
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Deep Learning for Code Intelligence: Survey, Benchmark and
Toolkit

YAO WAN, Huazhong University of Science and Technology, China
YANG HE, Simon Fraser University, Canada
ZHANGQIAN BI, Huazhong University of Science and Technology, China
JIANGUO ZHANG, Salesforce Research, USA
HONGYU ZHANG, University of Newcastle, Australia
YULEI SUI, University of New South Wales, Australia
GUANDONG XU, University of Technology Sydney, Australia
HAI JIN, Huazhong University of Science and Technology, China
PHILIP S. YU, University of Illinois at Chicago, USA

Code intelligence leverages machine learning and data mining approaches to extract knowledge from large-
scale code corpora, with the aim of developing intelligent tools to improve the quality and productivity
of computer programming. Currently, there is already a thriving research community focusing on code
intelligence, with efforts ranging from software engineering, machine learning, data mining, natural language
processing, and programming languages. In this paper, we conduct a comprehensive literature review on deep
learning for code intelligence, from the perspectives of code representation learning, deep learning techniques,
and application tasks. We also benchmark several state-of-the-art neural models for code intelligence, and
provide an open-source toolkit for rapid prototyping deep-learning-based code intelligence models. In partic-
ular, we inspect the existing code intelligence models under the basis of code representation learning, and
provide a comprehensive overview for understanding the current status of code intelligence. Furthermore,
we publicly release the source code and data resources to provide the community with a ready-to-use bench-
mark, which can facilitate the evaluation and comparison of existing and future code intelligence models
(https://xcodemind.github.io). At last, we also point out several challenging and promising directions for
future research.

1 INTRODUCTION
Software development has been a complex and costly engineering task, which requires much
human effort. To improve the software development process and developer productivity, many
intelligent tools, e.g., code completion and code search, have been developed. Recently, significant
progress has been made to automate various software engineering activities using machine learning
techniques. As source code is the main artifact of software development, in this paper, we focus
our study on code intelligence, which is about empowering software developers with intelligent
tools through mining knowledge from large-scale code corpus.

With software becoming ubiquitous in our daily life, both open- and closed-source code reposito-
ries are growing to unprecedented sizes and complexity. For example, the platforms such as GitHub

Authors’ addresses: Yao Wan, wanyao@hust.edu.cn, National Engineering Research Center for Big Data Technology and
System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan, China; Yang He, Simon Fraser University,
Vancouver, Canada, yanghece96@gmail.com; Zhangqian Bi, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, China, zqbi@hust.edu.cn; Jianguo Zhang, Salesforce Research, Chicago, USA,
jzhan51@uic.edu; Hongyu Zhang, University of Newcastle, NSW, Australia, hongyu.zhang@newcastle.edu.au; Yulei Sui,
University of New South Wales, Australia, ysui@unsw.edu.au; Guandong Xu, University of Technology Sydney, Australia,
guandong.xu@uts.edu.au; Hai Jin, hjin@hust.edu.cn, National Engineering Research Center for Big Data Technology and
System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan, China; Philip S. Yu, University of Illinois at
Chicago, Chicago, USA, psyu@uic.edu.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://xcodemind.github.io

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Wan et al.

and StackOverflow have collected a large corpus of source code, also termed “Big Code” [4]. Powered
by this kind of data fuel and increasing computational power, artificial intelligence, especially deep
learning can make code intelligence feasible, showing the potential to change the landscape of
modern software development.

The realization of code intelligence requires synergy in the research among software engineer-
ing, machine learning, natural language processing (NLP), and programming languages. From
our investigation, precise and reliable code representation learning or code embedding, which
aims to efficiently and effectively encode the semantics of source code into distributed vector
representations, is the foundation for code intelligence. Such embedding vectors are then used in
many downstream tasks, such as code completion [108, 136, 181, 205], code search [69, 97, 216],
code summarization [8, 94, 98, 219, 264], type inference [5, 89, 172, 234], etc.

In terms of code embedding, significant progress has been made to apply deep learning and NLP
techniques to represent source code, in order to build intelligent tools to facilitate programming.
For example, analogous to word2vec [152] in NLP, Alon et al. [11] proposed code2vec, a distributed
representation of code, based on a collection of paths extracted from the Abstract Syntax Tree
(AST) of code. Furthermore, VenkataKeerthy et al. [214] proposed IR2Vec to represent programs
in the form of the LLVM-IR and capture the syntax and semantics of programs. Recently, as large
pre-trained language models (e.g., BERT [54]and GPT-3 [23]) have been widely applied to NLP,
many approaches [60, 74, 106] have been proposed to pre-train masked language models for source
code. Feng et al. [60] pre-trained a CodeBERT model for the bimodal programming language and
natural language, which has demonstrated positive results in multiple downstream tasks, such as
code search and code completion. In this paper, we examine deep-learning-based code intelligence
from the views of code representation learning, deep learning methods, and applications.
Related Surveys and Differences. From our literature review, there have been several related

surveys to ours. Allamanis et al. [4] carried out a comprehensive review on machine learning
approaches to modeling the naturalness of programming language. They mainly focus on machine
learning algorithms, especially probabilistic models, rather than deep-learning-based models. Re-
cently, Watson et al. [230], Wang et al. [223] and Yang et al. [249] conducted a thorough review of
the literature on applications of deep learning in software engineering research. They investigated
mostly software engineering and artificial intelligence conferences and journals, focusing on vari-
ous software engineering tasks (not limited to the source code) that are based on deep learning.
[53] is a report that summarizes the current status of research on the subject of the intersection
between deep learning and software engineering, as well as suggests several future directions. In
[146], the authors established a benchmark dataset called CodeXGLUE for code representation and
generation. In addition, several benchmark results especially based on pre-trained language models
(i.e., CodeBERT) are presented.

Different from [4] that focuses on traditional machine learning approaches, this paper puts more
emphasis on deep learning techniques for code intelligence. Different from [230], [223], [249],
and [53] that cover various tasks in broad software engineering, we narrow down our focus to
source code related tasks from the perspective of deep learning. In addition, we survey papers
from various fields including software engineering, programming languages, machine learning,
NLP, and security. Note that, as code intelligence based on deep learning is an emerging and active
research topic, we also include several high-quality unpublished papers that are released in arXiv.
This is because these unpublished works in arXiv can be seen as an indicator of future research.
Furthermore, existing surveys do not provide comprehensive benchmark evaluation results, nor do
they develop an open-source toolkit to facilitate further research. In this paper, we introduce an
open-source toolkit termed NaturalCC (standards for Natural Code Comprehension) [215] to ease
the prototyping of code intelligence models, as well as benchmark several state-of-the-art models.

, Vol. 1, No. 1, Article . Publication date: June 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 3

code/query

Code
Features

Classification-based

1. code classification
2. vulnerability detection
3. type inference

Generation-based

1. code completion
2. code summarization
3. program synthesis
4. program repair
5. program translation

Self-supervised Learning

Token AST Code Graphs (CFG, DFG, CPG)IR

CNN RNN GNN Transformer

API

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Input

Neural
Networks

Applications

extract
Learning Paradigms

Similarity-based

1. code clone detection
2. code search

Fig. 1. Code intelligence tasks based on code representation learning.

As a complementary to CodeXGLUE [146] which intends to create a benchmark dataset for code
understanding and generation especially based on pre-trained code models, we place an emphasis
on developing the infrastructures for various model implementations and providing users with the
ability to conduct rapid prototyping. Compared with CodeXGLUE, our toolkit contains more tools
that may be used in the pipeline of building code intelligence models, with higher flexibility.
Our Contributions. This paper is for researchers and practitioners who are interested in

the intersection between code intelligence and deep learning, especially in intelligent software
engineering, NLP, and programming languages. In this paper, we first present a comprehensive
review of the research efforts on deep learning for code intelligence. We then move a step forward to
building an open-source toolkit NaturalCC for code intelligence, which implements many stat-of-
the-art models over different downstream tasks. In addition, NaturalCC is well-modularized and is
simple to adapt to new tasks and models. Using NaturalCC, we also benchmark the performance
of each model across 4 downstream tasks, e.g., code summarization, code search, code completion,
and type inference. The major contributions of this paper are summarized as follows.
• We conduct a comprehensive review on deep learning for code intelligence. Specifically, we have

collected 257 papers from various top-tier venues and arXiv, covering multiple domains including
software engineering, artificial intelligence, NLP, programming languages, and security.

• We benchmark the performance of 13 leading models across four different tasks (i.e., code
summarization, code search, code completion, and type inference). All the resources, datasets
and source code are publicly available at http://xcodemind.github.io.

• We introduce NaturalCC, an open-source toolkit that has integrated many state-of-the-art
baselines on different tasks, in order to facilitate research on code intelligence. Researchers in
the fields of software engineering, natural language processing, and other fields can benefit from
the toolkit for quick prototyping and replication.

2 SURVEY METHODOLOGY
2.1 A Unified View from Code Representation Learning
We propose to summarize existing deep-learning-based approaches to code intelligence from the
lens of code representation learning in this paper. As shown in Figure 1, for code representation
learning, researchers first extract features that potentially describe the semantics of code, and
then design various neural networks to encode them into distributed vectors. Code representation
learning can be viewed as the foundation for different downstream applications. Based on the
characteristic of each application, the downstream applications can be divided into three groups:
(1) Classification-based. In these tasks (e.g., code classification, vulnerability detection, and type
inference), a classifier layer (e.g., softmax) is used to map the code embeddings to labels/classes.

, Vol. 1, No. 1, Article . Publication date: June 2024.

http://xcodemind.github.io

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Wan et al.

(2) Similarity-based. In these tasks (e.g., code clone detection and code search), Siamese neural
network structure [43] is often adopted, where dual encoders are used to encode the source code
and natural-language query into embedding vectors. Based on the two embeddings of code and
query, a constraint (such as triplet loss function) is always used to regularize the similarity between
them. (3) Generation-based. In these tasks (e.g., code completion, code summarization, program
translation, program synthesis, and program repair), source code, natural-language descriptions
or programs written in another programming language are desired to be generated, given a code
snippet. These tasks usually follow the encoder-decoder paradigm, where an encoder network is
used to represent the semantics of code, and a decoder network (e.g., RNN) is designed to generate
sequences, e.g., natural-language descriptions or source code. Additionally, we categorize the
learning paradigms into four groups: supervised learning, unsupervised learning, self-supervised
learning, and reinforcement learning.

2.2 Paper Selection
Deep learning for code intelligence has been studied in many related research communities. In
this paper, we review high-quality papers selected from top-tier conferences and journals, ranging
from software engineering, programming languages, NLP, and artificial intelligence, to security.
Overall, we have identified 32 publication venues, as shown in the Supplementary Materials. We
first manually check the publication list of the venues and obtain an initial collection of papers.
Particularly, we search the aforementioned venue names in DBLP1 and their corresponding content
of proceedings. Two authors of this paper who have more than five-year experience in deep learning
for code intelligence then work collaboratively to manually filter out those papers that may be
related to code intelligence by checking the titles or quickly going through the abstract. For those
large conferences (e.g., AAAI and IJCAI) that accept thousands of papers per year, we first filter
out those papers whose titles contain the keywords of “code” or “program”, and then manually
check them.

Based on this initial collection of papers, we start to augment it through keyword searching. We
systematically search DBLP and Google Scholar using the following keywords: “code representa-
tion”, “program comprehension”, “code embedding”, “code classification”, “vulnerability detection”,
“bug finding”, “code completion”, “type inference”, “code search/retrieval”, “code clone detection”,
“code summarization”, “program translation”, “program synthesis”, and “program repair”, with a
combination of “deep”, “learning”, “neural”, and “network”.

It is worth noting that, in addition to accepted papers from the aforementioned venues, we also
consider some recent publications from the e-Print archive, as they reflect the most current research
outputs. We choose publications from arXiv based on three criteria: paper quality, author reputation,
and technique innovation, which can be indicated by the number of citations. Having obtained this
collection of papers, we then filter out the irrelevant papers by manual checking. We only consider
full papers, while short papers are excluded. Finally, we obtained a collection of 257 papers. The
complete list of studied papers can be found at https://github.com/CGCL-codes/awesome-code-
intelligence.

2.3 Publication Trends of Code Intelligence
Figure 2 provides statistics of the surveyed papers to reveal the publication trend and research topic
trend. Figure 2a shows the collected papers on deep learning for code intelligence, from January
2014 to December 2022. Although deep learning was first proposed in 2006 [91], it is initially
used for source code modeling in 2014. From Figure 2a, we can see that the number of relevant

1https://dblp.uni-trier.de

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://github.com/CGCL-codes/awesome-code-intelligence
https://github.com/CGCL-codes/awesome-code-intelligence

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 5

3 2

14
16

28

32

52 51

60

11

0

20

40

60

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Year

C
ou

nt
 o

f P
ub

lic
at

io
ns

Topic

Natural Language Processing

Artificial Intelligence

Software Engineering

Programming Language

Security

Preprint

Others

Publication Count by Year and Topic

(a) Number of publications in different years (b) Publication in each application

Fig. 2. Statistics of the surveyed papers to reveal the publication trend and research topic trend.

papers for code intelligence has increased significantly since 2018, indicating that deep learning has
significantly advanced code intelligence research since then. This development can be attributed to
the widespread use of deep learning in NLP since 2018, which has sparked a lot of studies on using
NLP methods for tasks involving source code.
Figure 2b shows the distribution of papers across applications, including code classification,

vulnerability detection, type inference, code search, code clone detection, code completion, code
summarization, program translation, program synthesis, and program repair. This figure shows
that the topics of code summarization, program synthesis, program repair, vulnerability detection,
and code search, are hot research topics in recent years.

3 LITERATURE REVIEW
3.1 Taxonomy
Figure 3 illustrates the taxonomy of current studies on deep learning for code intelligence that we
have surveyed in this paper. From our observation, the research in this field can be broken down
into three distinct aspects: i.e., code features, deep learning techniques, and applications. (1) Code
Features. As the foundation of deep-learning-based code intelligence, code representation seeks
to represent source code as distributed vectors. We categorize the current code representation
approaches by the features of input code that they use, such as code tokens, IR, APIs, ASTs and
code graphs (e.g., graphs that illustrate control flow and data flow). (2) As for the deep learning
techniques, we first explore the types of neural networks (i.e., RNNs, CNNs, Transformers, and
GNNs), and then investigate the learning paradigms (i.e., supervised learning, unsupervised learning,
self-supervised learning, and reinforcement learning) that have been used for modeling source code.
(3) We investigate multiple downstream applications that are based on code representation and
deep learning techniques , including code classification, vulnerability detection and bug finding,
type inference, code search, code clone detection, code completion, code summarization, program
translation, program synthesis, and program repair.

3.2 Code Features
To represent source code, we need to first determinewhat to represent. Various work has proposed to
extract code features frommultiple perspectives, including code tokens, intermediate representation
(IR), abstract syntax tree (AST) as well as many kinds of flow graphs. Figure 4 shows a detailed code
snippet written in C, with its corresponding code tokens, IR, AST, control-flow graph, data-flow
graph, code property graph, and IR-based flow graphs.
3.2.1 Code Tokens. Code tokens, shaping the textual appearance of source code, are composed
of function name, keywords, and various variable identifiers. These tokens are simple yet effective

, Vol. 1, No. 1, Article . Publication date: June 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Wan et al.

