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Abstract

The objective of this paper is self-supervised learning of
video object segmentation. We develop a unified framework
which simultaneously models cross-frame dense correspon-
dence for locally discriminative feature learning and embeds
object-level context for target-mask decoding. As a result, it
is able to directly learn to perform mask-guided sequential
segmentation from unlabeled videos, in contrast to previous
efforts usually relying on an oblique solution — cheaply
“copying” labels according to pixel-wise correlations. Con-
cretely, our algorithm alternates between i) clustering video
pixels for creating pseudo segmentation labels ex nihilo; and
ii) utilizing the pseudo labels to learn mask encoding and de-
coding for VOS. Unsupervised correspondence learning is
further incorporated into this self-taught, mask embedding
scheme, so as to ensure the generic nature of the learnt repre-
sentation and avoid cluster degeneracy. Our algorithm sets
state-of-the-arts on two standard benchmarks (i.e., DAVIS17

and YouTube-VOS), narrowing the gap between self- and
fully-supervised VOS, in terms of both performance and net-
work architecture design.

1. Introduction
In this article, we focus on a classic computer vision task:

accurately segmenting desired object(s) in a video sequence,
where the target object(s) are defined by pixel-wise mask(s)
in the first frame. This task is referred as (one-shot) video ob-
ject segmentation (VOS) or mask propagation [1], playing a
vital role in video editing and self-driving. Prevalent solu-
tions [2–25] are built upon fully supervised learning techni-
ques, costing intensive labeling efforts. In contrast, we aim
to learn VOS from unlabeled videos — self-supervised VOS.

Due to the absence of mask annotation during training,
existing studies typically degrade such self-supervised yet
mask-guided segmentation task as a combo of unsupervised
correspondence learning and correspondence based, non-
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Figure 1. (a) Correspondence learning based self-supervised VOS,
where mask tracking is simply degraded as correspondence match-
ing mask warping. (b) We achieve self-supervised VOS by jointly
learning mask embedding and correspondence matching. Our algo-
rithm explicitly embeds masks for target object modeling, hence
enabling mask-guided segmentation. (c) Performance comparison
and (d) Performance over time, reported on DAVIS17 [42] val.

learnable mask warping (cf. Fig. 1(a)). They first learn pixel-
/patch-wise matching (i.e., cross-frame correspondence) by
exploring the inherent continuity in raw videos as free super-
visory signals, in the form of i) a photometric reconstruc-
tion problem where each pixel in a target frame is desired to
be recovered by copying relevant pixels in reference frame(s)
[26–31]; ii) a cycle-consistency task that enforces matching
of pixels/patches after forward-backward tracking [32–36];
and iii) a contrastive matching scheme that contrasts confi-
dent correspondences against unreliable ones [37–40]. Once
trained, the dense matching model is used to approach VOS
in a cheap way (Fig.1(a)): the label of a query pixel/patch is
simply borrowed from previously segmented ones, accord-
ing to their appearance similarity (correspondence score).

Though straightforward, these correspondence based “ex-
pedient” solutions come with two severe limitations: First,
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they learn to match pixels instead of customizing VOS tar-
get – mask-guided segmentation, leaving a significant gap
between the training goal and task/inference setup. During
training, the model is optimized purely to discovery reliable,
target-agnostic visual correlations, with no sense of object-
mask information. Spontaneously, during testing/inference,
the model struggles in employing first-/prior-frame masks to
guide the prediction of succeeding frames. Second, from the
view of mask-tracking, existing self-supervised solutions, in
essence, adopt an obsolete, matching-/flow-based mask pro-
pagation strategy [43–47]. As discussed even before the deep
learning era[48–50], such a strategy is sub-optimal. Specifi-
cally, without modeling the target objects, flow-based mask
warping is sensitive to outliers, resulting in error accumula-
tion over time [1]. Subject to the primitive matching-and-
copy mechanism, even trivial errors are hard to be corrected,
and often lead tomuchworse resultscausedbydriftsorocclu-
sions. This is also why current top-leading fully supervised
VOSsolutions[4, 5, 10–22] largely followamaskembedding
learning philosophy — embedding frame-mask pairs, in-
stead of only frame images, into the segmentation network.
With such explicit modeling of the target object, more ro-
bust and accurate mask-tracking can be achieved [1, 51].

Motivated by the aforementioned discussions, we inte-
grate mask embedding learning and dense correspondence
modeling into a compact, end-to-end framework for self-
supervised VOS (cf. Fig. 1(b)). This allows us to inject the
mask-tracking nature of the task into the very heart of our
algorithm and model training. However, bringing the idea of
mask embedding into self-supervised VOS is not trivial, due
to the lack of mask annotation. We therefore achieve mask
embedding learning in a self-taught manner. Concretely, our
model is trained by alternating between i) space-time pixel
clustering, and ii) mask-embedded segmentation learning.
Pixel clustering is to automatically discover spatiotempo-
rally coherent object(-like) regions from raw videos. By uti-
lizing such pixel-level video partitions as pseudo ground-
truths of target objects, our model can learn how to extract
target-specific context from frame-mask pairs, and how
to leverage such high-level context to predict the next-frame
mask. At the same time, such self-taught mask embedding
scheme is consolidated by self-supervised dense correspon-
dence learning. This allows our model to learn transferable,
locally discriminative representations by making full use of
the spatiotemporal coherence in natural videos, and prevent
the degenerate solution of the deterministic clustering.

Our approach owns a few distinctive features: First, it has
the ability of directly learning to conduct mask-guided se-
quential segmentation; its training objective is completely
aligned with the core nature of VOS. Second, by learning
to embed object-masks into mask tracking, target-oriented
context can be efficiently mined and explicitly leveraged
for object modeling, rather than existing methods merely

relying on local appearance correlations for label “copy-
ing”. Hence our approach can reduce error accumulation
(cf. Fig. 1(d)) and perform more robust when the latent cor-
respondences are ambiguous,e.g.,deformation, occlusion or
one-to-many matches. Third, our mask embedding strategy
endows our self-supervised framework with the potential of
being empowered by more advanced VOS model designs
developed in the fully-supervised learning setting.

