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ABSTRACT

Towards Robust and Interpretable Logical Reasoning in Machine

Reading Comprehension

by

Hao Huang

Natural Language Processing (NLP) has made significant strides using large pre-

trained language models in recent years. However, Natural Language Understanding

(NLU) necessitates more profound understanding and reasoning capabilities that

traditional NLP methods struggle to provide. This thesis concentrates on four as-

pects of augmentation of machine reading comprehension models: knowledge graph

completion, procedural text understanding, temporal order extraction, and auto-

debiasing. Collectively, these components contribute to robust and interpretable

logical reasoning in machine reading comprehension step by step.

A knowledge graph is a structured representation of knowledge, typically in the

form of a directed graph, where entities are represented as nodes and their relation-

ships are represented as edges. Knowledge graph completion is a task in natural

language processing and machine learning that involves predicting missing facts or

relationships between entities in a knowledge graph. Translating embedding ap-

proaches offer advantages such as lightweight structure, high efficiency, and excel-

lent interpretability. In particular, when extended to complex vector space, they

can handle various relation patterns, including symmetry, antisymmetry, inversion,

and composition. Nevertheless, previous translating embedding approaches defined

in complex vector space suffer from two main issues: 1) limited representing and

modeling capacities due to the translation function’s rigorous multiplication of two

complex numbers; and 2) unaddressed embedding ambiguity caused by one-to-many

relations. This thesis introduces our published work that features a relation-adaptive



translation function built upon a novel weighted product in a complex space. Our

model’s weights are learnable, relation-specific, and independent of embedding size.

Procedural text understanding aims to track entities’ states (e.g., creation, move-

ment, destruction) and locations as mentioned in a given paragraph. Effectively

tracking these requires capturing the rich semantic relations between entities, ac-

tions, and locations in the paragraph. While recent works have made considerable

progress, they focus on leveraging inherent constraints or incorporating external

knowledge for state prediction, largely overlooking the given paragraph’s rich seman-

tic relations. We introduce our published novel approach (Real) for procedural text

understanding, where we build a general framework to systematically model entity-

entity, entity-action, and entity-location relations using a graph neural network. We

further develop algorithms for graph construction, representation learning, and state

and location tracking.

Temporal reading comprehension (TRC) involves reading a free-text passage and

answering temporal ordering questions. Precise question understanding is crucial for

temporal reading comprehension. To address this, we propose a novel reading com-

prehension approach with precise question understanding. Specifically, we embed

a temporal ordering question into two vectors to capture the referred event and

the temporal relation. This fine-grained representation offers two benefits: first, it

enables a better understanding of the question by focusing on different elements

of a question; second, it provides good interpretability when evaluating temporal

relations. Furthermore, we incorporate an auxiliary contrastive loss for representa-

tion learning of temporal relations, aiming to distinguish relations with subtle but

critical differences.

Despite the success of large pre-trained language models in natural language

understanding benchmarks, recent studies indicate that these models often rely on

superficial features or shortcuts to make predictions. In this thesis, we explore an au-

tomatic method for progressively detecting and filtering biased data to train a robust

debiased model for natural language understanding tasks. Diverging from previous

debiasing methods that concentrate on human-predefined biases or biases captured



by limited-capacity bias-only models, we introduce a novel debiasing framework

called Bias-Progressive Auto-Debiasing. This framework is based on two observa-

tions: i) a higher proportion of biased samples in training data results in a more

biased model, and ii) a more biased model exhibits greater confidence in predicting

biases. Our framework progressively trains a bias-only model using the most biased

samples identified in the previous epoch, thereby ensuring a more biased model and

ultimately leading to a robust debiased model.

Key Words. Natural Language Understanding, Knowledge Graph Completion,

Procedural Text, Graph Reasoning, Temporal Relation, Debiasing
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Chapter 1

Introduction

1.1 Background

Machine Reading Comprehension (MRC) is a fundamental pillar of natural lan-

guage processing (NLP). Its core aim is to enable machines to read, comprehend, and

respond to human language as intuitively as we do. In the early stages of NLP, our

methods were basic, primarily centered on matching words without truly delving into

their underlying context. However, the field witnessed rapid and momentous evo-

lution. From those rudimentary beginnings, we transitioned to sophisticated mod-

els like Recurrent Neural Networks, including variants like Long short-term mem-

ory (LSTM) and Gate Recurrent Unit (GRU). These models excel at remembering

long-term dependencies and discerning the intricate semantic relationships embed-

ded within text sequences. A pivotal shift occurred with the advent of the Trans-

former architecture. Leveraging the self-attention mechanism, these transformer-

based models efficiently recognize relationships across a text, bi-directionally, and

are impressively scalable. This capability is epitomized in large language models like

Bidirectional Encoder Representations from Transformers (BERT) and Generative

Pre-trained Transformer (GPT), which have redefined the benchmarks for MRC. In

the present, colossal models such as GPT, backed by extensive training on vast text

datasets, showcase profound language understanding. Tracing this journey from

simple word matching to deep textual comprehension highlights the monumental

advancements we’ve achieved in narrowing the chasm between machine capabilities

and human linguistic intuition. In the realm of Machine Reading Comprehension
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Figure 1.1 : An overview of MRC.

(MRC), Large Language Models (LLMs) have emerged as game-changers. Their

extensive training over vast textual corpora provides them a nuanced understanding

of context, enabling them to interpret complex passages and answer queries with

high accuracy. Their deep architectures, rooted in the Transformer model, excel at

discerning intricate relationships within a text, making them adept at distinguish-

ing between closely related facts and drawing inferences. The scalable self-attention

mechanism inherent in LLMs allows them to weigh relevant portions of a text dynam-

ically, ensuring that even subtle cues aren’t missed. Furthermore, LLMs’ capacity

for transfer learning means that they can be fine-tuned on specific MRC tasks or

datasets, delivering performance that often rivals or exceeds specialized models.

However, despite the remarkable advancements, there remain innate challenges.

One of the most persistent is ensuring models can reliably perform logical reason-

ing on textual data. Such reasoning isn’t just about parsing sentences; it involves

synthesizing information, drawing inferences, and applying knowledge contextually.

This becomes even more intricate due to the inherent complexity and ambiguity that

natural languages possess. Furthermore, the absence of structured, consistent data

to anchor this reasoning process exacerbates the issue. Adding to these concerns,

LLMs, with their vast and intricate architectures, often present themselves as ”black

boxes,” making it challenging to interpret why they produce specific outputs. This

lack of interpretability can be problematic in applications where understanding the

model’s decision-making process is crucial. Moreover, ethical concerns arise due to

the potential biases embedded within LLMs. Being trained on vast swaths of inter-
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net text, these models might inadvertently perpetuate and amplify societal biases

they encounter, adding another layer of complexity to their reliable and unbiased

deployment. To tackle these challenges, this thesis zeroes in on four pivotal facets of

MRC: knowledge graph completion, procedural text understanding, temporal order

comprehension, and auto-debiasing. Integrating these methods enhances the robust-

ness, reliability, and fairness of AI systems in processing and understanding natural

language. The methods of knowledge graph completion and auto-debiasing serve as

general enhancements for LLMs, while procedural text understanding and temporal

order comprehension offer targeted modifications for specific types of MRC tasks.

Knowledge graph completion is a subfield of artificial intelligence that involves

inferring missing facts in a knowledge graph (KG). Knowledge graphs are a struc-

tured representation of real-world entities and their relationships, which can be used

to support logical reasoning in MRC. However, incomplete or inaccurate knowledge

graphs can significantly affect the performance of MRC models. A knowledge graph

refers to a collection of interlinked entities, which is usually formatted as a set of

triples. A triple is represented as a head entity linked to a tail entity by a rela-

tion, which is written as (head, relation, tail) or (h, r, t). Large-scale knowledge

graphs, such as Freebase (Bollacker et al., 2008) and WordNet (Miller, 1995), con-

taining structured information, have been leveraged to support a broad spectrum

of natural language processing (NLP) tasks, e.g., question answering (Hao et al.,

2017), recommender system (Zhang et al., 2016), relation extraction (Min et al.,

2013), etc. Nonetheless, the human-curated, real-world knowledge graphs often

suffer from incompleteness or sparseness problem (Toutanova et al., 2015), which

inevitably hurts the performance of downstream tasks. Hence, how to auto-complete

knowledge graphs becomes a popular problem in both research and industry com-

munities. LLMs, with their capability to understand and generate human-like text,
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can be paired with KGs for advanced question answering. If there’s a missing piece

of information in the KG, the LLM can be used to predict or infer it, making the

Q&A system more robust and accurate.

Procedural text understanding is another important aspect of MRC that in-

volves understanding the steps involved in a given procedure or process. This re-

quires not only identifying the relevant entities and their relationships, but also

understanding the temporal and causal relationships between them. Procedural

text understanding is a challenging task due to the diversity and complexity of

procedural texts. Procedural text often consists of a sequence of sentences de-

scribing processes, such as a phenomenon in nature (e.g., how sedimentary rock

forms) (Dalvi et al., 2018) or instructions to complete a task (e.g., the recipe of Mac

and Cheese) (Bosselut et al., 2018). Given a paragraph and its participant entities,

the task of procedural text understanding is to track the states (e.g., create, move,

destroy) and locations (a span in the text) of the entities. Compared with traditional

machine reading task, which mainly focuses on the static relations among entities,

procedural text understanding is more challenging since it involves discovering com-

plex temporal-spatial relations among various entities from the process dynamics.

Therefore, we verify that graphs inherently represent relationships. By translating

text into a graph, LLMs can better perform relational reasoning, understanding how

different entities relate and interact with one another.

Temporal order comprehension is a subtask of MRC that involves identifying

the chronological order of events described in a text. This is important for tasks such

as event prediction and story understanding, but can be challenging due to the com-

plex and ambiguous nature of natural language. Temporal order extraction requires

the ability to recognize temporal cues, such as temporal adverbs and verb tenses,
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and to infer the temporal relationships between events. Understanding temporal

relationships between events in a passage is essential for natural language under-

standing (Wang et al., 2019b; Dong et al., 2019). Temporal reading comprehension

(TRC) (Ning et al., 2020) is a natural way to study temporal relations since natural

language questions are flexible to capture divergent temporal relations (Zhou et al.,

2021). By forcing the model to differentiate between similar temporal sequences,

contrastive learning can enhance the LLM’s ability to recognize subtle differences in

sequences. This helps the model better capture the nuances and patterns inherent

in temporal data, which can also generalize to wilder tasks.

Auto-debiasing is a technique that aims to mitigate the effects of biases in MRC

models. Biases can arise from various sources, such as the training data or the

model architecture, and can significantly affect the accuracy and fairness of MRC

models. Auto-debiasing involves identifying and correcting biases in the model, by

either modifying the training data or introducing additional constraints in the model

architecture. In the last decade, deep representation learning has demonstrated its

general capabilities across a broad spectrum of tasks and made significant progress

on natural language understanding datasets such as GLUE (Wang et al., 2018) and

SuperGLUE (Wang et al., 2019a). However, recent studies (Poliak et al., 2018;

Gururangan et al., 2018; McCoy et al., 2019) reveal that the models tend to capture

dataset biases (i.e., the superficial clues such as word overlaps and negative words)

to make predictions, rather than learning from the underlying features. Such an

issue becomes the main barrier to the models’ reliability in deployment, particularly

when it comes to out-of-distribution generalization. Moreover, the issue remains

for the recent large-scale pre-trained models with generic representations. As such,

reducing the impact of dataset biases becomes the key challenge in learning robust

natural language understanding (NLU) models. For users and organizations, an
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LLM that has undergone debiasing becomes more trustworthy as it ensures that

outputs are not reflecting harmful stereotypes or biases. By removing biases, models

can potentially generalize better to various tasks as they aren’t overfitting to biased

nuances in the training data.

1.2 Research Problems

Current Machine Reading Comprehension (MRC) models frequently encounter

difficulties when dealing with intricate logical reasoning, sequential interpretations,

temporal comprehension, and inherent biases present in training data. These chal-

lenges lead to a deficient understanding of textual data and potential misinterpre-

tations. Recognizing these limitations, our aim is to develop an MRC system that

can robustly and interpretably navigate these complexities, leveraging the aspects

previously delineated. Each existing model presents unique limitations concerning

each of these aspects. We will delve into the corresponding research problems in the

ensuing paragraphs.

Knowledge graph completion Current trans-based graph embedding approaches

with complex embeddings are vulnerable to the following two issues. On the one

hand, although approaches solely in complex vector space are equipped with high in-

terpretability for various relation patterns, they are limited by the expressive power

of standard product/add of two complex numbers. To improve, QuatE (Zhang et al.,

2019a) introduces quaternion hypercomplex vector space with semantic matching, at

the cost of both interpretability and computational overheads, but the improvement

is still marginal. On the other hand, embedding ambiguity problem, which means

different entities are assigned with similar embeddings, cannot be explicitly handled

by existing trans-based approaches (e.g., TransE and RotatE). It is mainly caused

by the propagation of applying a translation function to one-to-many relations for
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optimizing ∀t = g(h, r).

Procedural text understanding To effectively track the states and locations of

entities, it is crucial to systematically model rich relations among various concepts

in the paragraph, including entities, actions, and locations. Three types of relations

are of particular interest. First, mentions of the same entity in different sentences are

related. The inherent relation among these mentions may provide clues for a model

to generate consistent predictions about the entity. For example, the entity electrical

pulses are mentioned in two sentences “The retina’s rods and cones convert it to

electrical pulses. The optic nerve carries electrical pulses through the optic canal.”.

Connecting its two mentions in two sentences helps to infer its location in the first

sentence using the second sentence’s information. Second, detecting connections

between an entity and the corresponding actions helps to make state predictions

more accurate. Take the sentence “As the encased bones decay, minerals seep in

replacing the organic material.” as an example. The entity bone is related to decay

which indicates the state destroy, while it is not connected to seep indicating the

state move. Given the relation between bone and decay, it is easier for the model

to predict the state of bone as destroy, instead of being misled by the action seep.

Last, when the state or location of one entity changes, it may impact all associated

entities. For example, in sentence “trashbags are thrown into trashcans.”, trashbags

are associated with trashcans. Then, in the following sentence “The trashcan is

emptied by a large trash truck.”, although trashbags are not explicitly mentioned,

their locations are changed by the association with trashcan.

Temporal order comprehension Figure 1.2 shows several examples of temporal

reading comprehension, where given a free-text passage, a system is required to

answer temporal questions like “What usually happened during the press release?”.
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Figure 1.2 : Examples of temporal reading comprehension. Temporal relations

are diverse: Q1-Q5 list examples of possible varieties of temporal relations. Small

changes in the question might lead to substantially divergent semantics: replacing

usually in Q4 with might in Q5 leads to different answers. Related events are

underlined in the passage.

A natural solution for temporal ordering understanding is to compare each candidate

answer and the referred event in the question and classify their temporal relation

into several pre-defined categories, e.g., (UzZaman et al., 2013) defines 13 possible

relations such as after, ends, equal to. Nonetheless, since temporal relationships

vary greatly, it is almost impossible to enumerate all possible relationships. Figure

1.2 shows several divergent varieties of temporal relations: one might query about

plain after in Q1, negated after in Q2, constrained after in Q3, etc. Similarly, a

question might query about usually happen in Q4, might happen, or other relations.
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Moreover, creating sufficient labels for all such relations is costly and poses great

challenges for real-world applications. Therefore, the classification-based approach

is incompetent to handle the flexible relations in temporal reading comprehension.

Auto-debiasing Early debiasing methods often relied heavily on manual analysis

by human experts (He et al., 2019; Clark et al., 2019; Mahabadi et al., 2020) to

identify potential biases in specific datasets and define the most likely bias types.