Code
Intelligence

Code
Features

Deep Learning

Application

Supervised Learning

Transformer

GNN

CNN

RNN

Unsupervised Learning

Self-Supervised
Learning

Reinforcement Learning

IR

AST

API

Token

Code Graph

Other Features

Hybrid

Code Clone Detection

Code Search

Type Inference

Vulnerability Detection
and Bug Finding

Code Classification

Code Completion

Code
Summarization

Program Translation

Program Synthesis

Program Repair

[9, 69, 80, 89, 93, 135, 148, 181, 205, 237, 264]

[8, 201]

[5, 7, 21, 39, 141, 155, 219, 228, 234, 272]

[44, 108, 203]

[5, 8–10, 25, 29, 35, 39, 42, 56, 58, 69, 71, 80, 82, 89, 93, 98,
117, 122, 126, 129, 134, 135, 148, 155, 181, 201, 203, 205,
211, 213, 216, 219, 233, 234, 237, 242, 265, 269, 270, 272,
275]

[182]

[1, 27, 60, 73, 74, 100, 104, 106, 109, 149, 163, 191, 218, 220,
221, 226, 229, 263, 268, 271]

[78, 219, 252, 270]

[8, 45, 49, 50, 60, 98, 106, 107, 238]

[26, 70, 81, 94, 101, 154, 162, 235]

[9–11, 39, 93, 108, 138, 155, 163, 256, 265]

[17, 48, 72, 127, 169, 214]

[6, 7, 21, 40, 48, 193, 196]

[22, 90, 92, 210]

[36, 69, 216, 219, 237, 269]

[25, 112, 155]

[31, 42, 51, 79, 111, 123, 124, 126, 128, 129, 142, 173, 222,
224, 243, 272, 277, 278]

[5, 89, 96, 148, 153, 166, 172, 234]

[28, 30, 34, 52, 68, 69, 82, 119, 133, 193, 198, 216, 217, 252,
274]

[24, 57, 72, 95, 150, 158, 207, 212, 225, 233, 237, 240, 242,
265, 269]

[10, 21, 75, 108, 117, 135–137, 145, 181, 194, 203–205, 228]

[2, 8, 9, 13, 46, 61, 63, 64, 66, 76, 83, 84, 93, 94, 98, 105,
113, 114, 116, 118, 130, 139, 141, 143, 156, 161, 167, 168,
188, 190, 206, 219, 227, 231, 232, 239, 244, 245, 248, 250,
254, 264, 276]

[39, 71, 182, 183]

[12, 15, 16, 29, 38, 55, 58, 88, 99, 120, 132, 134, 146, 147,
159, 164, 170, 176, 177, 195, 201, 202, 246, 256–260, 270]

[18, 19, 35, 41, 56, 62, 67, 77, 78, 80, 85, 87, 103, 122, 125,
151, 177, 185, 208, 209, 211, 213, 236, 253, 275]

Fig. 3. The taxonomy of deep learning for code intelligence.

to represent the semantics of programs. The majority of approaches for processing code involve
breaking the program down into a sequence of tokens based on specific delimiters, such as spaces
or the capitalization patterns in identifiers (for identifiers like SortList and intArray). Cummins
et al. [49] introduced a character-level LSTM network to represent the sequence of code characters
for program synthesis. Since the set of characters to form a program is always in a limited size, the
character-level code representation does not have the problem of out-of-vocabulary. However, this
tokenization process at the character level breaks down the meaning of the original words and also

, Vol. 1, No. 1, Article . Publication date: June 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 7

(a) Code snippet (b) Code tokens

Word tokenization

BPE tokenization

(c) IR (d) AST

(e) Control-flow graphs (f) Data-flow graphs (g) Code property graphs (h) IR-based flow graphs

switch i32 %0, label %3 [
 i32 0, label %9
 i32 1, label %2
]

%6 = add nsw i32 %0, -2

%7 = call i32 Fib(i32 %6) %5 = call i32 Fib(i32 %4)

define i32 Fib(i32 %0)

%10 = phi i32 [%8, %3],
 [1, %2], [%0, %1]

%8 = add nsw i32 %7, %5

%4 = add nsw i32 %0, -1

define i32 Fib(i32 %0) {
switch i32 %0, label %3
[

i32 0, label %9
i32 1, label %2

]

2: br label %9
...
}

int Fib(int number) {
switch(number) {

case 0:
return 0;

case 1:
return 1;

default:
return Fib(number - 1)
+ Fib(number - 2);

}
}

int Fib (int number) {
switch (number) {

case 0 :
...

_int _Fib (int _ num ber)
_{ _switch (num ber) _{

_case _0 :
...

Case 0 Case 1

ε DefaultFib (int number) Switch number

Return 0 Return 1

Return

Call Fib(int)

-

number 1

Call Fib(int)

sink Arg

+

-

number 1

sink Arg

number

number

root

i32

i32

i32 i32

1

switch

br

add

call

add

call

add

i32

ret

phi

ret

1

1

4 2

FunctionDecl Fib (int number)

Switch number

Case 0

Return 0

Case 1

Return 1

Default

Return

+

Call Fib(int)

number 1

Call Fib(int)

number 2

- -

switch i32 %0, label %3
[
 i32 0, label %9
 i32 1, label %2
]

2:
 br label %9

9:
 %10 = phi i32 [%8, %3],
 [1, %2], [%0, %1]
 ret i32 %10

%4 = add nsw i32 %0, -1
%5 = call i32 Fib(i32 %4)
%6 = add nsw i32 %0, -2
%7 = call i32 Fib(i32 %6)
%8 = add nsw i32 %7, %5
br label %9

define i32 Fib(i32 %0) #0

Fig. 4. A detailed C code snippet with its corresponding tokens, IR, AST, IR-based flow graphs.

increases the length of the code sequence, which can make it challenging to understand the overall
semantics of the program.

More coarsely, many word-level approaches are proposed to tokenize source code into words by
separators. For example, White et al. [238] and Iyer et al. [98] proposed to tokenize the program
into words by whitespace, and designed RNNs to represent them for code summarization and code
completion. Allamanis et al. [8] designed a CNN with an attention mechanism to better represent
the hierarchical structure of code over the subtokens that are simply tokenized by Camel cases, to
predict the function name.

Out-of-Vocabulary (OOV) Issue. Since the variables and function names are always defined by
developers without constraints, the size of vocabulary will explosively increase with the increasing
training data, resulting in the out-of-vocabulary issue, which is more severe than that in NLP. To
mitigate this issue, Cvitkovic et al. [50] proposed a graph–structured cache, which introduces
additional nodes for the encountered new words, and connects those nodes with edges based
on where they occur in the code. Recently, Chirkova and Troshin [45] offered a straightforward
yet effective solution to mitigate the OOV issue by using identifier anonymization, and observed
promising performance improvement.
Another effective approach is to tokenize the source code at a sub-word level, such as using

techniques like Byte Pair Encoding (BPE), which aims to construct a set of sub-words that can
be combined to represent the entire code corpus. Figure 4 (b) shows the source tokens obtained
by the strategy of word tokenization and BPE tokenization. For the input variable number, the
word tokenization will maintain the original word and consider it as a rare word, while the BPE
tokenization will split it into two common sub-words, i.e., num and ber. In the recent pre-trained
language models of source code, e.g., CuBERT [106] and CodeBERT [60], BPE has commonly been
adopted for reducing the vocabulary size. Karampatsis et al. [107] conducted an empirical study on
the granularity of word segmentation, and showed that tokenizing code by BPE can significantly
reduce the vocabulary size.
3.2.2 Application Programming Interfaces (API). There have been multiple methods proposed to
analyze the API sequences in programs. One line of work is about mining API usage patterns from
a large code corpus to demonstrate how to use an API. For example, Moreno et al. [154] proposed a
novel approach, named Muse, to demonstrate API usage by mining and ranking the code examples
in usage. Another line of work is API recommendation, which aims to recommend or generate
a sequence of APIs for users. Jiang et al. [101] proposed to discover relevant tutorial fragments
for APIs by calculating the correlation score based on PageRank and topic relevance. Gu et al.

, Vol. 1, No. 1, Article . Publication date: June 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Wan et al.

[70] proposed a language model named DeepAPI, under the framework of sequence-to-sequence
learning, to produce API sequences in response to a given natural language description. Different
from DeepAPI, Nguyen et al. [162] proposed API2Vec to represent the contextual information of
API elements within an API sequence. Likewise, they also developed a tool called API2API based
on API2Vec to migrate the APIs across different programming languages, i.e., from Java to C#, to
validate the learned API embedding. Ling et al. [131] introduced a method that integrated API call
interactions and project structure into a single graph, and used this graph to design a graph-based
collaborative filtering for making API usage recommendations. Bui et al. [26] proposed a cross-
language API mapping approach to map APIs from Java to C# with much less prior knowledge,
through transfer learning across multiple domains. Hu et al. [94] suggested that incorporating
API information as supplementary knowledge could improve code summarization. To improve
the representation of semantics in natural-language queries and API sequences, Wei et al. [235]
proposed a contrastive learning approach for API recommendation, and Hadi et al. [81] investigated
the effectiveness of pre-trained models for generating API sequences from natural language queries.
3.2.3 Abstract Syntax Tree (AST). The AST is a tree-structured intermediate representation of code
that describes the syntactic structure of a program. As shown in Figure 4 (d), in an AST, the leaf
nodes (e.g., number, Fib) typically correspond to the tokens of variables and method names in
the source code, while the non-leaf nodes (e.g., FuncName, SwitchStmt) represent the syntactic
structure of code, like function definition, branch functions. As a result, this representation allows
ASTs to be useful for both capturing the lexical information (e.g., variable number) and the syntactic
structure of the source code. In practice, we can extract ASTs using several open source tools,
e.g., tree-sitter2 parser, and LLVM Clang3. To represent the ASTs, Mou et al. [155] proposed
a tree structure-based CNN, and verified it in a code classification task. In order to handle long-
distance dependencies between nodes in an AST, Liu et al. [138] proposed an improved LSTM by
introducing operations such as PUSH and POP, and verified it in the tasks of code completion, code
classification, and code summarization. To better process an AST, Zhang et al. [265] divided an
AST into sentence-based subtrees and represented them using a two-way loop network. Recently,
Kim et al. [108] proposed using a relative position embedding for code completion to feed the AST
to Transformers. Niu et al. [163] introduced a pre-trained model of source code by incorporating
AST information.

Another line of work [9, 11, 93] is to represent ASTs indirectly by traversing or path sampling.
Hu et al. [93] suggested traversing an AST to transform it into a linear series of nodes, and then
using RNNs to represent the AST sequences for the task of code summarization. Alon et al. [11]
performed path sampling on the ASTs, and then used word2vec to represent the semantics of a
program. Furthermore, Alon et al. [9] also applied a similar idea to the task of code summarization.
Similarly, Alon et al. [10] proposed a structured code language model for code completion, by
sampling paths from an incomplete AST.
In program synthesis, an AST is also incorporated to guide the synthesis of programs. Yin and

Neubig [256] proposed an encoder-decoder framework for code generation, in which the encoder
first encodes the natural language, then the decoder generates an AST of code, and finally, the AST
is converted into source code. Chen et al. [39] proposed a Tree2Tree model for program translation,
which first uses a TreeLSTM to represent the source program, and another TreeLSTM to generate
the target program written in another programming language.
3.2.4 Intermediate Representation (IR). The IR is a well-formed structure that is independent of
programming languages and machine architectures. It is used by compilers to accurately represent

2https://tree-sitter.github.io/tree-sitter
3https://clang.llvm.org

, Vol. 1, No. 1, Article . Publication date: June 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 9

the source code during the translation process from the source code to low-level machine code. The
IR can express the operations of the target machine. It is natural to enhance the code embeddings
via utilizing IRs [127], with the benefit of limited vocabulary to significantly alleviate the OOV
issue. In this paper, we employ LLVM-IR, which is used in the LLVM infrastructure [110], as shown
in Figure 4 (c). To represent IRs, Ben-Nun et al. [17] proposed inst2vec, which first compiles a
program using LLVM Clang to obtain the LLVM intermediate representation, and then adopts
skip-gram to represent the instructions. VenkataKeerthy et al. [214] proposed IR2Vec, which regards
the intermediate code representation as triples in knowledge graph, and then explores several
knowledge graph representation methods. Cummins et al. [48] introduced ProGraML, a novel
graph-based code representation based on IR. This code graph provides new opportunities to
represent the semantics of source code in a low-level using machine learning techniques (e.g.,
GNNs), for complex downstream tasks such as program optimization and analysis. Peng et al. [169]
proposed to represent the augmented IR of source code based on pre-training and contrastive
learning techniques, guided by compiler optimization. Interestingly, Gui et al. [72] studied a new
problem of matching binary code and source code across languages by transforming both of them
into LLVM-IRs.
3.2.5 Code Graphs. Currently, many approaches have been proposed to convert programs into
graphs to better represent the rich structural information within the programs , including control-
flow graph (CFG), data-flow graph (DFG) and code property graph (CPG). As shown in Figure 4
(e), the CFG represents the computation and control flow of a program. In this representation,
each node represents a basic block and each edge represents the transitions of control flow in the
program. As shown in Figure 4 (f), the DFG is a directed graph that illustrates data relationships
among various functions. Each node in the DFG has input and output data ports, and each edge
links an output port to an input port on another node. To represent multiple structural information
of code using a joint data structure, Yamaguchi et al. [247] proposed an innovative CPG to merge
the structural information of code, including AST, CFG and program dependence graph (PDG),
into a single graph, as shown in Figure 4 (g). In practice, we can build CFGs and DFGs using LLVM
Clang, and build CPGs using Plume4. Recently, Cummins et al. [48] built a unified graph, termed
ProGraML, which includes the CFG, DFG and call-graph, as shown in Figure 4 (h).

To represent these code graphs, Allamanis et al. [7] introduced the data flow on the top of ASTs
and formed a code graph. Then, a Gated Graph Neural Network (GGNN) [121] was developed to
learn the data dependencies among this code graph. Allamanis and Brockschmidt [6] built the
data flow among variables and considered the contextual information of variables for the task of
automated pasting in programming. Brockschmidt et al. [21] expanded the incomplete code into a
graph, and then proposed a graph neural network for code completion. Sui et al. [196] made the
code representation more accurate by using the value-flow graph of a program. Shi et al. [193]
resorted to converting the code graphs (e.g., CFG and DFG) into sequences through traversing for
the task of code search. Chen et al. [40] introduced a general method for transforming a code graph
into a sequence of tokens and pointers.
3.2.6 Other Features of Code. In addition to the aforementioned features of code that have already
been widely explored, there also exist several kinds of features that are used in some specific
scenarios. For example, Henkel et al. [90] introduced a novel feature for code representation
learning based on abstractions of traces collected from the symbolic execution of a program. Hoang
et al. [92] proposed using deep learning to learn distributed representations of code changes/edits
that may be used to generate software patches. In terms of code changes, several related works are
also proposed to represent or predict them. Tufano et al. [210] proposed to automate code editing

4https://plume-oss.github.io/plume-docs/

, Vol. 1, No. 1, Article . Publication date: June 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Wan et al.

through sequence-to-sequence-based neural machine translation. Brody et al. [22] proposed to
represent the code edits first, and then iteratively generate tree edits over the AST.