Through embracing the powerful idea of mask embed-
ding learning as well as inheriting the merits of correspon-
dence learning, our approach favorably outperforms state-of-
the-art competitors, i.e., 3.2%, 2.5%, and 2.2% mIoU gains
on DAVIS17 [42] val, DAVIS17 test-dev and YouTube-
VOS [52] val, respectively. In addition to narrowing the
performance gap between self- and fully-supervised VOS,
our approach establishes a tight coupling between them in
the aspect of model design. We expect this work can foster
the mutual collaboration between these two relevant fields.

2. Related Work
Fully Supervised Learning forVOS. Given a target object
outlined in the first frame, VOS aims to precisely extract this
object from the rest frames. Fully supervised deep learning
based solutions have became the mainstream in this field,
and can be broadly grouped into three categories [1]: on-
line finetuning based [15, 16] (i.e., training a segmentation
network separately on each test-time given object), propa-
gation based [12, 13, 17] (i.e., using the latest mask to infer
the upcoming frame mask), and matching based [4, 5, 10,
11, 18, 20] (i.e., classifying pixels according to their similar-
ities to the target object). Despite assorted motivations and
technique details, almost all the top-leading approaches are
built upon a common principle – embedding paired frame
and mask, e.g., (Ir, Yr), into the segmentation network S:

Yq = S(Iq, {V(Ir, Yr)}r), (1)

where Yq is the mask predicted for a given query frame Iq;
the function V learns to deduce target-specific context from
the reference (Ir, Yr); {(Ir,Yr)}r can be the initial frame-
mask pair [4, 5, 11, 17, 18], and/or paired historical frames
and mask predictions [6, 9, 10, 20, 53–55]. Then the target-
aware context is used to guide the segmentation (mask de-
coding) of the query Iq . For instance, [4, 5, 11, 18, 56] store
foreground and background representations and classify pi-
xels by nearest neighbor retrieval or feature decoding. Some
others directly project reference frame and mask into a joint
(space-time) embedding space, which is subsequently used
for mask propagation [17] or feature matching [6, 9, 10, 20,
54, 55]. A few recent methods [15, 57] treat mask-derived
object representation as the target of a few-shot learner [15]
or a prior for joint inductive and transductive learning [57].

Inspired by these achievements, for the first time, we ex-
ploit the idea of mask embedding in the self-supervisedVOS
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setting. We achieve this through automatic space-time clus-
tering and using deterministic cluster assignments as pseudo
groundtruths to supervise the learning of mask embedding
and decoding, without the aid of manual labels. In this way,
our self-supervised model is capable of explicitly and com-
prehensively describing the target object, hence achieving
more robust and accurate, target-oriented segmentation.
Self-supervised Learning for VOS. Learning VOS in a self-
supervised manner is appealing, as it eliminates the heavy
annotation budget required by the fully supervised algori-
thms. Due to the absence of mask annotation, existing self-
supervised methods take an expedient solution: they learn to
find correspondence between two frames, instead of learn-
ing mask-guided segmentation. During inference, the first-
frame mask is directly copied to the rest frames based on
cross-frame correspondence. Specifically, given two frames
Ir and Iq , their dense representationsIr, Iq∈RHW×Dare first
extracted by a shallow neural encoderE (typically ResNet-
18 [58]), and their pairwise affinity matrix can be computed
as:

Aq
r = softmax(IrI

>
q ) ∈ [0, 1]HW×HW , (2)

wheresoftmax is row-wise. The resultant affinityAq
r gives

the strength of all the pixel pairwise correspondence between
Ir and Iq . One main benefit is that, once E is trained, it can
be used to estimate cross-frame correspondence; then VOS is
approached by warping the mask Yr of a reference frame Ir
to the query frame Iq based on:Yq =Aq>

r Yr. Thus the central
problem is to design a surrogate task to supervise E to esti-
mate reliable intra-frame affinity Aq

r. Basically, three types
of surrogate tasks are developed, yet all exploit the correla-
tion among frames: i) Photometric reconstruction [15, 26–
28, 37, 38, 41]. Here the affinity matrix Aq

r is estimated to
reconstruct the query frame: Ĩq =Aq>

r Ir, invoking a photo-
metric reconstruction objective: LRe =‖Iq− Ĩq‖2; ii) Cycle-
consistency tracking [32–35, 59–61]. The affinityAq

r is used
to guide a cycle of forward and backward tracking, leading
to a cycle-consistency loss:LCyc =‖Aq

rA
r
q−1‖2, where1 is

an identity matrix with proper size; and iii) Contrastive ma-
tching [37–39]. Drawn inspiration from unsupervised con-
trastive learning [62, 63], temporal correspondence learn-
ing is achieved by contrasting the affinity between positive,
matched pixel pairs (i, i+), against the affinity between ne-
gative, unrelated ones (i, i−): LCon =− log(exp(A(i, i+))/∑

i−exp(A(i, i−))). The positive pairs are often pre-defined
as spatiotemporally adjacent pixels, so as to capture the co-
herence residing videos [37, 38], while [39] shows that fine-
grained correspondence can be captured by directly con-
trasting frame samples. For long-range matching, multiple
reference frames are considered in practice [28, 34, 37, 38].

Our algorithm is fundamentally different from existing
self-supervised VOS solutions. Through self-taught mask
embedding learning, our method begets mask-guided seg-
mentation. Thus the nature of VOS is captured by our net-

work architecture and training, rather than existing meth-
ods treating the task as a derivant of unsupervised corre-
spondence learning. Further, our method is principled; cor-
respondence learning can be seamlessly incorporated for
regularizing representation learning, while the concomitant
shortcomings, e.g., no sense of target-specific information,
error accumulation over time, and misalignment between
training and inference modes, are naturally alleviated.

3. Methodology
At a high level, our self-supervised VOS solution jointly

learns mask embedding and visual correspondence from raw
videos. It absorbs the powerful idea of mask-embedded seg-
mentation (cf. Eq. 1) in fully supervised VOS; meanwhile, it
inherits the merits of existing unsupervised correspondence
based regime (cf. Eq. 2) in learning generic, dense features.
As a result, our solution can be formulated as (cf. Fig. 2):

Yq = D
(
E(Iq),{V([Irn ,Yrn ])}n

)
(3)

self-supervised dense
correspondence learning §3.2

self-supervised
mask embedding learning §3.1

where [ · ] stands for concatenation. Basically, our model uti-
lizes a set of reference frame-mask pairs, i.e., (Irn,Yrn)n, to
predict/decode the mask of each query frame Iq , learnt in a
self-supervised manner. Our model has three core parts:
• Visual Encoder E , which maps each query frame Iq into

a dense representation tensor: Iq = E(Iq) ∈ RHW×D. We
instantiate E as ResNet-18 or ResNet-50.

