized model performance — kLND methods.
Dataset k-LND1 k-LND2 k-LND3

Closed Acc Open Acc Closed Acc Open Acc Closed Acc Open Acc

AWF 89.08 86.89 89.88 88.22 97.98 84.02
DF 87.72 84.20 87.92 87.80 97.98 87.22
DC 87.94 ± 3.9 93.71 ± 2.4 93.18 ± 0.9 88.22 ± 5.9 94.21 ± 1.2 87.92 ± 7.3
SETA 70.62 ± 9.1 68.29 ± 14.4 73.33 ± 8.0 73.77 ± 9.1 89.58 ± 7.1 70.74 ± 11.5
IOT 83.59 ± 1.2 68.86 ± 6.9 83.56 ± 0.9 77.22 ± 1.9 95.98 ± 0.5 76.17 ± 4.8
i
h
t

c

Table 8
Quantized models comparison.

Dataset Model size Close set accuracy

Original model Quantized model Original model Quantized model

AWF 8.51 MB 2.14 MB 98.09 97.32
DF 8.30 MB 2.08 MB 97.86 97.02
DC 755 kB 189 kB 99.82 ± 0.9 98.69 ± 0.6
SETA 3.41 MB 1.36 MB 98.87 ± 1.8 98.12 ± 1.2
IoT 1.02 MB 261 kB 97.33 ± 0.5 96.87 ± 0.5

Finally, in Table 8, we compare the model sizes before and after
eing quantized in the closed-set setting. Here Original model refers

to the default model without model weight quantization. Accordingly,
we observe that the quantization of model weights reduces the storage
requirement of a model by a minimum of 60% (SETA) and a maximum
of 75.01% (IoT).

4.5. Result analysis

In Section 4.4, we showed how the k-LND methods work best when
quantizing the underlying deep learning model and we next explore
possible reasons for this observation.

As discussed in Section 2.1, the background class method treats the
open-set as just another class and uses a subset of open-set samples
as a single class during training. Because of this, when quantizing the
background class, the samples from the open-set are also considered in
the discrete mapping process. Since the training set from the open-set
consists of a relatively larger number of samples coming from a large
number of different classes, the range of continuous values for elements
of input samples increases making the discrete mapping process harder
for the quantizer as it now has to map a larger range of continuous
values to a fixed smaller range. (This mapping procedure is further
discussed in [18,19].). We attribute the degradation of the performance
of the background class method with quantizing, to the large error
caused by the mapping function as discussed above.

When comparing softmax thresholding, OpenMax, and the three
novel methods, the error they encounter at the start from the model
output at the logit layer is the same. Softmax thresholding uses this
output and performs softmax activation which maps the output vec-
tor to another space where the initial error can further propagate.
Similarly, the OpenMax method maps the penultimate layer output to
another space first using a Weibull distribution before generating the
final probability vector which would cause the error to increase further.
Ensemble learning methods that aggregate the result from multiple
9

models in a method similar to softmax thresholding can be expected
to face the drawback of softmax thresholding. In contrast, in all three
k-LND methods, a single variable is calculated based on euclidean
distances between penultimate layer outputs. Additionally, k-LND2 and
k-LND3 methods consider the relative distance between a sample and
ts predicted class center vs. centers of multiple other classes, which can
ave a negation effect on the initial error resulting in a lower effect on
he final results.

We further demonstrate this concept with the SETA dataset by
alculating the percentage between error_before and error_after as cal-

culated by Eqs. (7) and (7) respectively, for each method.
Here assume a sample X, deep learning model 𝛩𝑂 and quantized

version of the model 𝛩𝑄, and 𝑑 is euclidean distance. Also, 𝑃 and 𝑃
refer to prenultimate layer output of the final probability vector from
the open-set classifier respectively. The results are illustrated in Fig. 8.

𝑒𝑟𝑟𝑜𝑟_𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑑(𝛩𝑄𝑃 (𝑋), 𝛩𝑂𝑃 (𝑋)) (7)

𝑒𝑟𝑟𝑜𝑟_𝑎𝑓𝑡𝑒𝑟 = 𝑑(𝛩𝑄𝑃 (𝑋), 𝛩𝑂𝑃 (𝑋)) (8)

According to Fig. 8, the change of error in OpenMax is 105% which
shows that the initial error has increased by 105.89% due to Weibull
conversion resulting in the high F_score drop in Table 4 for SETA after
quantization. Similarly, softmax thresholding also has a positive change
of error of 52.6% which can be seen as the reason for the relatively
high F_score drop after model quantization. In contrast, the change of
error for k-LND1, k-LND2, and k-LND3 are less than zero which shows
that it reduces the error in the mapping which results in lesser Micro
F1 drops. Accordingly, we can conclude that the three novel open-set
classification methods we propose are more compatible with model
quantization than other existing methods.

5. Related work

Under related works, we discuss previous work under three topics,
traffic fingerprinting, open-set classification, and quantization.