3.2.7 Hybrid Representation. To leveragemultiple code features, several approaches to representing
source code in a hybrid fashion have been developed. For instance, Gu et al. [69] explored using
three separate RNNs for representing function names, code tokens, as well as API sequences of
code, respectively. It has also been evaluated in the code search task. White et al. [237] considered
both the code tokens and AST node sequences, and used two different RNNs to represent these two
sequences respectively, for the task of code cloning detection. Zhao and Huang [269] proposed to
represent the source code by incorporating the flow graphs of code into a semantic matrix. They also
developed a neural network model to assess the functional similarity between the representations
of two code snippets. Similarly, Wan et al. [219] and Wan et al. [216] developed a hybrid network
consisting of an LSTM representing the code tokens, a GGNN representing the CFG of code, and
a TreeLSTM representing the AST of code, for the task of code summarization and code search.
Chakraborty and Ray [36] suggested leveraging three modalities of information (e.g., edit location,
edit code context, and commit messages) to represent the context of programming and generate
code patches automatically.

3.3 Deep Learning Techniques
We investigate the types of neural networks and classify the learning paradigms into four groups:
supervised learning, unsupervised learning, self-supervised learning, and reinforcement learning.

3.3.1 Neural Networks. It is natural to model source code as sequential text, and directly apply
NLP techniques to represent it. Simply, RNN [9, 69, 80, 89, 93, 135, 148, 181, 205, 237, 264] and
CNN [8, 201] neural networks can be easily applied to represent the sequential structure of source
code. In order to capture the syntax structure, especially the AST of source code, many tree-
structured neural networks [39, 155, 219] have also been designed. Furthermore, to represent the
semantic structures (e.g., CFG and DFG) of source code, GNNs [5, 7, 21, 141, 228, 234, 272] have been
introduced to represent the source code. Recently, the Transformer architecture has been utilized
to represent the source code [108, 203]. Chirkova and Troshin [44] conducted a comprehensive
empirical study of how well Transformers can leverage syntactic information in source code for
various tasks. As the fundamental blocks for code representation, the neural networks will also be
surveyed in Section 3.6 with respect to different code intelligence applications. More preliminaries
about the mentioned neural networks are referred to the Supplementary Materials.

3.3.2 Supervised Learning. Supervised learning aims to learn a function that maps an input to
an output based on a set of input-output pairs as training data. It is a widely used learning
paradigm in deep learning. From our investigation, current deep learning approaches for code
intelligence are mainly based on supervised learning. For each specific code intelligence task, such
as code classification [25, 155], vulnerability detection and bug finding [42, 126, 129, 272], code
completion [10, 117, 135, 181, 203, 205], type inference [5, 89, 148, 234], code search [69, 82, 216],
code clone detection [233, 237, 242, 265, 269], code summarization [8, 9, 93, 98, 219], program
translation [39, 71], program synthesis [29, 58, 134, 201, 270], and program repair [35, 56, 80, 122,
211, 213, 275], a set of paired input-output data is collected first. For each task, supervised learning
is guided by a specific loss function. One limitation of this kind of approach is that it relies on lots
of well-labeled input-output pairs, which are always expensive to collect in some scenarios.

3.3.3 Unsupervised Learning. As opposed to supervised learning, unsupervised learning seeks to
identify patterns from a dataset without labels. One representative work is TransCoder [182], in
which a fully unsupervised neural source-to-source translator is trained based on unsupervised

, Vol. 1, No. 1, Article . Publication date: June 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 11

machine translation. This kind of learning paradigm is challenging for code intelligence and more
research work is still required.
3.3.4 Self-Supervised Learning. Self-supervised learning can be thought of as a blend of supervised
learning and unsupervised learning. Different from supervised learning where data labels are
available for training, self-supervised learning obtains the supervisory signals directly from the data
itself, usually the underlying structure in the data. One common practice used by self-supervised
learning is to predict any unobserved (or masked) part of input from the part that can be observed.
As a representative technique of self-supervised learning, language model pre-training has been
widely studied in source code [60, 74, 106]. Kanade et al. [106] proposed to train a CuBERT on the
Python code corpus, and verified the pre-trained model on multiple downstream tasks such as
variable misuse, operator classification, and function-document matching. CodeBERT [60] is yet
another pre-trained model that deals with the two different modalities of source code and natural
language descriptions. It is based on masked language modeling, and has achieved promising results
in tasks such as code search and code completion. Based on CodeBERT, GraphCodeBERT [74], SPT-
Code [163], and TreeBERT [104] are proposed with the aim of digesting the structural information
from source code. Lachaux et al. [109] presented a pre-training objective based on deobfuscation
as an alternative criterion. Inspired by BART [115] which is a pre-trained deep model especially
designed towards natural language understanding and generation, Ahmad et al. [1] trained a
similar pre-trained model PLBART for tasks that are related to code generation as well as code
understanding. Zhang et al. [263] trained a model named CoditT5 on large amounts of source
code and natural-language comments, for software-related editing tasks, e.g., comment updating,
bug fixing, and automated code review. Wang et al. [226] and Guo et al. [73] proposed to train a
model by unifying the modality of source code and natural language with contrastive learning, to
improve the representation of the semantics of source code. Mastropaolo et al. [149] and Wang et al.
[229] explored building pre-trained models based on the T5 (Text-To-Text Transfer Transformer)
architecture, which has attained state-of-the-art results in NLP tasks. Bui et al. [27] proposed
InferCode, a self-supervised learning method through predicting subtrees that are identified from
the context of ASTs. Jain et al. [100] proposed a contrastive learning approach for task-agnostic
code representation based on program transformations in compiler.

Instead of improving the capability of code embedding, Wan et al. [218] investigated the explain-
ability of pre-trained models for code intelligence, i.e., what kind of information do these models
capture, through structural analysis. Zhang et al. [268] and Shi et al. [191] suggested compressing
pre-trained models of code, as to accelerate their efficiency in practice. Zhou et al. [271] carried out
an empirical study to assess the generalizability of CodeBERT when applied to various datasets
and downstream tasks. Orthogonally, Wang et al. [221] and Wang et al. [220] investigated how to
fine-tune pre-trained code models via curriculum learning and prompt tuning.
3.3.5 Reinforcement Learning. Reinforcement learning aims to learn an agent through interacting
with the environment without input-output pairs. This kind of learning paradigm has been used in
code summarization [219], code search [252], program repair [78], and program synthesis [270].

3.4 Classification-based Applications
3.4.1 Code Classification. Classifying source code into different classes (e.g., different function-
alities and programming languages), is important for many tasks such as code categorization,
programming language identification, code prediction, and vulnerability detection. Various studies
have been conducted to classify code snippets into categories based on their functionalities. To rep-
resent programs in the form of ASTs, Mou et al. [155] developed a tree-based convolutional neural
network (TBCNN), which was then verified on code classification. On the broader topic of software

, Vol. 1, No. 1, Article . Publication date: June 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Wan et al.

categorization, LeClair et al. [112] designed a set of adaptations (including word embedding and
neural architectures) to adapt NLP techniques for text classification to the domain of source code.
Bui et al. [25] presented a bilateral neural network for the cross-language algorithm classification
task, where each sub-network is used to encode the semantics of code in a specific language, and
an additional classification module is designed to model the connection of those bilateral programs.
3.4.2 Vulnerability Detection and Bug Finding. Detecting vulnerabilities or bugs in programs is
essential for assuring the quality of software, as well as saves much effort and time for software
development. Although many tools have been developed for vulnerability detection, e.g., Clang
Static Analyzer5, Coverity6, Fortify7, Flawfinder8, Infer9, and SVF [197], most of them are based
on static analysis. Recently, a growing number of works employ deep learning to discover vul-
nerabilities. Wang et al. [224] made an early attempt at applying deep learning, specifically deep
belief network, to predict the defects of software, which learns the semantic features of programs
based on AST. Dam et al. [51] proposed an LSTM-based method to exploit both the syntactic and
semantic aspects of source code, and apply the embeddings for both within-project and cross-project
vulnerability detection. VulDeePecker [129], `VulDeePecker [277] and SySeVR [128] are a series of
works that preserve the semantics of program by extracting API function calls and program slices
for vulnerability detection. Le et al. [111] presented a maximal divergence sequential auto-encoder
network to find vulnerabilities in binary files. The network is designed so that the embeddings of
vulnerable code and invulnerable code are encouraged to be maximally divergent. Zhou et al. [272]
proposed Devign for vulnerability detection, which first represents a program by fusing its AST,
CFG and DFG into a unified CPG, and then designs a graph neural network to represent the CPG
of code. Similarly, Wang et al. [222] and Cao et al. [31] proposed a flow-sensitive framework for
vulnerability detection, which leverages a GNN to represent the control, data, and call dependencies
of a program. Cheng et al. [42] introduced DeepWukong, a GNN-based model for vulnerability
detection of C/C++ programs, in which the flow information of program are preserved. Liu et al.
[142] introduced a GNN model with expert knowledge for detecting vulnerabilities in smart con-
tracts, which incorporates the flow information of programs. Inspired by image processing, Wu
et al. [243] proposed a method to enhance the scalability of vulnerability detection by transforming
code into an image with semantics preserved, and implementing a CNN to capture them effectively.
Recently, several works have attempted to explain the results of deep learning models for

vulnerability detection. Li et al. [124] introduced a GNN model for vulnerability detection that
allows for interpretability, by providing users with parts of program dependency graph (PDG)
that may contain the vulnerability. Additionally, Zou et al. [278] proposed an interpretable deep-
learning-based model based on heuristic searching for vulnerability detection.
In contrast to vulnerability detection which only classifies a program as vulnerable or non-

vulnerable, another line of work is bug finding, which aims to pinpoint the buggy location. Deep-
Bugs [173] is an approach for name-based bug detection, which trains a classifier to distinguish
buggy or non-buggy code, based on deep learning. To enhance the accuracy of bug detection, Li et al.
[126] suggested a fusion method by exploiting both the PDG and DFG for better representation.
Larger weights are assigned to the buggy paths using the attention mechanism to identify the pos-
sible vulnerability. Gupta et al. [79] developed a tree-structured CNN to identify the vulnerabilities
or faults in a flawed program with respect to a failed test. Li et al. [123] defined the fault localization

5https://clang-analyzer.llvm.org/scan-build.html
6https://scan.coverity.com
7https://www.hpfod.com/
8https://dwheeler.com/flawfinder
9https://fbinfer.com

, Vol. 1, No. 1, Article . Publication date: June 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 13

problem as image recognition, and provided a deep-learning-based approach that integrates code
coverage, data dependencies between statements, and source code representations.

3.4.3 Type Inference. Programming languages with dynamic typing, like Python and JavaScript,
allow for rapid prototyping for developers and can save the time of software development dramati-
cally. However, without the type information, unexpected run-time errors are prone to occur, which
may introduce bugs and produce low-quality code. Current works on type inference, with the aim
of automatically inferring variable types, mainly fall into two categories: the static-analysis-based
and learning-based. Traditional static-analysis approaches [86, 184] are often imprecise since the
behavior of programs is always over-approximated. In addition, static-analysis-based approaches
typically analyze the dependencies of an entire program, resulting in the relatively low efficiency.

Recently, many deep learning techniques have been introduced for type inference. To the best of
our knowledge, Hellendoorn et al. [89] was the first to employ deep learning for type inference.
They proposed a neural network based on sequence-to-sequence architecture, named DeepTyper,
which uses GRUs to represent the program context and predict the type annotations for TypeScript.
Furthermore, Malik et al. [148] proposed NL2Type to predict type annotations by leveraging the
natural-language information of programs. Based on NL2Type, Pradel et al. [172] further proposed
TypeWriter, which utilizes both the natural-language information and programming context (e.g.,
arguments usage a function). Wei et al. [234] proposed LambdaNet for type inference based on
GNNs, which first represents the code in the form of a type dependency graph, where typed
variables and logical constraints among them are preserved. Then a GNN is proposed to propagate
and aggregate features along related type variables, and eventually, predict the type annotations.
Pandi et al. [166] presented OptTyper, which first extracts relevant logical constraints, and shapes
type inference as an optimization problem. Allamanis et al. [5] proposed Typilus for type inference
in Python, which expands ASTs into a graph structure and predicts type annotations over this
graph using GNNs. To cope with large-scale type vocabulary, Mir et al. [153] presented Type4Py, a
similarity-based deep learning model with type clusters, which can support the inference of rare
types and user-defined classes. Recently, Huang et al. [96] formulated the type inference task as a
cloze-style fill-in-blank problem and then trained a CodeBERT model based on prompt tuning.

3.5 Similarity-based Applications
3.5.1 Code Search. Code search aims to retrieve a code snippet by a natural-language query (nl-to-
code) or code query (code-to-code). The nl-to-code search refers to searching code fragments that
have similar semantics to the natural-language query from a codebase. As the first solution for code
search using deep learning, Gu et al. [69] proposed DeepCS, which simultaneously learns the source
code representation (e.g., function name, parameters and API usage) and the natural-language query
in a shared feature vector space, with triplet criterion as the objective function. On the basis of
DeepCS, Wan et al. [216] and Deng et al. [52] included more structural information of source code,
including the ASTs and CFGs, under a multi-modal neural network equipped with an attention
mechanism for better explainability. Ling et al. [133] first converted code fragments and natural-
language descriptions into two different graphs, and presented a matching technique for better
source code and natural-language description matching. Furthermore, Shi et al. [193] suggested an
improved code search method by converting code graphs (e.g., CFGs and PDGs) into sequences
through traversing. Haldar et al. [82] proposed a multi-perspective matching method to calculate the
similarities among source code and natural-language query frommultiple perspectives. Cambronero
et al. [30] empirically evaluated the architectures and training techniques when applying deep
learning to code search. Bui et al. [28] and Li et al. [119] leveraged contrastive learning with
semantics-preserving code transformations for better code representation in code search.

, Vol. 1, No. 1, Article . Publication date: June 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Wan et al.

Similar but different to the DeepCS framework, several more works have been proposed as
complements for code search. Yao et al. [252] proposed using reinforcement learning to first
generate the summary of code snippet and then use the summary for better code search. Sun et al.
[198] suggested parsing source code to machine instructions, then mapping them into natural-
language descriptions based on several predefined rules, followed by an LSTM-based code search
model like DeepCS. Zhu et al. [274] considered the overlapped substrings between natural-language
query and source code, and developed a neural network component to represent the overlap matrix
for code search.