• Frame-Mask Encoder V for mask embedding. It takes a
pair of a reference frame Ir and corresponding mask Yr
as inputs, and extracts target-specific context, i.e., Vr =
V([Ir, Yr]) ∈ RHW×D′, to guide the segmentation/mask
decoding of Iq . V has a similar network architecture with
E , but the input and output dimensionality are different
and the network weights are unshared.

• Mask Decoder D, which is a small CNN for mask deco-
ding. With the help of target-rich context {Vrn}n collected
from a set of reference frame-mask pairs {(Irn , Yrn)}n,D
makes robust prediction, i.e., Yq , for the query frame Iq .

As for training, to mitigate the dilemma caused by the ab-
sence of true labels of {Yrn}n and Yq , we conduct unsuper-
vised space-time pixel clustering for automatic mask crea-
tion and train the whole network, including E , V , andD, for
mask embedding and decoding (§3.1). Moreover, unsuper-
vised contrastive correspondence learning (§3.2) is intro-
duced to boost dense visual representation learning of E .

3.1. Self-supervised Mask Embedding Learning
For self-supervised mask embedding learning, we alter-

natively perform two steps: Step1: clustering of video pixels
on the visual feature space E so as to generate spatiotempo-
rally compact segments; and Step 2: the space-time cluster
assignments serve as pseudo masks to supervise our whole
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Figure 2. Our self-supervised VOS framework: (a-b) space-time pixel clustering based mask embedding learning (§3.1) for the whole net-
work (including E , V , and D), and (c) short- and long-term correspondence learning (§3.2) for the visual encoder E only.

network (includingE ,V , andD), which learns VOS as mask-
embedded sequential segmentation. After that, the improved
visual representation E will in turn facilitate clustering.
Step1: Space-time Clustering. The goal of this step is to
partition each training video I into M space-time consis-
tent segments (see Fig. 2(a)). For each pixel i∈I, let i∈RD

denote its visual embedding (extracted from the visual en-
coder E), and si ∈ {0, 1}M its one-hot cluster assignment
vector. Clustering of all the pixels in I into M clusters can
be achieved by solving the following optimization problem:

min
C,S

∑
i∈I
‖i−Csi‖, s.t. si ∈ {0, 1}M , 1>si = 1. (4)

Here C = [c1, . . ., cM ]∈RD×M is the cluster centroid ma-
trix, where cm ∈RD refers to the centroid of m-th cluster,
and S = [si]i stores the cluster assignments of all the pix-
els in I. 1 is a M -dimensional all-one vector. While many
clustering methods have been designed to solve Eq. 4, for
simplicity, we use the most classic one – k-means, which
finds the optimal C∗ and S∗ in an EM fashion. Moreover,
to pursue spatiotemporally compact clusters, for each pixel
i ∈ I, we supply its visual embedding i with a 3D sinu-
soidal position encoding vector [64, 65]. In practice, only a
small number of EM steps (i.e., 100) can deliver satisfactory
clustering results, taking about 2 seconds per video, aver-
aged on our training dataset – YouTube-VOS [52].
Step 2: Mask-embedded Segmentation Learning. In this
step, our model utilizesclustering results as pseudo ground-
truths (see Fig. 2(b)), to directly learn VOS as mask embed-
ding and decoding. For each training video I, we sample
N+ 1 frames {Ir1 , Ir2 ,· · ·, IrN , Iq} and their masks {Yr1 ,
Yr2 , · · · , YrN , Yq}, as training examples. The pseudo masks
are naturally derived from the assignment matrix S∗, cor-
responding to the pixel-level assignment of a certain cluster.
The training examples are used to teach our model to refer
to the first N frame-mask pairs{(Irn,Yrn)}n to segment the
last query frame Iq — predicting Yq . As such, our model can
learn i) mask embedding: how to extract target-specific con-
text from {(Irn,Yrn)}n; and ii) mask decoding: how to make
use of target-specific context to segment the target in Iq .

More specifically, we first respectively apply our visual
encoder E and frame-mask encoder V over each reference
frame Irn and each reference frame-mask pair (Irn , Yrn), to

obtain visual and target-specific embeddings:

Irn=E(Irn)∈RHW×D, Vrn=V([Irn , Yrn ])∈RHW×D′ . (5)

We respectively stack all the reference visual and target-
specific embeddings: Ir = [Ir1 ,· · ·, IrN ] ∈RNHW×D, and
Vr = [Vr1 ,· · ·,VrN ] ∈RNHW×D′ . To leverage Vr to boost
the prediction of Iq , we need to mine useful context, related
to Iq , fromVr. Given the visual embedding Iq ∈RHW×Dof
Iq (extracted from E), we estimate the affinity between the
query Iq and reference frames {Irn}n (analogous to Eq. 2):

A = softmax(IrI
>
q ) ∈ RNHW×HW . (6)

Hence target-specific, supportive features are accordingly
assembled to yield:

Vq = A>Vr ∈ RHW×D′ . (7)

HereVq absorbs existent object observations in the reference
set {(Irn,Yrn)}n, revealing for Iqwhether each pixel thereof
belongs to the target object or not. Given precise segmen-
tation groundtruths, it is relatively easy for fully supervised
methods [9, 10, 54] to learn to directly decode Vq into seg-
mentation mask. However, this strategy does not work well
in our case since the pseudo labels are inevitably noisy and
less accurate, compared with the real groundtruths. To tackle
this, we achieve mask decoding through a mask refinement
scheme, which makes more explicit use of reference masks.
Specifically, we first construct a coarse mask Ȳq for Iq by
warping the reference masks {Yrn}n w.r.t. the affinity A:

Ȳq = A>[Yr1 , Yr2 , · · ·, Yrn ] ∈ RHW . (8)

The segmentation prediction Ŷq for the query Iq is made as:

Ŷq = D([Vq, V̄q]), V̄q = V([Iq, Ȳq]) ∈ RHW×D′ . (9)