5.1. Traffic fingerprinting

Side-channel information leaks of end-to-end encrypted internet
traffic were known for a while. Early work by Chen et al. [1] demon-
strated that passively capturing encrypted WiFi traffic from a house
allows inferring health conditions and personal income of the occu-
pants. The authors attributed this information leakage to the stateful
nature of web communications and low entropies of user inputs. Sub-
sequent work extended these attacks to other application domains. For

example, several works showed the possibility of identifying websites

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

v
w
m
u

a
e
S
t
a
t
i
T
a
c
p
t

l
c
i
N
a
L
f

O
e
c
f

Fig. 8. Percentage of change in error.

isited over Tor [20,21] and HTTPS [22]. Similarly, multiple other
orks demonstrated the possibility of identifying user activities on
essenger apps such as Apple iMessage, Whatsapp, and Telegram that
se XMPP over HTTPS [6,23].

Several works investigated the side-channel information leaks in
udio and voice of IP applications [24–27]. For instance, Wright
t al. [24] showed that due to the variable bit rate codecs used in
kype, the lengths of encrypted VoIP packets can be used to identify
he phrases spoken within a call. Zhu and Fu [27] extended the work
nd showed that the distribution of packet lengths can also be used
o identify exact speakers in a VOIP call. It was also shown that
t is possible to identify videos from DASH streaming traffic [5,28].
he common approach followed by many of these works is to create
feature vector from the statistical properties of the traffic flows

ontaining features such as packet length, packet direction, and inter-
acket times, and then train machine learning models to identify the
argeted scenario.

More recent work in traffic fingerprinting [2–4,8,16] used deep
earning models, understandably due to their success in other appli-
ation domains such as computer vision and speech processing. For
nstance, Payap et al. [2] showed that a basic 1D Convolutional Neural
etwork (CNN) could identify websites over Tor traffic with over 98%
ccuracy undermining state-of-the-art defenses. Schuster et al. [16] and
i et al. [4] showed that 1D CNNs can be used to identify exact videos
rom DASH video streaming traffic. However, the majority of these works

that used either classical machine learning or deep learning, did not have an
in-depth look into the more realistic open-set traffic classification problem.

For instance works such as [4,5] did not consider the open-set clas-
sification problem at all. Another set of works considered the open-set
problem, but addressed it using naive methods; i.e., using a background
class or separate binary classifier to pre-filter unknowns [2,7,8,16] or used
classifier confidence [3]. To the best of our knowledge, none of the existing
work in traffic fingerprinting has neither explored beyond naive methods
for open-set classification nor proposed novel open-set methods for traffic
fingerprinting.

Using side-channel information leaks to infer applications corre-
sponding to encrypted traffic is another related area of research. Similar
to traffic fingerprinting, initial app classification attacks were based on
traditional machine learning models [29,30] but later moved towards
deep learning models [31,32]. Most works in this area did not address
the open-set problem while some used the one-vs-all approach [30,33].

ne key work that specifically addressed the open-set problem is Yang
t al. [13]. The authors describe four main approaches, using k-means
lustering in the input space, using k-means clustering on the last
10

ully connected layers’ output, methods using information from the
last layer of deep learning models (softmax thresholding or OpenMax),
and gradient-based rejection. While using k-means clustering on the
last fully connected layer output follows a similar approach as our
proposed method, our method directly calculates class means using cor-
rectly classified samples from the training set instead of using k-means
clustering. Furthermore, the distance metric used by our proposed
method favors shorter distances to a sample’s predicted class mean and
longer distances to other class means which helps our method identify
clusters better and therefore give better performance. In contrast, [13]
considers the distance to the predicted class mean only and therefore
does not perform as well as our method.

5.2. Open-set classification

As deep learning started making breakthroughs in various fields
of machine learning, open-set classification became an interesting yet
challenging problem that require attention. The intuitive idea of open-
set classification methods is to teach neural networks to know when
they do not know [9].

While the open-set classification problem has been explored in
the context of traditional machine learning methods such as Support
Vector Machines [34,35], much of the recent effort has been on deep
neural networks [36]. One of the key works in open-set deep neural
networks is OpenMax [9] as described in Section 2. The key idea
behind OpenMax and its variants [37,38] is to leverage the fact that the
penultimate layer output of deep neural networks is a representation
of relationships between classes in the closed-set and open-set samples
will have anomalous behaviors. Another body of work [39,40] explored
the idea of replacing the traditional cross-entropy loss of deep neural
networks with novel losses to move open-set samples to specific areas
with respect to the decision boundaries. Another approach is to use the
reconstruction-based models [41,42] with the intuition that the model
will do an accurate reconstruction of closed-set samples while it will
not do a better job in reconstructing open-set samples.

