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ABSTRACT With the advent of digital intelligent education, educational resources are expanding. In the
realm of physical education, data encompassing students’ physical fitness test results, sports performance,
and health status stand as pivotal pillars for the assessment of teaching. Consequently, this manuscript
conceives a dynamic fuzzy neural network-based system for processing physical education information.
Primarily, this work introduces compensatory fuzzy neurons into the Dynamic Fuzzy Neural Network
(DFNN) and advances the creation of a Generalized Dynamic Fuzzy Neural Network (GDFNN). Further-
more, the GDFNN is seamlessly integrated with the Reinforcement Learning (RL) method to devise a neural
network inverse controller equipped with online learning capability, employing the temporal difference
learning method within RL. The empirical findings demonstrate that the enhanced generalized dynamic
fuzzy neural network attains impressive results, yielding 0.0025, 0.2668, and 0.9356 on the root mean
square error, standard root mean square error, and homogeneity coefficient, respectively. These outcomes are
juxtaposed with those of eight contemporary algorithms, including the RBFmethod, BP algorithm, and other
prevalent feedforward neural network algorithms. The root mean square error (RMSE), standard Root Mean
Square Error (RRMSE), and Equality Coefficient (EQU) performance metrics register an augmentation of
9%, 11.1%, and 6.7%, respectively. This enhancement signifies a substantial boost in predictive efficiency,
thereby effectively advancing the intelligent development of the information processing system for physical
education.

INDEX TERMS Dynamic fuzzy neural network, compensated fuzzy neurons, neural network, reinforcement
learning, information processing.

I. INTRODUCTION
In the face of physical education data, encompassing stu-
dents’ physical fitness test results, sports performance, and
health status, the effective and expeditious utilization of this
data for the assessment and processing of physical educa-
tion data has emerged as a formidable challenge for gov-
ernments and individuals worldwide. Traditional information
processing systems for sports instruction typically employ
predictive modeling algorithms to first analyze and scru-
tinize teaching data. Subsequently, these systems deploy
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trained predictive models to forecast changes in data over
future intervals, striving to achieve maximum alignment with
actual data [1]. The prediction of students’ physical fit-
ness and related information serves as a crucial foundation
for the development of rational and accurate individualized
sports training regimens for students and instructional plans
for teachers. Given the highly nonlinear, time-varying, and
inherently stochastic nature of statistical data in physical
education, these characteristics pose significant hurdles in
forecasting data trends. In the long term, data flows remain
unpredictable, while in the short term, predictability is attain-
able. Enhancing short-term data flow prediction accuracy and
laying the groundwork for precise future data forecasts at
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specific time points constitute pivotal focal points in this
research.

Neural networks [2] prove to be potent tools for data
prediction due to their profound nonlinear processing capa-
bilities, distributed processing proficiency, and robust learn-
ing and adaptability. Fuzzy logic [3] can amalgamate
human empirical knowledge into fuzzy rules, thus conferring
abstract attributes upon intricate research subjects. Conse-
quently, the integration of neural network techniques with
fuzzy logic theory embodies the fusion of nonlinear process-
ing capacity and fuzzy logic’s if-then rule framework.

Nevertheless, in existing Fuzzy Neural Networks (FNN),
the model parameters are universally subject to adaptive
adjustment and optimization [4]. Since fuzzy rules within the
fuzzy system emanate from the designer’s knowledge and
expertise, determining the number of fuzzy rules remains
challenging, making it arduous to identify an optimal set
of rules within the complex system’s input and output data.
Hence, the FNN approach encounters impediments in accu-
rately ascertaining the ideal number of fuzzy rules and the
most favorable fuzzy rules. To address these issues, schol-
ars have introduced the Dynamic Fuzzy Neural Network
(DFNN) [5]. The network structure of DFNN evolves organi-
cally through the gradual expansion of fuzzy rules during the
learning process. This characteristic imparts formidable non-
linear prediction capabilities and the ability to autonomously
determine the number of fuzzy rules. This sets DFNN in stark
contrast with conventional FNN, not only in terms of network
structure but also in its aptitude for parameter learning.

