
Jia et al. Journal of Cloud Computing (2023) 12:150
https://doi.org/10.1186/s13677-023-00521-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

sRetor: a semi‑centralized regular topology
routing scheme for data center networking
Zequn Jia1,2, Qiang Liu1* and Yantao Sun1 

Abstract 

The performance of the data center network is critical for lowering costs and increasing efficiency. The software-
defined networks (SDN) technique has been adopted in data center networks due to the recent emergence
of advanced network control and flexibility demand. However, the rapid growth of data centers increases the com-
plexity of control and management processes. With the rapid adoption of SDN, the following critical challenges arise
in large-scale data center networks: 1) extra packet delay on the separated control plane and 2) controller bottleneck
in large-scale topology.

 We propose sRetor in this paper, a topology-description-language-based routing approach for regular data center
networks that leverages data center networks’ regularity. sRetor aims to reduce the packet waiting time and control-
ler workload in software-defined data center networking. We propose to move partial forwarding decision-making
from the controller to switches to eliminate unnecessary control plane delay and reduce controller workload. There-
fore the sRetor controller is only responsible for troubleshooting complicated failures and on-demand traffic schedul-
ing. Our numerical and experimental results show that sRetor reduces the flow start time by over 68% and the fail-
over time by over 84%.

Keywords  Data center networking, Regular network topologies, Software-defined networking, Topology description
language

Introduction
With the development of technologies such as cloud
computing [1, 2], virtualization [3] and 5G/6G commu-
nication [4–6], the scale effect of data centers is attract-
ing the attention of both academia and industry. Various
large corporations, such as Google and Microsoft, are
building their own data centers by reducing the operation
cost of their information systems, and the scale of their
data centers is constantly expanding [7]. However, as one
of the critical components of data centers, the network

gradually becomes a bottleneck limiting the growth of
the data center. Traditional link-state routing protocols
such as OSPF are widely used, yet they generate heavy
routing message overhead and consume long conver-
gence time in large-scale data center networks [8].

To improve the efficiency of data center networks,
researchers have conducted studies on topology struc-
tures and routing methods for data center networks,
such as Fat-Tree [9], DCell [10] and BCube [11]. Many
of these routing methods are topology-aware routing
methods, i.e., specifically designed for the corresponding
network topology and optimized according to the topol-
ogy characteristics. As for Fat-Tree, the authors designed
a two-level routing table and the corresponding rout-
ing methods to generate different routing tables accord-
ing to the different roles of switches (core switches, edge
switches, etc.), thus achieving efficient and scalable rout-
ing methods. Guo, et al. [11] designed the BCube Source

*Correspondence:
Qiang Liu
liuq@bjtu.edu.cn
1 School of Computer and Information Technology, Beijing Jiaotong
University, Beijing, China
2 School of Electrical and Data Engineering, University of Technology
Sydney, Sydney, Australia

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00521-8&domain=pdf

Page 2 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

Routing algorithm to perform an efficient path selection
by leveraging BCube’s topological property of hierarchi-
cal structure and connection features. In addition to Fat-
tree [9] and BCube, other network topologies have been
proposed in recent years, such as LaScaDa [12] , BCDC
[13] and more in [14–18].

Although these emerging network topology structures
and the corresponding routing methods provide high
forwarding efficiency for data center networks, these
algorithms are incompatible with each other, therefore
implementing these topologies and integrating them into
a data center network is complicated and costly. Thus
a generic topology-aware routing algorithm that can
handle a wide range of data center network topologies is
critical [19].

The advent of software-defined networking has enabled
addressing the requirements of contemporary data center
networks [20]. SDN is able to provide a more flexible and
programmable networking environment [21]. Many pre-
vious works [22–29] have demonstrated the potential of
SDN in harmonizing various routing methods and inte-
gration in data center networks. For instance, Portland
[22] employs a scalable, fault-tolerant layer 2 data center
network fabric that leverages SDN for better control and
management. Similarly, Hedera [23] introduces dynamic
flow scheduling in data center networks, which is made
possible through the centralized control provided by
SDN. Moreover, stateless flow-zone switching has been
proposed to achieve reliable and lightweight source rout-
ing in data center networks, again facilitated by SDN [27].

Even though these works have made significant con-
tributions, they focus on specific aspects of DCN man-
agement and do not fully exploit the potential of SDN
in the context of topology-aware routing across a wide
range of DCN topologies. In our previous work [30],
we introduced controller-side Regular Topology Rout-
ing (cRetor), a routing method designed for regular data
center network topologies that capitalizes on the capa-
bilities of software-defined networking. Central to cRetor
is the domain-specific Topology Description Language
(TPDL), which is instrumental in defining node proper-
ties and connection relationships in regular toopologies.
Furthermore, cRetor incorporates an efficient routing
algorithm based on the A-Star algorithm [31] in the SDN
controller, which integrates the static topology repre-
sented in TPDL with the dynamic programming capabili-
ties enabled by SDN.

The TPDL serves as a cornerstone of cRetor. It suc-
cinctly delineates the architecture of regular topologies
by categorizing nodes based on their attributes such
as location and functionality. TPDL provides network
devices with a basic perspective of the network topol-
ogy, encompassing both nodes and connections, while

also demonstrating considerable scalability. In addition, it
puts forth the innovative concept of a distance formula,
which explicitly articulates the mathematical relation-
ships governing distances between nodes. This allows
routing algorithms to efficiently ascertain inter-nodal dis-
tances with reduced overhead. By streamlining this foun-
dational computation, TPDL enhances routing efficiency.

While offering centralized, dynamic management of
network devices and flow scheduling, cRetor faces chal-
lenges inherent to SDN. The overhead of OpenFlow com-
munications between switches and controllers grows
rapidly as networks expand. Although individual switches
generate minimal OpenFlow traffic, cumulative overhead
across potentially hundreds of thousands of switches in
large-scale data centers can strain controllers. This prob-
lem is compounded by the fact that controller processing
capacity often bottlenecks SDN at scale [32]. Moreover,
despite cRetor’s ingenious replacement of LLDP discov-
ery with TPDL-based topology management, its reli-
ance on OpenFlow’s Packet-In mechanism for initializing
flow paths remains. Thus, controllers still must process
Packet-In messages for each new flow, risking overload
as flow quantities surge. This on-demand computation
also prolongs first-packet latency for flows, potentially
violating the ultra-low latency demands of time-sensitive
applications.

Multi-controller solutions are frequently utilized in
typical SDN networks to tackle the scalability challenge
[33–35]. However, multiple controllers greatly increase
the complexity of the network and introduce numerous
new obstacles to SDN management and scheduling [36].
For example, multi-controller solutions often mean that
optimization problems such as data synchronization,
load balancing and switch assignment between control-
lers need to be handled. In these optimization problems,
an optimal placement may not be possible, therefore
careful planning is required to identify an appropriate
trade-off among the metrics. As a result, these problems
are rarely handled optimally at a reasonable cost [37].
Unlike them, we aim to handle the controller bottleneck
problem in a novel approach on the basis of cRetor.

This paper presents an enhanced version of cRetor,
sRetor (semi-centralized Regular Topology Routing),
which is a semi-centralized routing scheme for data
center networks. The key difference between sRetor and
cRetor is that in cRetor, TPDL is only applied to the con-
troller while in sRetor it is applied to both the control-
ler and switches. This allows the switches to be equipped
with the topology information of the entire network as
well as the ability to instantly determine the distance
between any two nodes using the TPDL’s distance for-
mula locally. The sRetor switches will fetch the TPDL file
at the startup stage, and after initial setup, the switches

Page 3 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

will be able to run independently. Since the basic struc-
ture of the data center networks will not change, there is
no need to update the TPDL file.

Unlike typical SDNs where the control plane is entirely
centralized on the controller, some fundamental control
plane tasks are distributed on switches in sRetor. With-
out the need to consult the controller, the fundamental
forwarding function can be achieved in switches using
TPDL. The switches in sRetor are similar to a standard
OpenFlow switch as they can interact with the control-
ler through the OpenFlow protocol and receive flow table
entries shared by the controller. As a result, in sRetor, the
high flexibility of standard SDN is preserved, allowing the
controller to control the switch’s behavior when neces-
sary, while offloading some of the forwarding decisions to
the switch and reducing the processing pressure on the
controller.

The main contributions of this paper are listed as
fellow:

•	 We present the modeling of packet waiting time and
controller overhead in an SDN-enabled data center
networking.