Recently, generative models [36] have been explored in the context
of open-set classification. The key idea is to generate known-unknown
samples and use them during training to improve the differentiation
between the known and unknown classes. For example, [38,43,44]
utilized GANs (Generative Adversarial Networks) to generate synthetic
samples and then leveraged them to explicitly or implicitly calibrate
the learning models. Geng et al. [45] proposed a Hierarchical Dirichlet
process (HDP) generative model-based collective decision framework
for open-set recognition. This approach used HDP in the inference
process and does not depend on threshold seeking because HDP can
automatically discover novel classes.

Few recent works tried to address the open-set setting on encrypted
traffic fingerprinting. Wang et al. [14] proposed to use ensemble learn-
ing as a way of handling open-set traffic classification based on the
intuition that combining the outputs from multiple model instances
based on a simple base learner would learn different sets of features and
hence can help the overall model generalize better towards unknown
data as opposed to a single model. Li et al. [46] proposed a framework
that combines novel data augmentation and feature extraction methods
with self-supervised learning for few-shot open-set traffic classification.

Open-set classification is still an evolving area in machine learning.
To the best of our knowledge, most state-of-the-art open-set classification
methods have not been tried in traffic classification. Our work is the first to
conduct methodical and extensive experiments to compare their performance
with more commonly used methods for open classification by the networking

community such as using a background class or softmax thresholding.

Computer Networks 236 (2023) 109991T. Dahanayaka et al.

t
q
i
m
e
a
o

o
P
l
i
a
m
w
r
a
s

o
q
t

6

a
o
a
n
a
s
o
f
f
o
t
w
I
a
O
a
i
a
q
w
m
c
a
A
f
c
n

t

D

c
i

D

A

&
T

A

A

p
t
t
N
a
3
o

(
t
c
c
k
w
3
c
t
d
c
c

A

n
b
S
e
d
f
s
f
s
t
a
s
s

5.3. Quantization

Quantization is well-known to improve the efficiency of neural
networks by reducing the effect of over-parameterization and thereby
reducing memory footprint and inference times. While the concept of
quantizing neural networks has been discussed since the early 90’s [47–
49] can be considered as the first key work that directly contributed
towards quantization of deep neural networks used today. In [49], Han
et al. proposed a three-stage pipeline that first prunes and quantizes
a neural network before encoding the model weights using Huffman
Coding.

Deep neural network quantization can be broadly categorized into
two categories as Quantization-Aware Training and Post-Training Quan-
ization. Quantization-Aware Training (QAT) retrains a model with
uantized weights in order to correct quantization bias. More specif-
cally, forward and backward passes are performed on the quantized
odel in floating point, but the model parameters are quantized after

ach gradient update [50–52]. While QAT results in a model with good
ccuracy, it requires longer training times and the computational cost
f re-training the model.

Post-Training Quantization (PTQ) quantizes the model weights with-
ut any re-training or fine-tuning of the original model. Therefore,
TQ is very fast and the overhead related to quantization is very
ow. However, the accuracy of models directly quantized with PQT
s lower compared to QAT. Hence, multiple works proposed various
pproaches to mitigate the accuracy loss of PTO such as bias correction
ethods [53,54] and equalizing weight ranges [55,56]. Another key
ork in PTQ, AdaRound [57] proposed an adaptive rounding method to

educe accuracy loss. Hao Wu et al. [58] proposed partial quantization
s a solution to minimize the accuracy loss of PTQ where the most
ensitive layers are left unquantized.

Although model quantization and its effects have been explored in
ther domains, to the best of our knowledge, we are the first to apply
uantization techniques on traffic fingerprinting DNNs in order to deploy
hem on in-network computing devices.

. Conclusion

In this paper, we first hypothesize that using a robust classifier
s the underlying deep learning model improves the performance of
pen-set classifiers. We use five publicly available datasets with model
rchitectures proposed in the original work and show that when the
umber of classes in the dataset is changed, adjusting the model
rchitecture to avoid overfitting improves the performance of open-
et classifiers that use such models. Next, we propose three novel
pen-set classification methods and compare their performance with
our existing methods using five publicly available encrypted traffic
ingerprinting datasets. We also show how two most commonly used
pen-set traffic fingerprinting methods; background class and softmax
hresholding do not work in all the datasets. While they perform really
ell in some datasets they also perform really poorly in other datasets.

n contrast, our proposed methods consistently perform well across
ll datasets. We also show that the proposed methods outperform
penMax, a popular open-set classifier proposed for computer vision
nd ensemble learning which was proposed for traffic fingerprint-
ng. Finally, we compare the performance of the proposed method
gainst existing methods when underlying deep learning models are
uantized. Overall, we show that our framework which combines a
ell-regularized closed-set classifier, novel kLND open-set classification
ethod, and model weight quantization, outperforms all other open-set

lassification methods evaluated across five datasets with a minimum
nd maximum increase in F_Score of 8.9% and 77.3% respectively.
ccordingly, we can conclude that the proposed framework is suited

or traffic fingerprinting tasks that need to be carried out in resource-
onstrained network devices like P4 switches, smart NICs or FPGAs. We
ote that our results, together with the codes and other artifacts we
11
release,2 can act as a baseline framework for future work in open-set
raffic fingerprinting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