However, these experience-dependent methods can be time-consuming and may not

cover all types of biases. To address these challenges, recent studies have focused

on developing automatic and dataset-agnostic debiasing methods for NLU that can

cover a wider range of bias types. These methods typically involve training a bias-

only model to implicitly or explicitly detect biased samples, which are then down-

weighted in the training of a debiased model. Therefore, the critical problem reduces

to train a bias-only model. In previous works, two heuristic assumptions are com-

monly used to train the bias-only model. The first is the ”weak-model” assumption,

which posits that models with lower capacity (e.g., Bag-of-words models or Tiny-

BERT) are more likely to learn from the shallow heuristics of datasets and thus

result in a bias-only model (Sanh et al., 2020). The second is the ”small-data” as-

sumption, which states that a model is prone to fitting shortcuts or biased features

in the dataset during its early training stages (Utama et al., 2020b). However, the

assumptions used to train a bias-only model in previous works are uncertain and

have many uncontrollable factors. It is difficult to define how weak the model should

be or how small the dataset should be, resulting in redundant hyperparameters. Ad-

ditionally, the bias-only model is inevitably fed with normal or robust samples due

to both i) the unknown dataset-specific biasing sample proportion and ii) the ran-

domness of model selection or data sampling. These uncontrollable factors can lead

to a less-biased bias-only model, negatively impacting the learning of the debiased



10

model. Thereby, our goal is to develop a stable, automatic method for training a

better biased model that is agnostic to the dataset, bias type, model size, and data

scale.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2: This chapter explores the existing literature, spotlighting land-

mark studies within various domains such as Machine Reading Comprehension

(MRC) tasks, Knowledge Graph Completion, Procedural Text Understanding,

Temporal Order Comprehension, and Auto-Debiasing.

• Chapter 3: This chapter introduces our novel technique for Knowledge Graph

Completion, addressing limited representation and ambiguity in translating

embedding. Our embedding method integrated knowledge graph structure

and semantic context. Detailed experimentation supporting this approach is

presented at the end of the chapter.

• Chapter 4: This chapter unveils our comprehensive framework designed to

methodically model relationships between entities, actions, and locations using

a Graph Neural Network. A thorough evaluation of this approach, bolstered

by detailed experimentation, will be presented at the conclusion of the chapter.

• Chapter 5: This chapter presents a novel approach to reading comprehension

with precise question comprehension. It incorporates an auxiliary contrastive

loss mechanism, with the objective of discerning relations. A thorough expla-

nation of the experiments is provided at the end of this chapter.

• Chapter 6: This chapter explores an automatic method for progressively de-

tecting and filtering biased data to train a robust debiased model for natural
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language understanding tasks. The details of the experiments are given in the

last part of the chapter.

• Chapter 7: This chapter offers a concise recapitulation of the entire research

undertaking, while also outlining potential avenues for future exploration and

study.



12

Chapter 2

Literature Review

The subsequent literature review encompasses a range of topics that are intimately

linked with the development of a robust and interpretable Machine Reading Com-

prehension (MRC) system.

Knowledge Graph Completion Unlike semantic matching graph embedding

approaches (Nickel et al., 2011; Dettmers et al., 2017; Balazevic et al., 2019; Zhang

et al., 2019a) require additional overheads to score a triple, this work is in line with

trans-based graph embedding approaches that employ an efficient translation func-

tion defined in a latent space. TransE (Bordes et al., 2013) is the most representative

trans-based approach, which embeds entities/relations in real vector space and uti-

lizes the relations as translations. It optimizes score function towards “h+ r = t”.

Several recent trans-based approaches (Wang et al., 2014; Lin et al., 2015; Ji et al.,

2015; Ebisu and Ichise, 2018) can be viewed as extensions of TransE. More recently,

RotatE (Sun et al., 2019), as a state-of-the-art trans-based approach, represents the

entities/relations in complex vector space and formulates the translating process as

a rotation in complex space.

Negative Sampling Also related to this work, many negative sampling methods

(Cai and Wang, 2018; Sun et al., 2019) are proposed to effectively learn structured

knowledge. KBGAN (Cai and Wang, 2018) uses knowledge graph embedding model

as a negative sample generator to fool the main embedding model (i.e., the dis-

criminator in GANs). In contrast, self-adversarial learning (Sun et al., 2019) scores
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a certain number of uniformly-sampled negative samples based on current model,

and utilizes the scores to perform a weighted loss function. Lastly, this work is also

related to using prior knowledge in graphs for training. Type-constraint method

(Krompaß et al., 2015), which is based on local closed-world assumptions, corrupts

heads (or tails) from relation-specific domain (or range).

Machine Reading Comprehension Machine reading comprehension (MRC)

(Rajpurkar et al., 2016, 2018; Shen et al., 2018a,b; Li et al., 2020) has attracted

much attention in recent years. Traditional solutions to MRC tasks focus on utiliz-

ing the interaction information between questions and passages via attention-based

structures (Kadlec et al., 2016; Dhingra et al., 2017). Later on, pre-trained language

models (PLMs), e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and

XLNet (Yang et al., 2019), have been widely used for MRC tasks. With the sheer

scale of parameters and the pretraining strategies, PLMs capture more knowledge

from the context and have shown outstanding performance on traditional MRC

benchmarks. For more challenging MRC tasks which introduce multi-hop reasoning

(Yang et al., 2018), numerical reasoning (Dua et al., 2019), etc., the generic PLMs

become not applicable. Recent efforts use graph-based reasoning approaches (Chen

et al., 2020) or define specific pretraining training techniques (Raffel et al., 2020) to

solve the above challenges. However, existing MRC approaches still struggle for the

temporal reading comprehension task due to the lack of temporal relation under-

standing (Ning et al., 2020). Hence, we propose a novel question answering approach

with precise question understanding to tackle this challenge.

Procedural Text Understanding Compared with early-stage models (Henaff

et al., 2017; Seo et al., 2017), recent progress in the procedural text understanding

task is mainly made on ensuring the prediction’s consistency or injecting external
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knowledge. Various approaches (Dalvi et al., 2018; Gupta and Durrett, 2019; Amini

et al., 2020) have been proposed to predict consistent state sequence. For exam-

ple, NCET (Gupta and Durrett, 2019) tracks the entity in a continuous space and

leverages a conditional random field (CRF) to keep a consistent prediction sequence.

Other models inject knowledge from external data sources to complement missing

knowledge. ProStruct (Tandon et al., 2018) introduces commonsense constraints to

refine the probability space, while KOALA (Zhang et al., 2020) leverages Bert En-

coder pre-trained on related corpus from Wiki, and injects the ConceptNet (Speer

et al., 2017) knowledge. Besides, a few models (Das et al., 2019; Dalvi et al., 2019)

are proposed to build graphs on the procedural text. For instance, KG-MRC (Das

et al., 2019) constructs dynamic knowledge graphs between entities and locations.

However, these methods can not systematically capture the relations among entities,

actions, and locations, and entity-action and entity-entity relations are ignored.

Graph Reasoning in Language Understanding Graph-based reasoning meth-

ods (Zeng et al., 2020; Zhong et al., 2020; Zheng and Kordjamshidi, 2020) are widely

used in natural language understanding tasks to enhance performance. For exam-

ple, Zeng et al. (2020) constructs a double graph design for the document-level

Relation Extraction (RE) task, Zhong et al. (2020) constructs the retrieved evi-

dence sentences as a graph for Fact-Checking task. Compared with these works,

the entity-action-location graph in our approach copes better with procedural text

understanding task since it precisely defines concepts we are concerned within the

task and captures the rich and expressive relations among them.

Temporal Ordering Reasoning Traditional temporal order reasoning tasks (Uz-

Zaman et al., 2013; Cassidy et al., 2014; Ning et al., 2018), are often formulated as

relation extraction tasks. Given the context passage, the target is to classify the
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relation between every two events from a predefined relation set, e.g., UzZaman

et al. (2013) defines 13 possible relations such as after, ends, equal to. Existing

solutions can be roughly classified into two categories. The first category focuses on

developing the structure of the encoder to capture more temporal information. For

example, Cheng et al. (2020) add up a GRU-based dynamically updating structure

upon the outputs of the common BERT sentence encoder. The second category

focuses on joint learning with external knowledge or some specific constraints. For

instance, Ning et al. (2019) significantly improve the extraction performance by joint

training temporal and causal relations.

Free-text Temporal Ordering However, the success of the existing approaches

is limited to the formulation of the traditional temporal order reasoning tasks, where

the events and the candidate temporal relation set are fixed. However, the fixed can-

didate relation set cannot cover all temporal relations in our daily uses. The most

recent released dataset, TORQUE (Ning et al., 2020), formulates temporal ordering

reasoning as a machine reading comprehension task. Given a context passage, we

need to answer a free-text question about the temporal relations in the context pas-

sage. The task is much analogous to our real-world tasks and is more challenging –

we need to automatically identify the events and the relations in the free-text ques-

tion to retrieve the answers from the context passage. To the best of our knowledge,

we are the very first to address this challenge.

Bias in Datasets Dataset bias is inevitable in most human-crafted datasets

(Wang et al., 2018, 2019a), such bias could be simple word co-occurrence (Gururan-

gan et al., 2018), negation words (Utama et al., 2020b), or overlap relation between

premise and hypothesis in natural language inference tasks (McCoy et al., 2019). Re-

cent studies reveal that models can outperform random guesses by merely utilizing
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these biases as shortcuts (Tsuchiya, 2018; Poliak et al., 2018; Nie et al., 2020; Saxon

et al., 2022). However, the performance of fine-tuned models drops significantly

when tested on filtered bias-free datasets or new complex samples. Therefore, debi-

asing methods are essential for obtaining robust models that can capture underlying

semantics.

Data-centric Debiasing Methods Existing debiasing methods can be broadly

classified as data-centric and model-centric methods. Data-centric methods focus

on improving the quality of the training data by either removing biased samples

(Le Bras et al., 2020) or generating new unbiased samples (Zhang et al., 2019b;

Wu et al., 2022). For example, Le Bras et al. (2020) use adversarial filtering to

remove dataset biases and train the model on filtered datasets, while Zhang et al.

(2019b) generate additional training samples through controlled word exchange and

back-translation, with human checks for fluency and paraphrase judgment. However,

researchers have shown that newly constructed datasets may not be entirely bias-free

and may introduce significant overhead, highlighting the need for robust debiasing

algorithms.

Model-centric Debiasing Methods Model-centric methods share a common

idea of building a bias-only model to identify biased instances and then reducing their

importance during training using methods such as i) example reweighting (Schuster

et al., 2019), i.e., down weighting the biased samples, ii) confidence regularization

(Utama et al., 2020a), i.e., force the model to be less confident on the biased samples,

and iii) product-of-experts (He et al., 2019; Mahabadi et al., 2020), which introduces

the output of the bias-only model to the training objective function. For building

bias-only models, current methods are based on observations by Sanh et al. (Sanh

et al., 2020) and Utama et al. (Utama et al., 2020b). Sanh et al. (2020) find that
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a model with limited capacity (e.g., TinyBERT) can be more biased than larger

models and train a TinyBERT on the whole dataset as the bias-only model. Utama

et al. (2020b) find that a model is more biased when trained on a smaller dataset at

an early stage and train a BERT-base with a small fraction of the training dataset

as the bias-only model. However, both methods cannot guarantee a strongly biased

model as the bias-only models are not trained on bias-only datasets – the former

utilizes the entire dataset, and the latter randomly selects the subset, which will

still bring general knowledge to the bias-only model. In this work, we propose a new

bias-progressive auto-debiasing framework that ensures a stronger bias-only model

and a robust debiased model.
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Chapter 3

Relation-Adaptive Translating Embedding for

Knowledge Graph Completion

3.1 Introduction

Human-curated, real-world knowledge graphs often suffer from incompleteness or

sparseness problem (Toutanova et al., 2015), which inevitably hurts the performance

of downstream tasks. Hence, how to auto-complete knowledge graphs becomes a

popular problem in both research and industry communities.

For this purpose, many light-weight graph embedding approaches (Bordes et al.,

2013; Yang et al., 2015; Sun et al., 2019) have been proposed. Unlike costly graph

neural networks (GNNs) (Schlichtkrull et al., 2018), these approaches use low-

dimensional embeddings to represent the entities and relations, and capture their

relationships via semantic matching or geometric distance. Specifically, the ap-

proaches with semantic matching, e.g., DistMult (Yang et al., 2015) and QuatE

(Zhang et al., 2019a), use a matching function f(h, r, t) that operates on whole

triple to directly derive its plausibility score. In contrast, the approaches with ge-

ometric distance, e.g., TransE (Bordes et al., 2013) and RotatE (Sun et al., 2019),

first apply a translation function to head entity and relation for a new embedding in

latent space and then measure a distance from the new embedding to tail entity, i.e.,

f(h, r, t) = −||g(h, r) − t||p. Empirically, the latter, namely trans-based approach,

usually has higher efficiency and superior performance on link prediction than the

former. Based on translating process, it also offers better interpretability of the

graph embeddings and relation modeling (Sun et al., 2019).
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Recently, some trans-based graph embedding approaches, e.g., RotatE (Sun

et al., 2019), go beyond real vector space. They represent the entities and relations

in complex vector space, and define the translation function on complex vectors.

Empowered by the properties of arithmetic operations (e.g., product) in complex

space, the translation function can easily capture relation patterns of symmetry (e.g.,

marriage), antisymmetry (e.g., father), inversion(e.g., hypernym vs. hyponym) and

composition (e.g., mother ∧ husband → father). Compared to those defined in real

vector space, these approaches improve model’s capability in handling a variety of

relation patterns and achieve state-of-the-art performance.

Nevertheless, current trans-based graph embedding approaches with complex

embeddings are vulnerable to the following two issues. On the one hand, although

approaches solely in complex vector space are equipped with high interpretability

for various relation patterns, they are limited by the expressive power of standard

product/add of two complex numbers. To improve, QuatE (Zhang et al., 2019a)

introduces quaternion hypercomplex vector space with semantic matching, at the

cost of both interpretability and computational overheads, but the improvement is

still marginal. On the other hand, embedding ambiguity problem, which means

different entities are assigned with similar embeddings, cannot be explicitly handled

by existing trans-based approaches (e.g., TransE and RotatE). It is mainly caused

by the propagation of applying a translation function to one-to-many relations for

optimizing ∀t = g(h, r).

To alleviate both issues above, we propose a novel Relation-adaptive translating

Embedding (RatE) (Huang et al., 2020) approach for knowledge graph completion.

As an extension of the trans-based embedding approach RotatE, our proposed RatE

inherits the capability to handle various relation patterns, and further presents a

light-weight yet effective relation-adaptive translation function. Specifically, the

function is composed of a novel element-wise weighted product defined in complex
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Type Model Score Function Space Sym. Antisym. Inv. Comp. Disambiguation

Semantic
DistMult ⟨r,h, t⟩ Rd ✓ ✗ ✗ ✗ -

matching
ComplEx Re(⟨r,h, t⟩) Cd ✓ ✓ ✓ ✗ -

QuatE h⊗ r◁ · t Hd ✓ ✓ ✓ ✗ -

Trans-based

TransE −||h+ r − t|| Rd ✗ ✓ ✓ ✓ ✗

RotatE −||h ◦ r − t||1 Cd ✓ ✓ ✓ ✓ ✗

RatE −||h⊙W (r) r − t||1 Cd ✓ ✓ ✓ ✓ ✓

Table 3.1 : A brief comparison of semantic matching and trans-based graph em-

bedding approaches, where a check mark denotes the model is equipped with the

corresponding property. “Sym.”, “Antisym.”, “Inv.” and “Comp.” are abbre-

viations of relation patterns of symmetry, antisymmetry, inversion and composi-

tion respectively. For a trans-based graph embedding model, “Disambiguation”

denotes whether the model explicitly handles embedding ambiguity problem as de-

tailed in §3.2.5. And, ⟨·⟩ denotes generalized dot product, ◦ denotes element-wise

(Hadamard) complex product, ⊗ denotes element-wise Hamilton product, ◁ denotes

normalization of a vector, and ⊙W denotes our proposed weighted product defined

in Eq.(3.2).

vector space, where the weights are learnable, relation-specific and independent to

embedding dimension. Rather than rigorous complex number product in RotatE and

QuatE, RatE provides a more flexible way – either the resulting real or imaginary

part is a weighted sum of the product on every pair of numbers respectively from

the two complex number arguments (i.e., real or imaginary part). Hence, RatE only

requires eight more scalar parameters each relation than baseline RotatE, which

is much less than the embedding dimension by one or two orders of magnitude.