•	 We propose a TPDL-based routing scheme for regu-
lar SD-DCN on the basis of the modeling and analy-
sis. The proposed method is able to reduce the packet
waiting time in switches and controller workload by
calculating forwarding paths locally.

•	 We implement and evaluate sRetor on the Estinet
emulation platform and compared it with our pre-
vious work and other routing methods. Experiment
results show that sRetor reduces the flow start time
over 68% and the fail-over time over 84%.

The rest of this paper is organized as follows: Related
work section introduces the previous related research
work, including data center network routing methods
and network overhead reduction in SDN; System model
section presents our system modeling on the packet wait-
ing time and controller workload; the system architecture
is introduced in sRetor architecture section, followed by
the detailed introduction of the proposed forwarding
algorithm in Routing algorithms on switches; Numeri-
cal results and Evaluation sections present the numerical
results and experimental results respectively; Finally, the
last section concludes this article.

Related work
Regular data center networking and routing schemes
Many data center network architectures, such as Fat-tree
and BCube, have been proposed to improve the perfor-
mance of data center networks. Most of these new net-
work architectures are built on recursive and iterative

approaches. Thus, they tend to have a regular network
topology, which means their connecting and addressing
are usually in a constant or definite pattern [38]. In addi-
tion, for better efficiency and performance, researchers
design routing methods corresponding to the structure
of these topologies, i.e., topology-aware routing algo-
rithms, achieving more efficient routing leveraging the
construction rules of network topologies.

Al-Fares, et al. [9] constructed a large-scale Fat-tree
topology for data centers using conventional commercial
switches. They also designed a corresponding addressing
method by combining the characteristics of the network
topology, where the nodes’ IP addresses are assigned
according to the type, location and other attributes of the
nodes. A new two-layer routing method is also proposed,
which can directly perform routing based on nodes’ IP
addresses and connection relationships instead of a com-
plex routing interaction process. The suffix matching
method is adopted to forward packets to different up-link
interfaces at the edge and aggregation switches based on
the host ID of the destination address, making full use of
the multi-path feature of the Fat-tree network for load
balancing.

Besides, other researchers are still working on improv-
ing the routing performance by leveraging the structure
of the Fat-tree topology. Liu, et al. [39] proposed a port-
based forwarding load-balancing routing method for the
Fat-tree topology, which relies on the distinctive address-
ing scheme of the Fat-tree topology. Edward, et al. [40]
proposed the Predictive Equal-Cost Multi-Path protocol
in Fat-tree based data center networks, which is inspired
by the multi-path diversity of the Fat-tree topology.

In contrast to Fat-tree, BCube [11] is a server-centric
data center network architecture, where routing and
decisions are made on the server nodes in the network.
The topology of BCube could be defined recursively, and
numerous network topologies of various sizes can be
generated by specifying the number of layers k, which
is also a regular network topology. BCube employs the
BSR (BCube Source Routing) routing protocol, which
utilizes the BCube’s topology and multi-path capabilities
to accomplish load balancing and fault handling without
link-state distribution.

In addition to the classic data center network topolo-
gies, such as Fat-tree, BCube and VL2 [41], other regu-
lar data center network topologies have been proposed.
BCDC [13] is a high-performance server-centric data
center network topology based on the crossed cube, a BC
network (Bijective Connection network). An n-dimen-
sional BCDC network ( Bn ) can be defined recursively
and is capable of supporting much more network nodes
than the Fat-tree topology (with 16-port switches, Fat-
tree contains only 1024 servers, while BCDC supports up

Page 4 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

to 524,288 servers). The authors also proposed efficient
topology-aware routing algorithms for one-to-one, one-
to-many, and one-to-all running on BCDC.

LaScaDa [12] uses small port count switches to connect
network nodes to clusters with a lower degree, and then
connects the clusters to each other following a particular
pattern. Therefore, LaScaDa achieves better performance
in terms of scalability, average path length, and bisection
bandwidth. The authors also propose a new hierarchical
row-based routing algorithm to implement packet for-
warding in LaScaDa.

Researchers of new architectures mentioned above
have designed specific routing techniques for each net-
work topology based on the peculiarities of the con-
nectivity links between nodes. However, these routing
methods are not generic and are optimized only for a
given topology, which introduces practical deployment
challenges. Based on the foregoing observations, we have
identified these problems and attempted to resolve them
by proposing sRetor. Benefiting from the regular topol-
ogy description capability of TPDL, sRetor is able to per-
form routing by leveraging the topological structures of
the regular network topology. This routing functionality
is generic and works in any data center network topol-
ogy, addressing the deployment and upgrade difficulties
of modern data center networks.

Overhead reduction on software‑defined data center
networking
The application of SDN in data centers has enabled data
center managers to have finer-grained and timely control
over data center networks. However, the scalability issue
has become a major bottleneck limiting the continued
development of software-defined data center networking
(SD-DCN). Many overhead reduction methods [42–49]
have been developed to improve the efficiency of SD-
DCN for overcoming this issue.

In Wang, et al. [42], the authors implemented a
dynamic message polling technique on the controller
to obtain the state information of the switch. With the
dynamic exponential fallback algorithm, the controller
can adjust the interval of querying the switch state based
on the current state of the switch, therefore reducing the
workload and communication overhead of the controller.

Kotani, et al. [44] proposed a method to reduce the
CPU load of SDN controllers and control traffic in Open-
Flow switches by limiting the number of unimportant
Packet-In messages. The authors divided Packet-In mes-
sages into three categories: State Change, Flow Setup and
Forward, and designed a filter to drop the unimportant
Forward messages. Therefore the CPU utilization and
bandwidth usage are reduced when heavy flows start, not

affecting the expected establishment of other non-heavy
flows.

Jia, et al. [45, 46] chose to reduce the runtime overhead
of SD-DCN by reducing and balancing the flow table
entries, where multi-protocol label switching (MPLS) is
adopted for encapsulating routing information. Nodes
are selected by their K Similar Greedy Tree algorithm
(KSGT) to install flow entries to reduce and balance flow
entries among switches. Compared to the schemes that
install MPLS flow entries in all nodes, KSGT can reduce
about 60% of flow entries.

In Baddeley, et al. [48], the authors proposed µSDN
for IoT networks, which applied several approaches to
reduce the overhead of SDNs to accommodate lower
bandwidth. For example, the µSDN adopts source rout-
ing to reduce the overhead at intermediate nodes. Throt-
tle control messages are also adopted to limit duplicate
control message requests from consuming extra control
bandwidth. Re-using flow table matches/actions reduces
flow table entries by merging flow entries with the same
destination address.

In Pranata, et al. [49], the authors proposed an over-
head reduction framework for SD-DCN, which optimizes
SD-DCN at the packet level and flow level to reduce the
runtime traffic overhead. At the packet level, the frame-
work ensures that only the first packet of each flow is
sent to the controller for reducing redundant Packet-In
messages. At the flow level, firstly, the controller mirrors
the received flows to the subsequent switches in the for-
warding path, to reduce the controller load; secondly, the
framework uses MPLS to add forwarding information
directly to the data messages to reduce the installation
overhead of flow rules. Moreover, to solve the problem
of numerous forwarding information entries and data
frame length limits, the framework supports splitting the
complete MPLS data based on the path length and frame
length limits and distributing it to multiple intermediate
switches in the forwarding path.

Maliha, et al. [50] focused on the large number of net-
work broadcast packets caused by massive ARP requests
in the network. They proposed the ARP-OR framework
for efficient APR broadcast reduction and redundancy
suppression in SD-DCN. This approach also reduces the
bandwidth and computing resource overhead of the con-
trol plane.

sRetor addresses the excessive control overhead
of SD-DCN from a different perspective. In the
conventional SDN networks, the switches need to
periodically collect topology information (e.g., by
broadcasting LLDP packets to its neighboring nodes),
and then report it to the controller. However in sRetor,
TPDL is deployed as a priori knowledge to the control-
lers and switches, allowing the controllers and switches

Page 5 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

to obtain a basic consensus of the network topology.
Controllers can reserve their limited resources for
monitoring topology changes and delivering control
messages. Thus controllers are able to support more
extensive networks, which makes sRetor more scalable.

System model
A typical architecture of software-defined data center
networking is shown in Fig. 1, where the SDN switches
are dummy switches and only responsible for executing
actions from its flow table. The SDN controller is con-
nected to each switch, either in-band or out-of-band.
Here we ignore the details of their secure channel and
simplify the communication delay between the control-
ler and switches as constant value tRTT .