This work was conducted in partnership with the Defence Science
Technology Group and Data61/CSIRO, under the Next Generation

echnologies Program (C010938).

ppendix A. Naive open-set classification methods

.1. Background class method

In this section, we explain why background class does not always
erform as expected. We use split 5 of the DC dataset to demonstrate
his. We use the background class model trained in Section 4.2 and get
he output vector from the Softmax layer for the corresponding test set.
ext, we plot the 2-dimensional t-SNE graph [59] for the output values
s shown in Fig. 9. We note that in this specific split, the classes [0, 1,
, 5] make up the closed-set while classes [6, 7, 8, 9] make up the
pen-set. Classes 2 and 4 are used as the known-unknowns.

As can be seen from Fig. 9, the samples from closed-set classes
brownish shades) form four distinct clusters while the samples from
he two classes used as known unknowns (greenish shades) are also
lustered close together. However, the samples from the open-set
lasses (blueish shades) which ideally should be clustered closer to
nown-unknowns (i.e, greenish clusters), can be seen clustered either
ith a specific closed-set class (i.e, class 9 clustered close to class
) or as a separate cluster further away from the known-unknown
lasses. Notice how none of the open-set classes cluster close to the
wo known-unknown classes (greenish). This confirms how for some
atasets, open-set samples would have more similarities with closed-set
lasses as opposed to known-unknowns. In such cases, the background
lass method fails.

.2. Softmax threshold method

Next, we demonstrate why the softmax thresholding method does
ot always work, using the same split 2 of the SETA dataset. We feed
oth closed and open-set test sets to the closed-set classifier trained in
ection 4.2 and extract the softmax score for the predicted class for
ach sample. In Fig. 10 we show the histogram of these softmax scores
rawn to a log scale. Note that the sub-figure shows the histogram
or the entire range of softmax score (0.0–1.0) while the main figure
hows the zoomed-in version to clearly emphasize the section of the
igure corresponding to the score in the range [0.995–1.0]. The figure
hows how almost all closed-set samples have softmax scores greater
han 0.999 as expected. However, over 50% of the open-set samples
lso have softmax scores in the same range. This makes rejecting open-
et samples by thresholding on softmax ineffective, especially when
acrificing closed-set accuracy is not acceptable.

2 https://github.com/ThiliniDahanayaka/Open-Set-Traffic-Classification.

https://github.com/ThiliniDahanayaka/Open-Set-Traffic-Classification

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
Fig. 9. DC: t-SNE plot for background class method. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. SETA: Histogram for Softmax scores.

Appendix B. Model architectures

Fig. 11 illustrates the deep CNN model architecture used with the
IoT dataset. As discussed in Section 3, dropout rates of the model are in-
creased to regularize a model and in the figure, corresponding dropout
layers are shown to the right of the dropout layer. Here, values of the
baseline model are mentioned in red while those of the regularized
model are mentioned in green. All the other hyperparameter values are
the same as in the original work.

B.1. Ensemble model architectures

As proposed in [14], the ensemble model of the AWF dataset is im-
plemented using TensorFlow framework (Fig. 12). Since the DF dataset
is also a website fingerprinting dataset much similar to AWF and
has a relatively large number of closed-set classes, we used the same
architecture with some hyperparameter changes. For DC, SETA, and
IoT, the complexity of the model is reduced by reducing the number of
repetitive blocks. Fig. 13 shows the ensemble model architecture for the
DC dataset and the ensemble model for SETA is similar to that except
for a few hyperparameters. The ensemble model for IoT is shown in
Fig. 14. When checking the validity of the regularization of DC, SETA,
and IoT models, we add an additional dropout layer before the final
dense layer in each model. Results are given in Table 3.
12
Fig. 11. IoT model architecture. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 12. AWF Ensemble model architecture.

Appendix C. F_Score

In this section, we briefly explain the behavior of F1_Score used as
an evaluation metric in our work. Remember that in Section 4.1, we
discussed how precision (Eq. (4)) and recall (Eq. (5)) are calculated
which are then used to calculate F_Score as given in Eq. (6). Also note
that according to Eq. (6), F_Score is the harmonic mean of the precision
and recall, and therefore, a drop in either precision or recall values
causes a drop in the F_Score.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 =
∑𝑁

𝑛=1 𝑇𝑃𝑖
∑𝑁

𝑛=1 𝑇𝑃𝑖 + 𝐹𝑃𝑖
(4)

𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜 =
∑𝑁

𝑛=1 𝑇𝑃𝑖
∑𝑁

𝑛=1 𝑇𝑃𝑖 + 𝐹𝑁𝑖
(5)

𝐹 _𝑆𝑐𝑜𝑟𝑒𝑀𝑖𝑐𝑟𝑜 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜 (6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
Fig. 13. DC Ensemble model architecture.