Through relation-adaptive translation function, the proposed approach empirically

promotes the capacity of modeling translation process and embedding ambiguity

problem, while preserves most interpretability to handle various relation patterns.
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We also propose a novel local-cognitive negative sampling method, by integrat-

ing type-constraint training technique (Krompaß et al., 2015) with self-adversarial

learning (Sun et al., 2019). The former leverages prior knowledge in graph dur-

ing training and samples negative head (tail) entities from relation-specific domain

(range), which is limited by the hard sampling criterion and suffers from graph

sparseness. By comparison, the latter scores a certain number of uniformly-sampled

negative samples based on current model, and uses the normalized scores as weights

for the loss function. It hence depends heavily on an incompletely-trained model.

Thus, we integrate them for their mutual benefits: besides using a self-adversarial

loss, our method leverages prior knowledge to weaken the effect of current model.

3.2 Approach

This section begins with a definition of link prediction task for knowledge graph

completion, followed by an introduction to a baseline RotatE. Then, we propose a

novel relation-adaptive translation function to compose the final relation-adaptive

translating embedding approach. Then, we present an efficient negative sampling

method by integrating the merits of two previous sampling strategies. Lastly, we

demonstrate the capability of our proposed model in alleviating embedding ambi-

guity problem.

3.2.1 Link Prediction

Formally, a knowledge graph G = {E ,R} consists of a set of triples (h, r, t),

where h, t ∈ E are head and tail entities respectively while r ∈ R is the relation

between them. Given a head h (or tail t) entity and a relation r, the goal of link

prediction is to find the most accurate tail t (or head h) from E to make the new

triple (h, r, t) plausible in the knowledge graph G. In a graph embedding approach,

each entity/relation is assigned with an embedding vector, and a triple is denoted
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as (h, r, t). To tackle link prediction, a scoring function f(h, r, t) is presented to

derive the plausibility score for each triple candidate. Especially in a trans-based

approach, the score function is formulated as f(h, r, t) = −||g(h, r) − t||p where

g(·) denotes a translation function.

3.2.2 Baseline: RotatE

RotatE is a state-of-the-art trans-based graph embedding approach in complex

vector space. Motivated by Euler’s identity, its translating process is formulated

as a relation-specific rotation of the head’s embedding vector. RotatE in complex

space can be viewed as a natural extension of vanilla TransE in real vector space,

aiming to support the relation pattern of symmetry. Specifically, RotatE represents

both entities E and relations R in complex vector space Cd, and defines relation’s

embedding as a rotation by constraining the modulus of each dimension to 1. And its

translation function g(h, r) is simply fulfilled by a Hadamard product (i.e., element-

wise, denoted as “◦”) in complex vector space, i.e., g(h, r) = h ◦ r. Therefore, the

scoring function in RotatE is written as

f(h, r, t) = −||h ◦ r − t||1, where h, r, t ∈ Cd and ∀|ri| = 1. (3.1)

Note, the p-norm of a complex vector v is defined as ||v||p = p
√∑

|vi|p.

3.2.3 Relation-Adaptive Translating Embedding

Based on the baseline, we propose a trans-based graph embedding approach,

named as Relation-adaptive translating Embedding (RatE). It extends complex

number product to a novel weighted product in complex space, where the weights

are learnable and relation-specific. The weighted product is defined as

o = u⊗W v = (a+ bi)⊗W (c+ di) = W1,:s
(u,v) +W2,:s

(u,v)i, (3.2)

where, o, u, v ∈ C,W ∈ R2×4 and s(u,v) = [ac; ad; bc; bd] ∈ R4.
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Here, W denotes a learnable weight matrix and will be updated during training

for a specific target. Standard complex number product is its special case when

W = [[1, 0, 0,−1]; [0, 1, 1, 0]]. Hence, empowered by the learnable weights, the

weighted product promotes the ability to implicitly capture arithmetic or geometri-

cal relationships in complex space when adapted into a data-driven neural model.

Then, the proposed weighted product is readily integrated with RotatE to com-

pose a novel relation-adaptive translation function. That is

t̃ := g(h, r) = h⊙W (r) r, where, ∀i : t̃i = hi ⊗W (r) ri, |ri| = 1. (3.3)

h, r ∈ Cd are the embeddings of head entity and relation respectively, and ⊙W (r)

denotes element-wise weighted product where the weights are specified for each re-

lation r ∈ R. Based on this translation function, we formulate the score function of

relation-adaptive translating embedding as

s(h,r,t) := f(h, r, t) = −||h⊙W (r) r − t||1, (3.4)

where s(h,r,t) ∈ R is the resulting score of the triple (h,r,t) to measure its plausibility.

As both the graph embeddings and the translation function are defined in complex

vector space and learnable during training, our proposed RatE is a generic formula-

tion of previous trans-based approaches. In other words, the approaches like RotatE

and TransE are special cases of RatE, so our approach makes the best of deep neural

network and promotes the representing capacity of translating paradigm. This is

achieved by increasing only eight learnable parameters for each relation, which are

fewer than the relation’s embedding size by one or two orders of magnitude. More-

over, besides handling the four relation patterns (i.e., symmetry, antisymmetry,

inversion and composition), the proposed RatE also reduces the effect of embedding

ambiguity (detailed at the end of this section). It is also noteworthy that although

the integration above is based on RotatE, the proposed weighted product is com-

patible with any complex or hypercomplex embedding approach (e.g., QuatE).
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3.2.4 Negative Sampling and Optimization

The way to conduct negative sampling can significantly affect the performance

of a graph embedding approach (Cai and Wang, 2018; Sun et al., 2019) because

contrasting a challenging negative sample against the corresponding positive one

is more effective for learning structured knowledge. Formally, given an arbitrary

correct triple x = (h, r, t) ∈ G(tr), negative sampling aims at corrupting its either

head or tail entity to get a wrong triple x′ = (h′, r, t) or (h, r, t′), where x′ /∈ G(tr).

G(tr) denotes the knowledge graph to train an embedding model. Note, we only

exhibit tail corruption for a clear elaboration in the following, and head corruption

is also considered in our implementation.

We first introduce two popular sampling strategies in the following. Type-

constraint training technique (Krompaß et al., 2015) presents a new link prediction

setting based on local closed-world assumptions – the entities to corrupt a triple

only come from a relation-specific entity set during both training and test. We only

take this idea in training phase to introduce prior knowledge and provide strong

distractors. Particularly, for a triple (h, r, t), the candidate set of tail corruptions is

E (h,r,t) = {t′ ∈ E|∃e ∈ E : (e, r, t′) ∈ G(tr) ∧ (h, r, t′) /∈ G(tr)}. (3.5)

However, sampling only in this set, E (h,r,t), suffers from not only graph sparseness by

local closed-world assumptions but also information loss of other corrupting entities.

The other entities are denoted as

Ē (h,r,t) = {t′ ∈ E|t′ /∈ E (h,r,t) ∧ (h, r, t′) /∈ G(tr)}. (3.6)

In contrast, self-adversarial negative sampling (Sun et al., 2019) applies triple scoring

function to a certain number of uniformly-sampled wrong triples, and each f(h, r, t′)

represents its difficulty to current embedding model. It then uses the normalized

scores as the weights in loss function to perform a self-adversarial training. However,

this sampling strategy depends heavily on current embedding model.



25

Then, we propose a novel local-cognitive negative sampling method by inte-

grating them to complement each other. Our integration is non-trivial, where a

dynamic coefficient∗ γ ∈ [0, 1] is used to control the proportion of negative samples

from E (h,r,t) or Ē (h,r,t). In particular, a certain number n of wrong triples is first

sampled for each triple x = (h, r, t) ∈ G(tr). To achieve this, we conduct a uniform

sampling individually in E (h,r,t) and Ē (h,r,t), which respectively produce N containing

γn samples and N̄ containing (1 − γ)n samples. Then we optimize the proposed

embedding model by minimizing

L = µ||W (r)||1 − log σ(λ+ f(h, r, t))−
∑

(h,r,t′)∈N∪N̄
β(h,r,t′) log σ(−f(h, r, t′)− λ),

(3.7)

where β(h,r,t′) = exp f(h, r, t′)/
∑

(h,r,t′′)∈N∪N̄
exp f(h, r, t′′). (3.8)

µ is weight decay of L1 regularization and set to 0.01 without tuning. Lastly, we

update the coefficient γ at the end of every training epoch by

γ ← 1

|G(tr)|
∑

G(tr)
1/

(
1 +

∑
(h,r,t′)∈N̄ exp f(h, r, t′)/|N̄ |∑
(h,r,t′)∈N exp f(h, r, t′)/|N |

)
. (3.9)

Here γ inclines to the candidate set with more challenging negative samples, which

is determined by all wrong triples sampled in the previous epoch. In summary,

our sampling method employs a self-adversarial training loss, and leverages prior

knowledge to weaken the effect of current model.

3.2.5 Embedding Disambiguation

Embedding ambiguity here refers to similar embeddings assigned to distinct en-

tities. In a trans-based graph embedding approach, it is usually caused by one-to-

many (i.e., a kind of non-injective) relations in knowledge graphs. Specifically, given

∗We initialize γ with 0.5 and empirically find the initialization value barely affects final perfor-

mance.
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Figure 3.1 : Toy examples – applying translation functions of TransE, RotatE and

RatE to (hi, ri) for the resulting ti. Note that 1) dimension index i is omitted, and

2) TransE is defined in real space whereas RotatE/RatE is defined in complex space.

a set of triples {(h, r, t1), . . . , (h, r, tM)} as an example of one-to-many relations, in-

voking a translation function directly defined in real or complex space makes the

model optimize toward ∀tj = g(h, r) and inevitably results in similar tail embed-

dings. Because one-to-many relations are ubiquitous in a knowledge graph, e.g.,

has part in WordNet, the embedding ambiguity problem will deteriorate and prop-

agate through the graph. Fortunately, the proposed RatE is able to alleviate this

problem by cutting off the propagation.

To intuitively demonstrate RatE’s capability in embedding disambiguation by

stopping the propagation, we respectively illustrate toy examples of TransE, RotatE,

and our proposed RatE in Figure 3.1. It is observed that given two head entities with

similar embeddings, their similarity will be preserved in corresponding tail entities

after applying the same relation, not to mention the relation r possibly being a one-

to-many relation. The triple scoring function built upon geometric distance may

hardly discriminate such subtle differences in the space and thus negatively affects

the quality of predictions. In principle, compared to rigid transformation in RotatE

and TransE, the proposed RatE with weighted product shares a similar inspiration

with projective transformation and changes the distance between the tail entities
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according to spatial positions of the head entities. Consequently, besides increasing

the distance between the tail entities to disambiguate entity embeddings, RatE could

also decrease the distance for better support of many-to-one relations. A rigorous

proof of these properties is provided in Appendix A.

3.3 Experiment

3.3.1 Experimental Setting

Dataset # Entity # Relation # Training # Validation # Test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

Table 3.2 : Statistics of four benchmark datasets of link prediction.

Dataset. We employ four widely-used link prediction benchmark, WN18, FB15K,

WN18RR and FB15K-237, whose statistics are summarized in Table 3.2. Note,

Toutanova et al., (Toutanova et al., 2015) find that both WN18 and FB15K suffer

from direct link problem caused by most test triples (e1, r1, e2) can be found in the

training or valid set with another relation, e.g., (e1, r2, e2) or (e2, r2, e1).

• WN18 (Bordes et al., 2013) is extracted from WordNet (Miller, 1995), a knowl-

edge graph composed of English phrases and lexical relations between them.

• FB15k (Bordes et al., 2013) is extracted from Freebase (Bollacker et al., 2008),

which is a large-scale knowledge graph consisting real-world named entities and

their relationships.
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• FB15k-237 (Toutanova et al., 2015) is a subset of FB15k by 1) removing near-

duplicate and inverse triples, and 2) filtering out the direct links to avoid data

leakage.

• WN18RR (Dettmers et al., 2017) is a subset of WN18 following the same

processes as FB15k-237.

Training Setting. The ranges of the hyper-parameters for grid search are elab-

orated in the following. Embedding dimension d ∈ {250, 500, 1000}, batch size

∈ {512, 1024, 2048}, and fixed margin λ ∈ {6, 9, 12, 18}. By following previous

works, all entities and relation embeddings are randomly initialized under uniform

distribution. The initialization range of entities is [−λ/d,+λ/d] for both real and

imaginary parts, and the initialization range of relations is [0, 2π] with |r| = 1 in

complex space. Our model is implemented using PyTorch on a single Titan V GPU.

We use minibatch SGD with Adam optimizer, where the learning rate is set to

5× 10−5 without decay.

Evaluation Metrics. Following Bordes et al. (Bordes et al., 2013), we use “fil-

tered” setting to calculate evaluation metrics during test: In either head or tail

entity corruption, all correct triples in train/dev/test except the current oracle test

triple are removed to avoid affecting rank. Given all candidate triples ranked ac-

cording to the score function f(h, r, t), we use the standard evaluation metrics on

link prediction tasks: 1) mean rank (MR) to describe the mean rank of the oracle

test triples, 2) mean reciprocal rank (MRR), and 3) Hits@N (N=1, 3, 10) to denotes

the ratio of the oracle test triples ranked in top-N .

Comparative Approach. We compare RatE with several strong graph embed-

ding approaches, especially the trans-based approaches to which RatE belongs. In
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particular, for trans-based approaches, we mainly consider TransE (Bordes et al.,

2013) in real space and RotatE (Sun et al., 2019) in complex space. For semantic

matching approaches, we consider DistMult (Yang et al., 2015), HolE (Nickel et al.,

2016), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2017) and QuatE

(Zhang et al., 2019a). For most approaches, we copy results from the original paper

or (Sun et al., 2019) except explanations.

3.3.2 Evaluation on Link Prediction

Method
WN18 FB15k

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE - .495 .943 .888 .113 - .463 .749 .578 .297

DistMult 655 .797 .946 - - 42 .798 .893 - -

HolE - .938 .949 .945 .930 - .524 .739 .613 .402

ComplEx - .941 .947 .945 .936 - .692 .840 .759 .599

ConvE 374 .943 .956 .946 .935 51 .657 .831 .723 .558

RotatE 309 .949 .959 .952 .944 40 .797 .884 .830 .746

QuatE 388 .949 .960 .954 .941 41 .770 .878 .821 .700

RatE 180 .950 .962 .953 .944 24 .810 .898 .859 .724

Table 3.3 : Link prediction results on WN18 and FB15k. The results of QuatE are

reported without type-constraint.

Link prediction results on the four datasets are shown in Table 3.3 and Table 3.4.

It is observed that the proposed RatE is able to achieve new state-of-the-art results in

terms of most metrics compared to previous graph embedding approaches. Overall,

compared with the baseline model RotatE, RatE merely employs several additional

parameters to deliver significant improvement. To the best of our knowledge, RotatE

is previous the best trans-based graph embedding approach and belongs to the

same category as RatE. RatE also outperforms previous state-of-the-art semantic
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Method
WN18RR FB15k-237

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE 3384 .226 .501 - - 357 .294 .465 - -

DistMult 5110 .430 .490 .440 .390 254 .241 .419 .263 .155

ComplEx 5261 .440 .510 .460 .410 339 .247 .428 .275 .158

ConvE 4187 .430 .520 .440 .400 244 .325 .501 .356 .237

RotatE 3340 .476 .571 .492 .428 177 .338 .533 .375 .241

QuatE 3472 .481 .564 .500 .436 176 .311 .495 .342 .221

RatE 2860 .488 .590 .506 .441 172 .344 .541 .382 .261

Table 3.4 : Link prediction results on WN18RR and FB15k-237. Values in bold

denote the best results.

matching graph embedding approach, QuatE, which is defined in hypercomplex

space and requires more computational overheads.

Specifically, since WN18 and FB15k suffer from the direct link problem as de-

tailed above, it is observed that the baselines and our proposed RatE obtain com-

parable results in all metrics. For example, Dettmers et al. (Dettmers et al., 2017)

find that using a rule-based model to learn the inverse relations achieves competi-

tive results on WN18RR. This explains why our improvement is marginal in these

two datasets. Moreover, since WN18RR and FB15k-237 are presented to solve the

problem in WN18 and FB15k respectively, the evaluation results on WN18RR and

FB15k-237 are more canonical to measure the capability in link prediction. As

shown in Table 3.4, the proposed RatE brings a more noticeable improvement in

contrast to previous approaches.