In this section, we present the modeling and analy-
sis of both packet delay and controller workload in this
SD-DCN architecture.

Delay modeling
When a packet n is sent from one switch to another, the
point-to-point delay is shown below [51, 52].

where the tqueue(n) is the queuing delay, the ttrans(n) is the
transmission delay and tprop(n) is the propagation delay.
tproc(n) is the processing delay and our focus is to reduce
it.

In the traditional SDN solutions [30, 53], the break-
down of processing delay is illustrated in Fig. 2 and its
steps are as follows:

•	 Step 1: Receive a packet from the ingress port.
•	 Step 2: Look up matched flow entry in the flow table,

which results in looking up delay tfl.
•	 Step 3.1: Execute flow entry if found, which leads to

forwarding delay tfw.
•	 Step 3.2: Send packet to the controller via Packet-In

message if no matched entry is found, and it takes
tRTT /2.

•	 Step 4 & 5: The controller will make the decision for
it and send a Flow-Mod message to the switch. This
will produce controller delay tctrl and another tRTT /2.

•	 Step 6: Execute the newly inserted action to forward
this packet, which also needs tfw.

Let T = tRTT + tctrl be the total delay of communica-
tion with the controller, i.e., the total waiting time at
the switch. The overall processing delay is defined as
follows [54].

When packet n hits the flow table Iα(n) = 0 , the
packet n will be forwarded directly according to the

(1)τ (n) = tqueue(n)+ tproc(n)+ ttrans(n)+ tprop(n)

(2)
tproc(n) = tfl + tfw + Iα(n) · T

Iα(n) =
0, if packet n hits the flow table;
1, else.

Fig. 1  System Diagram of sRetor scheme

Fig. 2  Processing delay in cRetor(SDN) switches

Page 6 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

flow table actions and waiting time T is not needed.
While Iα(n) = 1 , i.e., the packet n did not have any
match in the flow table, the packet will be sent to the
controller, then the switch will need to wait for T of
time. There are several scenarios that will trigger that
Iα(n) = 1:

•	 Packet n is the first packet of a flow and there is no
entry for this flow in the table.

•	 The existing next-hop node in the table has failed
and the existing related flow entry is invalid.

•	 Other reasons such as flow entry deletions due to
overflow or expiration.

During the waiting duration T, subsequent packets of
the same flow may arrive. These packets will be buffered
in a pending list and wait until the switch receives the
controller’s decision as proposed in Pranata, et al. [49].

Let t = 0 denote the time when the first packet is sent
to the controller. Considering the packets that arrive
after the first one and before the switch receives the
feedback from the controller, i.e., between (0, T]. Their
processing time is indicated as follows.

where tn is the arrival time of packet n between 0 and T,
and hence T − tn denotes the waiting time of the packet.
Define the waiting time of packet n between 0 and T as
twt . We assume packets follow a Poisson Point process
with a rate � , the CDF of the arrival time tn follows [55]:

Where N(T) is the total number of consequent pack-
ets that arrives between 0 and T. The CDF of twt follows:

And the expectation of tproc is shown below,

Where phit = P(Iα(n) = 0) . As a consequence, to
ensure lower processing delay we have to minimise
Ftwt (t) as below.

(3)
tproc(n) = tfl + tfw + Iα(n) · (T − tn)

Iα(n) =

{

0, if packet n hits the flow table;
1, else.

(4)Ftn(t) = 1−

N (T)−1
∑

i=0

(�t)i

i!
e−�t

(5)

Ftwt (t) = 1− Ftn(T − t) =

N (T)−1
∑

i=0

(�(T − t))i

i!
e
−�(T−t)

(6)

E(tproc) = tfl + tfw + (1− phit) · T ·

(

1−
N (T)

�

)

It is challenging to reduce T in a fixed topology struc-
ture. Therefore we propose to reduce the overall pro-
cessing delay tproc . The forwarding decision (forwarding
path for this flow) generated in the controller could be
divided into two categories: A) a path that includes cur-
rent nodes and its subsequent nodes, and B) a new path
that does not go via the current node. The probability of
the former choice is usually higher than the latter as the
controller will only set up subsequent nodes instead of
all nodes in the new path. To reduce tproc , we would like
to find the path in category A at a local node instead
of sending packets remotely and experience controller-
switch round-trip time tRTT and tctrl.

A node should have knowledge of candidate neigh-
bours and destination nodes. However typical SDN
switches are dummy switches, which means that they
do not collect topology information and therefore they
are unable to make forwarding decisions. We propose
to adopt TPDL [30] so that the current node can cal-
culate the distance to its neighbours locally, and then
make forwarding decisions.

The proposed scheme sRetor is illustrated in Fig. 3.
We add a TPDL forwarding step between Step 3.2 and
Step 5.2. A packet with Iα(n) = 1 will not be forwarded
to the controller directly. Instead, it will be sent to the
TPDL calculator to look for a local next hop. If this cal-
culation failed either, the controller will get this packet
and make a final decision for it.

Let t ′proc be the processing time of packet n in sRetor,
t ′proc and its expectation are shown below,

Where psw = P
(

Iβ(n) = 0
)

 . The CDF of the wait time
in the proposed scheme t ′tw will be,

(7)
min

N (T)−1
∑

i=0

(�(T − t))i

i!
e−�(T−t)

s.t. ∀0 < t ≤ T

(8)t ′proc(n) = tfl + tfw + Iα(n) · (tsw + Iβ(n) · (T − tn))

Iβ =

{

0, if a next-hop is found locally;

1, else.

(9)

E(t ′proc) = tfl + tfw+

(1− phit) ·

(

tsw + (1− psw) · T ·

(

1−
N (T)

�

))

(10)

Ft ′wt (t) = psw + (1− psw) ·

N (T)−1
∑

i=1

(�(T − t))i

i!
e−�(T−t)

Page 7 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

To ensure that our scheme achieves lower delay than
conventional SDN solutions, we need to fulfill the dif-
ference between two schemes �P(t).

From (5) and (10), we can obtain �P(t),

We propose to increase psw . In the proposed TPDL-
based local path-finding algorithm, the psw is up to 1
without considering the failures, as we could always find
the closest next hop in the original topology. However
the selected next hop might be unavailable due to the
failures. We have to filter out the unavailable neighbors
using the dead interval, which is usually ε times of hello
interval. The dead interval denotes that a switch will
declare a neighbor failed if its hello packet did not arrive
within a certain time. Longer dead interval leads to more
candidate neighbor nodes and hence higher psw , while
the path success rate could be lower. To trade off between
the higher path success rate and higher psw , the dead
interval parameter ε is commonly set to 3 or 4 [56], which
ensures a fairly reliable failure detection and higher psw.

We define the tsw to be the processing time in the TPDL
calculator and we aim to reduce tsw . TPDL carries the dis-
tance information between any two nodes as described in
Jia, et al. [30], so the switches are able to find a neighbour
node closest to the destination. The time complexity of
TPDL is only related to the number of neighbour nodes,
i.e., O(m), where m is the number of neighbouring node.

Controller workload modeling
In the SDN architecture, the centralized controller
handles the OpenFlow messages from all switches.

(11)�P(t) = Ft ′wt (t)− Ftwt (t) > 0

(12)

�P(t) = psw ·



1−

N (T)−1
�

i=0

(�(T − t))i

i!
e−�(T−t)





Packet-In message is one kind of the most common
OpenFlow messages generated by the switches when a
packet cannot be forwarded locally. Handling Packet-
In messages consumes too much computing resources
and network bandwidth in the controller [44]. Here
we would like to model the controller workload on
the basis of the probability of generating Packet-In
messages.

As mentioned before, in conventional SDN, the
Packet-In message will be generated when Iα(n) = 1 .
Consider these two scenarios: 1) packet n is the first
packet of a flow, and 2) link failure(s) occurs in the
whole forwarding path. The probability of packet n
being sent to the controller via Packet-In message
Ppkt−in is as follows.

Where p1st(n) is the probability that n is the first
packet of a flow, q is the link error rate and m is the for-
warding path length. While in the proposed scheme,
the Packet-In message is generated when all the availa-
ble next-hop nodes are failed. Hence P′

pkt_in is shown
below.

Where ci is the number of candidate next-hop neigh-
bours, whose distances to the destination are the same
and shortest.