Fig. 14. IoT Ensemble model architecture.

We also discussed in Section 4.1 that we consider the open-set when
calculating the False Positives (FP) and True Negatives (TN) only (not
considered for false negatives or true positives as the classifier is trained
only on closed-set data). Therefore, the open-set accuracy will only
affect the precision value as recall which is calculated based on TP
and FN has no effect from open-set samples. At the same time, the
open-set in our experiments is comparatively larger than the closed-set
in accordance with the real world, and therefore, a small drop in the
open-set accuracy will significantly increase the number of FPs (open-
set samples incorrectly classified as a known class are FPs) thereby
13
Table 9
Sample F_Score calculation.

Closed-set acc Open-set acc TP FP FN Precision Recall F_Score

100.00 100.0 200 0 0 1 1 1
95.00 97.0 190 28 10 0.870 0.950 0.90
97.50 95.0 195 43 5 0.820 0.975 0.89
70.00 90.0 140 113 30 0.550 0.820 0.66
90.00 68.0 180 262 20 0.410 0.900 0.56

lowering the precision and F_Score. We further demonstrate this using
a toy example in Table 9.

In Table 9, we present five example scenarios with varying TP, FP,
FN values and corresponding closed-set and open-set accuracy values,
with the F_Score calculated as explained above.

According to Table 9

• Row 1: All closed-set and open-set samples are correctly classified
and hence F_Score is 1.

• Row 2: >95% As the open-set accuracy is high, FPs are very low,
resulting in >0.85 precision and 0.9 F_Score.

• Row 3: Open-set accuracy is 2% lower than the row above while
the closed-set accuracy is 2% higher than the row above.

– The 2% drop in open-set accuracy compared to the row
above resulted in a 53.57% increase in the FPs (As the
open-set is large, a large number of samples needs to be
misclassified to change the open-set accuracy even by a
small amount.).

– The 2% increase in closed-set accuracy compared to the
row above resulted in only a 2.63% increase in TPs (As
the closed-set is relatively smaller, only a small number
of samples needs to be correctly classified to change the
open-set accuracy by a small amount.)

Even though the increase in closed-set accuracy was the same
as the decrease in open-set accuracy, overall F_Score dropped by
1.12%.

• Row 4 and 5: Open-set accuracy of row 5 is 22% lower than that
of row 4 while the closed-set accuracy is 20% higher than row 4.

– The 22% drop in open-set accuracy resulted in a 131.85%
increase in the FPs.

– The 20% increase in closed-set accuracy resulted in only a
28.57% increase in TPs.

Even though the increase in closed-set accuracy was similar to
the decrease in open-set accuracy, overall F_Score dropped by
15.15%.

Accordingly, we can see that a higher open-set accuracy always
results in a higher F1_Score due to the class imbalance between the
closed-set and the open-set. It should be noted that this class imbalance
reflects the real-world scenario where the unknown open-set is much
larger compared to the known closed-set.

References

[1] S. Chen, R. Wang, X. Wang, K. Zhang, Side-channel leaks in web applications: A
reality today, a challenge tomorrow, in: 2010 IEEE Symposium on Security and
Privacy, IEEE, 2010, pp. 191–206.

[2] P. Sirinam, M. Imani, M. Juarez, M. Wright, Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning, in: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, 2018, pp.
1928–1943.

[3] V. Rimmer, D. Preuveneers, M. Juárez, T. van Goethem, W. Joosen, Automated
website fingerprinting through deep learning, in: 25th NDSS, 2018.

[4] Y. Li, Y. Huang, R. Xu, S. Seneviratne, K. Thilakarathna, A. Cheng, D. Webb, G.
Jourjon, Deep content: Unveiling video streaming content from encrypted wifi
traffic, in: 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA), IEEE, 2018.

http://refhub.elsevier.com/S1389-1286(23)00436-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb1
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb2
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb3
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb3
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb3
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb4

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
[5] K.N. Choi, A. Wijesinghe, C.M.M. Kattadige, K. Thilakarathna, S. Seneviratne, G.
Jourjon, SETA: Scalable encrypted traffic analytics in multi-Gbps networks, in:
2020 IEEE 45th Conference on Local Computer Networks (LCN), IEEE, 2020, pp.
389–392.

[6] S.E. Coull, K.P. Dyer, Traffic analysis of encrypted messaging services: Apple
imessage and beyond, ACM SIGCOMM Comput. Commun. Rev. 44 (5) (2014)
5–11.

[7] C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun, B. Wang,
Fingerprinting encrypted voice traffic on smart speakers with deep learning, in:
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2020, pp. 254–265.

[8] P. Sirinam, N. Mathews, M.S. Rahman, M. Wright, Triplet fingerprinting: More
practical and portable website fingerprinting with n-shot learning, in: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1131–1148.

[9] A. Bendale, T.E. Boult, Towards open set deep networks, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
1563–1572.