3.3.3 Ablation Study

We conduct an extensive ablation study in Table 3.5 to verify the effectiveness of

each proposed part. We first replace the relation-adaptive translation function with
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Method MR MRR Hits@10 Hits@3 Hits@1

RatE full 2860 .488 .590 .506 .441

RatE w/o relation-adaptive 3278 .478 .579 .498 .432

RatE w/o weighted product 3115 .479 .576 .492 .432

RatE w/o W (r) L1 reg 2921 .482 .584 .499 .435

RatE w/o negative sampling 3180 .471 .564 .478 .428

RatE w/o ALL 3450 .465 .556 .476 .410

Table 3.5 : Ablation study on WN18RR.

a shared weighted product among all relations (i.e., “RatE w/o relation-adaptive”),

and observe a performance drop. And the weighted product further degenerates to

standard complex product (i.e., RatE w/o weighted product), which only results in

a slight drop. This suggests the proposed weighted product should be coupled with

relation-adaptation to maximize its effectiveness. Then, removing L1 regularization

of W (r) in Eq.(3.7) and the proposed local-cognitive negative sampling leads to 0.6%

and 2.6% Hits@10 drops respectively. Note “RatE w/o negative sampling” denotes

using a uniform negative sampling method instead of our proposed local-cognitive

negative sampling. Lastly, when removing all the proposed parts, the model is

equivalent to its baseline RotatE without self-adversarial negative sampling, which

results in inferior performance.

3.3.4 Analysis of Relation-Adaptive Translation Function

A major difference between RatE and previous trans-based graph embedding

approaches (e.g., RotatE) is that a learnable relation-adaptive translation function

is used in RatE to capture the translating relationship. To measure the expressive

power of RatE, it is significant to investigate the learned weights in each relation-

specific weighted product. As shown in Table 3.6, the L1 norm of learned W (r) for
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Relation Pattern Relation Name ||W (r)||1 RatE RotatE TransE

Symmetry

verb group 2.3 0.98 0.97 0.87

derivationally related form 2.5 0.97 0.97 0.93

also see 2.3 0.70 0.73 0.59

Antisymmetry

instance hypernym 6.1 0.56 0.54 0.22

synset domain topic of 3.3 0.49 0.49 0.19

member of domain usage 6.6 0.50 0.49 0.42

member of domain region 6.1 0.48 0.45 0.35

member meronym 8.7 0.54 0.38 0.04

has part 8.1 0.40 0.35 0.04

hypernym 7.1 0.30 0.27 0.02

Micro Mean - - 0.59 0.57 0.38

Table 3.6 : Test performance in Hits@10 regarding different relation patterns and the

corresponding relations on WN18RR. ||W (r)||1 is used to measure the complexity

of the proposed relation-adaptive translation function. Since only three triples with

relation “similar to” appear in the test set of WN18RR, we omit this relation.

symmetric relation is obviously less than that of antisymmetric relation. In particu-

lar, with the redundancy of complex number product removed, RatE preserves the

ability to handle symmetric relations and achieves competitive results. For example,

W (r) = [[1.0, 0.1, 0.0, 0.1]; [0.0, 0.1, 1.0, 0.0]] is learned for relation “verb group”. In

contrast, RatE tends to construct expressively powerful translation function for an-

tisymmetric relations and achieves much better performance across these relations

than previous models.

3.3.5 Performance on Non-Injective Relations

By following Sun et al. (Sun et al., 2019), we also evaluate the proposed RatE

on different types including one injective relation type (i.e., one-to-one ) and three

non-injective relation types (i.e., one-to-many, many-to-one and many-to-many).
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Tail Prediction (Hits@10) Head Prediction (Hits@10)

Relation Type 1-to-1 1-to-M M-to-1 M-to-M 1-to-1 1-to-M M-to-1 M-to-M

TransE (Bordes et al., 2013) .879 .671 .964 .910 .894 .972 .567 .880

RotatE (Sun et al., 2019) .923 .713 .961 .922 .922 .967 .602 .893

RatE∗ .926 .801 .968 .924 .927 .971 .724 .895

Table 3.7 : Performance on FB15k regarding different relation types, including

injective (i.e., 1-to-1) and non-injective (e.g., 1-to-M) relations. ∗We replace the

proposed local-cognitive negative sampling in RatE with self-adversarial one from

RotatE.

As shown in Table 3.7, although RatE delivers similar Hits@10 values to RotatE

on the injective relation type, it significantly surpasses both TransE and RotatE

on the non-injective relation types. The improvements are especially substantial in

1-to-M relation (+8.8%) on tail prediction and M-to-1 (+12.2%) on head prediction,

which verifies RatE’s capability in handling one-to-many relations. Coupled with the

theoretical proof in §3.2.5, this also indirectly verifies that RatE is able to alleviate

the embedding ambiguity problem posted by one-to-many relations.

Negative Sampling Method
WN18RR FB15k-237

MR MRR Hits@10 @3 @1 MR MRR Hits@10 @3 @1

Uniform 3180 .471 .564 .478 .428 224 .320 .525 .374 .220

Self-adversarial (Sun et al., 2019) 3114 .480 .576 .481 .433 177 .339 .536 .375 .244

Local-cognitive w/o self-adv loss 3094 .479 .577 .489 .434 180 .340 .538 .374 .241

Local-cognitive (ours) 2860 .488 .590 .506 .441 172 .344 .541 .382 .261

Table 3.8 : Performance of RatE with different negative sampling methods.

3.3.6 Analysis of Negative Sampling

As negative sampling is crucial for a model to learn structured knowledge, we

evaluate RatE with different negative sampling methods. “Local-cognitive w/o self-
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Method
WN18RR FB15k-237

#θ
MR MRR Hits@10 @3 @1 MR MRR Hits@10 @3 @1

TuckER (Balazevic et al., 2019) - .470 .526 .482 .443 - .358 .544 .394 .266 d2edr

RatE (ours) 2860 .488 .590 .506 .441 172 .344 .541 .382 .261 8|R|

Table 3.9 : Performance comparison between TuckER and RatE on

WN18RR/FB15k-237. “#θ” denotes the number of learnable parameters only for

scoring, where de and dr are the embedding sizes of entity and relation respectively.

adv loss” can be viewed as only using prior knowledge from local closed-world as-

sumptions (Krompaß et al., 2015). The experimental results shown in Table 3.8

demonstrate that compared with uniform sampling, both self-adversarial sampling

and type-constraint training technique (i.e., Local-cognitive w/o self-adv loss) con-

tribute to performance improvement. The results also emphasize the effectiveness

of our proposed local-cognitive negative sampling method, a non-trivial integration

of the both above, in structured knowledge learning.

3.3.7 Analysis of Efficiency

Lastly, we discuss RatE’s efficiency that is mainly brought by the following two

factors. On the one hand, in line with previous trans-based graph embedding ap-

proaches, RatE only employs fast translation function and geometric distance mea-

surement. On the other hand, even if a relation-adaptive translation function with

weighted product is used in translating process, the function with few parameters

has low time and space complexities. We compare RatE with a semantic matching

graph embedding method TuckER (Balazevic et al., 2019) that uses a weight tensor

to score a triple. As shown in Table 3.9, with competitive performance, TuckER re-

quires much more learnable parameters than RatE for scoring. For example, TuckER

has a weight tensor with 1, 200, 000 parameters on WN18RR, whereas RatE only

requires 88 parameters for all the eleven relations.
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Chapter 4

Reasoning over Entity-Action-Location Graph for

Procedural Text Understanding

4.1 Introduction

To effectively track the states and locations of entities, it is crucial to system-

atically model rich relations among various concepts in the paragraph, including

entities, actions, and locations. Three types of relations are of particular interest.

First, mentions of the same entity in different sentences are related. The inherent

relation among these mentions may provide clues for a model to generate consistent

predictions about the entity. For example, the entity electrical pulses are mentioned

in two sentences “The retina’s rods and cones convert it to electrical pulses. The

optic nerve carries electrical pulses through the optic canal.”. Connecting its two

mentions in two sentences helps to infer its location in the first sentence using the

second sentence’s information.

Second, detecting connections between an entity and the corresponding actions

helps to make state predictions more accurate. Take the sentence “As the encased

bones decay, minerals seep in replacing the organic material.” as an example. The

entity bone is related to decay which indicates the state destroy, while it is not

connected to seep indicating the state move. Given the relation between bone and

decay, it is easier for the model to predict the state of bone as destroy, instead of

being misled by the action seep.

Last, when the state or location of one entity changes, it may impact all associ-

ated entities. For example, in sentence “trashbags are thrown into trashcans.”, trash-
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bags are associated with trashcans. Then, in the following sentence “The trashcan

is emptied by a large trash truck.”, although trashbags are not explicitly mentioned,

their locations are changed by the association with trashcan.

Recent works on procedural text understanding have achieved remarkable progress

(Bosselut et al., 2018; Gupta and Durrett, 2019; Du et al., 2019; Das et al., 2019).

However, the existing methods do not systematically model the relations among

entities, actions, and locations. Instead, most methods either leverage inherent con-

straints on entity states or exploit external knowledge to make predictions. For

example, Gupta and Durrett (2019) propose a structural neural network to track

each entity’s hidden state and summarize the global state transitions with a CRF

model. Tandon et al. (2018) inject commonsense knowledge into a neural model

with soft and hard constraints. Although Das et al. (2019) model the relation be-

tween entities and locations, there is no general framework to model the relations,

and some important relations, such as entity-action and entity-entity relations, are

ignored.

A general framework to systematically model the rich types of relations among

entities, actions, and locations is essential to procedural text understanding. To

the best of our knowledge, we are the first to explore comprehensive relation mod-

eling, representation, and reasoning systematically. Specifically, we first construct

an entity-action-location graph from a given paragraph, where three types of con-

cepts (i.e., entities, locations, and actions) are identified and extracted as nodes.

We then detect critical connections among those concepts and represent them as

edges. Finally, we adopt a graph attention network to conduct Reasoning over the

Entity-Action-Location graph (Real) (Huang et al., 2021), which provides expres-

sive representations for downstream state and location predictions.
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Figure 4.1 : An overview of Real.

Figure 4.2 : An example of entity-action-location graph, constructed for paragraph

“...Soft tissues quickly decompose leaving the hard bones or shells behind. As the

encased bones decay, minerals seep in replacing the organic material... ”

4.2 Approach

4.2.1 Task Definition.

The procedural text understanding task is defined as follows. Given a paragraph

P consists of T sentences (S1, S2, ..., ST ), describing the process (e.g., photosynthesis,

erosion) of a set of N pre-specified entities {e1, e2, ..., eN}, we need to predict the

state yt
s and location yt

l for each entity at each step t corresponding to sentence St
∗.

Candidate states are pre-defined (e.g., yt
s ∈ {not exist (O), exist (E), move (M),

∗We will use step and sentence interchangeably.
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create (C), destroy (D)} in the ProPara dataset), and location ylt is usually a text

span in the paragraph. Gold annotations for state and location at each step t are

denoted as ỹst and ỹst , respectively.

Figure 4.1 shows the overview of our approach, which consists of three main

components: graph construction, graph-based representation learning, and predic-

tion module. The graph construction module extracts nodes and edges from the

input procedural paragraph and constructs a graph. The graph reasoning module

initializes nodes representations using contextual word representations and reasons

over the built graph. Finally, the prediction module leverages the graph-based rep-

resentations to predict the state and location.

4.2.2 Graph Construction

Figure 4.2 shows an example of the graph constructed for a paragraph which

describes how fossil forms. A semantic graph is denoted as G = (N,E), where

N = {ni}Ki=1 denotes all the nodes, and E = {ei}Li=1 denotes all the edges.

Nodes Extraction. We first extract text spans as nodes from the given para-

graph. The text spans in the extracted nodes should cover all essential concepts in

the paragraph. Three types of concepts play an important role in the entity track-

ing task, i.e., actions, entity mentions, and location mentions. Therefore, we extract

nodes for them and get all the nodes N = {Na, Ne, Nl} where Na represents ac-

tion nodes, Ne represents entity mention nodes, and Nl represents location mention

nodes.

We first tag all the verbs by an off-the-shelf part-of-speech (POS) tagger† and

construct a set of action nodes Na with each node associated with a single verb or a

phrase consisting of two consecutive verbs. For the entity mentions, we extract the

†https://github.com/flairNLP/flair
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explicit (exact matching or matching after lemmatization) or implicit (pronouns)

mentions of all the entities. Coreference resolution is used to find pronoun mentions

in data pre-processing. Besides, we utilize the POS tagger to extract location men-

tions. Each tagged noun or consecutive phrase of adjective + noun is identified as

a location mention.

Edges Generation. Capturing the semantic relations between various nodes is

critical for understanding the process dynamics in the procedural text. To this end,

we first derive verb-centric semantic structures via semantic role labeling (SRL)‡

(Shi and Lin, 2019) for each sentence and then establish intra- and inter-semantic

structure edges.

Given a verb-centric structure consisting of a central verb and corresponding

arguments, we create two types of edges. (1) If an entity mention ne ∈ Ne or

location mention nl ∈ Nl is a sub-string of an argument for verb na ∈ Na, then we

connect ne/nl to na. For example, for the sentence “As the encased bones decay,

minerals seep in replacing ...”, the verb decay has an argument the encased bones

where bones is an entity mention, then we will connect the action node decay and

entity mention node bones. (2) Two mentions in two arguments of the same verb

are connected too. For example, for the sentence “The trashbags are thrown into

a large outdoor trashcan”, the verb thrown has two arguments, the trashbags and

into a large outdoor trashcan, then we connect the two mention nodes trashbags and

trashcans.

We also create edges between mentions of the same entity in different semantic

structures. For example, in Figure 4.2, the entity bones are mentioned in two sen-

tences, which correspond to two entity mention nodes. We connect these two nodes

to propagate information from one to the other during graph-based reasoning.

‡https://github.com/allenai/allennlp.
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4.2.3 Graph-based Representation Learning

Nodes Representation. We first feed the entire paragraph to the BERT (Devlin

et al., 2019) model, which is then sent into a Bidirectional LSTM (Hochreiter and

Schmidhuber, 1997) (BiLSTM) to obtain the contextual embedding for each token.

Each node in our graph is associated with a text span in the paragraph. Therefore,

the initial node representation is derived by mean pooling over all token embeddings

in its corresponding text span. The contextual representation of node ni ∈ N is

denoted as hi (i = 1, . . . , K) with hi ∈ Rd.

Graph Reasoning. We leverage a graph attention network (GAT) (Velickovic

et al., 2018) for reasoning over the built graph. The network performs masked

attention over neighbor nodes (i.e., connected with an edge) instead of all the nodes

in the graph. We apply a two-layer GAT, which means each node can aggregate

information from their two-hop neighbor nodes (nodes that can be reached within

two edges).

In each GAT layer, we first extract a set of neighbor nodes Ni for each node ni.

The attention coefficients between node ni and its neighbour nj can be computed

through a shared attention mechanism,

eij = aT [Whi∥Whj], (4.1)

where a ∈ R2d and W ∈ Rd×d are learnable parameters, and ∥ is the concatenation

operation. We apply a LeakyReLU activate function and normalize the attention

coefficients,

αij = softmaxj (LeakyReLU (eij)) . (4.2)

Then, we aggregate the information from the neighbor nodes with multi-head at-

tention to enhance the stability and efficiency. The aggregated feature for ni with a
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K-head attention can be represented as

h′
i =

K∥∥∥∥
k=1

σ

∑
nj∈Ni

αk
ijW

khj

 (4.3)

in the first layer, and

h′′
i = σ

 1

K

K∑
k=1

∑
nj∈Ni

α′k
ijW

′kh′
j

 (4.4)

in the second layer, where ∥ is the concatenation operation, σ is the sigmoid activate

function,Wk ∈ Rd×d is learnable matrix for kth head in first layer, andW′k ∈ RKd×d

is learnable matrix for kth head in second layer. αk
ij and α′k

ij are calculated with the

corresponding Wk and W′k, respectively.

4.2.4 Prediction Model

Inspired by NCET (Gupta and Durrett, 2019), we track the state and location

separately, by a state tracking and a location prediction module. Each module

takes the representations of concerned nodes as input and outputs the prediction

(i.e., state or location of an entity) at each time step.