Nonetheless, it’s imperative to acknowledge that train-
ing the DFNN model necessitates the optimization of both
the neural network and fuzzy rules, thereby rendering the
training process more intricate and demanding in terms of
computational resources and time [6]. Furthermore, owing
to the black-box nature of the learning process in DFNN,
it results in limited comprehensibility of the fuzzy rules
generated by DFNN. Moreover, manual adjustments and
optimization of factors such as affiliation functions [7] and
weights in DFNN’s fuzzy rules expose the system to poten-
tial redundancy and overlap in rule generation and deletion
frequency.

Consequently, in this study, the approach employs the
Generalized Dynamic Fuzzy Neural Network (GDFNN) and
Reinforcement Learning (RL) to construct a physical educa-
tion data evaluation system. The primary contributions of this
work are outlined as follows:

• Enhancement of DFNN: The second layer’s structure
in DFNN has been refined by assigning an affiliation
function to each neuron within the second affiliation
function layer. Consequently, each input variable in the
second layer boasts multiple affiliation functions to real-
ize performance enhancement.

• Introduction of Compensating Fuzzy Neurons and RL:
Positive and negative fuzzy neurons are ingeniously
combined to create compensating fuzzy neurons, and RL
is integrated to enhance the model’s robustness.

• Performance Enhancement: The improved GDFNN
achieves remarkable results with RMSE, RRMSE, and
CU registering values of 0.0025, 0.2668, and 0.9356,
marking a substantial advancement when compared to
prevailing mainstream methodologies.

This paper encompasses an examination of prior research
on DFNN and RL in Section II. Section III delineates the
construction of the GDFNN in this study, coupled with RL
learning, to facilitate the evaluation of instructional infor-
mation. Section IV is dedicated to presenting experimental
results and a discourse on the scheme’s performance. Finally,
Section V offers a concluding summary.

II. RELATED WORKS
A. DFNN
Over the past two decades, theoretical and applied research
in fuzzy logic has furnished a mathematical framework for
emulating the cognitive reasoning process, thereby finding
widespread application in diverse domains such as model-
ing and control. Numerous studies have demonstrated that
the supervised learning functionality of neural networks can
assist conventional fuzzy inference systems in establishing
an objective method for formulating fuzzy rules and adapting
fuzzy inference to potential changes.

Consequently, researchers have proposed a multitude of
fuzzy neural networks, each characterized by distinct struc-
tures and training methodologies, including but not limited
to neural network-based fuzzy logic control systems [8],
intelligent control paradigms rooted in approximate rea-
soning [9], adaptive neural network-based fuzzy inference
systems [10], fuzzy rule-based neural networks [11], fuzzy
neural networks [4], and fuzzy adaptive learning control
networks [12]. All of these fuzzy neural networks are typi-
cally trained using gradient descent feedback learning, which,
however, tends to engender local optima and results in
sluggish training speeds. Consequently, to identify a more
rational approach for designing fuzzy inference systems,
research endeavors have progressively turned to the study of
DFNN.

DFNN stands out for its distinctive feature of gradually
shaping the network structure through continuous adjust-
ments during training, eliminating the need for prior man-
ual configuration. Within the realm of DFNN research, the
literature [13] introduced a network structure and training
method for DFNN based on radial basis functions. It intro-
duced novel concepts such as ‘‘hierarchical learning,’’ ‘‘self-
organized structure,’’ and ‘‘pruning techniques,’’ all of which
diverge from the traditional BP learning algorithm. These
concepts have set DFNN apart from the conventional BP
learning algorithm. In another study [14], an enhancedDFNN
and its learning algorithm were proposed, inheriting the
strengths of the DFNN algorithm while incorporating the use
of self-organizing mapping for neuron tuning, particularly
well-suited for real-time applications due to its noise elimi-
nation capabilities. Literature [15] introduced a DFNNwhere
the fuzzy rules adapt to input data changes. Furthermore,
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literature [16] applied DFNN to traffic flow prediction,
employing a chaotic phase space reconstruction method to
determine network inputs and outputs, thereby advancing
theoretical exploration and experimental analysis in traffic
flow prediction.

To enhance DFNN performance, literature [17] replaced
the RBF function in DFNN with an elliptic basis function,
expanding the network’s dimensionality to enable adaptive
adjustment of each rule’s width. This led to the development
of the GDFNN learning algorithm. In another instance [18],
a fuzzy neural network was integrated with RL to trans-
form the discrete output of Q-learning into continuous out-
put, with the network dynamically adapting its parameters
based on reward values, thereby accelerating network train-
ing. Literature [19] leveraged GDFNN in optimizing the
lane-changing strategy for autonomous driving, introducing a
self-learning optimization method within GDFNN to predict
lane-changing frequency.