Here the frame-mask encoderV (cf. Eq. 5) is smartly revoked
to get another target-specific embedding V̄q , from the pair
of the query frame Iq and warped coarse mask Ȳq . This also
elegantly resembles the mask copying strategy adopted in
existing correspondence-based self-supervised VOS models.
Conditioned on the concatenation of Vq and V̄q , the mask
decoder D outputs a finer mask Ŷq . In practice we find our
mask refinement strategy can ease training and bring better
performance (related experiments can be found in Table4e).
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Given the pseudo segmentation label Yq and prediction
Ŷq of Iq , our whole model is supervised by minimizing the
standard cross-entropy loss LCE:

LSeg =
∑
I
LCE(Ŷq, Yq). (10)

3.2. Self-supervised Dense Correspondence Learning
An appealing aspect of our mask embedding framework

is that it is general enough to naturally incorporate unsu-
pervised correspondence learning to specifically reinforce
visual representation E . This comes with a few advantages:
First, this allows our model to exploit the inherent coher-
ence in natural videos as free supervisory signals to promote
the transferability and sharpen the discriminativeness of E .
Second, correspondence learning provides initial meaning-
ful features for clustering (cf. Eq. 4), which is prone to de-
generacy (i.e., allocating most samples to the same cluster)
caused by poor initialization [66]. Third, our segmentation
model involves the computation of intra-frame affinity A
(cf. Eqs. 5-7), raising a strong demand for efficiently mod-
eling dense correspondence within our framework. Along
with recent work of contrastive matching based correspon-
dence learning [37–39], we comprehensively explore intrin-
sic continuity within raw videos in both short-term and long-
term time scales, to boost the learning of E (see Fig. 2(c)).
Short-term Appearance Consistency. Temporally adjacent
frames typically exhibit continuous and trivial appearance
changes [59, 67]. To accommodate this property, we en-
force transformation-equivariance [68–71] between our ad-
jacent frame representations. Given two successive frames
It, It+1∈I, their representations, delivered by E , are cons-
trained to be equivariant against geometric transformations
(i.e., scaling, flipping, and cropping). Specifically, denote Φ
as a random transformation, our equivariance based short-
term appearance consistency constraint can be expressed as:

¶ E(It) ≈ E(It+1)
short-term consistency

· E(Φ(It)) = Φ(E(It))
transformation-equivariance

}
⇒E(Φ(It)) ≈ Φ(E(It+1)) ¸. (11)

Here ¶ states the short-term consistency property; · refers
to the equivariance constraint on a single image [71], i.e., an
imagery transformation Φ of It should lead to a correspond-
ingly transformed feature [38]. By bringing · into ¶, we
prevent trivial solution, i.e., E(It)≡E(It+1), when directly
optimizing E via ¶, and eventually get ¸.

Following ¸, we first get the feature of transformed It:
X ′t = E(Φ(It))∈RHW×D, and transformed feature of It+1:
Xt+1=Φ(E(It+1))∈RHW×D. Denote k-th pixel feature of
Xt+1 (resp.X ′t) as xk

t+1∈RD (resp.x′kt ∈RD)1, our short-
term consistency loss is computed as:

1For clarity, the symbols for frame and pixel features in §3.2 are slightly
redefined as X and x, instead of using I and i as in §3.1.

LShort = −
∑
I

∑
k

log
exp(〈xk>

t+1x
′k
t 〉)∑

l exp(〈xk>
t+1x

′l
t 〉)

, (12)

where 〈xk>
t+1x

′l
t 〉 gives cosine similarity based affinity be-

tween k-th pixel feature of Xt+1 and l-th pixel feature of
X ′t. Eq. 12 captures local appearance continuity by contras-
ting affinity between aligned pixel feature pairs, i.e.,xk

t+1and
x′kt against non-corresponding ones, i.e.,xk

t+1 and {x′lt }l 6=k,
with an extra transformation equivariance based constraint.
Long-term Semantic Dependency. In addition to consid-
ering the local consistency among adjacent frames, we ex-
ploit long-term coherence of visual content among distant
frames [72, 73]. To address this property, we enforce trans-
formation equivariance between representations of arbitrary
frame pairs (sampled from the same video) after alignment.
Given two distant frames It,It′ ∈ I (s.t. |t− t′| ≥ 5), their
representations, after being aligned w.r.t. their affinity At

t′ ,
are constrained to be equivariant against geometric trans-
formations. In particular, denote At

t′ ∈ [0, 1]HW×HW (resp.
At

Φ(t′)∈[0, 1]HW×HW ) as the affinity between It and It′ (resp.
It and Φ(It′)), our equivariance based long-term semantic
dependency constraint can be expressed as:

¹ E(It)≈At>
t′ E(It′)

long-term dependency

· E(Φ(It)) = Φ(E(It))
transformation-equivariance

}
⇒E(It)≈At>

Φ(t′)Φ(E(It′)) º. (13)

Here ¹ states the long-term dependency property; · poses
the equivariance constraint, as in Eq. 11. By bringing · into
¹, we prevent trivial solution, i.e., E(It)≡ E(It′), when di-
rectly optimizing E via ¹, and eventually get º. Specifically,
similar to ¹, we have E(It) ≈ At>

Φ(t′)E(Φ(It′)); then with
·, we obtain E(It)≈At>

Φ(t′)E(Φ(It′)) =At>
Φ(t′)Φ(E(It′)).

Following º, we get the feature of transformed It′ : X ′t′=
E(Φ(It′)) ∈ RHW×D, transformed feature of It′ : Xt′ =
Φ(E(It′)) ∈ RHW×D, and the original feature of It: It =
E(It) ∈ RHW×D. For k-th pixel (feature) of X ′t′ , we first
find the matching (i.e., the most similar) pixel ok in It as:

ok = arg max
o∈{1,···,HW}

ak,o, ak,o =
exp(〈x′k>t′ iot 〉)∑
l exp(〈x′k>t′ ilt〉)

, (14)

where iot ∈ RD refers to o-th pixel feature of It, and ak,o
corresponds to (k, o)-th element of the affinity At

Φ(t′) be-
tween Φ(It′) and It. Then, the dominant index ok serves as
pseudo labels for our temporally-distant matching and our
long-term dependency loss is computed as:

LLong = −
∑
I

∑
k

log
exp(〈xk>

t′ i
ok
t 〉)∑

l exp(〈xk>
t′ ilt〉)

. (15)