…

Linear

BiLSTM

Linear Linear

CRF Layer

BiLSTM BiLSTM

State 1 State 2 State T…

…

…𝑋!" 𝑋#" 𝑋$"

Figure 4.3 : Overview of state tracking model, which predicts states of the entity in

every sentence St given entity e and paragraph P .
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State Tracking. Given a paragraph P and an entity e, the state tracking module

tracks the state of the entity for each sentence. We first generate the representations

of all sentences for the entity. Considering that actions are good state-changing

signals, we concatenate the embeddings of entity mention node and action node in

the sentence as representation at step t. That is,

xe
t =

 [he
t∥hv

t ], if St contains ne

0, otherwise
(4.5)

where xe
t denotes the representation of entity e in sentence St , h

e
t denotes the repre-

sentation of the entity mention node ne in sentence St, h
v
t denotes the representation

of the action node na connected with ne in sentence St. If entity e is not mentioned

in sentence St, we use zero vector as representation of St for e. Note if there are

multiple mention nodes for the entity e in sentence St, we take the mean pooling

over all mention nodes as he
t . And we take similar approach for multiple actions.

We utilize a BiLSTM layer on the sequence of sentence embeddings. And a

conditional random field (CRF) (Durrett and Klein, 2015) is applied on the top of

the BiLSTM to make the final prediction. The loss function for the state tracking

module is defined as

Lstate = −
∑

(e,P )∈D

1

T

T∑
t=1

logP
(
ỹst |P, e; θG, θst

)
, (4.6)

whereD is the training collection containing entity-paragraph pairs, P
(
ỹst |P, e; θG, θst

)
represents the predicted probability of gold state ỹst in sentence St given the entity e

and paragraph P , θG are parameters for graph reasoning and the text encoder, and

θst are parameters in state tracking module.

Location Prediction. For the location prediction module, we first collect all the

location mention nodes as location candidates set C. We add an isolated location
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Linear

BiLSTM

Linear Linear

BiLSTM BiLSTM

Location 1

Location 2

Softmax

Location n

Softmax Softmax

Figure 4.4 : Overview of location prediction model, which predicts locations of the

entity in every sentence St given entity e and paragraph P .

node to represent the special location candidate ‘?’, which means the location cannot

be found in the paragraph. The representation of this node is randomly initialized

and learnable during the training process.

Given an entity e and location candidate l ∈ C, we represent the sentence St as

xl
t = [he

t‖hl
t], (4.7)

where he
t and hl

t denotes the representation of the entity mention node and location

mention node in sentence St. If the entity or location candidate is not mentioned in

sentence St, we use a zero vector replacing he
t or h

l
t.

We use a BiLSTM followed by a linear layer for the location predictor. The model

outputs a score for each candidate at each step t. Then, we apply a softmax layer

over all the location candidates’ scores at the same step, resulting in a normalized

probabilistic distribution. The location loss is defined as

Lloc = −
∑

(e,P )∈D

1

T

T∑
t=1

logP (
ỹlt|P, e; θG, θloc

)
, (4.8)

where P (
ỹlt|P, e; θG, θloc

)
represents the predicted probability of gold location ỹlt for

entity e in sentence St, and θloc are parameters for location prediction module.

…

…

…
…

…
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4.2.5 Learning and Inference

We create a single graph for each paragraph, which stays unchanged once created.

Then the graph reasoning module and state/location prediction module are jointly

trained in an end-to-end manner. The overall loss is defined as

Ltotal = Lstate + λlocLloc, (4.9)

where λloc is the hyper-parameter to balance the state tracking and the location

prediction loss.

We perform inference in pipeline mode. Specifically, for each entity, we first apply

the state tracking module to infer its state at each time step. Then we only predict

its location at steps when its state is changed (i.e., the predicted state is create

or move§). And the locations of an entity with unchanged states can be inferred

according to its locations in previous steps. Such pipeline fashion can increase

consistency between states and locations of an entity than inferring location and

state simultaneously.

4.3 Experiment

This section describes the evaluation results of Real on two datasets (ProPara (Dalvi

et al., 2018) and Recipes (Bosselut et al., 2018)). We also provide ablation study

and case analysis to illustrate the effectiveness of graph-based reasoning.

4.3.1 Datasets and Evaluation Metrics

ProPara contains procedural texts about scientific processes, e.g., photosynthesis,

fossil formulation. It contains about 1.9k instances (one entity-paragraph pair as

§The location of an entity will be None if its state is destroy. Therefore, we do not need to

predict its location when an entity is destroyed.
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Statistics ProPara Recipes

#sentences 3.3K 7.6K

#para 488 866

#train/#dev/#test 391/43/54 693/86/87

avg. #entities per para 4.17 8.57

avg. #sentences per para 6.7 8.8

Table 4.1 : Statistics of ProPara and Recipes dataset.

an instance) written and annotated by human crowd workers. We follow the official

split (Dalvi et al., 2018) for train/dev/test set. The Recipes dataset consists of

paragraphs describing cooking procedures and their ingredients as entities. We only

use the human-labeled data in our experiment, with 80%/10%/10% of the data for

train/dev/test, respectively. Detail statistics for the two datasets can be found in

Table 4.1.

We follow previous work’s setting (Dalvi et al., 2018) and evaluate the proposed

approach on two types of tasks on the ProPara dataset, document-level task and

sentence-level task. Document-level task focuses on figuring out input entities, out-

put entities, entity conversions, and entity movements by answering corresponding

questions. More details can be found in the official script¶. Following the offi-

cial script, we evaluate models with averaged precision, recall, and F1 scores. In

sentence-level task, we need to answer three categories of questions: (Cat-1) Is entity

e created (destroyed, moved) in the process? (Cat-2) When is e created (destroyed,

moved)? (Cat-3) Where is e created (destroyed, moved from/to)? For this task,

we take macro-average and micro-average of the score for three sets of questions as

¶https://github.com/allenai/aristo-leaderboard/tree/master/propara
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evaluation metrics‖.

For the Recipes dataset, we take the same setting as (Zhang et al., 2020), where

the goal is to predict the ingredients’ location changes during the process. We take

precision, recall, and F1 scores to evaluate models∗∗.

4.3.2 Implementation Details

We use Bert base (Devlin et al., 2019) as encoder and reason with 3-heads GAT.

Batch size is set to 16, and embedding size is set to 256. The learning rate r, location

loss coefficient λloc and dropout rate d are derived by grid searching with in 9 trials

in r ∈ {2.5×10−5, 3×10−5, 3.5×10−5}, λloc ∈ {0.2, 0.3, 0.4}, and d ∈ {0.3, 0.4, 0.5}.

The implementation is based on Python and trained on a Tesla P40 GPU with Adam

optimizer for approximately one hour (with approximately 112M parameters). We

choose the best model with highest prediction accuracy on development set.

4.3.3 Main Results

Table 4.2 compares Real with previous work on the ProPara data for both

document-level and sentence-level tasks. Our proposed approach consistently out-

performs all previous models, which do not utilize external knowledge on all metrics.

In particular, compared to DYNAPRO, it increases the document-level F1 score by

5.3%, and sentence-level macro averaged accuracy from 55.4% to 58.2%. Without

any external data, our approach achieves comparable results to KOALA, which ex-

tensively leverages rich external knowledge in ConceptNet and Wikipedia pages,

demonstrating the effectiveness of exploiting the entity-action-location graph. We

also compare Real with the re-implemented NCET†† on the Recipes dataset. As

‖https://github.com/allenai/propara/tree/master/propara/evaluation

∗∗https://github.com/ytyz1307zzh/Recipes

††The re-implemented NCET achieves comparable accuracy with the previous state-of-the-art

algorithm, DYNAPRO, i.e., 65.2% F1 score for NCET v.s. 65.5% for DYNAPRO.
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Models
Document-level task Sentence-level task

Precsion Recall F1 Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg

EntNet (Henaff et al., 2017) 54.7 30.7 39.4 51.6 18.8 7.8 26.1 26.0

QRN (Seo et al., 2017) 60.9 31.1 41.4 52.4 15.5 10.9 26.3 26.5

ProLocal (Dalvi et al., 2018) 81.7 36.8 50.7 62.7 30.5 10.4 34.5 34.0

ProGlobal (Dalvi et al., 2018) 48.8 61.7 51.9 63.0 36.4 35.9 45.1 45.4

ProStruct (Tandon et al., 2018) 74.3 43.0 54.5 - - - - -

XPAD (Dalvi et al., 2019) 70.5 45.3 55.2 - - - - -

KG-MRC (Das et al., 2019) 69.3 49.3 57.6 62.9 40.0 38.2 47.0 46.6

NCET (Gupta and Durrett, 2019) 67.1 58.5 62.5 73.7 47.1 41.0 53.9 54.0

DYNAPRO (Amini et al., 2020) 75.2 58.0 65.5 72.4 49.3 44.5 55.4 55.5

KOALA (Zhang et al., 2020) 77.7 64.4 70.4 78.5 53.3 41.3 57.7 57.5

Real (our approach) 81.9 61.9 70.5 78.4 53.7 42.4 58.2 57.9

Table 4.2 : Experiment results on ProPara document-level task and sentence-level

task. KOALA uses rich external data from Wikipedia and ConceptNet. Our ap-

proach achieves comparable performance to KOALA without any external knowl-

edge.

shown in 4.3, Real also surpass the strong baseline by 3.2%. All these results verify

the effectiveness of the proposed graph-based reasoning approach.

4.3.4 Ablations

We conduct an ablation study to testify the effectiveness of multiple components

in our approach. Table 4.4 and Table 4.3 list the results on ProPara and Recipes, re-

spectively. As shown in Table 4.4, removing the graph-based representation learning

for location/state prediction decreases the F1 score by 3.1%/3.6%, the gap becomes

4.4% without any graph-based reasoning. We can get similar observations on the

Recipes dataset, indicating that exploiting the paragraph’s rich relations is critical

for both state tracking and location prediction.
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Models Precsion Recall F1

NCET re-implementation 56.5 46.4 50.9

Real 55.2 52.9 54.1

-Location 54.9 51.7 53.3

-State 54.9 52.0 53.4

-Graph 57.2 47.9 52.1

Table 4.3 : Comparison on Recipes dataset.

Models Precsion Recall F1

Real 81.9 61.9 70.5

-Location 81.0 (-0.9) 57.7 (-4.2) 67.4 (-3.1)

-State 73.7 (-8.2) 61.2 (-0.7) 66.9 (-3.6)

-Graph 72.0 (-9.9) 61.2 (-0.7) 66.1 (-4.4)

Table 4.4 : Ablation study on ProPara dataset.

4.3.5 Analyses of Different Relations

To further illustrate the effectiveness of different types of relations, we conduct

below analyses and present three cases with predictions of Real with and without

graph reasoning in Figure 4.5.

First, to verify the effectiveness of action-entity relations in multi-verb sentences,

we compare Real of with and without graph reasoning on sentences containing

multiple (i.e., more than 2) verbs in Table 4.5. We figure out that graph-based

reasoning increases the performance by 5.7%, indicating that accurately connecting

entities and corresponding actions improves the prediction accuracy. For case 1

shown in Figure 4.5, the relation between the entity bone the action decay helps

the model to correctly predict the state of bone as destroy since the action decay
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Segments Models Precision Recall F1

muli-verb
w/o graph 73.0 58.2 64.8

w/ graph 82.5 61.0 70.1

implicit
w/o graph 74.9 57.9 65.3

w/ graph 83.7 60.3 70.1

Table 4.5 : Analyses of impact of entity-action and entity-entity relations on

ProPara.

indicates destroy. However, without such accurate connection between bone and

decay, the prediction model is very likely to be misled by other actions such as seep

or replace.

Second, we illustrate the impact of entity-entity relations by comparing our ap-

proach and baseline where the entity is not explicitly mentioned‡‡. As shown in

Table 4.5, Real increase the accuracy by 4.8%, which indicates the effectiveness

of our approach by modeling cross-entity relations. The second case in Figure 4.5

illustrates the effectiveness of using entity-entity relations. The entity bags is not

explicitly mentioned in the sentence “Trashcan gets emptied into trash truck”, and

thus the baseline model cannot correctly predict its state and location. However,

connecting it to the entity trashcan which is derived in the first sentence, helps the

model infer its state and location correctly.

Third, as discussed in section 4.1, mention-mention connections might improve

accuracy when there are multiple mentions for the same entity. The third case in

Figure 4.5 shows how Real utilizes relations between different mentions for the same

entity. In the first sentence, the location of entity small image is not mentioned,

‡‡We only compare performance for those entity-sentence pairs with gold state as Move, Create

and Destroy.
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Text ParagAraph (extract) State Location

As the encased bones decay , minerals seep in
replacing the organic material cell by cell in a
process called petrification.

E D

Text Paragraph (extract) State Location

1. Bags get carried out to the trashcan. M trashcan

2. Trashcan gets emptied into trash truck. E  M trashcan trash
truck

Text paragraph (extract) State Location

1. The cornea and lens refract light into a small
image.

C cornea and lens
retina

2. Shine it on the retina. E retina

Case 3 Entity: small image

Case 1 Entity: bone

Case 2 Entity: bags

small image

refract

lens it retina

shine

Case 3 sub-graph

minerals

decay

bones material

seep

Case 1 sub-graph

trashcan

get carried

bag trashcan trash truck

get emptied

Case 2 sub-graph

replace

Figure 4.5 : Examples of model predictions of our approach w/ (black) and w/o (red)

graph reasoning. Corresponding sub-graph is plot on the right of the paragraph.

Dotted rectangles in the sub-graph highlight key connections for correct prediction

in graph-based reasoning.

which results in wrong location prediction when no graph reasoning is used. In

contrast, the built graph connects this mention with preposition it in the second

sentence where its location is revealed as retina. Therefore, our model correctly

predicts small image’s location by graph-based representation learning.

4.3.6 Error Analyses

We randomly sample 100 wrongly predicted examples and summarize them into

the following types.

First, the ambiguity between similar entities makes it difficult to derive accurate

representations for them. For instance, fixed nitrogen and gas-based nitrogen are

two different entities related to nitrogen in the paragraph “Nitrogen exists naturally

in the atmosphere. Bacteria in soil fix the nitrogen. Nitrogen is now usable by living

things.”. It is difficult for a model to distinguish which entity the mention nitrogen

cornea and
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refers to.

Second, commonsense knowledge is required. For example, it is difficult to infer

the location of the entity bone in the sentence “An animal dies. It is buried in

a watery environment.” without the knowledge “bone is part of animal”. There-

fore, injecting appropriate external knowledge while avoiding noise may improve the

model.

Third, similar actions indicate different states in different contexts. For instance,

in sentence “the tree eventually dies.”, the state of tree is labeled as destroy, while

in sentence “most fossils formed when animals or plants die in wet environment.”,

the state of animals and plants are all annotated as exist, which may confuse the

model.
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Chapter 5

Improve Temporal Reading Comprehension via

Precise Question Understanding

5.1 Introduction

A natural solution for temporal ordering understanding is to compare each can-

didate answer and the referred event in the question and classify their temporal

relation into several pre-defined categories, e.g., UzZaman et al. (2013) defines 13

possible relations such as after, ends, equal to. Nonetheless, since temporal relation-

ships vary greatly, it is almost impossible to enumerate all possible relationships.

Figure 4.5 shows several divergent varieties of temporal relations: one might query

about plain after in Q1, negated after in Q2, constrained after in Q3, etc. Similarly,

a question might query about usually happen in Q4, might happen, or other relations.

Moreover, creating sufficient labels for all such relations is costly and poses great

challenges for real-world applications. Therefore, the classification-based approach

is incompetent to handle the flexible relations in temporal reading comprehension.

Another paradigm is to formulate it as a reading comprehension problem and

directly predict the answer to a question. With the help of large pre-trained language

models (e.g., BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019)), such

approaches have achieved relatively good performance. However, they still struggle

for the temporal reading comprehension task due to the lack of precise question

understanding. For example, given the same passage, the BERT model fine-tuned on

SQuAD (Rajpurkar et al., 2016) predicts the same answer to the two questions (Ning

et al., 2020), “What happened before a woman was trapped” and “What happened
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after a woman was trapped”. In this case, although the two questions share almost

the same words, the only different one between before and after leads to completely

opposite intentions. Moreover, even if two questions query about similar relations,

different varieties might also lead to various answers. Take the question Q4 “What

usually happened during the press release?” and “What might happen during the

press release?” in Figure 4.5 as an example. Although they both query about events

occurring after the press release, the slight difference conveys divergent semantics

and leads to different answers.