[10] Open Networking Foundation, P4 open source programming language, 2023, URL
https://p4.org/.

[11] M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie, S.S.R. Kananda, C.-H. Wu,
M. Ghobadi, Using trio: Juniper networks’ programmable chipset - for emerging
in-network applications, in: Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, Association for Computing Machinery, New York, NY, USA, 2022,
pp. 633–648, http://dx.doi.org/10.1145/3544216.3544262.

[12] D. Webb, Applying softmax classifiers to open set, in: T.D. Le, K.-L. Ong, Y. Zhao,
W.H. Jin, S. Wong, L. Liu, G. Williams (Eds.), Data Mining, Springer Singapore,
Singapore, 2019, pp. 104–115.

[13] L. Yang, A. Finamore, F. Jun, D. Rossi, Deep learning and zero-day traffic
classification: Lessons learned from a commercial-grade dataset, IEEE Trans.
Netw. Serv. Manag. 18 (4) (2021) 4103–4118.

[14] Y. Wang, H. Xu, Z. Guo, Z. Qin, K. Ren, SnWF: Website fingerprinting attack by
ensembling the snapshot of deep learning, IEEE Trans. Inf. Forensics Secur. 17
(2022) 1214–1226.

[15] T. Dahanayaka, G. Jourjon, S. Seneviratne, Understanding traffic fingerprinting
CNNs, in: 2020 IEEE 45th Conference on Local Computer Networks (LCN), IEEE,
2020, pp. 65–76.

[16] R. Schuster, V. Shmatikov, E. Tromer, Beauty and the burst: Remote identifica-
tion of encrypted video streams, in: 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 1357–1374.

[17] C.C. Aggarwal, A. Hinneburg, D.A. Keim, On the surprising behavior of distance
metrics in high dimensional space, in: J. Van den Bussche, V. Vianu (Eds.),
Database Theory — ICDT 2001, Springer Berlin Heidelberg, Berlin, Heidelberg,
2001, pp. 420–434.

[18] K. Onishi, M. Hashimoto, et al., Memory efficient training using lookup-
table-based quantization for neural network, in: 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), IEEE, 2020,
pp. 251–255.

[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D.
Kalenichenko, Quantization and training of neural networks for efficient integer-
arithmetic-only inference, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2704–2713.

[20] A. Panchenko, L. Niessen, A. Zinnen, T. Engel, Website fingerprinting in onion
routing based anonymization networks, in: Proceedings of the 10th Annual ACM
Workshop on Privacy in the Electronic Society, 2011, pp. 103–114.

[21] T. Wang, I. Goldberg, Improved website fingerprinting on tor, in: Proceedings
of the 12th ACM Workshop on Workshop on Privacy in the Electronic Society,
2013, pp. 201–212.

[22] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, K. Wehrle,
Website fingerprinting at internet scale, in: NDSS, 2016.

[23] K. Park, H. Kim, Encryption is not enough: Inferring user activities on
KakaoTalk with traffic analysis, in: International Workshop on Information
Security Applications, Springer, 2015, pp. 254–265.

[24] C. Wright, et al., Spot me if you can: Uncovering spoken phrases in encrypted
VoIP conversations, in: 2008 IEEE S&P, 2008.

[25] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, G.M. Masson, Uncovering spoken
phrases in encrypted voice over IP conversations, ACM Trans. Inf. Syst. Secur.
13 (4) (2010) 35.

[26] A.M. White, A.R. Matthews, K.Z. Snow, F. Monrose, Phonotactic reconstruction
of encrypted voip conversations: Hookt on fon-iks, in: 2011 IEEE Symposium on
Security and Privacy, IEEE, 2011, pp. 3–18.

[27] Y. Zhu, H. Fu, Traffic analysis attacks on skype VoIP calls, Comput. Commun.
34 (10) (2011) 1202–1212.

[28] A. Reed, M. Kranch, Identifying https-protected netflix videos in real-time, in:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, 2017, pp. 361–368.
14
[29] G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, A.A. Ghorbani, Characterization
of encrypted and vpn traffic using time-related, in: Proceedings of the 2nd
International Conference on Information Systems Security and Privacy (ICISSP),
2016, pp. 407–414.

[30] V.F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Appscanner: Automatic fin-
gerprinting of smartphone apps from encrypted network traffic, in: 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), IEEE, 2016, pp.
439–454.

[31] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traffic
classification with one-dimensional convolution neural networks, in: 2017 IEEE
International Conference on Intelligence and Security Informatics (ISI), IEEE,
2017, pp. 43–48.

[32] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, M. Saberian, Deep
packet: A novel approach for encrypted traffic classification using deep learning,
Soft Comput. 24 (3) (2020) 1999–2012.

[33] T. Shapira, Y. Shavitt, Flowpic: Encrypted internet traffic classification is as easy
as image recognition, in: IEEE INFOCOM 2019-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), IEEE, 2019, pp. 680–687.