Eq. 15 addresses global semantic dependencies by contrast-
ing affinity between aligned pixel feature pairs, i.e., xk

t′ and
iokt , against non-corresponding ones, i.e., xk

t′ and {ilt}l 6=ok ,
under an equivariant representation learning scheme.
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3.3. Implementation Details
Full Loss. The overall training loss is:
L =LSeg + LCorr

=LSeg + λ1LShort + λ2LLong,
(16)

where the coefficients are empirically
set as: λ1 = 0.1 and λ2 = 0.5.
Network Configuration. For the vi-
sual encoder E , we instantiate it as
ResNet-18 or ResNet-50 in our
experiments. For ResNet-18, the
spatial strides of the second and last
residual blocks are removed to yield
an output stride of 8, as in [34, 38, 41].
For ResNet-50, we follow [32] to
take features from res4, and drop its
stride to preserve more spatial details.
For the frame-mask encoder V , it has
a similar structure as E , expect for
the input and output dimensionality.
On the top of E and V , two 1×1 con-
volution layers are separately added

Method Backbone Dataset(size) J&Fm↑ Jm↑ Jr↑ Fm↑ Fr↑
Colorization[26] [ECCV18] ResNet-18 Kinetics( - , 800 hours) 34.0 34.6 34.1 32.7 26.8

CorrFlow[27] [BMVC19] ResNet-18 OxUvA( - , 14 hours) 50.3 48.4 53.2 52.2 56.0
TimeCycle[32] [CVPR19] ResNet-50 VLOG( - , 344 hours) 48.7 46.4 50.0 50.0 48.0

UVC[35] [NeurIPS19] ResNet-18 C+Kinetics(30K, 800 hours) 57.8 56.3 65.0 59.2 64.1
MuG[59] [CVPR20] ResNet-18 OxUvA( - , 14 hours) 54.3 52.6 57.4 56.1 58.1

MAST[28] [CVPR20] ResNet-18 Youtube-VOS( - , 5.58 hours) 65.5 63.3 73.2 67.6 77.7
CRW[34] [NeurIPS20] ResNet-18 Kinetics( - , 800 hours) 68.3 65.5 78.6 71.0 82.9

ConCorr[41] [AAAI21] ResNet-18 C+TrackingNet(30K, 300 hours) 63.0 60.5 70.6 65.5 73.0
CLTC[37] [CVPR21] ResNet-18 Youtube-VOS( - , 5.58 hours) 70.3 67.9 78.2 72.6 83.7
JSTG[60] [ICCV21] ResNet-18 Kinetics( - , 800 hours) 68.7 65.8 77.7 71.6 84.3

ResNet-18 67.9 65.0 77.2 70.8 82.3
VFS [39] [ICCV21]

ResNet-50
Kinetics( - , 800 hours)

69.4 66.7 78.6 72.0 85.2
ResNet-50 56.2 54.5 58.1 57.9 60.3

DINO[74] [ICCV21]
ViT-B/8

I(1.28M, - )
71.4 67.9 81.6 74.9 85.4

DUL[38] [NeurIPS21] ResNet-18 Youtube-VOS( - , 5.58 hours) 69.3 67.1 81.2 71.6 84.9
SCR[40] [CVPR22] ResNet-18 Kinetics( - , 800 hours) 70.5 67.4 78.8 73.6 84.6
LIIR[31] [CVPR22] ResNet-18 Youtube-VOS( - , 5.58 hours) 72.1 69.7 81.4 74.5 85.9

ResNet-18 74.5 71.6 82.9 77.4 86.9OURS
ResNet-50

Youtube-VOS( - , 5.58 hours) 75.6 73.3 83.6 77.8 87.3
OSVOS[12] [CVPR17] VGG-16 I+D(1.28M, 10k) 60.3 56.6 63.8 63.9 73.8

STM[10] [ICCV19] ResNet-50 I+D+Youtube-VOS(1.28M, 164k) 81.8 79.2 88.7 84.3 91.8
- I: ImageNet [75]; C: COCO [76]; D: DAVIS17 [42].

Table 1. Quantitative segmentation results (§4.1) on DAVIS17 [42] val. For dataset
size, we report (#raw images, length of raw videos) for self-supervised methods and
(#image-level annotations, #pixel-level annotations) for supervised methods.

to reduce the output dimensions of E and V to D=128 and
D′=512, respectively. For the mask decoder D, it consists
of two Residual blocks that are connected with E through
skip layers, and a 1× 1 convolution layer to produce the
final segmentation prediction.
Training. We follow [74] to pre-train the backbone network
E on YouTube-VOS for 300 epochs, enabling reliable ini-
tial clustering. Then, we conduct the main training for a
total of 400 epochs using Adam optimizer with batch size
16 and base learning rate 1e-4, on one Tesla A100 GPU. In
the first 300 epochs, the whole network is trained with only
the correspondence loss LCorr. The learning rate is scheduled
following a “step” policy, decayed by multi-plying 0.5 ev-
ery 100 epochs. In the last 100 epochs, the whole net-
work is trained using the full loss L, with fixed learning rate
1e-5. The first time-space clustering is made at epoch 300
for creating initial pseudo segmentation labels. Afterwards,
the pseudo labels are updated by conducting re-clustering at
every 10 epochs. During clustering, we abandon over-size
clusters, i.e., accounting for more than 40% of video pixels.
These big clusters are typically scene background, like sky
and grass; only the remaining pixel clusters/segments are
used as pseudo labels. Random scaling, cropping, and flip-
ping are used for data augmentation, and the training image
size is set to 256×256. In each mini-batch, we sample 3
frames per video, and adopt the strategy in [9, 10] to learn
mask decoding with two reference frames (i.e., N=2).
Testing. Once trained, our model is applied to test videos
without any fine-tuning. Following [34, 38], for each query
frame, we take the first frame (providing reliable object
mask information), and, if applicable, its prior 20 frames
(capturing diverse object patterns), as well as their masks,

as reference for segmentation prediction. In addition, we
repeatedly feed the prediction Ŷq back to the mask decoder
D for iterative refinement. We find this strategy brings bet-
ter results while requiring no extra parameters, with only
marginal sacrifice of inference speed (see Table 4e).