Recently, Chai et al. [34] suggested a transfer learning method for domain-specific code search,
with the aim of transferring knowledge from Python to SQL. Wan et al. [217] examined the
robustness of different neural code search models, and showed that some of them are vulnerable to
data-poisoning-based backdoor attacks. Gu et al. [68] proposed to optimize code search by deep
hashing techniques.
In contrast to nl-to-code search, the input of code-to-code search is source code, rather than

natural-language description. The objective of the code-to-code search is to find code snippets that
are semantically related to an input code from a codebase. The core technique of code-to-code search
is to measure the similarity index between two code snippets, which is identical to the process of
identifying code clones. More related work will be investigated in the code clone detection section.

3.5.2 Code Clone Detection. Numerous software engineering activities, including code reuse,
vulnerability detection, and code search, rely on detecting similar code snippets (or code clones).
There are basically four main types of code clones: Type-1 code clones are ones that are identical
except for spaces, blanks, and comments. Type-2 code clones denote identical code snippets except
for the variable, type, literal, and function names. Type-3 code clones denote two code snippets
that are almost identical except for a few statements that have been added or removed. Type-4 code
clones denote heterogeneous code snippets with similar functionality but differing code structures
or syntax. To handle different types of code clones, various works have been proposed.

Recently, several deep-learning-based approaches have been designed for semantics representa-
tion of a pair of code snippets for the task of clone detection. The core of these approaches lies
in representing the source code as distributed vectors, in which the semantics are preserved. As
an example, White et al. [237] proposed DLC, which comprehends semantics of source code by
considering its lexical and syntactic information, and then designs RNNs for representation. To
improve the representation of syntactic structure of code, Wei and Li [233] applied TreeLSTM to
incorporate AST information of source code. Zhao and Huang [269] proposed encoding the CFG
and DFG of code into a semantic matrix, and introduced a deep learning model to match the similar
code representations. Zhang et al. [265] and Büch and Andrzejak [24] designed approaches to better
represent the ASTs of the program, and applied them for code clone detection task. Furthermore,
Wang et al. [225], Nair et al. [158] and Mehrotra et al. [150] proposed to convert source code into
graphs (e.g., CFG), represent the code graphs via GNN, and then measure the similarities between
them. Instead of using GNN, Wu et al. [242]and Hu et al. [95] introduced a centrality analysis
approach on the flow graph (e.g., CFG) of code for clone detection, inspired by social network
analysis. Wu et al. [240] considered the nodes of an AST as distinct states and constructed a model
based on Markov chain to convert the tree structure into Markov state transitions. Then, for code
clone detection, a classifier model is trained on the state transitions. Tufano et al. [212] empirically
evaluated the effectiveness of learning representation from diverse perspectives for code clone
detection, including identifiers, ASTs, CFGs, and bytecode. Recently, Ding et al. [57] and Tao et al.
[207] utilized program transformation techniques to augment the training data, and then applied
pre-training and contrastive learning techniques for clone detection. Gui et al. [72] studied a new

, Vol. 1, No. 1, Article . Publication date: June 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 15

problem of cross-language binary-source code matching by transforming both source and binary
into LLVM-IRs.

3.6 Generation-based Applications
3.6.1 Code Completion. Code completion is a core feature of most modern IDEs. It offers the
developers a list of possible code hints based on available information. Raychev et al. [181] made
the first attempt to combine the program analysis with neural language models for better code
completion. It first extracts the abstract histories of programs through program analysis, and then
learns the probabilities of histories via an RNN-based neural language model. Similarly, various
works [117, 135, 205] resort to inferring the next code token over the partial AST, by first traversing
the AST in a depth-first order, and then introducing an RNN-based neural language model. To better
represent the structure of code, Kim et al. [108] suggested predicting the missing partial code by
feeding the ASTs to Transformers. Alon et al. [10] presented a structural model for code completion,
which represents code by sampling paths from an incomplete AST. Furthermore, Wang and Li
[228] suggested a GNN-based approach for code completion, which parses the flattened sequence
of an AST into a graph, and represents it using Gated Graph Neural Networks (GGNNs) [121].
Guo et al. [75] modeled the problem of code completion as filling in a hole, and developed a
Transformer model guided by the grammar file of a specified programming language. Brockschmidt
et al. [21] expanded incomplete code into a graph representation, and then proposed a GNN for code
completion. Svyatkovskiy et al. [203] proposed IntelliCode Compose, a pre-trained language model
of code based on GPT-2, providing instant code completion across different programming languages.
Liu et al. [136, 137] proposed a multi-task learning framework that unifies the code completion and
type inference tasks into one overall framework. Lu et al. [145] suggested a retrieval-augmented
code completion method that retrieves similar code snippets from a code corpus and then uses
them as external context.
Since instant code completion is desired, several studies aim to improve the efficiency and

flexibility of code completion. Svyatkovskiy et al. [204] suggested improving the efficiency of
neural network model for code completion by reshaping the problem from generation to ranking
the candidates from static analysis. Additionally, Shrivastava et al. [194] proposed a code completion
approach that supports fast adaption to an unseen file based on meta-learning.
3.6.2 Code Summarization. Inspired by the text generation work in NLP, many approaches have
been put forward to systematically generate a description or function name to summarize the
semantics of source code. To the best of our knowledge, Allamanis et al. [8] were the first to use
deep learning for code summarization. They designed a CNN to represent the code and applied
a hybrid breath-first search and beam search to predict the tokens of function name. Concur-
rently, Iyer et al. [98] proposed an LSTM-based sequence-to-sequence network with an attention
mechanism for generating descriptions for source code. The sequence-to-sequence network [98]
inspired a line of works for code summarization, distinguished in code representation learning. To
represent the AST information, Hu et al. [93], Alon et al. [9], and LeClair et al. [114] proposed to
linearize the ASTs via traversing or path sampling, and used RNNs to represent the sequential AST
traversals/paths for code summarization. Likewise, Fernandes et al. [61], LeClair et al. [113] and
Jin et al. [105] investigated representing the structure of source code via a GNN, and verified it in
code summarization. Guo et al. [76] designed the triplet position to model hierarchies in syntax
structure of source code for better code summarization. Recently, several works [2, 66, 206, 239]
proposed to improve code summarization by designing enhanced Transformers to better capture
the structural information of code (i.e., ASTs). Wan et al. [219], Shi et al. [190], Yang et al. [250],
Gao and Lyu [63], and Wang et al. [227] proposed a hybrid representation approach by combining
the embeddings of sequential code tokens and structured ASTs, and feeding them into a decoder

, Vol. 1, No. 1, Article . Publication date: June 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Wan et al.

network to generate summaries. As a complement, Haque et al. [84] and Bansal et al. [13] advanced
the performance of code summarization by integrating the context of summarized code, which
contains important hints for comprehending subroutines of code. Shahbazi et al. [188] leveraged the
API documentation as a knowledge resource for better code summarization. Instead of generating a
sequence of summary tokens at once, Ciurumelea et al. [46] resorted to suggesting code comment
completions based on neural language modeling. Lin et al. [130] proposed to improve the code
summarization by splitting the AST under the guidance of CFG, which can decrease the AST size
and make model training easier.
Another line of work aims to utilize code search to enhance the quality of code summaries

generated by deep learning models. For example, Zhang et al. [264], Wei et al. [232], Liu et al. [141]
and Li et al. [116] suggested augmenting the provided code snippet by searching similar source
code snippets together with their comments, for better code summarization. Instead of acquiring
the retrieved samples in advance, Zhu et al. [276] suggested a simple retrieval-based method for
the task of code summarization, which estimates a probability distribution for generating each
token given the current translation context.
Apart from the above approaches, several works [94, 231, 244, 248, 254] are also worthy to be

mentioned. Hu et al. [94] transferred the code API information as additional knowledge to code
summarization task. Xie et al. [244] studied a new task of project-specific code summarization with
limited historical code summaries via meta-transfer learning. Wei et al. [231] and Yang et al. [248]
viewed the code generation task as a dual of code summarization, and incorporated dual learning
for a better summary generation. Similarly, Ye et al. [254] leveraged code generation for code search
and code summarization through dual learning as well. Mu et al. [156] introduced a multi-pass
deliberation framework for code summarization, inspired by human cognitive processes. Xie et al.
[245] proposed a multi-task learning framework by leveraging method name suggestion as an
auxiliary task to improve code summarization. Haque et al. [83] emphasized that predicting the
action word (always first word) is an important intermediate problem in order to generate improved
code summaries. Recently, the consistency between source code and comments has also attracted
much attention, which is critical to ensure the quality of software. Liu et al. [139], Panthaplackel
et al. [167], and Nguyen et al. [161] trained a deep-learning-based classifier to determine whether
or not the function body and function name are consistent. Panthaplackel et al. [168] and Liu et al.
[143] proposed automatically updating an existing comment when the related code is modified,
as revealed in the commit histories. Gao et al. [64] proposed to automate the removal of obsolete
TODO comments by representing the semantic features of TODO comments, code changes, and
commit messages using neural networks. Li et al. [118] proposed to generate review comments
automatically based on pre-trained code models.

3.6.3 Program Translation. Translating programs from a deprecated programming language to
a modern one is important for software maintenance. Many neural machine translation-based
methods have been proposed for program translation. In order to utilize AST structure of code,
Chen et al. [39] proposed Tree2Tree, a neural network with structural information preserved. It
first converts ASTs into binary trees following the left-child right-sibling rule, and then feeds
them into an encoder-decoder model equipped with TreeLSTM. Gu et al. [71] presented DeepAM,
which can extract API mappings among programming languages without the need of bilingual
projects. Recently, Rozière et al. [182] proposed TransCoder, a neural program translator based on
unsupervised machine translation. Furthermore, Rozière et al. [183] leveraged the automated unit
tests to filter out invalid translations for unsupervised program translation.

3.6.4 Program Synthesis. Program synthesis is a task for generating source code using high-level
specifications (e.g., program descriptions or input-output samples). Given the natural-language

, Vol. 1, No. 1, Article . Publication date: June 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 17

inputs, current approaches resort to generating programs throughmachine translation. For semantic
parsing, Dong and Lapata [58] proposed an attention-based encoder-decoder model, which first
encodes input natural language into a vector representation using an RNN, and then incorporates
another tree-based RNN to generate programs. Liu et al. [134] proposed latent attention for the
If-Then program synthesis, which can effectively learn the importance of words in natural-language
descriptions. Beltagy and Quirk [16] modeled the generation of If-Then programs from natural-
language descriptions as a structure prediction problem, and investigated both neural network and
logistic regression models for this problem.

Unlike synthesizing simple If-Then programs, Yin and Neubig [256] proposed a syntax-preserving
model for general-purpose programming languages, which generates Python code from pseudo
code, powered by a grammar model that explicitly captures the compilation rules. Maddison and
Tarlow [147] proposed a probabilistic model based on probabilistic context-free grammars (PCFGs)
for capturing the structure of code for code generation. Ling et al. [132] collected two datasets (i.e.,
Hearthstone and Magic the Gathering) for code generation in trading card games, and proposed
a probabilistic neural network with multiple predictors. On the basis of [132], Rabinovich et al.
[176] proposed to incorporate the structural constraints on outputs into a decoder network for
executable code generation. Similarly, Sun et al. [201] and Sun et al. [202] designed a tree-based
CNN and Transformer, respectively, for code generation and semantic parsing tasks based on the
sequence-to-sequence framework. Hayati et al. [88] suggested using a neural code generation
model to retrieve action subtrees at test time.
Instead of synthesizing programs from natural-language descriptions, several works resort

to generating programs from the (pseudo) program in another format or language. Iyer et al.
[99] proposed to synthesize the AST derivation of source code given descriptions as well as the
programmatic contexts. The above approaches are driven by well-labeled training examples, while
Nan et al. [159] proposed a novel approach to program synthesis without using any training
example, inspired by how humans learn to program.

Recently, various pre-trained code models also achieved significant progress in code generation.
CodeGPT [146] is a Transformer-based model which is trained using corpus for program synthesis,
following the same architecture of GPT-2. CodeT5 is a pre-trained code model in eight programming
languages based on T5 [177], which includes an identifier-aware objective in pre-training. Xu et al.
[246] aimed to incorporate external knowledge during the pre-training process for code generation
from natural-language input. Codex [38] is a GPT model trained using a code corpus collected from
GitHub. It has served as the foundation of Copilot10. Remarkably, Li et al. [120] recently released
AlphaCode, a code generation system that may generate unique solutions to these challenging
problems requiring deeper thinking. Poesia et al. [170] introduced a constrained semantic decoding
mechanism into a pre-trained model, as to constrain outputs of the model in a set of valid programs.

Programming by example is another flourishing direction for program synthesis. Shu and Zhang
[195] proposed a Neural Programming By Example (NPBE) model, which learns to solve string
manipulation problems through inducting from input-output strings. Balog et al. [12] proposed
DeepCoder, which trains a model to predict possible functions useful in the program space, as to
guide the conventional search-based synthesizer. Devlin et al. [55] proposed RobustFill, which is
an end-to-end neural network for synthesising programs from input-output examples. Nye et al.
[164] developed a neuro-symbolic program synthesis system called SketchAdapt, which can build
programs from input-output samples and code descriptions by intermediate sketch. Bavishi et al.
[15] proposed a program candidate generator, backed by GNNs, for program synthesis in large
real-world API.

10https://github.com/features/copilot

, Vol. 1, No. 1, Article . Publication date: June 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Wan et al.

It is worth mentioning that there are many works on generating code from natural language for
specific domain-specific programming languages, e.g., Bash and SQL. WikiSQL [270], Spider [259],
SparC [260], and CoSQL [258] are four datasets with human annotations for the task of text-
to-SQL. Based on these datasets, many works [257, 258, 260] have been proposed. For example,
Seq2SQL [270] is a neural machine translation model to generate SQL queries from natural-language
descriptions with reinforcement learning. Cai et al. [29] further proposed an encoder-decoder
framework to translate natural language into SQL queries, which integrates the grammar structure
of SQL for better generation. Yu et al. [257] proposed a neural network SyntaxSQLNet, with syntax
tree preserved, for the task of text-to-SQL translation across different domains, which takes the
syntax tree of SQL into account during generation.

3.6.5 Program Repair. Automatically localizing and repairing bugs in programs can save much
manual effort in software development [102]. One line of work is to learn the patterns of how
programmers edit the source code, which can be used to check syntax errors while compiling.
Bhatia and Singh [19] and Santos et al. [185] proposed RNN-based language models for correcting
syntax errors in programs. DeepFix [80] and SequenceR [41] are two sequence-to-sequence models
for syntax error correction, by translating the erroneous programs into fixed ones. Furthermore,
Gupta et al. [78] improved program repair by reinforcement learning. Vasic et al. [213] proposed
multi-headed pointer networks (one head each for localization and repair) for jointly localizing and
repairing misused variables in code. Dinella et al. [56] presented Hoppity to jointly detect and fix
bugs based on neural Turing machine [67], where a GNN-based memory unit is designed for buggy
program representation, and an LSTM-based central controller is designed to predict the operations
of bug fixing, e.g., patch generation and type prediction. Tarlow et al. [208] proposed Graph2Diff,
which designs a GNN for representing the graph structure of programs, and a pointer network to
localize the initial AST to be edited. Mesbah et al. [151] and Chakraborty et al. [35] proposed to
model the modifications of ASTs, and designed a neural machine translation model to generate
correct patches. Zhu et al. [275] presented a syntax-directed decoder network with placeholder
generation for program repair, which aims to generate program modifications rather than the target
code. Yasunaga and Liang [253] proposed DrRepair, which first builds a program-feedback graph
to align the corresponding symbols and diagnostic feedback, and then designs a GNN to generate
repaired code. Li et al. [125] introduced a novel deep learning-based method for fixing general bugs,
which combines spectrum-based fault localization with deep learning and flow analysis.