[34] W.J. Scheirer, A. de Rezende Rocha, A. Sapkota, T.E. Boult, Toward open set
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (7) (2012) 1757–1772.

[35] M.D. Scherreik, B.D. Rigling, Open set recognition for automatic target clas-
sification with rejection, IEEE Trans. Aerosp. Electron. Syst. 52 (2) (2016)
632–642.

[36] C. Geng, S.-j. Huang, S. Chen, Recent advances in open set recognition: A survey,
IEEE Trans. Pattern Anal. Mach. Intell. 43 (10) (2020) 3614–3631.

[37] S. Prakhya, V. Venkataram, J. Kalita, Open set text classification using CNNs, in:
Proceedings of the 14th International Conference on Natural Language Processing
(ICON-2017), NLP Association of India, Kolkata, India, 2017, pp. 466–475, URL
https://aclanthology.org/W17-7557.

[38] Z. Ge, S. Demyanov, Z. Chen, R. Garnavi, Generative OpenMax for multi-
class open set classification, in: British Machine Vision Conference 2017, British
Machine Vision Association and Society for Pattern Recognition, 2017.

[39] D. Miller, N. Sunderhauf, M. Milford, F. Dayoub, Class anchor clustering: A loss
for distance-based open set recognition, in: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2021, pp. 3570–3578.

[40] A.R. Dhamija, M. Günther, T. Boult, Reducing network agnostophobia, Adv.
Neural Inf. Process. Syst. 31 (2018).

[41] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, T. Naemura, Classification-
reconstruction learning for open-set recognition, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4016–4025.

[42] P. Oza, V.M. Patel, C2ae: Class conditioned auto-encoder for open-set recognition,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2307–2316.

[43] I. Jo, J. Kim, H. Kang, Y.-D. Kim, S. Choi, Open set recognition by regularising
classifier with fake data generated by generative adversarial networks, in:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2018, pp. 2686–2690.

[44] K. Lee, H. Lee, K. Lee, J. Shin, Training confidence-calibrated classifiers for
detecting out-of-distribution samples, in: International Conference on Learning
Representations, 2018.

[45] C. Geng, S. Chen, Collective decision for open set recognition, IEEE Trans. Knowl.
Data Eng. 34 (1) (2020) 192–204.

[46] J. Li, C. Gu, L. Luan, F. Wei, W. Liu, Few-shot open-set traffic classification based
on self-supervised learning, in: 2022 IEEE 47th Conference on Local Computer
Networks (LCN), IEEE, 2022, pp. 371–374.

[47] E. Fiesler, A. Choudry, H.J. Caulfield, Weight discretization paradigm for optical
neural networks, in: Optical Interconnections and Networks, Vol. 1281, SPIE,
1990, pp. 164–173.

[48] W. Balzer, M. Takahashi, J. Ohta, K. Kyuma, Weight quantization in Boltzmann
machines, Neural Netw. 4 (3) (1991) 405–409.

[49] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding, in: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016, URL http://arxiv.org/abs/1510.
00149.

[50] J. Choi, Z. Wang, S. Venkataramani, P.I.-J. Chuang, V. Srinivasan, K. Gopalakr-
ishnan, Pact: Parameterized clipping activation for quantized neural networks,
2018, arXiv preprint arXiv:1805.06085.

[51] B. Zhuang, C. Shen, M. Tan, L. Liu, I. Reid, Towards effective low-bitwidth
convolutional neural networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7920–7928.

[52] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, A. Joulin, Training
with quantization noise for extreme model compression, 2020, arXiv preprint
arXiv:2004.07320.

http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb5
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb6
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb7
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb8
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb9
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb9
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb9
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb9
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb9
https://p4.org/
http://dx.doi.org/10.1145/3544216.3544262
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb12
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb12
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb12
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb12
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb12
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb13
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb13
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb13
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb13
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb13
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb14
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb14
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb14
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb14
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb14
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb15
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb15
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb15
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb15
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb15
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb16
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb17
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb18
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb19
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb20
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb20
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb20
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb20
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb20
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb21
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb21
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb21
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb21
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb21
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb22
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb22
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb22
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb23
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb23
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb23
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb23
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb23
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb24
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb24
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb24
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb25
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb25
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb25
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb25
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb25
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb26
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb26
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb26
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb26
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb26
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb27
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb27
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb27
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb28
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb28
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb28
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb28
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb28
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb29
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb30
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb31
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb32
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb33
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb33
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb33
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb33
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb33
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb34
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb34
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb34
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb35
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb35
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb35
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb35
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb35
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb36
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb36
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb36
https://aclanthology.org/W17-7557
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb38
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb38
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb38
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb38
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb38
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb39
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb39
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb39
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb39
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb39
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb40
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb40
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb40
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb41
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb41
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb41
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb41
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb41
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb42
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb42
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb42
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb42
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb42
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb43
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb44
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb44
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb44
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb44
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb44
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb45
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb45
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb45
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb46
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb46
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb46
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb46
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb46
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb47
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb47
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb47
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb47
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb47
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb48
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb48
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb48
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1805.06085
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb51
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb51
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb51
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb51
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb51
http://arxiv.org/abs/2004.07320

Computer Networks 236 (2023) 109991T. Dahanayaka et al.
[53] B. Ron, N. Yury, H. Elad, et al., Post training 4-bit quantization of convolution
networks for rapid-deployment, in: Advances in Neural Information Processing
Systems, Vancouver, Canada, 2019, pp. 7948–7956.