(13)
ppkt_in(n) = p1st(n)+ (1− p1st(n)) ·

(

1− (1− q)m
)

(14)

p′pkt_in(n) = p1st(n)+ (1− p1st(n)) ·

(

1−

m
∏

i=0

(1− qci)

)

(15)

�ppkt_in = ppkt_in(n)− p′pkt_in(n)

=

m
∏

i=0

(1− qci)− (1− q)m ≥ 0,

given0 < q < 1 and ci ≥ 1

Fig. 3  Processing delay in sRetor switches

Page 8 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

Therefore p′pkt_in(n) ≤ ppkt_in(n) , which means that
the controllers in sRetor will handle fewer Packet-In
messages than in cRetor, and is able to support more
extensive SD-DCNs.

sRetor architecture
In this section, we present the overall architecture and
components of sRetor. The design goal of sRetor is to
reduce the flow establishment time in SD-DCN, while
providing dummy switches with basic forwarding capa-
bility without support from the controller. Further
functions such as load balancing and QoS assurance are
left to the controller as it could collect global statistics.

The architecture of sRetor is shown in Fig. 4. This
architecture is inherited from the SDN architecture and
still consists of the controller and switches, that com-
municate with each other through the extended Open-
Flow protocol. The controller in sRetor is responsible
for tracking the real-time status of the entire SDN net-
work and failure information reported by the switches.
The controller will find alternative forwarding paths for
flows when failures occur. Additionally, the control-
ler also has the ability to distribute TPDL files via the
OpenFlow Channel for switch initialization and topol-
ogy updates.

During the initialization process, the Topology Man-
ager in the controller will generate a base network
topology with the information from the TPDL parser.
The switches will report detected failures to the con-
troller in time through the OpenFlow protocol, and the
Topology Manager will update the connections after
receiving these failures information, maintaining the
real-time network topology on the controller. The Rout-
ing Calculator in the controller will recalculate a new
feasible path based on the topology information in the
Topology Manager, and establish a new forwarding path
by delivering flow table entries to switches on its way.

After the switch receives the TPDL file delivered by
the controller, it also uses the TPDL Parser to analyze it
for subsequent distance calculation. As shown in Fig. 4,
the switch’s forwarding module gets input from three
parts: the Flow Table, the Neighbor Information and the

Topology Information. The flow table entries come from
the controller and have the highest priority, providing
flexible control capabilities equivalent to conventional
SDN switches. Neighbor information comes from the
static TPDL file and the dynamic Hello Message Pro-
cessor, which monitors the connection status between
current and neighboring nodes in real time. Topology
Information is extracted from TPDL, providing high-
speed distance calculation capability for the forwarding
module. The detailed forwarding process is discussed in
Routing algorithms on switches section.

With the introduction of TPDL, sRetor empowers the
switch with local forwarding decision capabilities, reduc-
ing the controller’s workload on processing Packet-In
messages and topology discovery. This allows a single
controller to support more switches in the data center.
Furthermore, the retention of SDN components like the
flow tables also allows sRetor to have the same central-
ized control capabilities as SDN and be compatible with
the existing SDN ecosystem.

Offloading some of the workloads to the switches could
also introduce network security problems to the data
planes, such as DDoS attacks. However, many security
solutions, such as Mihai-Gabriel, et al. [57] and Varghese,
et al. [58] has been proposed for preventing the SDN data
plane from being attacked. We believe that most of these
solutions will work on sRetor too.

Routing algorithms on switches
In this section, the routing algorithms on sRetor switches
are presented and we also give a brief introduction to the
switch-level load balancing.

Packet routing process
The switch forwarding process in sRetor has been shown
in Fig. 3. This processing flow ensures that the flow table
has the highest priority, i.e., the controller still has direct
control over the switches, which ensures that the entire
network is still under the management of the controller.
The TPDL routing calculator can also cache the calcu-
lation result by writing its result into the flow table. The
flow table is used as a high-speed cache for the calculated

Fig. 4  System architecture of the sRetor controller and switch

Page 9 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

route. The switch will first query whether a cache of the
calculation results in the flow table exists; if not, it per-
forms the routing calculation. Thereby we can reduce the
number of times of routes calculation and increase the
forwarding speed.

Algorithm 1 TPDL distance algorithm ( tpdl_distance)

Algorithm 2 Next-hop calculation algorithm on switches

The forwarding path is calculated as shown in Algo-
rithm 2, where the tpdl_distance , presented in Algo-
rithm 1, is a function for calculating the distance between
nodes leveraging TPDL distance formulas.

Distance in the topology is the main metric for rout-
ing calculation in our algorithm. As mentioned in the
previous section, we want to place a light workload on
the sRetor switches. Collecting network statistics such
as available bandwidth and end-to-end delay is costly,
thus they are not involved in current routing calculation.
However our algorithm can adapt to other metrics with
low overhead.

When a packet from the source node nsrc to the desti-
nation node ndst enters the TPDL Routing Calculator of
the current node ncur , the TPDL Routing Calculator first
traverses the set of all available neighbor nodes N that are
known via Hello messages. For each available neighbor
node nκ ∈

{

K (ncur) \ nprev
}

 , it calculates the distance
Dκ from node nκ to ndst with the help of TPDL’s distance
formula. Then we find n∗ when Dn∗ = Min(Dn) , which
means that the node n∗ is the closest neighbour to ndst.

This algorithm has the ability to handle direct failures
in the network. In the 2nd line of the algorithm, the cur-
rent time tnow is compared to ε · hello_interval . Neighbour
nodes that meet the condition will be the candidate nodes.
As a result, the algorithm will only choose the neighbour
nodes that were recently reported as the next-hop node.

Load balancing on switches
Due to the regularity and redundancy, data center net-
works often have many equal-cost paths. Therefore,
load-balancing algorithms are essential for data center
networks to achieve higher throughput. Two kinds of
load balancing in sRetor are expected to be implemented:
packet level and flow level load balancing.

A packet-level load balancing mechanism could be
implemented as follows: The switches can find all next-
hop nodes that are closest to the destination at the same
distance. Based on the statistics of the corresponding
interface, the candidate next-hop node with the lightest
load will be selected. Then the packets will be distributed
to different interfaces evenly.

The flow-based load balancing is more sophisticate
because the OpenFlow switch is required to remember
the flows using the flow table. Similar to the packet-
based load balancing strategy mentioned above, when
the first packet of each flow reaches the switch, the
switch will need to find out the next-hop node for this
flow. The switch will firstly gather all available shortest
paths from the current node to the destination node
as candidate paths. Then the switch will select the port
that has forwarded the least data packets in the recent
time window as the output port of the flow. As shown
in the Step 2 of Fig. 5, the switch will then generate a
flow entry for this flow, and insert it into the flow
table. When the subsequent packets of this flow arrive
at the switch, they will be forwarded without further
calculation.

In addition, to achieving flow-level load balancing, this
method uses the switch’s flow table as a cache for routing
calculations, reducing the amount of overall calculation,
which makes sRetor work efficiently even without spe-
cific hardware in switches.

Page 10 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

Fail‑over mechanism
In sRetor, a semi-centralized architecture is adopted, so
both the switch and the controller have fail-over capa-
bilities. The switches are responsible for handling sim-
ple local failures by choosing alternative local next-hop
nodes. For more complicated faults, the controller will
handle them by distributing flow table entries.

Failures directly associated with the switch itself are
mainly handled on the switch, using the TPDL informa-
tion and the switch’s neighbor information for localized
fault handling. When a link between a switch and its
neighboring nodes in the network fails, the following two
types of failures may exist:

•	 One of the shortest paths is down, but other ECMP
shortest path(s) is/are still up. This circumstance is
common in regular data center networks, e.g., topol-
ogies such as Fat-tree often have multiple equivalent
paths available. The switch is able to find an alter-
native shortest neighbor n∗ to the destination node
satisfying Dn∗ < Dcur using Algorithm 2. Therefore
a fast link switchover could be completed on this
switch without the need for the controller. Neverthe-
less, the controller will still learn about this failure
through the failure report message from the switch.
When the controller regards that this failure has
affected the traffic balancing, it can still employ some
traffic engineering policies proactively.

•	 All of the shortest paths are down. Thus, the switch
will not be able to find a neighbor n∗ that is closest
to the destination address satisfying Dn∗ < Dcur . This
situation is usually rare, but it means that this node is
not in the global optimal path. Therefore, the switch
will stop forwarding locally and send the packet to
the controller via a Packet-In message. The control-
ler will determine the best forwarding path using its
global topology information.