Benefiting from the pre-training techniques in NLP, TFix [18] and VulRepair [62] directly posed
program repair as a text-to-text problem and utilized a model named T5 [177]. Specifically, it digests
the error message and directly outputs the correct code. Jiang et al. [103] proposed CURE for
program repair, which is composed of a pre-trained language model, a code-aware search method,
and a sub-word tokenization technique.

Another line of work is focusing on repairing programs by generating patches. Tufano et al. [211]
carried out an empirical study to evaluate the viability of applying machine translation to generate
patches for program repair in real-world scenarios. Different from [211] which targets at function-
level small code snippets, Hata et al. [87] trained a neural machine translation model, targeting at
statements, by learning from the corresponding pre- and post-correction code in previous commits.
Harer et al. [85] proposed to generate the input buggy code via generative adversarial networks so
that the correction model can be trained without labeled pairs. Gupta et al. [77] embedded execution
traces in order to predict a sequence of edits for repairing Karel programs. Li et al. [122] treated the
program repair as code transformation and introduced two neural networks, a tree-based RNN for
learning the context of a bug patch, and another one designed to learn the code transformation of
fixing bugs. White et al. [236] introduced a novel approach for selecting and transforming program

, Vol. 1, No. 1, Article . Publication date: June 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 19

Table 1. Performance of our model and baseline methods for code summarization over Python-Doc dataset.

BLEU METEOR ROUGE-L Time Cost
Seq2Seq+Attn 25.57 14.40 39.41 0.09s/Batch
Tree2Seq+Attn 23.35 12.59 36.49 0.48s/Batch
Transformer 30.64 17.65 44.59 0.26s/Batch
PLBART 32.71 18.13 46.05 0.26s/Batch

repair patches using deep-learning-based code similarities. Empirically, Tian et al. [209] studied
the practicality of patch generation through representation learning of code changes.

4 BENCHMARK
Even though significant progress has been made in code intelligence with deep learning, two limita-
tions remain obstacles to the development of this field. (1) Lack of standardized implementation for
reproducing the results. It has become a common issue that deep-learning-based models are difficult
to reproduce due to the sensitivity to data and hyperparameter tuning. From our investigation, most
of them are implemented independently using different toolkits (i.e., PyTorch, and TensorFlow).
There is a need for a unified framework that enables developers to easily evaluate their models
by utilizing some shared components. Actually, in the artificial intelligence area (e.g. NLP and
computer vision), many toolkits such as Fairseq [165], AllenNLP [65], Detectron2 [241] have been
developed, which significantly advance the progress of their corresponding research areas. (2) Lack
of benchmarks for fair comparisons. Currently, many approaches have been proposed and each
of them claims that the proposed approach has outperformed other ones. To identify where the
performance improvements come from, it is essential to create a benchmark for fair comparisons.
Based on these motivations, we propose NaturalCC (standards for Natural Code Comprehen-

sion), a thorough platform for evaluating source code models using deep learning techniques. Under
this platform, we also benchmark four specific application tasks, including code summarization,
code search, code completion, and type inference. The implementation and usage of NaturalCC
will be introduced in Section 5.

4.1 Code Summarization
4.1.1 Approaches. Currently, most deep-learning-based code summarization methods use the
encoder-decoder architecture. An encoder network is used to convert the input source code into an
embedding vector, and the decoder network is used to generate output summaries from the encoded
vector. In this paper, we benchmark the following representative methods for code summarization,
including three different encoders (i.e., LSTM, TreeLSTM, and Transformer) as well as a pre-training-
based model.
• Seq2Seq+Attn [98, 219] is a vanilla model following sequence-to-sequence architecture with
attention mechanism. It is a famous method for neural machine translation. Unlike works that
only represent the source code as token embedding [98], we represent the source code via an
LSTM network and generate the summary via another LSTM network.

• Tree2Seq+Attn [219] also follows the structure of Seq2Seq. The difference is that it uses TreeL-
STM as the encoder network for syntax-aware modeling of code. Moreover, an attention module
is also designed to attend over different nodes of the syntax tree of code.

• Transformer [2] is currently considered the leading approach for code summarization, which
has also achieved significant improvement in neural machine translation. In Transformer, a
relative position embedding, rather than absolute position embedding, is introduced for modeling
the positions of code tokens.

• PLBART [1] is built on the top of BART [115], which is originally designed for text understanding
and generation. PLBART can be seen as a specific BART model pre-trained on code corpus.

, Vol. 1, No. 1, Article . Publication date: June 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Wan et al.

Table 2. MRR of our model and baseline methods for code search over CodeSearchNet dataset.

Go Java JavaScript PHP Python Ruby Time Cost
NBOW 66.59 59.92 47.15 54.75 63.33 42.86 0.16s/Batch
1D-CNN 70.87 60.49 38.81 61.92 67.29 36.53 0.30s/Batch
biRNN 65.80 48.60 23.23 51.36 48.28 19.35 0.74s/Batch
SelfAtt 78.45 66.55 50.38 65.78 79.09 47.96 0.25s/Batch

4.1.2 Results. We evaluate the performance of each model on the Python-Doc [14, 219] dataset
using the BLEU, METEOR, and ROUGE metrics as in [219]. The overall performance is summarized
in Table 1. This table shows that PLBART, which utilizes the Transformer architecture and pre-
training techniques, achieves the highest performance. It is interesting to see that the simple
Seq2Seq+Attn outperforms the Tree2Seq+Attn that considers the AST of code. For Transformer,
we find that the relative position embedding can indeed represent the relative relationships among
code tokens.

4.2 Code Search
4.2.1 Approaches. CodeSearchNet Challenge [97] is an open challenge designed to assess the
current state of code search. In [97], the authors have benchmarked four code search methods.
The fundamental idea of [97] is to learn a joint embedding of code and natural-language query
in a shared vector space. That is, two encoders are used for representing the source code and
query, respectively. A loss function is then designed to maximize the weighted sum for paired
embeddings of source code and natural-language query. Based on different encoder networks, we
have implemented the following four variant models.
• Neural Bag of Words (NBOW) [97] is a naive approach by representing the input sequences by

a bag of words. For a given code snippet or some specified query written in natural language, it
represents tokens into a collection of word embeddings before feeding them into a max pooling
layer for creating a sentence-level representation.

• Bidirectional RNN models (biRNN) [97] proposes to represent the semantics of source code
and query via RNN models. Specially, we adopt the two-layer bidirectional LSTM network.

• 1D Convolutional Neural Network (1D-CNN) [97] employs convolutional neural layers for
code and query representation, and builds a residual connection at each layer.

• Self-Attention (SelfAtt) [97] adopts self-attention layers to capture the semantic information
of sequential source code and query.

4.2.2 Implementation Details. For these methods, we tokenize the code snippets and natural-
language descriptions by word-level BPE, and build a shared vocabulary of size 50, 000, according
to the sorted token frequency. All the models are trained on a single Nvidia RTX V100 GPU with a
learning rate of 5𝑒-4, and the gradient norm is set to 1.0. A batch size of 1, 000 is set for training
acceleration. The Adam optimizer is used to optimize all the models.
4.2.3 Results. We evaluate the performance of each model on the CodeSearchNet corpus using the
MRR metric, as described in [97]. The overall performance of each model is summarized in Table 2.
As shown in the table, it is clear that the NBOW model with the simplest architecture achieves a
comparable performance, at the lowest cost. Moreover, we can also observe that the performance
of biRNN is poor, in both effectiveness and efficiency. The recurrent characteristic of RNN makes it
time-consuming. The SelfAttn model obtains the best results, which may be attributed to its use of
the self-attention mechanism.

4.3 Code Completion
4.3.1 Approaches. The code completion task aims to generate the completion text based on the
given partial code. In this paper, we investigate three representative approaches.

, Vol. 1, No. 1, Article . Publication date: June 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 21

Table 3. MRR of our model and baseline methods for code completion over Py150 dataset.

Attribute Number Identifier Parameter All Tokens Time Cost
LSTM 51.67 47.45 46.52 66.06 73.73 0.31s/Batch
GPT-2 70.37 62.20 63.84 73.54 82.17 0.43s/Batch
TravTrans 72.08 68.55 76.33 71.08 83.17 0.43s/Batch

Table 4. Accuracy of our model and baseline methods for type inference over Py150 dataset.

Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5 Time CostAll types Any types
DeepTyper 0.52 0.67 0.43 0.67 0.42s/Batch
Transformer 0.34 0.64 0.37 0.75 0.85s/Batch

• LSTM [108] denotes the model that represents the partial code by LSTM, and then predicts the
missing token via a softmax layer.

• GPT-2 [108] is a pre-trained language model based on Transformer. It refers to the Transformer
model that is trained by iteratively predicting the next code token.

• TravTrans [108] is designed to preserve the syntax structure of source code while predicting
the missing token. It first linearizes the code ASTs into a sequence of tokens using depth-first
traversing, and afterward feeds the traversal into Transformer for representation. It also uses a
softmax layer to predict the missing token.

4.3.2 Implementation Details. To obtain code tokens with high quality, we preprocess the code
snippets by parsing them into ASTs, and collect their leaf nodes as code tokens. We build a shared
vocabulary of size 50, 000, according to the sorted token frequency. All models are trained with
four Nvidia RTX V100 GPUs, with the learning rate set to 1𝑒-3, and batch size to 32. The Adam
optimizer is used to optimize all the models.
4.3.3 Results. We evaluate each model on the Py150 [180] dataset using the MRR metric as used
in [108]. We divide the prediction tokens into five categories, namely attributes, numeric constants,
identifier names, function parameters and all tokens. We summarize the performance of each model
in Table 3. From this table, when comparing GPT-2 with LSTM, we can observe that the Transformer
architecture outperforms other models in representing the semantics of code, thus, resulting in
better performance for code completion. Furthermore, when comparing TravTrans with GPT-2,
we can see that the TravTrans that incorporates the syntax structure information achieve better
performance, showing that the syntax information is useful for code completion.

4.4 Type Inference
4.4.1 Approaches. Similar to code completion, the type inference task aims to predict the types of
variables based on contextual information. It first represents the contextual code into a vector, and
then predicts the missing types by a softmax layer. In our work, we employ two state-of-the-art
methods for this task.
• DeepTyper [89] proposes to represent the contextual code by a two-layer biGRU, and then
predicts the missing variable types via a softmax layer.

• Transformer [2] proposes to represent the contextual code by a Transformer encoder network,
and then predicts the missing variable types via a softmax layer.

4.4.2 Implementation Details. For these methods, we first tokenize the code snippets and natural-
language descriptions, and then construct a shared vocabulary of size 40, 000, according to the
sorted token frequency. The hardware for training and the optimizer is the same as above. We use
a batch size of 16 and a learning rate of 1𝑒-4.
4.4.3 Results. We evaluate each model on the Py150 [180], by using the Accuracy metric as
in [100]. In particular, we measure the performance under the settings of all types and any types.
The performance of different models is summarized in Table 4. From this table, it is interesting to see

, Vol. 1, No. 1, Article . Publication date: June 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Wan et al.

• BLEU, METEOR,
ROUGE, CIDER

• MRR, MAP, NDCG
• Precision, Recall, F1
• Accuracy…

models/modules tasksSource code hierarchy

Tokenization Vocabulary Feature
Extractor Data Loader

eval

Code Representation Downstream Tasks Evaluation

Batches

Data preprocessing

• RNN (LSTM, Tree-LSTM)
• GNN (GGNN)
• Transformer
• BERT …

• Code completion
• Code documentation
• Code retrieval
• Type inference …

</>

Fig. 5. The source code hierarchy and pipeline of NaturalCC.

that the simple LSTM-based DeepTyper outperforms the Transformer-based approach, especially
under the all types setting, at a lower time cost.

5 TOOLKIT AND DEMONSTRATION
This section introduces the design of NaturalCC and its user interface. Figure 5 (left) shows the
code structure of NaturalCC. The dataset folder contains data preprocessing code. The ncc
folder is the core module. The third_party folder holds model evaluation packages. The gui folder
contains graphical user interface files and assets. As shown in Figure 5 (right), NaturalCC is
composed of four components, i.e., data preprocessing, code representation, downstream tasks, and
their corresponding evaluations. At the stage of data preprocessing, we process the source code
with a series of steps, including word tokenization, building vocabulary, and feature extraction.
Additionally, a data loader is used to iteratively yield batches of code samples with their features.
The resulting batches are then sent into the code representation models, which facilitate a variety of
downstream tasks, including code summarization, code search, code completion, and type inference.
To evaluate the performance of each task, we also implement several corresponding metrics that
have been widely adopted previously.

5.1 Data Preprocessing Module
In NaturalCC, we have collected and processed four datasets including CodeSearchNet [97],
Python-Doc [219], Py150 [180], and DeepTyper [89]. First, we tokenize the input source code,
and then build a vocabulary to map the code tokens into indexes. Currently, we support two
types of tokenizations: space tokenizer and BPE tokenizer [107]. Along with code tokens, we also
explore different features of code, such as AST, IR, CFGs, and DFGs. All the related scripts for data
preprocessing have been put in the data and dataset folders.

5.2 Code Representation Module
As the core component of NaturalCC, we have implemented several encoders that are widely
used in state-of-the-art approaches for source code representation, including RNN, GNN, and
Transformer. For example, we have implemented LSTM, TreeLSTM and Transformer networks
for sequential tokens and (linearized) ASTs. We have also implemented a GNN, i.e., GGNN, to
represent the control-flow graph of source code. It is worth mentioning that in NaturalCC, we
have also incorporated the pre-training approaches for source code. We have implemented several
state-of-the-art pre-trained code models, including CodeBERT [60], PLBART [1], and GPT-2 [146].
The models and modules folders contain all the implemented networks for code representation.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 23

(a) Demonstration (b) Leaderboard

Fig. 6. Screenshots of GUI and leaderboard of NaturalCC.

5.3 Tool Implementation
NaturalCC is mainly implemented by PyTorch, and many designs are borrowed from other
successful open-source toolkits in NLP, such as Fairseq, and AllenNLP.

Registry Mechanism. To be flexible, NaturalCC is expected to be easily extended to different
tasks and model implementations, with minimum modification. Similar to Fairseq, we design a
register decorator on instantiating a new task or model, the implementation of which is in the
corresponding __init__.py in each folder. The registry mechanism is to create a global variable to
store all the available tasks, models, and objects at the initialization stage, so that users can easily
access them throughout the whole project.
Efficient Training. NaturalCC supports efficient training of models in a distributed way

through torch.distributed. It can utilize multiple GPUs across different servers. Furthermore,
NaturalCC can support calculation in mixed precision to further increase the training speed,
including both FP32 and FP16 training. Typically, the gradients are updated in FP16 while the
parameters are saved in FP32.
Flexible Configuration. Instead of using argparse for command-line options in Fairseq, we

propose creating a yaml configuration file for each model for configuration. We believe that
modifying the yaml configuration files is more flexible for model exploration.