4. Experiments
Dataset. We evaluate our approach on two VOS datasets, i.e.,
DAVIS17 [42] and YouTube-VOS[52]. They have 30 and 474
videos in val sets, respectively. The videos are companied
with pixel-wise annotations and cover various challenges
like occlusion, complex background, and motion blur.
Evaluation Metric. Following the official evaluation pro-
tocols [42, 52], we adopt region similarity (Jm), contour
accuracy (Fm) and their average (J&Fm). For DAVIS17,
we additionally report the recall values (Jr and Fr), at IoU
threshold 0.5. For YouTube-VOS, scores are obtained by
submitting the results to the official evaluation server and
separately computed for seen and unseen categories.

4.1. Comparison with State-of-the-Art
Performance on DAVIS17. Table 1 gives comparison results
against 15 recent self-supervised VOS methods on DAVIS17

val.Wealso include twofamoussupervisedalternatives [10,
12] for reference. As seen, using a relatively small amount
of training data (i.e., 5.58 hours of raw videos in YouTube-
VOS train) and weak backbone architecture – ResNet-
18, our approach outperforms all competitors across multi-
ple evaluationmetrics.WhenadoptingResNet-50, our ap-
proach yields far better performance, up to 75.6% J&Fm.
In particular, compared withResNet-18based top-leading
models, i.e., LIIR [31], SCR [40], DUL [38], and CLTC [37],
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Method Backbone J&Fm↑ Jm↑ Jr↑ Fm↑ Fr↑
MAST[28] [CVPR20] ResNet-18 54.3 50.7 58.9 57.8 64.5

CRW[34] [NeurIPS20] ResNet-18 55.9 52.3 - 59.6 -
DUL[38] [NeurIPS21] ResNet-18 57.0 53.5 60.4 60.5 67.6
SCR[40] [CVPR22] ResNet-18 59.9 55.9 - 64.0 -
LIIR[31] [CVPR22] ResNet-18 57.5 55.2 63.1 59.8 68.6

ResNet-18 61.3 59.4 66.5 63.1 73.7OURS
ResNet-50 62.4 60.6 66.9 64.2 74.3

RGMP[17] [CVPR18] ResNet-50 52.9 51.3 - 54.4 -
STM[10] [ICCV19] ResNet-50 72.2 69.3 - 75.2 -

Table 2. Quantitative results (§4.1)onDAVIS17 [42]test-dev.

our approach earns 2.4%, 4.0%, 5.2%, and 4.2% J&Fm

gains, respectively. Note that, CLTC adopts different net-
work architectures and model weights for different datasets.
Apart from this, VFS and JSTG make use of much more
training data than ours (800 vs. 5.58 hours of videos). As for
DINO, a recent state-of-the-art, contrastive image represen-
tation learningbased method, our approach still outperforms
it by 3.1% and 4.2% J&Fm based on ResNet-18 and
ResNet-50, respectively.This is parti- cularly impressive,
considering our backbone is desperately inferior to DINO
(i.e., ResNet-18/-50 vs. ViT-B) and the training data
used by these two methods are completely not comparable
in both quality and quantity (i.e., 3.5K videos vs. 1.28M
images). When using the sameResNet-50 back- bone, the
performance gap is huge, e.g., 19.4% in J&Fm. Table 2
reports our performance on DAVIS17 test-dev. We can
clearly observe that, our approach, again, suppresses all the
recent alternatives by a solid margin.
Performance on YouTube-VOS. We further conduct expe-
riments on YouTube-VOSval. As shown in Table 3, our ap-
proach, again, achieves remarkable performance, evidenc-
ing its efficacy and generalization ability across different
VOS datasets. Specifically, when opting for ResNet-18
backbone network architecture, our approach obtains 1.7%
absolute J&Fm improvement, over the current top leading
method — DUL. Moreover, with a stronger backbone —
ResNet-50, our approach further improves the J&Fm

score to 72.4%, setting a new state-of-the-art.
Visual Comparison Results. Fig.3 depicts the visual com-
parison results of our approach and two competitors, MAST
and DUL, on two challenging videos from DAVIS17 val

Seen Unseen
Method Backbone J&Fm↑ Jm↑ Fm↑ Jm↑ Fm↑

Colorization[26] [ECCV18] ResNet-18 38.9 43.1 38.6 36.6 37.4
CorrFlow[27] [BMVC19] ResNet-18 46.6 50.6 46.6 43.8 45.6

MAST[28] [CVPR20] ResNet-18 64.2 63.9 64.9 60.3 67.7
CRW[34] [NeurIPS20] ResNet-18 68.7 67.4 69.1 65.1 73.2
CLTC[37] [CVPR21] ResNet-18 67.3 66.2 67.9 63.2 71.7
DUL[38] [NeurIPS21] ResNet-18 69.9 69.6 71.3 65.0 73.5
LIIR[31] [CVPR22] ResNet-18 69.3 67.9 69.7 65.7 73.8

ResNet-18 71.6 71.0 74.2 66.0 75.3OURS
ResNet-50 72.4 71.7 74.6 67.0 76.2

OSVOS[12] [CVPR17] VGG-16 58.8 59.8 60.5 54.2 60.7
STM[10] [ICCV19] ResNet-50 79.4 79.7 84.2 73.5 80.9

Table 3. Quantitative results (§4.1) on YouTube-VOS [52] val.

and YouTube-VOS val, respectively. We can find CRW
and LIIR, as classic, correspondence-based methods, suffer
from drifting errors during mask propagation; small predic-
tion errors on past frames are hard to be corrected in later
frames and further lead to worse results after processing
more frames. This is due to their matching-based propaga-
tion strategy. In contrast, our approach generates more rea-
sonable segments that better align object boundaries, and
performs robust to small outlier predictions, hence reduc-
ing error accumulation over time. These results verify the
efficacy of our model and support our insight that encoding
mask information is crucial for self-supervised VOS. Fur-
ther detailed quantitative analyses can be found in §4.2.