The improved routing algorithm with the fail-over
mechanism is shown in Line 6 to 12 in Algorithm 2. This

algorithm also compares Dn∗ with the Dcur , i.e., the theo-
retical shortest distance from the current node to the
destination node. This mechanism is designed to avoid
sending packets to detoured paths when failures occur.
In addition, this mechanism is effective in preventing for-
warding loops as the selected next-hop node is ensured
to be no further than the current node.

The sRetor controller is responsible for solving failures
that cannot be handled by the switch. Beneficial from the
network-wide global view of SDN, the sRetor controller
is able to handle concurrent failures and obtain the glob-
ally optimal solution. When handling concurrent failures,
the fail-over time of sRetor is degenerates into conven-
tional SDN.

Numerical results
In this section, we present our numerical results on the
packet waiting time and controller workload mentioned
in System model section.

CDF of packet waiting time
We first run simulations on packet waiting time in Eqs. 5
and 10. The simulation parameters are shown in Table 1.
This simulation generates flows following the Poisson
Point process, and simulates the packet process delay and
pending mechanism in switches and the controller.

The CDFs of packet waiting time are illustrated in
Fig. 6. We can see that our simulation results shown as
histogram align with the analytical models in Eqs. 5 and

Fig. 5  Flow-level load balancing. The load forwarding result is store into the flow table for subsequent packets in the flow

Table 1  Simulation parameters on packet waiting time

Parameters Values

� 2000

Psw 85%

tprop 300 µs

tsw 100 µs

tctrl 100 µs

Bandwidth 1Gbps

Page 11 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

10 that we proposed in Delay modeling section. And the
numerical result shows that sRetor has a better perfor-
mance with less waiting time than cRetor.

Packet‑In message probability
We also run simulations on the Packet-In message prob-
ability, which shows how many packets will be sent to
the controller at various link error rates. The simulation
parameters are listed in Table 2.

As illustrated in Fig. 7, there is an obvious difference
in Packet-In message probability between sRetor and
cRetor, and this aligns with our analysis in Controller
workload modeling section. Due to the extra first-packet
Packet-In messages and the more alternatives from
equal-cost multi paths, sRetor controllers will receive
much fewer Packet-In messages from switches. There-
fore, the workload of sRetor controllers is lower than
controllers in cRetor.

Evaluation
Experimental setup
To evaluate the performance of sRetor, we implemented
the sRetor switch on the Estinet network simulation/
emulation platform [59] and a sRetor controller on the

basis of Ryu [60]. Estinet is a network simulator and
emulator that supports both traditional network routing
methods (OSPF, BGP, etc.) and OpenFlow SDN, which
allows us to compare different routing methods. Ryu is
an SDN controller framework written in Python, and lots
of previous work has been developed based on it. The
controller of sRetor uses the same TPDL parser design,
which is developed with the powerful ANTLR language
parser generator [61].

We compare sRetor to OSPF, the Fat-tree routing
method proposed in Al-Fares, et al. [9] and cRetor in our
previous work [30]. The OSPF routing method is pow-
ered by the software routing suite Quagga [62], which is
a built-in feature of Estinet. The Fat-tree routing method
is implemented by ourselves on the Estinet platform
according to its proposal. We generate routing tables
for each node in the Fat-tree topology following the pat-
tern. The switches load the routing table for prefix/suffix-
based forwarding.

We also conducted experiments on another prevalent
data center network topology, BCube, to validate the
ability of sRetor to work on diverse network topologies.
As a server-centric DCN topology, the forwarding deci-
sions in the BCube are made at the servers rather than
at the switches, and the switches are low-end commod-
ity switches. Therefore, we have chosen the commonly
used 2-tier BCube topology, as the number of forwarding
nodes (servers) is close to that of the Fat-tree topology
with k = 4 . This size offers a more comparable evaluation
scenario. Other link characteristic parameters remain
consistent with the Fat-tree setup. Additionally, we have
implemented the BCube Source Routing (BSR) algorithm
for comparison. The detailed experimental network
parameters are listed in Table 3.

Fig. 6  CDF of packet waiting time

Table 2  Simulation parameters on Packet-In message probability

Parameters Values

P1st 3%

q 1% ∼ 10%

m 6

ci [1, 8, 8, 1, 1, 1]

Topology 16-ary Fat-tree

Fig. 7  Packet-In probability with different link error rates

Page 12 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

Flow start time
The flow start time is the end-to-end delay of the first
packet being forwarded from the source node to the
destination node. Therefore the flow start time tflow is
shown as follows.

Where τi(n) is the point-to-point delay of packet n
in the ith switch, and m is the number of intermediate
switches.

We ran simulations on different routing schemes to
evaluate their flow start time. As shown in Table 4, in
the Fat-tree topologies, the flow start time of cRetor is
substantially higher than that of other routing meth-
ods. The communication between the switch and the
controller results in a higher flow start time. In con-
trast, sRetor improves this by making routing deci-
sions locally. Therefore, we achieve a similar short flow
start time to other methods such as OSPF and Fat-tree,

(16)tflow =

m
∑

i=1

τi(n)

which both use the lookup table method. The results in
the BCube topology also show that sRetor is capable of
achieving flow start times comparable to other table-
lookup routing algorithms such as OSPF.

Networking convergence time
Another metric related to the packet waiting time is the
network convergence time. Due to the separation of the
control plane and data plane in the SDN paradigm, the
definition of convergence time is also different from that
in conventional networks [63]. In this paper, we use the
time from the startup of all network devices until all
switches are able to communicate with each other as the
measure of convergence time.

The simulation results of network convergence time are
also shown in Table 4, which illustrates that, compared
to traditional link-state routing protocols such as OSPF,
the three topology-aware routing methods used in our
experiment have substantial advantages in convergence.
Both sRetor and Fat-tree/BSR routing methods require
almost no additional convergence time. After the switches
boot up, they can perform forwarding directly according
to the local topology information, which greatly improves
convergence speed. Furthermore, it is worth noting that
there is no significant difference in the convergence times
of these algorithms for networks with different scales.
This is because the above-mentioned convergence process
is independent of the network scales. This feature makes
sRetor more adaptive for large-scale data center networks.

Fail‑over time
The fail-over time is also related to the CDF of packet
waiting time, due to that failed links lead to table-misses
and Packet-In messages in conventional SDN.

We manually create a failure during the simulation.
Figure 8 is a snapshot when a failure occurs. We could
find that sRetor switches can smoothly be recovered
from failures with the capability of local decision-mak-
ing. The forwarding of packets after the failure has not
been affected at all, i.e., the data packets still arrive at the
destination node as expected interval, and the delay of
the packets keep unchanged. In cRetor, it is obvious that
the data packet delay has increased significantly when
the failure occurs, from 0.35ms to over 2ms. Another
observation is that although there is no packet lost, two
data packets arrive at the destination node almost simul-
taneously due to the extra delay. This observation vali-
dates our model that subsequent packets have to wait for
the first packet if they arrive between 0 and T. While in
OSPF, due to a long time (about 30s) interruption in the
network, a large number of data packets are lost.

Table 3  Experimental network parameters

Parameters Values

Topology Fat-tree BCube

Topology Size k = 4 , k = 8 2-level

Number of switches 20, 80 8

Number of servers 16, 128 16

Link bandwidth 1Gbps 1Gbps

Link Propagation Delay 1µs 1µs

Table 4  Flow start time and convergence time on different
routing schemes

Topology Size Schemes Flow Start Time
(ms)

Convergence
Time (ms)

4-ary Fat-tree sRetor 1.77 1.79

cRetor 5.66 1007.08

OSPF 2.12 50221.33

Fat-tree 2.24 2.41

8-ary Fat-tree sRetor 1.77 1.78

cRetor 7.64 1843.48

OSPF 2.65 52001.71

Fat-tree 2.26 2.39

2-level BCube sRetor 1.77 1.78

cRetor 5.70 2001.06

OSPF 1.23 50213.41

BSR 2.24 2.24

Page 13 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

Real‑world scenario
We also compare the performance improvement of sRe-
tor in real-world scenarios. The experiments were con-
ducted using the traffic characteristics of the Hadoop
cluster from Facebook’s data center and the RPC request
traffic characteristics from Google’s data center pro-
vided in Roy, et al. [64]. We implemented a traffic gen-
erator for Estinet platform similar to DCTrafficGen [65]
by Mellanox and ran experiments in sRetor and cRetor
networks. All experiments are conducted in a simulation
network with 4-ary Fat-tree topology. The experimental
results are shown in Fig. 9.