5.4 Graphical User Interface
We also design a Web system as a graphical user interface to help users explore the results of
trained models. The design is based on the open-source demonstration of AllenNLP [65]. Figure 6a
shows the screenshot of our demonstration system. Currently, we have implemented four tasks
that are related to code intelligence, i.e., code summarization, code search, and code completion.
We leave the integration of other related tasks to our future work.

5.5 Leaderboard
We also develop a leaderboard so that researchers can report the results of their own models and
compete with others, as shown in Figure 6b. Currently, we only support researchers and developers
who use NaturalCC to implement their approach and update the experimental results via pull
requests in GitHub. In our future work, we will build a web-based service, which allows users
to upload their predicted results and evaluate the model performance automatically using the
ground-truth labels as a reference.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Wan et al.

6 CHALLENGES AND OPPORTUNITIES
Although much effort has been made into deep learning for code intelligence, this area of research
is still in its infancy with many open challenges and opportunities. To inspire future research, this
section suggests several potential directions that are worth pursuing.

Comprehensive Code Representation. Designing a representation approach to effectively and
efficiently preserve the semantics of programs has always been a fundamental problem in code
intelligence. Despite much effort on code representation, as mentioned in this paper, there are
still three main obstacles to be overcome. (a) Open Vocabulary. Building a vocabulary to index the
textual tokens of code is the first step toward applying deep learning models for code intelligence.
Since the unambiguous characteristic of code, the vocabulary in code is much more open and
complicated than the vocabulary in natural languages. The vocabulary of programming languages
often consists of keywords, identifiers, customized method names, and variable names. The large-
size vocabulary contains much “noise”, making it difficult to comprehend the code. Although
many attempts [45, 50, 107] have been made towards mitigating the OOV issue, it still remains
a challenge to design a simple yet effective approach to map the source code into indexes while
preserving the semantics. (b) Complex Structure of Program. Unlike natural language, code is written
with strict grammar. The computations described by code can be executed in an order that is
different from the order in which the code was written. This is often seen in operations such as
loops, recursions, and pointer manipulation. Although many attempts to capture the structure
of code from different modalities, as we surveyed in this paper, we believe that the structures of
code are not sufficiently preserved, and more effort is needed here. Inspired by the GNNs, there is
potential to design specific GNNs to better represent the structure of programs. For example, from
our analysis, ASTs, CFGs, DFGs and CPGs all have high heterogeneity. It is desirable to design
some heterogeneous-information-network-based approaches [199] to represent the heterogeneous
code graph. (c) Big Models of Code. Despite the significant progress made by pre-trained code
models in code intelligence, pre-training on a large-scale code corpus is still computationally
expensive and very costly. Recently, Zhang et al. [268] and Shi et al. [191] proposed to improve the
efficiency of training process by model compressing. It is a promising research direction to reduce
the computational resource of pre-trained code models.
Data Hungry and Data Quality. Despite much progress achieved in deep-learning-based

approaches for code intelligence, we argue that existing approaches still suffer from the data-
hungry issue. In other words, the effectiveness of cutting-edge techniques significantly depends
on the availability of vast quantities of expensive and labor-intensive well-labeled training data.
Training the model on a small qualified dataset will result in far less imprecise results, especially
for new programming languages or languages with an inadequate number of labeled samples.
Therefore, it is important to design approaches to reduce the reliance on a large quantity of labeled
data. A similar problem exists in the field of machine learning. One promising solution for this
dilemma is transfer learning, which has achieved great success in transferring knowledge to alleviate
the data-hungry issue in computer vision and NLP. Similarly, to model an emerging programming
language with limited data, it is desirable to mitigate the data-hungry issue by leveraging models
trained in programming languages with sufficient labeled training data [34, 37, 47]. Data quality is
also a crucial issue for code intelligence, which may exacerbate the data-hungry problem. From
our analysis, the collected datasets from online resources, like GitHub and StackOverflow, are not
quality ensured. Sun et al. [200] and Shi et al. [192] investigated the importance of data quality and
verify it on the tasks of code search and code summarization, respectively.

Multi-Lingual and Cross-Language. The codebase written in multiple programming languages
is can be considered a multi-lingual corpus, as in NLP. However, the multi-lingual problem in

, Vol. 1, No. 1, Article . Publication date: June 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 25

programming languages has not been well investigated. Different from the multi-lingual problems
studied in NLP, the corpus of multiple programming languages will bring more opportunities and
challenges to future research. Recently, several attempts have been made to learn the common
knowledge shared among multiple programming languages, and transfer the knowledge across
different programming languages. For example, Zhang et al. [262] proposed obtaining better
interpretability and generalizability by disentangling the semantics of source code from multiple
programming languages based on variational autoencoders. Zügner et al. [279] introduced a
language-agnostic code representation based on the features directly extracted from the AST.
Ahmed and Devanbu [3] conducted an exploratory study and reveal the evidence that multilingual
property indeed exists in the source code corpora. For example, it is more likely that programs that
solve the same problem in different languages make use of the same or similar identifier names.
They also investigate the effect of multilingual (pre-)training for code summarization and code
search. Nafi et al. [157] proposed CLCDSA, a cross-language clone detector with syntactical features
and API documentation. Bui et al. [25] proposed a bilateral neural network for the task of cross-
language algorithm classification. Bui et al. [26] proposed SAR, which can learn cross-language API
mappings with minimal knowledge. Recently, Chai et al. [34] proposed a novel approach termed
CDCS for domain-specific code search through transfer learning across programming languages.
Gui et al. [72] proposed an approach that matches source code and binary code across different
languages based on intermediate representation.

Model Interpretability. Lack of interpretability is a common challenge for most deep learning-
based techniques for code intelligence, as deep learning is a black-box method. New methods and
studies on interpreting the working mechanisms of deep neural networks should be a potential
research direction. Recently, several efforts have been made toward increasing the interpretability
of deep-learning-based models. As an example, Li et al. [124] presented a novel approach to explain
predicted results for GNN-based vulnerability detection by extracting sub-graphs in the program
dependency graph. In addition, Zou et al. [278] proposed interpreting a deep-learning-based model
for vulnerability detection by identifying a limited number of tokens that play a significant role in
the final prediction of the detectors. Zhang et al. [266] proposed interpretable program synthesis
that allows users to see the synthesis process and have control over the synthesizer. Pornprasit et al.
[171] proposed a local rule-based model-agnostic approach, termed PyExplainer, to explain the
predictions of just-in-time defect models. Rabin et al. [175] proposed a model-agnostic explainer
based on program simplification, inspired by the delta debugging algorithms. Wan et al. [218], López
et al. [144], and Sharma et al. [189] investigated the explainability of pre-trained code models
through probing the code attention and hidden representations. We believe that it is essential to
enhance the interpretability of current deep-learning-based approaches for code intelligence.
Robustness and Security. Despite significant progress being made in the training of accurate

models for code intelligence, the robustness and security of these models have rarely been explored.
As seen in the fields of NLP and CV, deep neural networks are frequently not robust [33]. Specifically,
current deep learning models can be easily deceived by adversarial examples, which are created
by making small changes to the inputs of the model that it would consider as benign. There are
many different ways to produce adversarial samples in the computer vision and NLP communities,
particularly for image classification [32, 33, 59] and sentiment classification [267]. Similarly, for
source code models, the adversarial attack also exists. Recently, there have been several efforts to
investigate the robustness and security of deep-learning-based models for code intelligence. For
example, Ramakrishnan et al. [179] and Yefet et al. [255] investigated how to improve the robustness
of source code models through adversarial training. Nguyen et al. [160] empirically investigated the
use of adversarial learning techniques for API recommendation. Bielik and Vechev [20] introduced
a novel method that incorporates adversarial training and representation refinement to create

, Vol. 1, No. 1, Article . Publication date: June 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Wan et al.

precise and robust models of source code. Zhou et al. [273], Yang et al. [251] and Zhang et al. [261]
proposed a black-box attack for neural code models by generating adversarial examples while
preserving the semantics of source code. Based on semantics-preserving code transformations,
Quiring et al. [174] and Liu et al. [140] developed a novel attack against authorship attribution
of source code. Ramakrishnan and Albarghouthi [178] investigated the possibility of injecting
a number of common backdoors into deep-learning-based models, and developed a protection
approach based on spectral signatures. Schuster et al. [186] and Wan et al. [217] proposed attacking
the neural code models through data poisoning, and verified it in code completion and code search,
respectively. Severi et al. [187] suggested an explanation-guided backdoor approach to attack the
malware classifiers. Overall, exploring the robustness and security of code intelligence models is
an interesting and important research direction.
7 CONCLUSION
In this paper, we study deep learning for code intelligence by conducting a comprehensive survey,
establishing a benchmark, as well as developing an open-source toolkit. We begin by providing a
thorough literature review on deep learning for code intelligence, from the perspectives of code
representations, deep learning techniques, application tasks, and public datasets. We then present
an open-source toolkit for code intelligence, termed NaturalCC. On top of NaturalCC, we have
benchmarked four popular application tasks about code intelligence, i.e., code summarization,
code search, code completion, and type inference. We hope that our study contributes to a better
understanding of the current status of code intelligence.We also hope that our toolkit and benchmark
will contribute to the development of better code intelligence models.
REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program

Understanding and Generation. In NAACL. 2655–2668.
[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach

for Source Code Summarization. In ACL. 4998–5007.
[3] Toufique Ahmed and Premkumar Devanbu. 2022. Multilingual training for Software Engineering. In ICSE.
[4] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for

big code and naturalness. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–37.
[5] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: neural type hints. In PLDI. 91–105.
[6] Miltiadis Allamanis and Marc Brockschmidt. 2017. Smartpaste: Learning to adapt source code. arXiv:1705.07867

(2017).
[7] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent Programs with Graphs.

In ICLR.
[8] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network for extreme summariza-

tion of source code. In ICML. 2091–2100.
[9] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Generating Sequences from Structured

Representations of Code. In ICLR.
[10] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural language models of code. In ICML. 245–256.
[11] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of

code. POPL 3 (2019), 1–29.
[12] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder:

Learning to Write Programs. In ICLR.
[13] Aakash Bansal, Sakib Haque, and Collin McMillan. 2021. Project-Level Encoding for Neural Source Code Summariza-

tion of Subroutines. In ICPC. IEEE, 253–264.
[14] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A Parallel Corpus of Python Functions and Documentation

Strings for Automated Code Documentation and Code Generation. In IJCNLP. 314–319.
[15] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: neural-backed generators

for program synthesis. OOPSLA 3 (2019), 1–27.
[16] Islam Beltagy and Chris Quirk. 2016. Improved semantic parsers for if-then statements. In ACL. 726–736.
[17] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural Code Comprehension: A Learnable

Representation of Code Semantics. In NeurIPS. 3589–3601.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 27

[18] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. 2021. TFix: Learning to Fix Coding Errors with a
Text-to-Text Transformer. In ICML. 780–791.

[19] Sahil Bhatia and Rishabh Singh. 2016. Automated correction for syntax errors in programming assignments using
recurrent neural networks. arXiv:1603.06129 (2016).

[20] Pavol Bielik and Martin Vechev. 2020. Adversarial robustness for code. In ICML. 896–907.
[21] Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. 2019. Generative Code

Modeling with Graphs. In ICLR.
[22] Shaked Brody, Uri Alon, and Eran Yahav. 2020. A structural model for contextual code changes. OOPSLA 4 (2020),

1–28.
[23] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, et al. 2020. Language

models are few-shot learners. NeurIPS 33 (2020), 1877–1901.
[24] Lutz Büch and Artur Andrzejak. 2019. Learning-based recursive aggregation of abstract syntax trees for code clone

detection. In SANER. 95–104.
[25] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. Bilateral dependency neural networks for cross-language algorithm

classification. In SANER. 422–433.
[26] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: learning cross-language API mappings with little knowledge.

In ESEC/FSE. 796–806.
[27] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. InferCode: Self-Supervised Learning of Code Representations by

Predicting Subtrees. In ICSE. 1186–1197.
[28] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive Learning for Code Retrieval and

Summarization via Semantic-Preserving Transformations. In SIGIR. ACM, 511–521.
[29] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and Zhihao Liang. 2018. An Encoder-Decoder

Framework Translating Natural Language to Database Queries. In IJCAI. 3977–3983.
[30] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code

search. In ESEC/FSE. 964–974.
[31] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi Tao. 2022. MVD: Memory-Related Vulnerability

Detection Based on Flow-Sensitive Graph Neural Networks. In ICSE. 1456–1468.
[32] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow,

Aleksander Madry, and Alexey Kurakin. 2019. On evaluating adversarial robustness. arXiv:1902.06705 (2019).
[33] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In S&P. 39–57.
[34] Yitian Chai, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Cross-Domain Deep Code Search with Meta

Learning. In ICSE. 487–498.
[35] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. 2020. Codit: Code editing with tree-based

neural models. TSE (2020).
[36] Saikat Chakraborty and Baishakhi Ray. 2021. On Multi-Modal Learning of Editing Source Code. In ASE. IEEE,

443–455.
[37] Fuxiang Chen, Fatemeh H. Fard, David Lo, and Timofey Bryksin. 2022. On the transferability of pre-trained language

models for low-resource programming languages. In ICPC. ACM, 401–412.
[38] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021).

[39] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree Neural Networks for Program Translation. In NeurIPS.
2552–2562.

[40] Zimin Chen, Vincent Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-Antoine Manzagol, et al. 2021. PLUR: A
Unifying, Graph-Based View of Program Learning, Understanding, and Repair. NeurIPS 34 (2021).

[41] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monper-
rus. 2019. Sequencer: Sequence-to-sequence learning for end-to-end program repair. TSE (2019).

[42] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong: Statically detecting software
vulnerabilities using deep graph neural network. TOSEM 30, 3 (2021), 1–33.

[43] Davide Chicco. 2021. Siamese neural networks: An overview. Artificial Neural Networks (2021), 73–94.
[44] Nadezhda Chirkova and Sergey Troshin. 2021. Empirical study of transformers for source code. In ESEC/FSE. 703–715.
[45] Nadezhda Chirkova and Sergey Troshin. 2021. A Simple Approach for Handling Out-of-Vocabulary Identifiers in

Deep Learning for Source Code. In NAACL. 278–288.
[46] Adelina Ciurumelea, Sebastian Proksch, and Harald C Gall. 2020. Suggesting comment completions for python using

neural language models. In SANER. 456–467.
[47] Nan Cui, Yuze Jiang, Xiaodong Gu, and Beijun Shen. 2022. Zero-shot program representation learning. In ICPC. ACM,

60–70.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Wan et al.

[48] Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and Hugh Leather. 2021. Pro-
GraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations. In ICML.

[49] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017. Synthesizing benchmarks for predictive
modeling. In CGO. 86–99.