[54] A. Finkelstein, U. Almog, M. Grobman, Fighting quantization bias with bias,
2019, arXiv preprint arXiv:1906.03193.

[55] E. Meller, A. Finkelstein, U. Almog, M. Grobman, Same, same but different:
Recovering neural network quantization error through weight factorization, in:
International Conference on Machine Learning, PMLR, 2019, pp. 4486–4495.

[56] M. Nagel, M.v. Baalen, T. Blankevoort, M. Welling, Data-free quantization
through weight equalization and bias correction, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1325–1334.

[57] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, D. Soudry, Improving post training
neural quantization: Layer-wise calibration and integer programming, 2020,
arXiv preprint arXiv:2006.10518.

[58] H. Wu, P. Judd, X. Zhang, M. Isaev, P. Micikevicius, Integer quantization for
deep learning inference: Principles and empirical evaluation. arxiv 2020, 2004,
arXiv preprint arXiv:2004.09602.

[59] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res.
9 (11) (2008).

Thilini Dahanayaka is currently working as a research
associate at the School of Computer Science, University of
Sydney where she completed her Ph.D degree in early 2023.
She received her B.Sc Eng degree specialized in Computer
Engineering from University of Peradeniya, Sri Lanka in
2017. Her major research interest is in Cyber Security with a
main focus on machine learning related threats on encrypted
traffic flows.

Yasod Ginige is currently following his bachelors, special-
ized in Electronics and Telecommunication engineering at
the University of Moratuwa. Also, he works as a visiting
instructor at the department of Electronics and Telecom-
munication Engineering, University of Moratuwa. His major
research interests are applications of machine learning in
Cyber security and IoT related areas.
15
Yi Huang is currently a PhD student in the School of Com-
puter Science at University of Technology Sydney (UTS).
She received her B.S. degree in Communication Engineering
from University of Electronic Science and Technology of
China (UESTC) in 2005. She received her M.S. degree in
Communication and Information System from Xi’an Jiaotong
University (XJTU) in 2008. Her research interests include
classification, anomaly detection and few-shot learning tech-
niques and the application of deep learning to network
traffic analysis.

Guillaume Jourjon is senior researcher at Data61-CSIRO.
He received his Ph.D. from the University of New South
Wales and the Toulouse University of Science in 2008.
Prior to his Ph.D., he received a Engineer Degree from the
ENSICA. He also received a DEUG in Physics and Chemistry
(Major) and Mathematic (Minor) from the University of
Toulouse III. His research areas of interest are related
to Distributed Computing, Software Defined Network, in-
Network Computing, and Security and Privacy of Networked
Systems.

Suranga Seneviratne is a Lecturer in Security at the School
of Computer Science, The University of Sydney. He received
his Ph.D. from University of New South Wales, Australia
in 2015. His current research interests include privacy and
security in mobile systems, AI applications in security,
and behavior biometrics. Before moving into research, he
worked nearly six years in the telecommunications industry
in core network planning and operations. He received his
bachelor degree from University of Moratuwa, Sri Lanka in
2005.

http://refhub.elsevier.com/S1389-1286(23)00436-X/sb53
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb53
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb53
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb53
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb53
http://arxiv.org/abs/1906.03193
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb55
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb55
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb55
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb55
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb55
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb56
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb56
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb56
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb56
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb56
http://arxiv.org/abs/2006.10518
http://arxiv.org/abs/2004.09602
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb59
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb59
http://refhub.elsevier.com/S1389-1286(23)00436-X/sb59

	Robust open-set classification for encrypted traffic fingerprinting
	Introduction
	Background
	Open-set classification methods
	Background class
	Softmax thresholding
	OpenMax
	Ensemble learning

	Datasets
	Data preparation

	Deep learning models

	Framework for Robust Open-Set Traffic Fingerprinting
	Regularized model
	k-Logit Neighbor Distance-based open-set classification
	Quantization

	Results
	Evaluation metrics
	Regularized Models
	k-Logit Neighbor Distance method
	Quantization
	Result Analysis

	Related Work
	Traffic fingerprinting
	Open-set classification
	Quantization

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. Naive Open-Set Classification Methods
	Background class method
	Softmax threshold method

	Appendix B. Model Architectures
	Ensemble model architectures

	Appendix C. F_Score
	References