Our experimental results show that sRetor achieves bet-
ter performance than cRetor in terms of network through-
put, end-to-end delay and overall packet loss. Though
sRetor is not designed to improve these metrics, the shorter
flow establishment time and lower controller workload
also contribute to the improvement of the metric. This is
because the number of flows in the data center network is
enormous, i.e., usually more than 1 million flows arrive at
switches per second [66]. The improvement on each flow
will finally make a difference to the overall statistics.

Conclusion
In this paper, we modeled the packet waiting time
and controller workload and analyzed how to reduce
them. Consequently we proposed our topology-aware

routing scheme, sRetor, where we applied our previ-
ously proposed TPDL to sRetor switches. This ena-
bles switches with awareness of the network topology
and can work independently when the controller is
unavailable.

Numerical and evaluation results show that sRetor has
a lower delay in flow start time, network convergence
time and fail-over time. Moreover, sRetor decreases the
controller workload so that it can support more exten-
sive networks as SDN scales up. Our proposed method
provides a reference for future SD-DCN with promising
performance to the SD-DCN.

Acknowledgements
The authors would like to express their gratitude to Dr. Ying He for providing
help to this paper.

Authors’ contributions
Zequn Jia and Yantao Sun gave the main idea of this paper. All authors took
part in the discussion and the proposal of the work described in this paper.
Zequn Jia wrote sRetor architecture and Routing algorithms on switches
sections and conducted the experiments. Yantao Sun wrote the Introduction,
Related work, and System model sections and Qiang Liu wrote the rest of sec-
tions. All authors reviewed the manuscript.

Funding
No funds have been received from any agency for this research.

Availability of data and materials
Not applicable.

Fig. 8  The Sequence number and delay of packets received in the server side when simple failure occurs

Fig. 9  Throughput, end-to-end delay and packet loss rate of sRetor and cRetor in different real-world traffic patterns

Page 14 of 15Jia et al. Journal of Cloud Computing (2023) 12:150

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 19 February 2022 Accepted: 26 September 2023

References
	1.	 Wang B, Qi Z, Ma R, Guan H, Vasilakos AV (2015) A survey on data center

networking for cloud computing. Comput Netw 91:528–547. https://​doi.​
org/​10.​1016/j.​comnet.​2015.​08.​040

	2.	 Ismaeel S, Karim R, Miri A (2018) Proactive dynamic virtual-machine con-
solidation for energy conservation in cloud data centres. J Cloud Comput
7(1):10. https://​doi.​org/​10.​1186/​s13677-​018-​0111-x

	3.	 Amaral M, Polo J, Carrera D, Gonzalez N, Yang CC, Morari A et al
(2021) DRMaestro: orchestrating disaggregated resources on virtual-
ized data-centers. J Cloud Comput 10(1):22. https://​doi.​org/​10.​1186/​
s13677-​021-​00238-6

	4.	 Carrascal D, Rojas E, Alvarez-Horcajo J, Lopez-Pajares D, Martínez-Yelmo I
(2020) Analysis of P4 and XDP for IoT programmability in 6G and beyond.
IoT 1(2):605–622. https://​doi.​org/​10.​3390/​iot10​20031

	5.	 Suarez Rodriguez AC, Haider N, He Y, Dutkiewicz E (2020) Network optimisa-
tion in 5G networks: A radio environment map approach. IEEE Trans Veh
Technol 69(10):12043–12057. https://​doi.​org/​10.​1109/​TVT.​2020.​30111​47

	6.	 He Y, Dutkiewicz E, Fang G, Mueck MD (2015) SNR threshold for distrib-
uted antenna systems in cloud radio access networks. In: 2015 IEEE 82nd
vehicular technology conference (VTC2015-Fall). pp 1–5. https://​doi.​org/​
10.​1109/​VTCFa​ll.​2015.​73911​45

	7.	 Ferguson AD, Gribble S, Hong CY, Killian C, Mohsin W, Muehe H, Ong
J, Poutievski L, Singh A, Vicisano L, Alimi R, Chen SS, Conley M, Mandal
M, Nagaraj K, Naidu Bollineni K, Sabaa A, Zhang S, Zhu M, Vahdat A (2021)
Orion: Google’s Software-Defined Networking Control Plane. USENIX
Association, pp. 83–98. https://​www.​usenix.​org/​confe​rence/​nsdi21/​prese​
ntati​on/​fergu​son. ISBN 978-1-939133-21-2.

	8.	 Xia W, Zhao P, Wen Y, Xie H (2017) A survey on data center network-
ing (DCN): Infrastructure and operations. IEEE Commun Surv Tutorials
19(1):640–656. https://​doi.​org/​10.​1109/​COMST.​2016.​26267​84

	9.	 Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center
network architecture. Proceedings of the ACM SIGCOMM 2008 confer-
ence on data communication. SIGCOMM ’08. Association for Computing
Machinery, Seattle, pp 63–74. https://​doi.​org/​10.​1145/​14029​58.​14029​67

	10.	 Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: A scalable and
fault-tolerant network structure for data centers. Proceedings of the ACM
SIGCOMM 2008 conference on data communication. SIGCOMM ’08.
Association for Computing Machinery, Seattle, pp 75–86. https://​doi.​org/​
10.​1145/​14029​58.​14029​68

	11.	 Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y et al (2009) BCube: a high per-
formance, server-centric network architecture for modular data centers.
Proceedings of the ACM SIGCOMM 2009 conference on Data commu-
nication - SIGCOMM ’09. ACM Press, Barcelona, p 63. https://​doi.​org/​10.​
1145/​15925​68.​15925​77

	12.	 Chkirbene Z, Hadjidj R, Foufou S, Hamila R (2020) LaScaDa: A Novel
Scalable Topology for Data Center Network. IEEE/ACM Trans Netw
28(5):2051–2064. https://​doi.​org/​10.​1109/​TNET.​2020.​30085​12

	13.	 Wang X, Fan JX, Lin CK, Zhou JY, Liu Z (2018) BCDC: A High-Performance,
Server-Centric Data Center Network. J Comput Sci Technol 33(2):400–416.
https://​doi.​org/​10.​1007/​s11390-​018-​1826-3

	14.	 Zhao A, Liu Z, Pan J, Liang M (2019) A Novel Addressing and Routing
Architecture for Cloud-Service Datacenter Networks. IEEE Trans Serv
Comput 1. https://​doi.​org/​10.​1109/​TSC.​2019.​29461​64

	15.	 Azizi S, Hashemi N, Khonsari A (2017) A flexible and high-performance
data center network topology. J Supercomput 73(4):1484–1503. https://​
doi.​org/​10.​1007/​s11227-​016-​1836-2

	16.	 Baccour E, Foufou S, Hamila R, Tari Z, Zomaya AY (2017) PTNet: An effi-
cient and green data center network. J Parallel Distrib Comput 107:3–18.
https://​doi.​org/​10.​1016/j.​jpdc.​2017.​03.​007

	17.	 Al-makhlafi M, Gu H, Yu X, Lu Y (2020) P-Cube: A New Two-Layer Topology
for Data Center Networks Exploiting Dual-Port Servers. IEICE Trans Com-
mun advpub. https://​doi.​org/​10.​1587/​trans​com.​2019E​BP3219

	18.	 Feng H, Deng Y, Qin X, Min G (2020) Criso: An Incremental Scalable and
Cost-Effective Network Architecture for Data Centers. IEEE Trans Netw
Serv Manag 1. https://​doi.​org/​10.​1109/​TNSM.​2020.​30368​75

	19.	 Habib S, Bokhari FS, Khan SU (2015) Routing techniques in data center
networks. In: Khan SU, Zomaya AY (eds) Handbook on data centers.
Springer New York, New York, pp 507–532. https://​doi.​org/​10.​1007/​
978-1-​4939-​2092-1_6

	20.	 Amin R, Rojas E, Aqdus A, Ramzan S, Casillas-Perez D, Arco JM (2021) A
survey on machine learning techniques for routing optimization in SDN.
IEEE Access Pract Innov Open Solutions 9:104582–104611. https://​doi.​
org/​10.​1109/​ACCESS.​2021.​30990​92

	21.	 Kirkpatrick K (2013) Software-defined networking. Commun ACM
56(9):16–19. https://​doi.​org/​10.​1145/​25004​68.​25004​73

	22.	 Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri P, Rad-
hakrishnan S et al (2009) PortLand: A scalable fault-tolerant layer 2
data center network fabric. Proceedings of the ACM SIGCOMM 2009
conference on data communication. SIGCOMM ’09. Association for
Computing Machinery, New York, pp 39–50. https://​doi.​org/​10.​1145/​
15925​68.​15925​75