[50] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. 2019. Open vocabulary learning on source code with a
graph-structured cache. In ICML. 1475–1485.

[51] Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham, Shien Wee Ng, John Grundy, and Aditya Ghose. 2018.
Automatic feature learning for predicting vulnerable software components. TSE (2018).

[52] ZhongyangDeng, Ling Xu, Chao Liu,Meng Yan, ZhouXu, and Yan Lei. 2022. Fine-grained Co-Attentive Representation
Learning for Semantic Code Search. In SANER. 396–407.

[53] Prem Devanbu, Matthew B. Dwyer, Sebastian G. Elbaum, Michael Lowry, Kevin Moran, et al. 2020. Deep Learning &
Software Engineering: State of Research and Future Directions. CoRR abs/2009.08525 (2020).

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL. 4171–4186.

[55] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli.
2017. Robustfill: Neural program learning under noisy i/o. In ICML. 990–998.

[56] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. 2020. Hoppity: Learning graph
transformations to detect and fix bugs in programs. In ICLR.

[57] Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray, and Saikat Chakraborty. 2022.
Towards Learning (Dis)-Similarity of Source Code from Program Contrasts. In ACL. 6300–6312.

[58] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Attention. In ACL.
[59] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno,

and Dawn Song. 2018. Robust physical-world attacks on deep learning visual classification. In CVPR. 1625–1634.
[60] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, et al. 2020. CodeBERT: A Pre-Trained Model for

Programming and Natural Languages. In Findings of EMNLP. 1536–1547.
[61] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured Neural Summarization. In ICLR.
[62] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Q. Phung. 2022. VulRepair: a T5-based

automated software vulnerability repair. In ESEC/FSE. 935–947.
[63] Yuexiu Gao and Chen Lyu. 2022. M2TS: multi-scale multi-modal approach based on transformer for source code

summarization. In ICPC. ACM, 24–35.
[64] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021. Automating the removal of obsolete

TODO comments. In ESEC/FSE. 218–229.
[65] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, et al. 2018. AllenNLP: A Deep Semantic Natural Language

Processing Platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS). 1–6.
[66] Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu, Yun Peng, and Zenglin Xu. 2022. Source Code Summarization

with Structural Relative Position Guided Transformer. In SANER. 13–24.
[67] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines. arXiv:1410.5401 (2014).
[68] Wenchao Gu, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Michael R. Lyu. 2022. Accelerating

Code Search with Deep Hashing and Code Classification. In ACL. 2534–2544.
[69] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In ICSE. 933–944.
[70] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 631–642.
[71] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM: Migrate APIs with Multi-Modal

Sequence to Sequence Learning. In IJCAI. 3675–3681.
[72] Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong Xu, Zhiyuan Shao, and Hai Jin. 2022.

Cross-Language Binary-Source Code Matching with Intermediate Representations. In SANER.
[73] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022. UniXcoder: Unified Cross-Modal

Pre-training for Code Representation. In ACL. 7212–7225.
[74] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, et al. 2021. GraphCodeBERT:

Pre-training Code Representations with Data Flow. In ICLR.
[75] Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, and Miltiadis Allamanis. 2022. Learning to

Complete Code with Sketches. In ICLR.
[76] Juncai Guo, Jin Liu, Yao Wan, Li Li, and Pingyi Zhou. 2022. Modeling Hierarchical Syntax Structure with Triplet

Position for Source Code Summarization. In ACL. 486–500.
[77] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. 2020. Synthesize, Execute and Debug: Learning

to Repair for Neural Program Synthesis. In NeurIPS.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 29

[78] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2018. Deep reinforcement learning for programming language
correction. arXiv:1801.10467 (2018).

[79] R Gupta, A Kanade, and S Shevade. 2019. Neural attribution for semantic bug-localization in student programs.
NeurIPS 32 (2019).

[80] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing common c language errors by
deep learning. In AAAI.

[81] Mohammad Abdul Hadi, Imam Nur Bani Yusuf, Ferdian Thung, Kien Gia Luong, Lingxiao Jiang, Fatemeh H. Fard,
and David Lo. 2022. On the effectiveness of pretrained models for API learning. In ICPC. ACM, 309–320.

[82] Rajarshi Haldar, Lingfei Wu, JinJun Xiong, and Julia Hockenmaier. 2020. A Multi-Perspective Architecture for
Semantic Code Search. In ACL. 8563–8568.

[83] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. 2021. Action Word Prediction for Neural Source
Code Summarization. In SANER. IEEE, 330–341.

[84] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Improved automatic summarization of
subroutines via attention to file context. In MSR. 300–310.

[85] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L. Russell, Louis Y. Kim, and Sang Peter
Chin. 2018. Learning to Repair Software Vulnerabilities with Generative Adversarial Networks. InNeurIPS. 7944–7954.

[86] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018. MaxSMT-based type inference for Python 3.
In International Conference on Computer Aided Verification. 12–19.

[87] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to generate corrective patches using neural machine
translation. arXiv:1812.07170 (2018).

[88] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony Tomasic, and Graham Neubig.
2018. Retrieval-Based Neural Code Generation. In EMNLP. 925–930.

[89] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018. Deep learning type inference. In
ESEC/FSE. 152–162.

[90] Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vectors: Understanding programs
through embedded abstracted symbolic traces. In ESEC/FSE. 163–174.

[91] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural
computation 18, 7 (2006), 1527–1554.

[92] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. Cc2vec: Distributed representations of code changes.
In ICSE. 518–529.

[93] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In ICPC. 200–20010.
[94] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing source code with transferred api

knowledge.(2018). In IJCAI, Vol. 19. 2269–2275.
[95] Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and Hai Jin. 2022. TreeCen: Building Tree Graph for

Scalable Semantic Code Clone Detection. In ASE. ACM, 109:1–109:12.
[96] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming Zhu, and Qinghua Lu. 2022. Prompt-tuned Code

Language Model as a Neural Knowledge Base for Type Inference in Statically-Typed Partial Code. In ASE. ACM,
79:1–79:13.

[97] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Codesearchnet
challenge: Evaluating the state of semantic code search. arXiv:1909.09436 (2019).

[98] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a
neural attention model. In ACL. 2073–2083.

[99] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018. Mapping Language to Code in
Programmatic Context. In EMNLP. 1643–1652.

[100] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion Stoica. 2021. Contrastive Code
Representation Learning. In EMNLP. 5954–5971.

[101] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised approach for discovering relevant
tutorial fragments for APIs. In ICSE. 38–48.

[102] Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of Defects4J bugs and its implications for
automatic program repair. Sci. China Inf. Sci. 62, 10 (2019), 200102:1–200102:16.

[103] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Machine Translation for Automatic
Program Repair. In ICSE. 1161–1173.

[104] Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. 2021. TreeBERT: A tree-based pre-trained model for
programming language. In Uncertainty in Artificial Intelligence. 54–63.

[105] Dun Jin, Peiyu Liu, and Zhenfang Zhu. 2022. Automatically Generating Code Comment Using Heterogeneous Graph
Neural Networks. In SANER. 1078–1088.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Wan et al.

[106] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and Evaluating Contextual
Embedding of Source Code. In ICML. 5110–5121.

[107] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code!= big
vocabulary: Open-vocabulary models for source code. In ICSE. 1073–1085.

[108] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code prediction by feeding trees to transformers.
In ICSE. 150–162.

[109] Marie-Anne Lachaux, Baptiste Rozière, Marc Szafraniec, and Guillaume Lample. 2021. DOBF: A Deobfuscation
Pre-Training Objective for Programming Languages. In NeurIPS. 14967–14979.

[110] Chris Lattner and VikramAdve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In CGO. 75–86.

[111] Tue Le, Tuan Nguyen, Trung Le, Dinh Phung, Paul Montague, Olivier De Vel, and Lizhen Qu. 2018. Maximal
divergence sequential autoencoder for binary software vulnerability detection. In ICLR.

[112] Alexander LeClair, Zachary Eberhart, and Collin McMillan. 2018. Adapting neural text classification for improved
software categorization. In ICSME. 461–472.

[113] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved code summarization via a graph
neural network. In ICPC. 184–195.

[114] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language
summaries of program subroutines. In ICSE. 795–806.

[115] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, et al. 2020. BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Comprehension. In ACL. 7871–7880.

[116] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. EditSum: A Retrieve-and-Edit Framework for Source
Code Summarization. In ASE. 155–166.

[117] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with Neural Attention and Pointer
Networks. In IJCAI. 4159–4165.

[118] Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang, and Chun Zuo. 2022. AUGER:
automatically generating review comments with pre-training models. In ESEC/FSE. 1009–1021.

[119] Xiaonan Li, Yeyun Gong, Yelong Shen, et al. 2022. CodeRetriever: Unimodal and Bimodal Contrastive Learning. In
EMNLP.

[120] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, et al. 2022.
Competition-Level Code Generation with AlphaCode. Science 378, 6624 (2022), 1092–1097.

[121] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In
ICLR.

[122] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code transformation learning for automated
program repair. In ICSE. 602–614.

[123] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Fault Localization with Code Coverage Representation Learning. In
ICSE. 661–673.

[124] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with fine-grained interpretations. In
ESEC/FSE. 292–303.

[125] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. DEAR: A Novel Deep Learning-based Approach for Automated
Program Repair. In ICSE. 511–523.

[126] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug detection via context-based code
representation learning and attention-based neural networks. OOPSLA 3 (2019), 1–30.

[127] Zongjie Li, Pingchuan Ma, Huaijin Wang, Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2022. Unleashing the Power
of Compiler Intermediate Representation to Enhance Neural Program Embeddings. In ICSE. 2253–2265.

[128] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021. SySeVR: A framework for using
deep learning to detect software vulnerabilities. TDSC (2021).

[129] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. VulDeeP-
ecker: A Deep Learning-Based System for Vulnerability Detection. In NDSS.

[130] Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and Rongxin Wu. 2021. Improving Code
Summarization with Block-wise Abstract Syntax Tree Splitting. In ICPC. IEEE, 184–195.

[131] Chunyang Ling, Yanzhen Zou, and Bing Xie. 2021. Graph Neural Network Based Collaborative Filtering for API
Usage Recommendation. In SANER. IEEE, 36–47.

[132] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Fumin Wang, and Andrew
Senior. 2016. Latent Predictor Networks for Code Generation. In ACL. 599–609.

[133] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu, and
Shouling Ji. 2021. Deep Graph Matching and Searching for Semantic Code Retrieval. TKDD 15, 5 (2021), 88:1–88:21.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 31

[134] Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and Dawn Song. 2016. Latent attention for if-then
program synthesis. NeurIPS 29 (2016), 4574–4582.

[135] Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn Song. 2016. Neural code completion. (2016).
[136] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A Self-Attentional Neural Architecture for Code

Completion with Multi-Task Learning. In ICPC. 37–47.
[137] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-trained language model for code

completion. In ASE. 473–485.
[138] Fang Liu, Lu Zhang, and Zhi Jin. 2020. Modeling programs hierarchically with stack-augmented LSTM. Journal of

Systems and Software 164 (2020), 110547.
[139] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves

Le Traon. 2019. Learning to spot and refactor inconsistent method names. In ICSE. 1–12.
[140] Qianjun Liu, Shouling Ji, Changchang Liu, and Chunming Wu. 2021. A Practical Black-box Attack on Source Code

Authorship Identification Classifiers. TIFS (2021).
[141] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2020. Retrieval-Augmented Generation for Code

Summarization via Hybrid GNN. In ICLR.
[142] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun Wang. 2021. Combining Graph Neural

Networks with Expert Knowledge for Smart Contract Vulnerability Detection. TKDE (2021).
[143] Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating just-in-time comment updating. In ASE.

585–597.
[144] José Antonio Hernández López, Martin Weyssow, Jesús Sánchez Cuadrado, and Houari A. Sahraoui. 2022. AST-Probe:

Recovering abstract syntax trees from hidden representations of pre-trained language models. In ASE.
[145] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. 2022. ReACC: A Retrieval-

Augmented Code Completion Framework. In ACL. 6227–6240.
[146] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, et al. 2021. CodeXGLUE: A Machine Learning

Benchmark Dataset for Code Understanding and Generation. In NeurIPS Datasets and Benchmarks.
[147] Chris Maddison and Daniel Tarlow. 2014. Structured generative models of natural source code. In ICML. 649–657.
[148] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring JavaScript function types from natural

language information. In ICSE. 304–315.
[149] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio, Denys Poshyvanyk, et al. 2021.

Studying the usage of text-to-text transfer transformer to support code-related tasks. In ICSE. 336–347.
[150] Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket Anand, David Lo, and Rahul Purandare. 2021. Modeling

Functional Similarity in Source Code with Graph-Based Siamese Networks. TSE (2021).
[151] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. 2019. DeepDelta: learning to

repair compilation errors. In ESEC/FSE. 925–936.
[152] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in

Vector Space. In ICLR.
[153] Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2022. Type4Py: Practical Deep Similarity

Learning-Based Type Inference for Python. In ICSE. 2241–2252.
[154] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian Marcus. 2015. How can I use

this method?. In ICSE, Vol. 1. 880–890.
[155] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural networks over tree structures for

programming language processing. In AAAI, Vol. 30.
[156] Fangwen Mu, Xiao Chen, Lin Shi, Song Wang, and Qing Wang. 2022. Automatic Comment Generation via Multi-Pass

Deliberation. In ASE. ACM, 14:1–14:12.
[157] Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A Schneider. 2019. Clcdsa: cross

language code clone detection using syntactical features and api documentation. In ASE. 1026–1037.
[158] Aravind Nair, Avijit Roy, and Karl Meinke. 2020. funcGNN: A Graph Neural Network Approach to Program Similarity.

In ESEM. 1–11.
[159] Zifan Nan, Hui Guan, and Xipeng Shen. 2020. HISyn: human learning-inspired natural language programming. In

ESEC/FSE. 75–86.
[160] Phuong T Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and Davide Di Ruscio. 2021. Adversarial

Attacks to API Recommender Systems: Time to Wake Up and Smell the Coffee?. In ASE. 253–265.
[161] Son Nguyen, Hung Phan, Trinh Le, and Tien N Nguyen. 2020. Suggesting natural method names to check name

consistencies. In ICSE. 1372–1384.
[162] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen. 2017. Exploring API embedding for

API usages and applications. In ICSE. 438–449.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Wan et al.

[163] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo. 2022. SPT-Code: Sequence-to-Sequence
Pre-Training for Learning Source Code Representations. In ICSE. 1–13.

[164] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. 2019. Learning to infer program sketches.
In ICML. 4861–4870.

[165] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli.
2019. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In NAACL-HLT: Demonstrations.

[166] Irene Vlassi Pandi, Earl T Barr, Andrew D Gordon, and Charles Sutton. 2020. OptTyper: Probabilistic Type Inference
by Optimising Logical and Natural Constraints. arXiv:2004.00348 (2020).

[167] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J Mooney. 2021. Deep Just-In-Time Inconsistency
Detection Between Comments and Source Code. In AAAI, Vol. 35. 427–435.

[168] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond Mooney. 2020. Learning to Update
Natural Language Comments Based on Code Changes. In ACL. 1853–1868.