To tackle these challenges, we propose a novel question answering approach with

precise question understanding (Huang et al., 2022). Intuitively, temporal ordering

questions consist of two elements, referred events, and concerned temporal relations.

For example, the question “What usually happened during the press release?” can

be decomposed into the referred event the press release and the concerned relation

usually happen during. Inspired by this observation, we first encode such questions

into two representations, the event vector hc and the relation vector hr. Then we

evaluate how well each candidate answer matches the relation hr compared to hc

with a separate MLP module. Such fine-grained representations enable a better

understanding of questions by focusing on different elements with different vectors

and further provides good interpretability about the reasoning process. More im-

portantly, it empowers the model to capture the semantics of divergent variants of

temporal relations. Specifically, we harness an auxiliary contrastive loss that aims

to distinguish relations with subtle but critical changes.

5.2 Approach

We first introduce the definition of temporal reading comprehension (TRC) and

then describe the model architecture consisting of contextual encoder, question un-

derstanding, and event relation assessment. Finally, we provide details for the learn-
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ing and inference process.

5.2.1 Task Definition

The Temporal Reading Comprehension (TRC) task is defined as follows. Given

a passage P which describes a set of events, a system is required to answer a tem-

poral ordering question Q. Here events refer to verbs or nouns which define actions

or states. A temporal ordering question usually queries events satisfying some con-

cerned temporal relations considering one or more referred events. For example, the

first passage in Figure 4.5 describes events about Hamas goverment, and question

Q1 queries which events have the temporal relation happen after with the referred

event the victory. The answer set A to a question Q could be empty when no events

meet the requirement.

5.2.2 Model Architecture

Figure 5.1 : An overview of the proposed model.

Figure 5.1 depicts the proposed model architecture. Specifically, the passage P

and question Q are first encoded by a contextual-aware encoder, after which the rep-

resentations of the question are passed to a question understanding module. Finally,
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each candidate answer is evaluated considering whether it satisfies the concerned re-

lation to the referred event by an event relation assessment module.

Contextual Encoder We first encode the passage-question pairs with a pre-

trained language model encoder, and here we take BERT as an example. Given

a question Q = [qi]
m
i=1 and a passage P = [pi]

n
i=1, where m and n are token numbers,

we concatenate them into a sequence with the format of [cls] question [sep] passage

[sep], which is then fed into the contextual encoder to generate the embeddings,

[hq
1, ...,h

q
m,hp

1 , ...,h
p
n] = BERT([q1, ..., qm, p1, ..., pn]), (5.1)

where hq
i ,h

p
i ∈ Rd are embeddings for question token qi and passage token pi, and

d is the embedding size.

Figure 5.2 : The structure of attention-based event/relation extractor, with atten-

tion loss for it.

Question Understanding As discussed in Section 5.1, precise question under-

standing plays an essential role in TRC task. Therefore, we propose a question
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understanding module to achieve that. Intuitively, a temporal ordering question

consists of two elements, referred events, and concerned temporal relation. For ex-

ample, the question “What usually happened during the press release” queries the

temporal relation usually happen to the event the press release. A straightforward

solution is to decompose the question into two segments directly. However, natural

language questions vary a lot, and hard decomposition is risky and might propagate

errors to downstream modules, which is verified by experimental analysis in Section

5.3.5,

Therefore, we design an attention-based extractor to decompose the question

implicitly, and obtain two hidden representations, hc for the referred event and hr

for the concerned temporal relation as follows,

s
(z)
i = tanh(W

(z)
1 hq

i + b
(z)
1 ), z ∈ {c, r} (5.2)

α
(z)
i = softmax(W

(z)
2 s

(z)
i + b

(z)
2 ), z ∈ {c, r} (5.3)

hz =
m∑
i=1

α
(z)
i hq

i , z ∈ {c, r} (5.4)

where W(c),W(r) ∈ Rd, and b(c), b(r) ∈ R are learn-able weights for the extractor,

hq
i ∈ Rd is the embedding for the i-th question token. To effectively learn hr and

hc, we employ several auxiliary losses in the training phase, which will be described

in section 5.2.3.

Event Relation Assessment Given the question representations hr and hc, the

event relation assessment module evaluates how a candidate answer satisfy the re-

lation hr with respect to hc. Let e = pi . . . pi+l denotes the candidate answer, which

consists of l tokens in the passage P . We first get the representation of e by pooling
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Figure 5.3 : The structure of the event relation assessment, with answer prediction

loss for it.

over according token vectors,

he = Pool(hp
i , . . . ,h

p
i+l). (5.5)

Then we concatenate the representations of the candidate event he, question

relation hr, and the question event hc, and feed it into a two-layer MLP, followed

by a softmax function to get the final probability,

oe = tanh(Wo
1[he;hc;hr] + bo

1), (5.6)

pe = softmax(Wo
2oe + bo

2), (5.7)

where Wo
1 ∈ R3d×d′ , Wo

2 ∈ Rd′×2, bo
1 ∈ Rd′ , bo

2 ∈ R2 are model parameters, and ;

indicates concatenation. pe ∈ R2 is the probability whether the candidate e satisfies

the temporal relation hr with respect to event hc.
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5.2.3 Learning Objectives

We employ three learning objectives for model training, including a classification

loss Lqa function for final answer prediction, and an attention loss Latt and a con-

trastive loss Lcon for precise question understanding. The overall loss is a weighted

combination of all the objectives,

L = wqaLqa + wattLatt + wconLcon. (5.8)

Answer Prediction Loss The training objective for final answer prediction is

defined as,

Lqa = −
∑
e∈C

wep̂
T
e logpe, (5.9)

where C is the candidate event set, we is the weight for candidate e, pe ∈ R2 is the

predicted probability from Eq. (5.7), and p̂e ∈ {0, 1}2 is the golden label indicating

whether the candidate e belongs to the final answer of the question.

Usually, the candidate set C is derived by preliminary filtering all unigrams in the

passage P . However, some candidates are easy to be classified while others are not.

For example, it is easy to classify the word government in Figure 4.5 as a negative

answer since it is not an event. In contrast, predicting whether the word frozen is

the answer for Q1 in Figure 4.5 is more challenging. Inspired by this observation, we

assign weights we for candidates in the learning objective, we = 1.5 if e is an event,

and otherwise we = 1.0. The label of whether a word is an event can be derived

when labeling the final answer with little effort, so we can safely assume that we

always have such annotation∗.

∗The TORQUE dataset in our experiment also contains such annotation, and we use it directly

in our approach
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Attention Loss Besides the answer prediction loss, we also leverage an auxiliary

loss to guide the learning of the attention score α
(c)
i and α

(r)
i defined in Eq. (5.3). We

first derive silver annotation for referred events and concerned relation in a passage

using a rule-based approach, which will be detailed in Section 5.3.2. Let Qc, Qr be

the set of event and relation tokens according to the silver annotation. Then we

have α̂
(z)
i (z ∈ {c, r}) as the derived attention label,

α̂
(z)
i =


1

|Qz | , if qi ∈ Qz,

0, otherwise.

(5.10)

The attention loss is defined as,

Latt = Lc + Lr, (5.11)

where

Lz = −
∑
i

α̂
(z)
i logα

(z)
i , z ∈ {c, r}. (5.12)

Figure 5.4 : Illustration of the contrastive loss for question understanding.

Contrastive Loss As shown in Figure 4.5, a small change of a question might lead

to substantially divergent temporal relations. To this end, we propose to leverage a

contrastive loss for precise learning of question relation representations.
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For the relation representation hr of a question Q, we derive a positive vector

hp
r and a set of negative ones {hn

r,i}Ni=1). The positive sample hp
r is obtained in

two ways. First, we search questions with the same temporal relations but different

events, from which we randomly sample one and take its relation representation as

hp
r . Note we can get the silver annotation of events and relations in a question by

a rule-based approach. Please refer to section 5.3.2 for more details. Second, if no

such questions can be found, we take the similar approach as in SimCSE (Gao et al.,

2021), which applies a different dropout on hr and gets a variant of hr as hp
r . We

search questions that contain the same events by different temporal relations with

respect to Q, and take their relation representations as the negative set {hn
r,i}Ni=1).

Given the triple (hr,h
p
r , {hn

r }) for the question Q, its loss is defined as,

Lcon(Q) = − log
ecos(hr,h

p
r )

ecos(hr,h
p
r ) + 1

N

∑N
i=1 e

cos(hr,hn
r,i)

, (5.13)

where cos() indicates cosine similarity.

5.2.4 Inference

The inference phase takes three steps. First, we generate a candidate set Cp for

each passage P . Generally speaking, one can take any n-gram in P as a candidate.

In temporal relation understanding, we usually take a triggering word as an event

candidate. Therefore, Cp is the set of all unigrams in P . Then, we filter Cp according

to part-of-speech (POS) tagging. Specifically, we use an off-the-shelf POS tagger

to tag all words in P , and then keep only verbs and nouns in Cp. Finally, each

candidate e ∈ Cp together with the passage P and the question Q is fed into our

proposed model, and e is evaluated according to Eq. (5.7) and gets its score pe,

where pe,0 represents the probability that the candidate matches the question Q.

Then we can get the final answer set A as A = {e : e ∈ Cp and pe,0 > τ}, where τ is

a predefined threshold.
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5.3 Experiment

This section describes an empirical evaluation of our proposed approach. We also

provide analysis, ablation studies, and case analysis to demonstrate its effectiveness.

5.3.1 Settings

Dataset We evaluate the proposed approach on the TORQUE dataset. TORQUE

is a temporal reading comprehension benchmark. Each training sample contains a

passage and a question requiring understanding temporal relation between events

in the passage. Figure 4.5 shows several examples of training data. The answer

to a question consists of an event set A, and A could be empty if no event in the

passage satisfies the requirement of the question. In TORQUE, events are defined as

event triggers, usually verbs or nouns describing actions or states. There are 3.16k

passages with 30.7k questions in total and 2 events for an answer on average. We

follow the official split† with 80%/5%/15% of data in training/validation/test.

Evaluation Metrics Following (Ning et al., 2020)‡, we report three metrics in

our experiment, including standard macro F1 and Exact Match (EM) for ques-

tion answering and consistency score(C). There are multiple annotations for each

passage-question pair, which might not always be consistent with each other. We

follow the official implementation. Specifically, for each sample, a model’s predic-

tion is evaluated according to all annotations, where the largest score is selected and

aggregated as the final result.

†https://github.com/qiangning/TORQUE-dataset

‡https://github.com/rujunhan/TORQUE
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5.3.2 Implementation Details

We experiment four pre-trained language models as our contextual encoder, i.e.,

the base and large model of BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,

2019). The embedding size d is set to 64, d′ in Eq (5.6) and Eq (5.7) is set to 64.

The threshold τ for inference is set to 0.5. In model training, the batch size is set

to 16, the dropout rate is set to 0.5. The combination weight wqa, watt and wcon in

Eq. (5.8) is set to 1.0, 0.3, and 1.0, respectively. We search the learning rate lr,

with grid searching within 3 trials in lr ∈ {0.9 × 10−5, 1.0 × 10−5, 1.1 × 10−5} for

the base and large model of RoBERTa, and lr ∈ {4.0× 10−5, 5.0× 10−5, 6.0× 10−5}

for the base and large model of BERT. The implementation is based on Python and

trained on a Tesla V100 GPU with Adam optimizer for approximately three hours

(base model with approximately 110M parameters) and ten hours (large model with

approximately 340M parameters). We get the averaged result of three trials for each

setting, choose the model with the highest F1 score on the development set, and

report the performance on the test set derived from the official online test§.

Deriving Attention Annotation The relation annotation Qr for question Q is

derived as follows. First, we compile a dictionary for temporal relations, such as

before, after, etc. Please refer to Appendix A.1 for the complete list. Then Qr is

constructed with those words in Q that hit the dictionary. The event annotation Qc

is mainly derived according to the passage P . Particularly, we assume the mentioned

event list E in P is known. If a word of Q matches an event in E, it is included in

Qc. Otherwise, if no words of Q hit E, we rely on the relation annotation. Suppose

the last relation word is in position k, then Qk+1...n is set as Qc.
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Dev Test

F1 EM C F1 EM C

BERT-base

baseline† 67.6 39.6 24.3 67.2 39.8 23.6

Ours 70.5 44.6 26.2 69.8 43.0 26.1

∆ +2.9 +5.0 +1.9 +2.6 +3.2 +2.5

BERT-large

Baseline† 72.8 46.0 30.7 71.9 45.9 29.1

Ours 73.5 46.5 31.8 72.6 45.1 30.1

∆ +0.7 +0.5 +1.1 +0.7 -0.8 +1.0

RoBERTa-base

Baseline† 72.2 44.5 28.7 72.6 45.7 29.9

Ours 73.3 47.0 32.5 73.5 46.8 31.5

∆ +1.1 +3.5 +3.8 +0.9 +1.1 +1.6

RoBERTa-large

Baseline† 75.7 50.4 36.0 75.2 51.1 34.5

Ours 77.5 52.2 37.5 76.1 51.0 38.1

∆ +1.8 +1.8 +1.5 +0.9 -0.1 +3.6

Human - - - 95.3 84.5 82.5

Table 5.1 : Comparison of our approach and the baseline on the TORQUE Dataset.

† denotes published results (Ning et al., 2020).

5.3.3 Main Results

We compare our approach with the baseline (Ning et al., 2020), which takes a

passage and the corresponding question as input and applies a one-layer perception

on the embedding of each token to predict whether it is the answer of the question

§https://leaderboard.allenai.org/torque/submissions/public
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or not. The comparison results with four different contextual encoders are shown in

Table 5.1. The table shows that our proposed approach outperforms the baseline on

nearly all evaluation metrics. Our model achieves state-of-the-art results with the

RoBERTa-large encoder, increasing the F1 score by 1.8% and 0.9% for the dev and

test set, respectively. We can see a huge increase for the consistency score (C) on

the test set from 34.5% to 38.1%. Using other pre-train language models like BERT-

base, our model also improves the performance compared to the baseline approach,

by 2.6%, 3.2%, 2.5% in terms of F1, EM, and C score, respectively. Although

there is still a large gap towards the human performance, our model takes a large

step compared to the baseline approach, verifying the effectiveness of the proposed

approach.

5.3.4 Ablation Study

Models F1 EM C

Our Model 76.1 51.0 38.1

-con 75.8 (-0.3) 49.8 (-1.2) 37.0 (-1.1)

-con -att 75.6 (-0.5) 50.8 (-0.2) 36.6 (-1.5)

-we 75.8 (-0.3) 50.6 (-0.4) 37.6 (-0.5)

-all 74.8 (-1.3) 49.7 (-1.3) 34.0 (-4.1)

Table 5.2 : Ablation study on the test set of TORQUE. RoBERTa-large is used as

contextual encoder.

We conduct an ablation study to illustrate the effectiveness of each loss in our

approach. As shown in Table 5.2, removing the contrastive loss will lead to a 1.1%

drop on consistency value. When we remove both the contrastive and attention loss

for question understanding and use mean pooling over the contextual embedding of



65

the whole question token sequence, the macro F1 score and the consistency score

decrease by 0.5% and 1.5%, respectively, showing that precise question understand-

ing plays a critical role for TRC. Also, we remove weight we in the answer prediction

loss in Eq. (5.9), which results in a 0.3% drop in terms of the F1 score. When all

auxiliary loss is removed, which is basically the same as the baseline model with

our own implementation, it leads to a huge gap of 1.3%, 1.3%, 4.1% on macro F1,

exactly match and Consistency score, respectively. The results of the ablation study

indicate that each element of our proposed model is critical for temporal relation

understanding.