	23.	 Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010)
Hedera: Dynamic flow scheduling for data center networks. Proceedings
of the 7th USENIX conference on networked systems design and imple-
mentation. NSDI’10. USENIX Association, USA, p 19

	24.	 Rojas E, Ibanez G, Gimenez-Guzman JM, Rivera D, Azcorra A (2015) Torii:
multipath distributed Ethernet fabric protocol for data centres with zero-
loss path repair. Trans Emerg Telecommun Technol 26(2):179–194. https://​
doi.​org/​10.​1002/​ett.​2863

	25.	 Wang F, Gao L, Xiaozhe S, Harai H, Fujikawa K (2017) Towards reliable and
lightweight source switching for datacenter networks. In: IEEE INFOCOM
2017 - IEEE conference on computer communications. pp 1–9. https://​
doi.​org/​10.​1109/​INFOC​OM.​2017.​80571​52

	26.	 Bastam M, Sabaei M, Yousefpour R (2018) A scalable traffic engineering
technique in an SDN-based data center network. Trans Emerg Telecom-
mun Technol 29(2):e3268. https://​doi.​org/​10.​1002/​ett.​3268

	27.	 Gonzalez-Diaz S, Marks R, Rojas E, de la Oliva A, Gazda R (2021) Stateless
flow-zone switching using software-defined addressing. IEEE Access
Pract Innov Open Solutions 9:68343–68365. https://​doi.​org/​10.​1109/​
ACCESS.​2021.​30779​55

	28.	 Abdollahi S, Deldari A, Asadi H, Montazerolghaem A, Mazinani SM (2021)
Flow-aware forwarding in SDN datacenters using a knapsack-PSO-based
solution. IEEE Trans Netw Serv Manag 18(3):2902–2914. https://​doi.​org/​
10.​1109/​TNSM.​2021.​30649​74

	29.	 Modi TM, Swain P (2022) Intelligent routing using convolutional neural
network in software-defined data center network. J Supercomput
78(11):13373–13392. https://​doi.​org/​10.​1007/​s11227-​022-​04348-z

	30.	 Jia Z, Sun Y, Liu Q, Dai S, Liu C (2020) cRetor: An SDN-Based routing
scheme for data centers with regular topologies. IEEE Access 8:116866–
116880. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30046​09

	31.	 Ghaffari A (2014) An energy efficient routing protocol for wireless sen-
sor networks using a-star algorithm. J Appl Res Technol 12(4):815–822.
https://​doi.​org/​10.​1016/​S1665-​6423(14)​70097-5

	32.	 SDN/NFV Industry Alliance (2017) Whitepaper on SDN Controller Perfor-
mance in Data Center Scenario(in Chinese). Technical report, SDN/NFV
Industry Alliance

	33.	 Blial O, Ben Mamoun M, Benaini R (2016) An Overview on SDN Archi-
tectures with Multiple Controllers. J Comput Netw Commun 2016:1–8.
https://​doi.​org/​10.​1155/​2016/​93965​25

	34.	 Zhou Y, Wang Y, Yu J, Ba J, Zhang S (2017) Load balancing for multiple
controllers in SDN based on switches group. 2017 19th Asia-Pacific Net-
work Operations and Management Symposium (APNOMS). IEEE, Seoul,
pp 277–230. https://​doi.​org/​10.​1109/​APNOMS.​2017.​80941​39

https://doi.org/10.1016/j.comnet.2015.08.040
https://doi.org/10.1016/j.comnet.2015.08.040
https://doi.org/10.1186/s13677-018-0111-x
https://doi.org/10.1186/s13677-021-00238-6
https://doi.org/10.1186/s13677-021-00238-6
https://doi.org/10.3390/iot1020031
https://doi.org/10.1109/TVT.2020.3011147
https://doi.org/10.1109/VTCFall.2015.7391145
https://doi.org/10.1109/VTCFall.2015.7391145
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://doi.org/10.1109/COMST.2016.2626784
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1109/TNET.2020.3008512
https://doi.org/10.1007/s11390-018-1826-3
https://doi.org/10.1109/TSC.2019.2946164
https://doi.org/10.1007/s11227-016-1836-2
https://doi.org/10.1007/s11227-016-1836-2
https://doi.org/10.1016/j.jpdc.2017.03.007
https://doi.org/10.1587/transcom.2019EBP3219
https://doi.org/10.1109/TNSM.2020.3036875
https://doi.org/10.1007/978-1-4939-2092-1_6
https://doi.org/10.1007/978-1-4939-2092-1_6
https://doi.org/10.1109/ACCESS.2021.3099092
https://doi.org/10.1109/ACCESS.2021.3099092
https://doi.org/10.1145/2500468.2500473
https://doi.org/10.1145/1592568.1592575
https://doi.org/10.1145/1592568.1592575
https://doi.org/10.1002/ett.2863
https://doi.org/10.1002/ett.2863
https://doi.org/10.1109/INFOCOM.2017.8057152
https://doi.org/10.1109/INFOCOM.2017.8057152
https://doi.org/10.1002/ett.3268
https://doi.org/10.1109/ACCESS.2021.3077955
https://doi.org/10.1109/ACCESS.2021.3077955
https://doi.org/10.1109/TNSM.2021.3064974
https://doi.org/10.1109/TNSM.2021.3064974
https://doi.org/10.1007/s11227-022-04348-z
https://doi.org/10.1109/ACCESS.2020.3004609
https://doi.org/10.1016/S1665-6423(14)70097-5
https://doi.org/10.1155/2016/9396525
https://doi.org/10.1109/APNOMS.2017.8094139

Page 15 of 15Jia et al. Journal of Cloud Computing (2023) 12:150 	

	35.	 Priyadarsini M, Kumar S, Bera P, Rahman MA (2020) An energy-efficient
load distribution framework for SDN controllers. Computing 102(9):2073–
2098. https://​doi.​org/​10.​1007/​s00607-​019-​00751-2

	36.	 Zhang Y, Cui L, Wang W, Zhang Y (2018) A survey on software defined
networking with multiple controllers. J Netw Comput Appl 103:101–118.
https://​doi.​org/​10.​1016/j.​jnca.​2017.​11.​015

	37.	 Isong B, Molose RRS, Abu-Mahfouz AM, Dladlu N (2020) Comprehensive
Review of SDN Controller Placement Strategies. IEEE Access 8:170070–
170092. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30239​74

	38.	 Qu G, Chen W Constructing a Large-Scale Data Center Network Structure
Using Regular Graphs. In: 2019 IEEE International Conferences on
Ubiquitous Computing & Communications (IUCC) and Data Science and
Computational Intelligence (DSCI) and Smart Computing, Networking
and Services (SmartCNS). IEEE, Shenyang, pp 809–812. https://​doi.​org/​10.​
1109/​IUCC/​DSCI/​Smart​CNS.​2019.​00164

	39.	 Liu Z, Zhao A, Liang M (2021) A port-based forwarding load-balancing
scheduling approach for cloud datacenter networks. J Cloud Comput
10(1):13. https://​doi.​org/​10.​1186/​s13677-​021-​00226-w

	40.	 Nepolo E, Lusilao Zodi GA (2021) A predictive ECMP routing protocol for
fat-tree enabled data centre networks. In: 2021 15th international confer-
ence on ubiquitous information management and communication
(IMCOM). pp 1–8. https://​doi.​org/​10.​1109/​IMCOM​51814.​2021.​93773​96

	41.	 Greenberg AG, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P et al (2009)
VL2 - a scalable and flexible data center network. SIGCOMM 39(4):51.
https://​doi.​org/​10.​1145/​15925​68.​15925​76

	42.	 Wang YC (2018) An Efficient Route Management Framework for Load Bal-
ance and Overhead Reduction in SDN-Based Data Center Networks. IEEE
Trans Netw Serv Manag 15(4):13

	43.	 Iyer AS, Mann V, Samineni NR (2013) SwitchReduce: Reducing switch
state and controller involvement in OpenFlow networks. In: 2013 IFIP
Networking Conference. IEEE, Brooklyn, pp 1–9

	44.	 Kotani D, Okabe Y (2012) Packet-in Message Control for Reducing CPU
Load and Control Traffic in OpenFlow Switches. In: 2012 European Work-
shop on Software Defined Networking. Darmstadt, pp 42–47. https://​doi.​
org/​10.​1109/​EWSDN.​2012.​23