4.2. Diagnostic Experiments
To thoroughly examine our core hypotheses and model

designs, we conduct a series of ablative studies on DAVIS17

val.The reported baselines are built uponResNet-18 and
trained by the default setting, unless otherwise specified.
Training Objective. Our model is jointly trained for mask-
embedded segmentation LSeg (cf. Eq. 16) and correspon-
dence matching LCorr (= LShort +LLong). Table 4a analyzes
the influence of different training objectives. We can find
that, using LShort or LLong individually only yields J&Fm

scores of 57.4% and 67.2%, respectively. Their combi-
nation uplifts the performance to 68.8%, confirming their
complementarity. However, the baseline is still weaker in
comparison with current top-leading correspondence-based
methods, e.g., LIIR [31] with 72.1%. Moreover, when us-

Ref 33% 66% 100% Ref 33% 66% 100%

C
RW

LI
IR

O
ur
s

Figure 3. Visual comparison results (§4.1) on two videos from DAVIS17 [42]val (left) and Youtube-VOS [52] val (right), respectively.
CRW [34] and LIIR [31] suffer from error accumulation during mask tracking, due to the simple matching-based mask copy-paste strategy.
However, our approach performs robust over time and yields more accurate segmentation results, by learning to embed target masks.
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Loss J&Fm↑ Jm↑ Fm↑
LShort 57.4 55.8 58.9
LLong 67.2 64.9 69.5

LShort + LLong 68.8 66.7 70.9
LSeg 62.3 60.5 64.0

LSeg+LShort+LLong 74.5 71.6 77.4

(a) loss design

#Ref. Frame J&Fm↑ Jm↑ Fm↑
First 68.8 65.7 71.9

First + Last 1:15 73.2 70.4 76.0
First + Last 1:20 74.5 71.6 77.4
First + Last 1:25 73.5 70.9 76.1
First + Last 1:30 72.8 70.2 75.3

(b) number of reference frames

#Centroid J&Fm↑ Jm↑ Fm↑
M = 2 67.5 65.2 69.8
M = 3 71.6 69.0 74.2
M = 5 74.5 71.6 77.4
M = 8 72.5 69.6 75.4
M = 10 70.1 67.3 72.9

(c) number of cluster centers

Mask update J&Fm↑ Jm↑ Fm↑
No update 71.1 68.3 73.9

Per 20 epoch 72.8 69.9 75.7
Per 15 epoch 73.9 70.8 77.0
Per 10 epoch 74.5 71.6 77.4
Per 5 epoch 72.5 69.5 75.5
Every epoch 69.7 66.7 72.6

(d) pseudo mask update

Round J&Fm↑ Jm↑ Fm↑ FPS
0 69.7 67.3 72.1 1.86
1 72.6 69.8 75.4 1.84 (-1.1%)
2 73.9 71.1 76.7 1.80 (-3.2%)
3 74.5 71.6 77.4 1.77 (-4.8%)
4 74.3 71.2 77.3 1.73 (-7.0%)
5 74.0 71.0 77.0 1.69 (-9.2%)

(e) recurrent refinement

Strategy Loss J&Fm↑ Jm↑ Fm↑ FPS
photometric MAST [28] 65.5 63.3 67.6 1.13
reconstruction MAST [28]+LSeg 69.0 (+3.5) 66.4 71.6 1.01
cycle-consistency CRW [34] 67.6 64.6 70.6 1.86
tracking CRW [34]+LSeg 71.8 (+4.2) 68.3 75.3 1.77
contrastive LCorr (ours) 68.8 66.7 70.9 1.86
matching LCorr+LSeg 74.5 (+5.7) 71.6 77.4 1.77

(f) correspondence learning schema

Table 4. A set of ablative studies on DAVIS17 [42] val (§4.2). The adopted settings are marked in red.

ing LSeg solely, the model only achieves 62.3%. This is
because, without the regularization of the correspondence
learning term, k-means suffers from random initialization
of the representation and easily return trivial solutions, e.g.,
fragile or massive clusters. When considering all the train-
ing goals together, performance boosts can be clearly ob-
served, e.g., 74.5% in J&Fm. Under such a scheme, unsu-
pervised correspondence learning makes the features infor-
mative for meaningful clustering; then the produced high-
quality pseudo masks allow the model to learn to make a
better use of the object mask to guide segmentation.
Reference Frame. As usual [9, 10, 28], we leverage the first
frame and several previous segmented frames as well as
their corresponding masks, to support the segmentation of
the current frame. Table 4b reports the related experiments.
k-means Clustering. Next we probe the impact of the num-
ber of cluster centers, i.e.,M , in Table 4c. The best perform-
ance is obtained at M=5, roughly equal to the obvious ob-
jects number, i.e., 3∼ 4 on average in each training video.
Pseudo Mask Update. During training, our approach alter-
nates between clustering based pseudo mask generation and
mask guided segmentation learning. In Table 4d, we study
such training strategy. ‘No update’ means that, after the ini-
tial correspondence learning stage (first 300 training epochs;
see §3.3), we create pseudo masks and use them through-
out the whole joint correspondence and segmentation learn-
ing stage (last 100 epochs). This baseline achieves 71.1%
J&Fm. If we improve the frequency of pseudo mask up-
date from once to twice every 20 epochs, the score is im-
proved to 74.5%. But further more frequently re-estimating
the pseudo masks leads to inferior performance. We specu-
late that it is because, when learning with the noisy pseudo
masks, it needs more epochs to optimize the network pa-
rameters, while updating the pseudo masks too frequently
will easily suffer from the impact of sub-optimal features.
Recurrent Refinement. We feed our predicted masks to the
segmentation decoder D for iterative refinement. Table 4e

reports the related results. Round 0 means we follow Eq. 7
to leverage Vq for mask decoding. In Round 1, the model
follows Eq. 9 to warp and refine the coarse prediction Ȳq
and from Round 2 onwards, we replace Ȳq with the output
Ŷq from the prior round. As seen, after two rounds of re-
finement, J&Fm score is improved from 69.7% to 74.5%,
with only negligible delay in inference speed (i.e., -4.8%).
Versatility. As our self-supervised mask embedding learn-
ing (cf. §3.1) is a general framework, it is interesting to test
its efficacy with different correspondence learning regimes
(cf.§2). In Table 4f, we apply our mask embedding learning
method to MAST [28] (reconstruction based), CRW [34]
(cycle-consistency based), and our correspondence learning
strategy LCorr (cf. §3.2; contrastive matching based). Impre-
ssively, notable performance gains are achieved over differ-
ent baselines, e.g., 3.5% on MAST, 4.2% on CRW, and
5.7% on our LCorr, in terms of J&Fm. The last column of
Table 4f gives inference speed, showing the additional com-
putational budget brought by mask embedding is negligible.