5.3.5 Question Representation Analysis

Models F1 EM C

w contrastive loss

attention-based 76.1 51.0 38.1

rule-based 75.8 (-0.3) 50.6 (-0.4) 37.6 (-0.5)

w/o contrastive loss

attention-based 75.8 49.8 37.0

rule-based 75.6 (-0.2) 48.9 (-0.9) 36.3 (-0.7)

Table 5.3 : Comparison of attention-based and rule-based question representation

learning. RoBERTa-large is used as contextual encoder.

As discussed in Section 5.2.2, a straightforward solution for question under-

standing is to decompose a temporal ordering question into two parts directly. This

section compares our attention-based approach with the hard question decomposi-

tion, which obtains the two question vectors hr and hc by conducting mean pooling

over embeddings of tokens in Qr and Qc respectively. The comparison results are
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shown in Table 5.3. We can see that although the rule-based approach achieves

relatively good accuracy, it still underperforms our attention-based approach. For

example, when no contrastive loss is employed, the EM score drops by 0.9% when

replacing the attention-based representation with the rule-based one. The possible

reason is that the rule-based decomposition cannot handle all questions perfectly,

and errors in the decomposition will be propagated to downstream modules. For ex-

ample, “What could have happened while the announcement was made but didn’t?”.

“but didn’t” is a crucial negate in the temporal relation, but the rule-based method

might miss it.

5.3.6 Case Study

Figure 5.5 : Case study of our approach and the baseline model. Correct answers

are marked in blue. Incorrect ones are marked in red. Candidate events in passages

are underlined. Both the baseline and our approach use RoBERTa-large as encoder.

Figure 5.5 shows predicted answers of our model and the baseline for several

questions. For the first passage, Questions 1, 2, and 3 inquire about the “happened

after” temporal relation, but with subtle differences. Q1 is the most common form,

which can be answered correctly by both the baseline and our proposed approach.

Meanwhile, the baseline model can not capture the negation information in Q2 and
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fails to predict the correct answer. In Q3 “happened after” is constrained by the

word begin, which confuses the baseline model and leads to partially correct answers.

In contrast, our proposed approach can capture these subtle but critical differences

and thus makes correct predictions.

For the second passage, our proposed model performs better for all three ques-

tions of different temporal types. Q1 and Q2 are variants of uncertain relations,

which query about two opposite temporal relations “started after” and “started be-

fore”. The word “might” brings uncertainty for the concerned temporal relation,

which confuses the baseline model, leading to the wrong prediction for the candidate

answer “turbulence” for both questions. Q3 queries about a popular temporal rela-

tion, and our model can precisely capture the difference between it and two other

ones and predict that the candidate event “increase” does not meet its requirement

since it comes from a controversial report.

5.3.7 Error Analysis

We randomly sample 100 wrongly predicted question-passage pairs from the

validation set, which can be summarized into three categories.

Multi-round Reasoning Sometimes one needs to perform multi-round reasoning

to infer the relation between two events, for example, given the passage “Roughly

40 minutes after the operation began, jubilant soldiers appeared on the rooftop of the

residence, flashing the V victory sign. Then Fujimori, who ordered the operation,

arrived to tour the residence and embraced the freed hostages.”, the temporal order-

ing between “ordered” and “the jubilant soldiers appeared on the rooftop” is inferred

by multi-step reasoning. That is, “ordered” happened before “operation began”, and

“operation began” happened before “solder appeared”, and thus “ordered” happened

before “appeared”. An advanced reasoning framework is necessary to handle such
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cases, and we leave it as future work.

Commonsense Knowledge Required The given passage might not provide

sufficient information. For example, in the passage “He was preparing the paperwork

for the move, following the course of an absolutely standard transfer. Sadly he killed

himself at home in the meantime.”, although it states that “preparing the paperwork”

and ““he killed himself ” happened “in the meantime”, commonsense knowledge

indicates that one cannot kill himself and prepare the paperwork at the same time.

So we can infer that “preparing” happened before “killed”. Incorporating external

knowledge is a potential solution for such cases.

Ambiguous Labeling Since the concept of event is not well-defined, it might

lead to ambiguous labeling. Considering a passage contains a span “decision is

made”, some annotators might label decision as a candidate event, while others

does not. This causes inconsistent labeling, and thus makes it difficult to learn a

good predictor.
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Chapter 6

Auto-Debiasing by Boosting a Biased Model

6.1 Introduction

In previous works, two heuristic assumptions are commonly used to train the

bias-only model. The first is the ”weak-model” assumption, which posits that models

with lower capacity (e.g., Bag-of-words models or TinyBERT) are more likely to

learn from the shallow heuristics of datasets and thus result in a bias-only model

(Sanh et al., 2020). The second is the ”small-data” assumption, which states that a

model is prone to fitting shortcuts or biased features in the dataset during its early

training stages (Utama et al., 2020b).

However, the assumptions used to train a bias-only model in previous works are

uncertain and have many uncontrollable factors. It is difficult to define how weak the

model should be or how small the dataset should be, resulting in redundant hyperpa-

rameters. Additionally, the bias-only model is inevitably fed with normal or robust

samples due to both i) the unknown dataset-specific biasing sample proportion and

ii) the randomness of model selection or data sampling. These uncontrollable factors

can lead to a less-biased bias-only model, negatively impacting the learning of the

debiased model.

Thereby, our goal is to develop a stable, automatic method for training a better

biased model that is agnostic to the dataset, bias type, model size, and data scale.

To achieve this, we conducted a pilot empirical study (see section §6.2), which aimed

to identify the key factors for a better biased model. Our findings indicate that i) a

higher proportion of bias in the training data results in a more biased model, and
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ii) a more biased model has higher confidence in predicting bias.

This motivates us to propose a new debiasing framework, dubbed Bias-Progressive

Auto-Debiasing (BiPAD), to obtain a better bias-only model by taking the inspi-

ration of boosting learning. Specifically, our method alternates between biased data

selection and bias-only model training, using the most biased samples from the

previous step to train the bias-only model. Given our progressively-improved bias-

boosted model that accurately identifies the biased samples, we can simply obtain

a robust debiased model by a products-of-experts (PoE) loss (He et al., 2019).

We evaluate our approach in various settings and achieve significant improve-

ment. To the best of our knowledge, our model delivers state-of-the-art performance

on HANS (Zhang et al., 2019b), NLI Hard (Gururangan et al., 2018) and FEVER-

SYMMETRIC (Schuster et al., 2019) without leveraging additional data. We plan

to release the code as open-source after publication ∗.

6.2 Empirical Study

Task Definition. We focus on natural language understanding (NLU) tasks and

treat them as general multi-class classification problems. Given an input sentence

pair x ∈ X, its goal is to predict the semantic relationship label y ∈ {1, 2, ..., K},

where K is the number of classes. Our goal is to obtain a robust debiased model

Fd that can make predictions without relying on biased features xb ∈ x and instead

focuses on unbiased features xu ∈ x.

6.2.1 Insights about Debiasing Architectures

Debiasing architectures typically consist of two stages: first, a bias-only model

Fb is constructed to calculate P (y|xb), which can be regarded as the confidence of a

∗We will open our codes (uploaded), data, and models.
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Original
Premise

Entailment
The banker saw the actor.Hypothesis

Label

The banker near the judge saw the actor.

Synthetic
Add label-consistent bias
Entailment The banker saw the actor.

Contradiction The banker saw the actor.
Add label-conflicting bias

Figure 6.1 : Example of the synthetic dataset, which is construct by inserting arti-

ficial shortcut in front of the hypothesis of original samples. Two types of synthetic

bias, i.e., label-consistent bias and label-conflicting bias, are injected into the raw

dataset.

sample being biased; then, a debiased model Fd is trained to reduce the importance

of samples with high probability of being biased, thus behaving differently from the

bias-only model.

Existing methods for building bias-only models are mainly based on the follow-

ing observations: i) smaller models are more effective at learning bias information

compared to larger models because biased features are more easily accessible than

unbiased features (Sanh et al., 2020), and ii) a model can become biased if it is

trained on a small fraction of the training dataset (Utama et al., 2020b). However,

both observations do not guarantee a strongly biased model as they do not impose

constraints on the dataset used to train the bias-only model, resulting in the model

potentially learning general knowledge, especially on less-biased datasets.

In this work, we present a bias-progressive training strategy for obtaining a more

biased bias-only model without the need for additional prior knowledge of dataset

bias. The strategy is grounded on the following assumptions:

• The more biased samples in training data, more biased the resulting model will

be.

• Samples predicted by a bias-only model with high confidence are likely to be
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Figure 6.2 : Learning dynamics of BERT-base models fine-tuned on four synthetic

MNLI training datasets with different η ∈ {0.1, 0.3, 0.5, 0.7}. All models are eval-

uated on three evaluation sets, the original MNLI dev set, the bias set, and the

anti-bias set.

biased.

6.2.2 Verification by Synthetic Bias

Data Preparation. To validate these assumptions, we construct a controllable

synthetic dataset by introducing artificial bias into the MNLI dataset (Williams

et al., 2018) (additional information on the dataset can be found in Section 6.4.1).

An example of the synthetic dataset can be seen in Figure 6.1. We simulated two

types of bias by appending a specific string in front of the original hypothesis as

a shortcut feature: One is label-consistent bias, which is constructed by inserting

the golden label; The other is label-conflicting bias, where a random label other

than the golden label is appended to the raw hypothesis sentence. Specifically, we

added the synthesized bias to η ∈ [0, 1] percentage of the training dataset. For each

instance, the injected bias could either be a label-consistent bias or a label-conflicting

bias, with a ratio of 8:2 to simulate the real-world distribution. Additionally, we

also created two synthetic evaluation sets as a label-consistent bias-only set (bias

set) and a label-conflicting bias-only set (anti-bias set). An ideal strong bias-only

model should have learned the shortcuts, i.e., utilizing the inserted words as the
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Figure 6.3 : The confidence distribution of samples on three evaluation sets. Models

are trained with 2000 random samples in synthetic MNLI datasets with different

η ∈ {0.1, 0.3} for three epochs.

predictions. As such, it should have a significant performance gap when evaluated

on the bias set and the anti-bias set.

Verifying our first assumption. We fine-tune a BERT-base model on several

synthesized training datasets with different η ∈ {0.1, 0.3, 0.5, 0.7} and evaluate them

on three evaluation sets: the original MNLI evaluation set, the bias set, and the anti-

bias set. As shown in Figure 6.2, at the early stages of the training process, the

accuracy tends to increase to 100% on the bias set and drop to 0% on the anti-bias

set, indicating that the language model is overfitting to superficial features in the

first few training epochs, as also observed by Utama et al. (2020b). Furthermore, as

the proportion of biased data η increases in the raw training data, the performance

gap becomes more pronounced and stable between the bias set and the anti-bias set,

resulting in a more biased model. This supports our first assumption that the more

biased samples in the training data, the more biased a model will be.

Verifying our second assumption. We examine the bias-only model’s confi-

dence distribution on the three evaluation sets. As shown in Figure 6.3, the bias-only
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Figure 6.4 : An overview of the bias-progressive auto-debiasing framework.

Bias-boosted
Model

Bias-boosted
Model

Dataset

Biased
Subset

Bias-boosted
Model Training

Biased Subsets
Sampling

Update Bias
Score

Bias-progressive Training Strategy

Premise: 
The banker near the judge saw
the actor.
Hypothesis: 
The banker saw the actor.

Label: Entailment
Bias-boosted

Model

Debiased
Model

...

Co-training

Debiasing Training
Objectives

model makes predictions with high confidence on the label-consistent bias samples,

but has low confidence in predicting the label for the label-conflicting bias samples.

We can observe an apparent deviation in confidence among the three evaluation

datasets even when the training dataset contains only a small fraction (i.e., 10%)

of biased samples. This deviation becomes even more pronounced as the proportion

of biased samples in the training dataset increases. This observation supports our

assumptions that: i) the bias-only model will have high confidence in predicting the

biased samples, and ii) such confidence increases as the model becomes more biased.

6.3 Bias-Progressive Auto-Debiasing

6.3.1 Overview

We propose a Bias-Progressive Auto-Debiasing (BiPAD) framework for au-

tomatically and sufficiently training debiased models without the need for prior

knowledge about biases. The framework, outlined in Figure 6.4, consists of: i) a

bias-boosted model learned through a bias-progressive training strategy and ii) a

robust debiased model co-trained with the fixed bias-boosted model on debiasing

training objectives.
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6.3.2 Bias-boosted Bias-only Model

Previous empirical studies reveal that a more biased bias-only model can be

obtained by increasing the proportion of biased samples in the training dataset. To

introduce more biased samples in the training data, we propose a bias-progressive

training process that greedily learns from the most biased samples identified in the

previous training step. Algorithm 1 outlines the steps to obtain a bias-boosted

model. First, given a dataset D with N samples, we initialize bias scores {si|i ∈

(1, . . . , N)} for all samples {xi|i ∈ (1, . . . , N)} as zero. At each step k, the weight

wk
i for xi to be sampled is calculated by wk

i = exp(ski )/
∑N

j=1 exp(s
k
j ). We then

sample a subset Dk ⊂ D with n instance based on the weights {wk
i |i ∈ (1, . . . , N)}

and train a bias-only model with the loss,

LCE = CrossEntropy(y, F k
b (x, θ

k
b )), (6.1)

where θkb stands for the parameters of the bias-only model. At the end of each step,

we update the bias score for all samples with

sk+1 = λsk + (1− λ) · P (ŷt|xi, θ
k
b ), (6.2)

where P (ŷti |xi, θ
k
b ) is the confidence for model to predict true label of xi, and λ is

the moving average coefficient. In this way, samples detected as potentially biased

(i,e, with high confidence) in this step will be more likely to be sampled as training

data in the next step.

We repeat the above steps for K times to obtain the final bias-only model. At

each step, we update the weights for the samples based on the confidence of the

bias-only model. According to our second observation, the biased samples will have

higher confidence scores and will be more likely to be selected as training data in

the next step. As a result, the sampled subset in the next step will contain more

biased samples, meaning that a more biased model Fb will be learned based on our
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first observation. In turn, a more biased model Fb will identify the biased samples

more accurately. After the next update, the weights for biased samples will be more

accurate and certain. By using this bias-progressive training strategy, we are able

to obtain a strong bias-boosted model, even though the bias-only model is weak at

the beginning.

6.3.3 Debiased Model Learning

Algorithm 1 Bias-progressive Training

1: Input: dataset D withN samples; boost stepK; subset size n; average coefficient

λ

2: Output: bias-boosted model FK
b

3: s1i ← 0 ∀i ∈ 1...N

4: for k ∈ 1...K do

5: for i ∈ 1...N do

6: wk
i = exp(ski )/

∑N
j=1 exp(s

k
j )

7: end for

8: Sample Dk ⊂ D in size n based on wk

9: Re-initialize pre-trained F k
b

10: Finetune F k
b on Dk with cross-entropy

11: for i ∈ 1...N do

12: ∆si = P (ŷti |xi, θ
k
b )

13: sk+1
i ← λ ∗ ski + (1− λ) ∗∆si

14: end for

15: end for

After obtaining a bias-boosted bias-only model using the above steps, we then

freeze the parameters of the bias-boosted model and train the debiased model

through one of the two debiasing training objectives: example reweighting (Schuster

et al., 2019) or product-of-experts (Sanh et al., 2020).

Example reweighting (ER) directly adjusts the weights of each training in-

stance in the loss function based on the likelihood a training instance is biased,
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where the likelihood is obtained from the trained bias-boosted model Fb. The train-

ing objective for the debiased model Fd is:

LER=−
∑

(xi,yi)∈D

(1− P (ŷti |xi, θb)) logP (ŷti |xi, θd).

where P (ŷti |xi, θb) is the confidence by the bias-only model for xi to be its golden

label, θd and θb are the parameters for the debiased model Fd and the bias-boosted

model Fb, respectively.

Product-of-experts (PoE) encourages the debiased model to conpensate for

the errors of the bias-boosted model, instead of sampling with frequently on the

difficult samples. It learns the debiased model Fd via the following ensemble loss:

LPoE = −
∑

(xi,yi)∈D

logP (ŷti |xi, θd, θb),

where P (ŷi|xi, θd, θb) = softmax(ldi + lbi).

(6.3)

Here, ld and lb indicate the logits obtained from the debiased model and the bias-

boosted model, respectively.

In the following experiments, we primarily use the Product-of-experts (PoE)

method to train the debiased model unless otherwise specified.