	45.	 Jia X, Jiang Y, Guo Z, Wu Z (2016) Reducing and Balancing Flow Table Entries
in Software-Defined Networks. 2016 IEEE 41st Conference on Local Com-
puter Networks (LCN). pp 575–578. https://​doi.​org/​10.​1109/​LCN.​2016.​96

	46.	 Jia X, Li Q, Jiang Y, Guo Z, Sun J (2017) A low overhead flow-holding
algorithm in software-defined networks. Comput Netw. 124:170–180.
https://​doi.​org/​10.​1016/j.​comnet.​2017.​06.​009

	47.	 Obadia M, Bouet M, Rougier JL, Iannone L (2015) A greedy approach
for minimizing SDN control overhead. Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). IEEE, London, pp 1–5.
https://​doi.​org/​10.​1109/​NETSO​FT.​2015.​71161​35

	48.	 Baddeley M, Nejabati R, Oikonomou G, Sooriyabandara M, Simeonidou D
(2018) Evolving SDN for Low-Power IoT Networks. 2018 4th IEEE Confer-
ence on Network Softwarization and Workshops (NetSoft). IEEE, Montreal,
pp 71–79. https://​doi.​org/​10.​1109/​NETSO​FT.​2018.​84601​25

	49.	 Pranata AA, Jun TS, Kim DS (2019) Overhead reduction scheme for SDN-
based Data Center Networks. Comput Stand Interfaces 63:1–15. https://​
doi.​org/​10.​1016/j.​csi.​2018.​11.​001

	50.	 Safdar M, Abbas Y, Iqbal W, Umair MY, Wakeel A (2022) ARP Overhead
Reduction Framework for Software Defined Data Centers. J Netw Syst
Manag 30(3):50. https://​doi.​org/​10.​1007/​s10922-​022-​09663-7

	51.	 Ramaswamy R, Weng N, Wolf T (2004) Characterizing network processing
delay. IEEE Global Telecommunications Conference, 2004. GLOBECOM ’04, vol
3. IEEE, Dallas, pp 1629–1634. https://​doi.​org/​10.​1109/​GLOCOM.​2004.​13782​57

	52.	 Mathew A, Srinivasan M, Murthy CSR (2019) Packet generation schemes
and network latency implications in SDN-enabled 5G C-RANs: queuing
model based analysis. 2019 IEEE 30th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE,
Istanbul, pp 1–7. https://​doi.​org/​10.​1109/​PIMRC.​2019.​89041​51

	53.	 Darabseh A, Al-Ayyoub M, Jararweh Y, Benkhelifa E, Vouk M, Rindos A
(2015) SDDC: A Software Defined Datacenter Experimental Framework.
In: 2015 3rd International Conference on Future Internet of Things and
Cloud. pp 189–194. https://​doi.​org/​10.​1109/​FiClo​ud.​2015.​127

	54.	 Lin CR, Chen YJ, Wang LC (2017) Handoff Delay Analysis in SDN-Enabled
Mobile Networks: A Network Calculus Approach. 2017 IEEE 86th Vehicular
Technology Conference (VTC-Fall). IEEE, Toronto, pp 1–5. https://​doi.​org/​
10.​1109/​VTCFa​ll.​2017.​82882​02

	55.	 Muhizi S, Shamshin G, Muthanna A, Kirichek R, Vladyko A, Koucheryavy
A (2017) Analysis and performance evaluation of SDN queue model.
In: Koucheryavy Y, Mamatas L, Matta I, Ometov A, Papadimitriou P (eds)
Wired/Wireless internet communications. Springer International Publish-
ing, Cham, pp 26–37

	56.	 Vidalenc B, Noirie L, Ghamri-Doudane S, Renault E (2013) Adaptive failure
detection timers for IGP networks. In: 2013 IFIP networking conference.
IEEE, Brooklyn, pp 1–9

	57.	 Mihai-Gabriel I, Victor-Valeriu P (2014) Achieving DDoS Resiliency in
a Software Defined Network by Intelligent Risk Assessment Based on
Neural Networks and Danger Theory. In 2014 IEEE 15th International
Symposium on Computational Intelligence and Informatics (CINTI).
IEEE, Budapest, pp 319–324

	58.	 Varghese JE, Muniyal B (2021) An Efficient IDS Framework for DDoS
Attacks in SDN Environment. IEEE Access Pract Innov Open Solutions
9:69680–69699. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30780​65

	59.	 Wang S-Y, Chou C-L, Yang C-M (2013) EstiNet openflow network simula-
tor and emulator. IEEE Commun Mag 51(9):110–117. https://​doi.​org/​10.​
1109/​MCOM.​2013.​65886​59

	60.	 Ryu SDN Framework. https://​ryu-​sdn.​org/. Accessed 30 Apr 2021
	61.	 ANTLR (ANother Tool for Language Recognition). https://​www.​antlr.​org/​

index.​html. Accessed 30 Apr 2021
	62.	 Quagga Routing Suite. https://​www.​nongnu.​org/​quagga/​index.​html.

Accessed 30 Apr 2021
	63.	 Abdallah S, Kayssi A, Elhajj IH, Chehab A (2018) Network convergence

in SDN versus OSPF networks. In: 2018 fifth international conference on
software defined systems (SDS). pp 130–137. https://​doi.​org/​10.​1109/​
SDS.​2018.​83704​34

	64.	 Roy A, Zeng H, Bagga J, Porter G, Snoeren AC (2015) Inside the Social
Network’s (Datacenter) Network. Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication. SIGCOMM ’15.
Association for Computing Machinery, New York, pp 123–137. https://​doi.​
org/​10.​1145/​27859​56.​27874​72

	65.	 DCTG Data Center Traffic Generator Library (2018) https://​github.​com/​
Mella​nox/​DCTra​fficG​en. Accessed 30 Apr 2021.

	66.	 Benson T, Akella A, Maltz DA (2010) Network Traffic Characteristics of
Data Centers in the Wild. Proceedings of the 10th Annual Conference on
Internet Measurement - IMC ’10. ACM Press, Melbourne, p 267. https://​
doi.​org/​10.​1145/​18791​41.​18791​75

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/s00607-019-00751-2
https://doi.org/10.1016/j.jnca.2017.11.015
https://doi.org/10.1109/ACCESS.2020.3023974
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00164
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00164
https://doi.org/10.1186/s13677-021-00226-w
https://doi.org/10.1109/IMCOM51814.2021.9377396
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1109/EWSDN.2012.23
https://doi.org/10.1109/EWSDN.2012.23
https://doi.org/10.1109/LCN.2016.96
https://doi.org/10.1016/j.comnet.2017.06.009
https://doi.org/10.1109/NETSOFT.2015.7116135
https://doi.org/10.1109/NETSOFT.2018.8460125
https://doi.org/10.1016/j.csi.2018.11.001
https://doi.org/10.1016/j.csi.2018.11.001
https://doi.org/10.1007/s10922-022-09663-7
https://doi.org/10.1109/GLOCOM.2004.1378257
https://doi.org/10.1109/PIMRC.2019.8904151
https://doi.org/10.1109/FiCloud.2015.127
https://doi.org/10.1109/VTCFall.2017.8288202
https://doi.org/10.1109/VTCFall.2017.8288202
https://doi.org/10.1109/ACCESS.2021.3078065
https://doi.org/10.1109/MCOM.2013.6588659
https://doi.org/10.1109/MCOM.2013.6588659
https://ryu-sdn.org/
https://www.antlr.org/index.html
https://www.antlr.org/index.html
https://www.nongnu.org/quagga/index.html
https://doi.org/10.1109/SDS.2018.8370434
https://doi.org/10.1109/SDS.2018.8370434
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://github.com/Mellanox/DCTrafficGen
https://github.com/Mellanox/DCTrafficGen
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175

	sRetor: a semi-centralized regular topology routing scheme for data center networking
	Abstract
	Introduction
	Related work
	Regular data center networking and routing schemes
	Overhead reduction on software-defined data center networking

	System model
	Delay modeling
	Controller workload modeling

	sRetor architecture
	Routing algorithms on switches
	Packet routing process
	Load balancing on switches
	Fail-over mechanism

	Numerical results
	CDF of packet waiting time
	Packet-In message probability

	Evaluation
	Experimental setup
	Flow start time
	Networking convergence time
	Fail-over time
	Real-world scenario

	Conclusion
	Acknowledgements
	References