[169] Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-Yan Liu. 2021. How could Neural Networks
understand Programs?. In ICML, Vol. 139. 8476–8486.

[170] Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani. 2022.
Synchromesh: Reliable Code Generation from Pre-trained Language Models. In ICLR.

[171] Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael Fu, and Patanamon Thongtanunam.
2021. PyExplainer: Explaining the Predictions of Just-In-Time Defect Models. In ASE. 407–418.

[172] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Typewriter: Neural type prediction with
search-based validation. In ESEC/FSE. 209–220.

[173] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-based bug detection. OOPSLA 2
(2018), 1–25.

[174] Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading authorship attribution of source code using
adversarial learning. In USENIX Security 19. 479–496.

[175] Md. Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour. 2021. Understanding neural code
intelligence through program simplification. In ESEC/FSE. ACM, 441–452.

[176] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Networks for Code Generation and Semantic
Parsing. In ACL. 1139–1149.

[177] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, et al. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. JMLR 21 (2020), 1–67.

[178] Goutham Ramakrishnan and Aws Albarghouthi. 2022. Backdoors in Neural Models of Source Code. In ICPR. IEEE,
2892–2899.

[179] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas Reps. 2020. Semantic
robustness of models of source code. arXiv:2002.03043 (2020).

[180] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic model for code with decision trees. ACM
SIGPLAN Notices 51, 10 (2016), 731–747.

[181] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In ICPC.
419–428.

[182] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. 2020. Unsupervised Translation of
Programming Languages. In NeurIPS.

[183] Baptiste Rozière, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve, and Guillaume Lample. 2022.
Leveraging Automated Unit Tests for Unsupervised Code Translation. In ICLR.

[184] Michael Salib. 2004. Faster than C: Static type inference with Starkiller. PyCon Proceedings, Washington DC 3 (2004).
[185] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson Amaral. 2018. Syntax

and sensibility: Using language models to detect and correct syntax errors. In SANER. 311–322.
[186] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. 2021. You autocomplete me: Poisoning

vulnerabilities in neural code completion. In USENIX Security.
[187] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-Guided Backdoor Poisoning Attacks

Against Malware Classifiers. In USENIX Security.
[188] Ramin Shahbazi, Rishab Sharma, and Fatemeh H. Fard. 2021. API2Com: On the Improvement of Automatically

Generated Code Comments Using API Documentations. In ICPC. IEEE, 411–421.
[189] Rishab Sharma, Fuxiang Chen, Fatemeh H. Fard, and David Lo. 2022. An exploratory study on code attention in

BERT. In ICPC. ACM, 437–448.
[190] Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, et al. 2021. CAST: Enhancing Code Summarization

with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees. In EMNLP. 4053–4062.
[191] Jieke Shi, Zhou Yang, Bowen Xu, Hong Jin Kang, and David Lo. 2022. Compressing Pre-trained Models of Code into

3 MB. In ASE. ACM, 24:1–24:12.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 33

[192] Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang. 2022. Are we
building on the rock? on the importance of data preprocessing for code summarization. In ESEC/FSE. ACM, 107–119.

[193] Yucen Shi, Ying Yin, Zhengkui Wang, David Lo, Tao Zhang, Xin Xia, Yuhai Zhao, and Bowen Xu. 2022. How to better
utilize code graphs in semantic code search?. In ESEC/FSE. 722–733.

[194] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 2020. On-the-Fly Adaptation of Source Code Models using
Meta-Learning. arXiv:2003.11768 (2020).

[195] Chengxun Shu and Hongyu Zhang. 2017. Neural Programming by Example. In AAAI. 1539–1545.
[196] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: value-flow-based precise code embedding.

OOPSLA 4 (2020), 1–27.
[197] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th

international conference on compiler construction. 265–266.
[198] Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong Tao, Tingxu Han, and Quanjun Zhang. 2022. Code Search

based on Context-aware Code Translation. In ICSE. 388–400.
[199] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2022. Heterogeneous Information Networks: the

Past, the Present, and the Future. Proc. VLDB Endow. 15, 12 (2022), 3807–3811.
[200] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance of Building High-quality Training

Datasets for Neural Code Search. In ICSE. ACM, 1609–1620.
[201] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A grammar-based structural cnn decoder

for code generation. In AAAI, Vol. 33. 7055–7062.
[202] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020. TreeGen: A Tree-Based Transformer

Architecture for Code Generation. In AAAI. 8984–8991.
[203] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation

using transformer. In ESEC/FSE. 1433–1443.
[204] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vicente Franco, and Miltiadis Allamanis.

2021. Fast and memory-efficient neural code completion. In MSR. 329–340.
[205] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Ai-assisted code completion

system. In SIGKDD. 2727–2735.
[206] Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zheling Zhu, and Bin Luo. 2022. AST-Trans: Code

Summarization with Efficient Tree-Structured Attention. In ICSE.
[207] Chenning Tao, Qi Zhan, Xing Hu, and Xin Xia. 2022. C4: contrastive cross-language code clone detection. In ICPC.

ACM, 413–424.
[208] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, and Edward

Aftandilian. 2020. Learning to fix build errors with graph2diff neural networks. In ICSE Workshops. 19–20.
[209] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, et al. 2020. Evaluating representation learning of

code changes for predicting patch correctness in program repair. In ASE. 981–992.
[210] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk. 2019. On learning

meaningful code changes via neural machine translation. In ICSE. 25–36.
[211] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, et al. 2018. An empirical investigation into

learning bug-fixing patches in the wild via neural machine translation. In ASE. 832–837.
[212] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2018.

Deep learning similarities from different representations of source code. In MSR. 542–553.
[213] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. 2018. Neural Program Repair by

Jointly Learning to Localize and Repair. In ICLR.
[214] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and YN

Srikant. 2020. Ir2vec: Llvm ir based scalable program embeddings. TACO 17, 4 (2020), 1–27.
[215] Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Yulei Sui, Hongyu Zhang, et al. 2022. NaturalCC: An Open-Source

Toolkit for Code Intelligence. In ICSE, Companion Volume.
[216] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal Attention

Network Learning for Semantic Source Code Retrieval. In ASE. 13–25.
[217] Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and Lichao Sun. 2022. You

see what I want you to see: poisoning vulnerabilities in neural code search. In ESEC/FSE. 1233–1245.
[218] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022. What Do They Capture? - A

Structural Analysis of Pre-Trained Language Models for Source Code. In ICSE. 2377–2388.
[219] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. 2018. Improving automatic

source code summarization via deep reinforcement learning. In ASE. 397–407.
[220] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R. Lyu. 2022. No more

fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In ESEC/FSE. 382–394.

, Vol. 1, No. 1, Article . Publication date: June 2024.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Wan et al.

[221] Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao. 2022. Bridging Pre-trained
Models and Downstream Tasks for Source Code Understanding. In ICSE. 287–298.

[222] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, et al. 2020. Combining graph-based learning with
automated data collection for code vulnerability detection. TIFS 16 (2020), 1943–1958.

[223] SiminWang, Liguo Huang, Jidong Ge, Tengfei Zhang, Haitao Feng, Ming Li, He Zhang, and Vincent Ng. 2020. Synergy
between Machine/Deep Learning and Software Engineering: How Far Are We? arXiv:2008.05515 (2020).

[224] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In ICSE.
297–308.

[225] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. In SANER. 261–271.

[226] Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang. 2021.
SynCoBERT: Syntax-Guided Multi-Modal Contrastive Pre-Training for Code Representation. arXiv:2108.04556 (2021).

[227] Yu Wang, Yu Dong, Xuesong Lu, and Aoying Zhou. 2022. GypSum: learning hybrid representations for code
summarization. In ICPC. ACM, 12–23.

[228] Yanlin Wang and Hui Li. 2021. Code completion by modeling flattened abstract syntax trees as graphs. In AAAI,
Vol. 35. 14015–14023.

[229] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation. In EMNLP. 8696–8708.

[230] Cody Watson, Ncthan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshyvanyk. 2020. A Systematic
Literature Review on the Use of Deep Learning in Software Engineering Research. arXiv:2009.06520 (2020).

[231] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual Task of Code Summarization. In
NeurIPS. 6559–6569.

[232] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine: exemplar-based neural comment
generation. In ASE. 349–360.

[233] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional Clone Detection by Exploiting
Lexical and Syntactical Information in Source Code.. In IJCAI. 3034–3040.

[234] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Probabilistic Type Inference using Graph
Neural Networks. In ICLR.

[235] Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang. 2022. CLEAR: contrastive learning
for API recommendation. In ICSE. 376–387.

[236] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and
transforming program repair ingredients via deep learning code similarities. In SANER. 479–490.

[237] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments
for code clone detection. In ASE. 87–98.

[238] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk. 2015. Toward deep learning
software repositories. In MSR. 334–345.

[239] Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code Summarization with Structure-induced Transformer. In Findings
of ACL. 1078–1090.

[240] Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin. 2022. Detecting Semantic Code Clones by Building AST-based
Markov Chains Model. In ASE. ACM, 34:1–34:13.

[241] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. 2019. Detectron2. https://github.
com/facebookresearch/detectron2.

[242] Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong Liang, and Hai Jin. 2020. SCDetector:
Software Functional Clone Detection Based on Semantic Tokens Analysis. In ASE. 821–833.

[243] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022. VulCNN: An Image-inspired Scalable
Vulnerability Detection System. In ICSE. 2365–2376.

[244] Rui Xie, Tianxiang Hu, Wei Ye, and Shikun Zhang. 2022. Low-Resources Project-Specific Code Summarization. In
ASE. ACM, 68:1–68:12.

[245] Rui Xie, Wei Ye, Jinan Sun, and Shikun Zhang. 2021. Exploiting Method Names to Improve Code Summarization: A
Deliberation Multi-Task Learning Approach. In ICPC. IEEE, 138–148.

[246] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig. 2020. Incorporating External
Knowledge through Pre-training for Natural Language to Code Generation. In ACL. 6045–6052.

[247] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and discovering vulnerabilities with
code property graphs. In S&P. 590–604.

[248] Guang Yang, Xiang Chen, Yanlin Zhou, and Chi Yu. 2022. DualSC: Automatic Generation and Summarization of
Shellcode via Transformer and Dual Learning. In SANER. 361–372.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit 35

[249] Yanming Yang, Xin Xia, David Lo, and John Grundy. 2022. A Survey on Deep Learning for Software Engineering.
ACM Comput. Surv. 54, 10s, Article 206 (sep 2022), 73 pages.

[250] Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang. 2021. A Multi-Modal
Transformer-based Code Summarization Approach for Smart Contracts. In ICPC. IEEE, 1–12.

[251] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-trained Models of Code. In ICSE. ACM,
1482–1493.

[252] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. Coacor: Code annotation for code retrieval with
reinforcement learning. In The World Wide Web Conference. 2203–2214.

[253] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program repair from diagnostic feedback.
In ICML. 10799–10808.

[254] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. 2020. Leveraging code generation to
improve code retrieval and summarization via dual learning. In Proceedings of The Web Conference 2020. 2309–2319.

[255] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of code. OOPSLA 4 (2020), 1–30.
[256] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-Purpose Code Generation. In ACL.

440–450.
[257] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R. Radev. 2018. SyntaxSQL-

Net: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task. In EMNLP. 1653–1663.
[258] Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, et al. 2019. CoSQL: A Conversational

Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases. In EMNLP. 1962–1979.
[259] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, et al. 2018. Spider: A Large-Scale Human-

Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. 3911–3921.
[260] Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li, Bo Pang, Tao

Chen, et al. 2019. SParC: Cross-Domain Semantic Parsing in Context. In ACL. 4511–4523.
[261] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating adversarial examples for holding

robustness of source code processing models. In AAAI, Vol. 34. 1169–1176.
[262] Jingfeng Zhang, Haiwen Hong, Yin Zhang, Yao Wan, Ye Liu, and Yulei Sui. 2021. Disentangled Code Representation

Learning for Multiple Programming Languages. In Findings of ACL. 4454–4466.
[263] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2022. CoditT5: Pretraining

for Source Code and Natural Language Editing. In 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022. ACM, 22:1–22:12.

[264] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code
summarization. In ICSE. 1385–1397.

[265] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source
code representation based on abstract syntax tree. In ICSE. 783–794.

[266] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, XinyuWang, and Elena LGlassman. 2021. Interpretable
Program Synthesis. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 1–16.

[267] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. 2020. Adversarial attacks on deep-learning
models in natural language processing: A survey. TIST 11, 3 (2020), 1–41.

[268] Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code is healthy: simplifying programs
for pre-trained models of code. In ESEC/FSE. 1073–1084.

[269] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional similarity. In ESEC/FSE. 141–151.
[270] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating structured queries from natural

language using reinforcement learning. arXiv:1709.00103 (2017).
[271] Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing Generalizability of CodeBERT. In ICSME. IEEE, 425–436.
[272] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective Vulnerability

Identification by Learning Comprehensive Program Semantics via Graph Neural Networks. In NeurIPS. 10197–10207.
[273] Yu Zhou, Xiaoqing Zhang, Juanjuan Shen, Tingting Han, Taolue Chen, and Harald C. Gall. 2022. Adversarial

Robustness of Deep Code Comment Generation. TOSEM 31, 4 (2022), 60:1–60:30.
[274] Qihao Zhu, Zeyu Sun, Xiran Liang, Yingfei Xiong, and Lu Zhang. 2020. OCoR: an overlapping-aware code retriever.

In ASE. 883–894.
[275] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021. A syntax-guided

edit decoder for neural program repair. In ESEC/FSE. 341–353.
[276] Xiaoning Zhu, Chaofeng Sha, and Junyu Niu. 2022. A Simple Retrieval-based Method for Code Comment Generation.

In SANER. 1089–1100.
[277] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019. `VulDeePecker: A deep learning-based system

for multiclass vulnerability detection. TDSC (2019).

, Vol. 1, No. 1, Article . Publication date: June 2024.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Wan et al.

[278] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021. Interpreting deep learning-based
vulnerability detector predictions based on heuristic searching. TOSEM 30, 2 (2021), 1–31.

[279] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and StephanGünnemann. 2021. Language-Agnostic
Representation Learning of Source Code from Structure and Context. In ICLR.

, Vol. 1, No. 1, Article . Publication date: June 2024.

	Abstract
	1 Introduction
	2 Survey Methodology
	2.1 A Unified View from Code Representation Learning
	2.2 Paper Selection
	2.3 Publication Trends of Code Intelligence

	3 Literature Review
	3.1 Taxonomy
	3.2 Code Features
	3.3 Deep Learning Techniques
	3.4 Classification-based Applications
	3.5 Similarity-based Applications
	3.6 Generation-based Applications

	4 Benchmark
	4.1 Code Summarization
	4.2 Code Search
	4.3 Code Completion
	4.4 Type Inference

	5 Toolkit and Demonstration
	5.1 Data Preprocessing Module
	5.2 Code Representation Module
	5.3 Tool Implementation
	5.4 Graphical User Interface
	5.5 Leaderboard

	6 Challenges and Opportunities
	7 Conclusion
	References