6.4 Experiments

6.4.1 Evaluation Datasets

We evaluate our proposedBias-ProgressiveAuto-Debiasing framework (BiPAD)

on two real-world natural language understanding tasks, i.e., natural language in-

ference and fact verification.

Natural language inference (NLI) tasks predict for the relationship between

two sentences such as entailment and contradiction. We select the widely used

Multi-Genre Natural Language Inference (MNLI) dataset (Williams et al., 2018)
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to train the bias-boosted model and the debiased model, then evaluate the perfor-

mance of the debiased model on three evaluation datasets: MNLI-dev, HANS (Zhang

et al., 2019b), and MNLI-Hard (Gururangan et al., 2018). MNLI dataset contains

approximately 392K pairs of premises and hypotheses, labeled in three categories:

entailment, neutral and contradiction. MNLI-dev is the original evaluation set for

the MNLI dataset. HANS is a challenging test set for NLI tasks, which includes

around 30K high word-overlapping sentence pairs generated by various templates,

with each sample labeled as entailment or non-entailment, where the two types

of labels are equally distributed. A known bias in the MNLI dataset is that high

word-overlapping pairs are highly correlated with the label entailment, which makes

a model easily perform poorly (predicting most samples as entailment) on HANS

without debiasing strategies. MNLI-Hard (Gururangan et al., 2018) is a subset of

MNLI-dev that consists of only challenging samples.

Fact verification tasks predict whether the evidence can support the given

claim. The Fact Extraction and Verification (FEVER) dataset (Thorne et al., 2018)

is commonly used for fact verification tasks, which consist of approximately 145K

pairs of claims and evidence. Each pair is marked as supporting, refuting, or insuf-

ficiently informative. We use the FEVER dataset to train the bias-boosted model

and the debiased model and evaluate the performance of the debiased model on two

evaluation sets: FEVER-dev, the original evaluation set for FEVER, and SYMMET-

RIC (Schuster et al., 2019), a challenging test set synthesized based on the original

sentence pairs in FEVER by inserting conflicting facts. Models that rely heavily on

negation words such as ”not” or ”reject” will face a significant performance drop on

this evaluation set.
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6.4.2 Implementation Details

Based on the findings from our empirical study and the research by Utama et al.

(2020), we train the bias-only model with a subset of 2000 samples for 3 epochs per

iteration. In the bias-progressive training process, we set the number of iterations to

3, which has been verified to provide convergence. Additionally, we used a moving

average coefficient of 0.5 as outlined in Section 6.3.2.

We fine-tuned both the bias-only model and the debiased model using the BERT-

base model (Devlin et al., 2019) with a total of ∼110M parameters. The embedding

size was set to 32, and the learning rate for both models was set to 2e-5. For the

debiased model, the learning rate was linearly increased for 2000 warming steps and

then linearly decreased to 0, whereas the learning rate for the bias-boosted model re-

mained at 2e-5. We employed the Adam optimizer with its default hyperparameters.

The implementation is based on Python and Hugging Face package, and trained on

a RTX6000 GPU with Adam optimizer for approximately three hours.

6.4.3 Main Results

In this paragraph, we compare our proposed framework with a baseline BERT-

base model trained with cross-entropy loss, as well as four existing state-of-the-art

debiasing frameworks. Mahabadi et al. (2020) use prior knowledge of bias types to

identify biased samples and train a bias-only model, then train a debiased model

using product-of-experts (PoE). Utama et al. (2020b) obtain a bias-only model by

training it on a small fraction of the dataset and train their debiased model through

either PoE or example reweighting (ER). Sanh et al. (2020) train a BERT-tiny

model on the entire dataset to obtain their bias-only model and use PoE to obtain

the debiased model. Our proposed framework and the two latter works do not

require prior knowledge about dataset bias. Table 6.1 compares the results of these

methods on evaluation datasets. Results for comparison methods are taken from
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Table 6.1 : Comparison results on the evaluation datasets in accuracy, where HANS-

Ent, HANS-Non-Ent, and HANS-Total are the results for the entailment labeled

samples, non-entailment labeled samples, and all samples, respectively.

Objective MNLI dev
HANS

MNLI Hard
FEVER

Total Ent Non-Ent Dev Symm.

BERT-base CE 84.52 62.43 98.12 26.74 76.96 85.60 63.10

Mahabadi et al. (2020) PoE 84.19 64.65 95.99 33.30 76.81 86.46 66.25

Utama et al. (2020b) PoE 80.70 68.50 86.24 50.76 - 85.40 65.30

Utama et al. (2020b) ER 81.40 68.60 87.06 50.14 - 87.20 65.60

Sanh et al. (2020) PoE 81.35 68.77 81.13 56.41 76.54 - -

BiPAD ER 83.35 71.23 86.54 55.92 77.25 87.60 65.31

BiPAD PoE 82.24 73.82 87.64 60.20 77.48 87.80 66.62

the original papers, and our results are an average of five trials.

The proposed BiPAD framework achieves state-of-the-art results on three chal-

lenging test sets, i.e., HANS, MNLI-Hard, and FEVER-Symm, outperforming pre-

vious results by 5.1%, 0.7%, and 0.4%, respectively. Specifically, it outperforms two

prior knowledge-free frameworks on all three test sets by 5.1%, 1.0%, and 1.0%,

indicating its superior performance in automatic bias capturing and debiasing. The

framework also outperforms the framework utilizing manual prior knowledge, sug-

gesting it captures unknown bias and exhibits strong generalization capability. Ad-

ditionally, BiPAD consistently outperforms other works under different training ob-

jectives for the debiasing model, highlighting the effectiveness of its bias-progressive

training strategy. Compared to the BERT-base model, all the debiasing frameworks

show degradation on in-distribution datasets, i.e., MNLI-dev and HANS Ent, while

BiPAD shows minimal reduction among all the frameworks. Overall, the proposed

framework provides a stronger bias-boosted model and a robust debiased model.
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6.4.4 Bias-boosted Model is More Biased

Figure 6.5 : AUC-ROC curve on datasets synthesized for two known biases on

MNLI-dev dataset by three bias-only models trained with different strategies.

In Section 6.4.3, we present evidence that our proposed bias-progressive training

strategy produces a stronger bias-only model compared to the methods proposed

by Utama et al. (2020b) and Sanh et al. (2020). To visualize this difference, we

conduct experiments in which we obtain three bias-only models using the strategies

proposed by Utama et al. (2020b), Sanh et al. (2020), and our bias-progressive

training strategy. We reproduce the other two methods using the suggested hyper-

parameters from their respective papers and provide the details in the Appendix.

We then synthesize two evaluation sets based on the MNLI-dev set. The first one

relabels samples as 1 if it has a high word overlap rate, and the original label is

entailment and as 0 for all other samples. The second one relabels samples as 1 if

it contains negation words in the hypothesis, and the original label is contradiction

and as 0 for all other samples. The calculations for the word overlap rate and the

list of negation words are also in the Appendix. We evaluate the performance of the

three bias-only models on these two synthesized datasets and present the results in

Figure 6.5 in the form of AUC-ROC curves based on the confidence of the bias-only

models. The results show that our bias-progressive training strategy outperforms
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the other two on both types of biases, with higher AUC scores and dominant ROC

curves. This experiment demonstrates that our bias-boosted model has a stronger

ability to discriminate between the two well-known biases compared to the others

and is, therefore a more biased model.

6.4.5 Number of Iterations to Obtain the Best Bias-Boosted Model

Figure 6.6 : AUC scores for two datasets synthesized for two known biases on MNLI-

dev dataset by our bias-boosted models at different iterations.

We developed a bias-boosted model using a bias-progressive training strategy,

training the bias-only model step-by-step. One question we aimed to answer was

how many iterations were necessary to achieve the best bias-boosted model. To

answer this, we conducted an experiment to observe the model’s convergence during

the bias-progressive training process. We verified the results on two synthesized bi-

ased datasets same as the datasets in section 6.4.4. We iterated the bias-progressive

training for six steps, evaluating the bias-only model on the two datasets and record-

ing their AUC scores after each step. The results, shown in Figure 6.6, show that

the AUC scores increase from 0.82/0.74 to 0.92/0.90 for the two evaluation sets in

the first three iterations and only show slight fluctuations after the fourth iteration.

We conclude that the bias-boosted model converges through the bias-progressive
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training process in the first few iterations. Therefore, we selected K = 3 iterations

to obtain the bias-boosted model in our experiments.

6.4.6 Trade-off between In-distribution and Out-of-distribution Sets

Figure 6.7 : The x -axis indicates for the t-th epoch. Left: Accuracy difference

of injecting cross-entropy loss at t-th epoch for only one epoch. Right: Accuracy

difference of injecting cross-entropy loss starting at t-th epoch. For a clearer contrast,

we show the difference value against the leftmost point.

In this study, we investigate the trade-off between in-domain and out-of-domain

performance of a debiased model by setting the training objective as the following

multi-loss function

L = LPoE + αLCE, (6.4)

where LCE is a normal cross-entropy loss and α is the parameter used to ad-

just the trade-off. Intuitively, if a BERT-base model is fine-tuned with only the

cross-entropy loss, it will result in a biased BERT-base model that is similar to

the baseline BERT-base model compared in Section 6.1. One advantage of in-

troducing the cross-entropy loss is to improve in-distribution performance, as we

have observed a performance drop on in-distribution datasets when using debiasing

strategies. Therefore, our question is whether it is possible to obtain a debiased
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model that performs well in both in- and out-of-distribution scenarios by training

it with the objective in Equation 6.4. We answer this question by observing the

performance trade-off in two strategies: 1) inserting the cross-entropy loss at the

t-th training epoch, and 2) continually inserting the cross-entropy loss from the t-th

training epoch.

Figure 6.7 illustrates the performance of the two strategies on four evaluation

datasets. MNLI-dev and HANS-ent are considered as in-distribution sets, while

HANS-not-ent is an out-of-distribution set, and HANS-total is the overall perfor-

mance. Both strategies demonstrate that adding the CE loss at a later stage im-

proves in-distribution performance while preserving out-of-distribution performance

better. Although using the CE loss will still harm out-of-distribution performance,

a better trade-off between in- and out-of-distribution performance can be achieved

by adding the CE loss in a later stage of the debiased model training process.
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Chapter 7

Conclusion and Future Directions

In summarizing the contributions of this thesis, we embarked on an in-depth ex-

ploration of augmenting machine reading comprehension models, delving into four

pivotal areas:

• Augmenting knowledge graphs via an innovative graph embedding technique.

• Enhancing procedural text understanding through the development of a unique

entity-action-location graph model.

• Advancing temporal reading comprehension by applying a detailed question

understanding strategy.

• Implementing strategies to mitigate dataset bias in natural language under-

standing tasks.

Our novel Relation-adaptive Translating Embedding (RatE) for knowledge graph

completion emerged as a significant advancement, simultaneously improving repre-

sentation and modeling capacities while addressing the embedding ambiguity prob-

lem presented by non-injective relations. RatE distinguishes itself by striking an

optimal balance between interpretability and expressive prowess, surpassing preced-

ing trans-based methodologies. Additionally, it cohesively integrates with a local-

cognitive negative sampling method, showcasing state-of-the-art performance on

four link prediction benchmarks.

The Real methodology, tailored for procedural text understanding, was yet an-

other milestone. We pioneered an entity-action-location graph to holistically model
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diverse concepts and interrelations. Validated against formidable baselines on two

benchmark datasets, the efficacy of our approach is clear. Looking ahead, we aim

to incorporate entity disambiguation and external knowledge to elevate procedural

text comprehension. Considering the prowess of Large Language Models (LLMs)

in comprehending and generating human-like text, pairing them with Knowledge

Graphs (KGs) offers potential advancements in question answering. If a KG lacks

specific information, an LLM can predict or infer the missing links, enhancing the

robustness and accuracy of the Q&A system.

For the challenges inherent in temporal reading comprehension, we devised an

innovative method that adeptly encodes temporal ordering queries into pertinent

events and related temporal dynamics. To discern the nuances among temporal

relations, this method also utilizes a contrastive loss mechanism. Our future en-

deavors will address a broader range of temporal relation understanding issues and

bolster the overall comprehension of passages related to temporal reading. Address-

ing the intricate realm of temporal-spatial relations and their dynamics in process

comprehension, we advocate for the utility of graphs as natural mediums to por-

tray relationships. Transforming text into graphs empowers LLMs with superior

relational reasoning abilities, fostering an enhanced understanding of the interplay

among various entities.

Our cutting-edge BiPAD framework was formulated to curb dataset bias in nat-

ural language understanding tasks. Rooted in a bias-progressive training paradigm,

it effectively delivers both a bias-amplified and a debiased model. BiPAD’s exem-

plary performance across three rigorous datasets stands as testimony to its prowess.

As we proceed, we’re keen on exploring synergies between the bias-only and debi-

ased models to further refine performance. Contrastive learning’s unique approach,

which differentiates between similar temporal sequences, augments an LLM’s dis-

cernment of subtle variations in sequences. This amplifies the model’s grasp of
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temporal data nuances, with potential benefits across diverse tasks. A debiased

LLM promises users and organizations greater trustworthiness by ensuring outputs

devoid of harmful stereotypes or biases. Removing these biases paves the way for

models to generalize more efficiently across tasks, sidestepping overfitting to any

skewed nuances present in the training dataset.

Another future direction is combining Federated Learning (FL) (Tan et al., 2022,

2023a,b; Ma et al., 2023; Gupta et al., 2022; Chen et al., 2023) with Natural Lan-

guage Processing (NLP). Federated Learning presents a transformative approach for

enhancing Language Models (LMs), such as those utilized in NLP. By enabling dis-

tributed model training across multiple devices while keeping the data localized, FL

addresses significant concerns related to privacy and data security. This methodol-

ogy allows LMs to learn from diverse datasets without the need to centralize sensitive

information, thereby enriching the model’s understanding and performance across

various languages and dialects. In the context of LMs, applying Federated Learn-

ing can significantly improve the model’s ability to understand context, semantics,

and subtleties in language by leveraging data from a wide range of sources, each

contributing unique linguistic patterns and usage scenarios. As a result, Federated

Learning not only fortifies data privacy but also enhances the robustness and in-

clusivity of language models, making them more reflective of the global diversity in

language usage.

To encapsulate, this thesis delineates landmark methods in the realm of Natural

Language Understanding, setting the stage for richer comprehension and reasoning

capacities in machine reading models. We view knowledge graphs and debiasing

models as overarching strategies to boost LLMs performance. In contrast, procedu-

ral text understanding and temporal relation extraction serve as specialized tactics

to optimize LLMs performance for distinct datasets. These advancements would

result in LLMs that are not only more knowledgeable and understanding of complex
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textual content but also fairer and more aligned with ethical standards, thus broad-

ening their applicability and impact in real-world scenarios. This body of work lays

a robust groundwork for upcoming explorations in the field.
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Québec City, Québec, Canada, AAAI Press, pp. 1112–1119, <http://www.aaai.

org/ocs/index.php/AAAI/AAAI14/paper/view/8531>.

Williams, A., Nangia, N. & Bowman, S. R., 2018, ‘A broad-coverage challenge cor-

pus for sentence understanding through inference’, Walker, M. A., Ji, H. & Stent,

A. (eds.) Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technolo-

gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Vol-

ume 1 (Long Papers), Association for Computational Linguistics, pp. 1112–1122,

<https://doi.org/10.18653/v1/n18-1101>.

Wu, Y., Gardner, M., Stenetorp, P. & Dasigi, P., 2022, ‘Generating data to mit-

igate spurious correlations in natural language inference datasets’, Muresan, S.,



107

Nakov, P. & Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,

Dublin, Ireland, May 22-27, 2022, Association for Computational Linguistics, pp.

2660–2676, <https://doi.org/10.18653/v1/2022.acl-long.190>.

Yang, B., Yih, W., He, X., Gao, J. & Deng, L., 2015, ‘Embedding entities and

relations for learning and inference in knowledge bases’, Bengio, Y. & LeCun,

Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, <http:

//arxiv.org/abs/1412.6575>.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R. & Le, Q. V.,

2019, ‘Xlnet: Generalized autoregressive pretraining for language understanding’,

Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B.
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