5. Conclusions
Current solutions for self-supervised VOS are commonly

built upon unsupervised correspondence matching, detached
from the mask-guided, sequential segmentation nature of the
task. In contrast, we devised a new framework that investi-
gates both mask embedding and correspondence learning for
mask propagation, in an annotation-free manner. Through
space-time clustering, coherent video partitions are automa-
tically generated for teaching the model to directly learn
mask embedding and tracking. Meanwhile, self-supervised
correspondence learning is naturally incorporated as extra
regularization. In this way, our approach successfully bri-
dges the gap between fully- and self-supervised VOS mo-
dels in both performance and network architecture design.
Acknowledgements. This work was supported by Beijing Natural
ScienceFoundationunderGrantL191004 and the FundamentalRe-
search Funds for the Central Universities (No. 226-2022-00051).
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A. Pseudo Code
The inference mode of our method is summarized in Alg.1.

Note that the recurrent refinement procedure is included.

B. Analysis of Pseudo Mask Updating
During training, our method conducts online space-time

clustering to progressively refine pseudo masks with grad-
ually improved visual representations. Fig. S1-S4 provide
qualitative analysis of this strategy on YouTube-VOS [52]
train. Here, ‘Initial’ corresponds to the pseudo masks
created right after correspondence learning, while ‘Final’
refers to the masks that are obtained after nine online up-
dates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives
the pseudo masks derived from the clustering results. We
can see that 1) our correspondence learning can indeed pro-
vide meaningful features for reliable clustering, leading to
satisfactory initial pseudo labels, and 2) the pseudo masks
are continuously improved with online updating, e.g., back-

Algorithm 1 Pseudo-code for the inference mode of our
approach in a PyTorch-like style

# I_q: query frame
# I_r: reference frames
# Y_r: reference masks of I_r
# R: number of round for recurrent refinement
# N: number of reference frames

def visual encoder(I):
res4, res3, res2 = BACKBONE(I)
key = MLP(res4)
key = normalize(key)
return key, res4, res3, res2

def mask encoder(I, Y):
res4, _, _ = BACKBONE([I, Y])
value = MLP(res4)
return value

def inference(I_q, I_r, Y_r, R=2):
# NHW x D’
V_r = mask encoder(I_r, Y_r)
# NHW x D
K_r, _, _, _ = visual encoder(I_r)
# HW x D
K_q, res4, res3, res2 = visual encoder(I_q)

#===== compute the affinity (Eq.6) ======#
# NHW x HW
A = mm(K_r, K_q.transpose())
A = softmax(A)

#=== assemble support features (Eq.7) ===#
# HW x D’
V_q = mm(A.transpose(), V_r)

#==== compute the coarse mask (Eq.8) ====#
# HW x 1
Y_q = mm(A.transpose(), Y_r)

#======== recurrent refinement ==========#
for _ in range(R):
#===== predict segmentation (Eq.9) ======#
V_q_overline = mask encoder(I_q, Y_q)
V_q_new = cat([V_q, V_q_overline], dim=0)
Y_q = DECODER(V_q_new, res3, res2)

return Y_q

mm: matrix multiplication; normalize: `2 normalization;
cat: concatenation; softmax: row-wise softmax.

Method TimeCycle[32] CRW[34] CLTC[37] VFS[39] LIIR[31] Ours
mIoU 28.9 38.6 37.8 39.9 41.2 42.9

Table S1. Quantitative results on VIP[77] test.

Method Training time (Min/Epoch) J&Fm↑
MAST 26.8 65.5

MAST + LSeg 28.7 69.0
CRW 223.8 67.6

CRW + LSeg 239.9 71.8
LCorr + (ours) 5.1 68.8
LCorr + LSeg 5.5 74.5

Table S2. Analysis of training speed on DAVIS17 [42] val.

ground are suppressed and foreground are progressively
highlighted and more spatiotemporally consistent.

C. Analysis of Recurrent Refinement
In Fig. S5, we further analyze visual effects of recurrent

refinement over three representative sequences on DAVIS17

val. For Round 0, we directly leverage Vq (Eq. 7) for mask
decoding. For Round 1, the segmentation results (i.e., Ŷq)
are produced following Eq. 9. For Round 2, we replace Y q

in Eq. 9 by Ŷq (in Round 1) and subsequently conduct mask
decoding to yield refined masks. It can be observed that the
segmentation quality is progressively improved with itera-
tive refinement, consistent with the results in Table 5e.

D. Additional Application Task
We additionally test our model on the task of body part

propagation. Following [31, 32, 34, 35, 39], we conduct ex-
periment on VIP [77] benchmark dataset. It can be seen in
Table S1 that our method achieves the best performance.

E. Additional Qualitative Results
We provide more comparison results on DAVIS17 [42]

val in Fig. S6-S7 and YouTube-VOS [52] val in Fig. S8-
S9, respectively. We can find that our approach suffers less
from error accumulation over time, and yields consistently
better results against other competitors.

F. Training Time
The comparisons of training time are summarized in Ta-

ble S2. All experiments are conducted on one Tesla A100
GPU with ResNet-18 backbone. LSeg is involved in op-
timization after 300 training epochs. It can be seen that our
method brings only slight training speed delay (around 8%),
while offering remarkable performance improvement.

G. Limitation Discussion
Currently we directly leverage the k-means algorithm to

cluster pixels. The k-means clustering, though simple, is less
efficient compared with some more advanced ones, such as
[78, 79] which consider clustering from the perspective of
optimal transport. We leave this as a part of our future work.
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Figure S1. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [52] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S2. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [52] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S3. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [52] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S4. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [52] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S5. Qualitative analysis of recurrent refinement on DAVIS17 [42] val and YouTube-VOS [52] val. For Round 0, we directly
leverage Vq (Eq. 7) for mask decoding. For Round 1, the segmentation results (i.e., Ŷq) are produced following Eq. 9. For Round 2, we
replace Y q in Eq. 9 by Ŷq (in Round 1) and subsequently conduct mask decoding to yield refined masks.

14



M
A

ST
[2

8]
C

R
W

[3
4]

L
II

R
[3

1]
O

ur
s

M
A

ST
[2

8]
C

R
W

[3
4]

L
II

R
[3

1]
O

ur
s

Figure S6. Visual comparison results on DAVIS17 [42] val.
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Figure S7. Visual comparison results on DAVIS17 [42] val.
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Figure S8. Visual comparison results on YouTube-VOS [52] val.
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Figure S9. Visual comparison results on YouTube-VOS [52] val.
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