Furthermore, in a different domain, literature [20] com-
bined fuzzy reasoning techniques with robust logical rea-
soning and neural networks to propose a short-term inbound
passenger flow prediction method based on GDFNN. These
noteworthy applications of GDFNN across diverse fields
have garnered extensive attention within the academic com-
munity.

B. RL
RL [21] has remained a focal point of research ever since
the inception of the artificial intelligence concept. RL consti-
tutes a computational paradigm in which intelligent entities
strive to maximize cumulative rewards while interacting with
intricate environments. In the realm of RL, literature [22]
advances the Monte Carlo method by introducing a time-
difference algorithm. This innovative approach, as opposed
to waiting until the conclusion of a full round to assess all
traversed states, estimates them incrementally at each step.
Building upon the time-difference algorithm, literature [23]
introduces the classical Q-learning algorithm. This algorithm
appraises the environmental states and the actions taken by
the intelligent agent at every step of each round, assigning
rewards and thereby completing the training of the intelligent
agent’s decision-making process.

Furthermore, literature [24] conducts analysis and compar-
ison of RL and evolutionary strategies, assessing their merits
and demerits in terms of scalability, exploratory capabili-
ties, adaptability to dynamic environments, and multiagent
learning. In a complementary effort, literature [25] intro-
duces contemporary techniques for amalgamating evolution-
ary computation into RL. It categorizes and scrutinizes these
integration methods in the context of hyper-parameter opti-
mization, strategy exploration, meta-reinforcement learning,
and multi-objective reinforcement learning. Moreover, in the
literature [26], the utilization of Gaussian processes is pro-
posed to model the payoff function with parameters, leading
to the development of a reinforcement learning algorithm.
This approach assumes that the payoff function adheres to the

conditions of regularity, Lipschitz continuity, and bounded
behavior.

Conversely, in literature [27], the reachability of Markov
decision processes is harnessed to introduce the SafeMDP
safe explorationmethod atop SafeOpt. Thismethod addresses
deterministic finite Markov decision process problems. It’s
worth noting that in both SafeOpt and SafeMDP, the payoff
function is presumed to be known in advance and time-
invariant. In practical scenarios, however, the payoff function
is typically not known in advance and tends to change over
time. In light of this, literature [28] incorporates temporal
and spatial information into the kernel function by employing
spatio-temporal Gaussian processes to model the return func-
tion with parameters. Literature [29] adopts a system trans-
formation using a barrier function, enforces state constraints,
and reformulates the original problem as an unconstrained
optimization challenge. This results in the proposition of a
secure reinforcement learning algorithm based on an actor-
critic architecture. The approach leverages empirical play-
back techniques to seek an optimal secure controller in an
online manner, ensuring both optimality and stability. In con-
trast, literature [30] integrates a microscopically robust con-
trol barrier function into a model-based reinforcement learn-
ing framework.

Despite the effectiveness of RL in converging towards
optimal policies, it grapples with the issue of dimensionality
catastrophe as data dimensions increase.Moreover, it encoun-
ters challenges related to stability, robustness, and local opti-
mization in real-world scenarios characterized by complex
operational tasks. These challenges arise from the difficulty
of obtaining training data online and the presence of continu-
ity between behaviors.

III. METHODS
The sports teaching information processing system pre-
sented in this study primarily relies on DFNN to facili-
tate system-wide information processing. It achieves this by
enhancing GDFNN and incorporating compensated fuzzy
neurons into DFNN, thereby enhancing the system’s data
processing efficiency, as shown in Figure 1. Furthermore,
the process of physical education information processing
entails establishing dynamic fuzzy rules, promoting more
user-friendly data sequence predictions. RL is harnessed to
appraise the value function of states and actions, assessing
the quality of the choices made by the intelligent agent in its
current state. This information is then used to formulate an
inverse controller for the coordination system endowed with
online evaluation and correction capabilities. This approach
results in a sports teaching information processing system
characterized by high efficiency and stability.

A. GDFNN
In this paper, GDFNN is improved on the DFNN, and its
structure is shown in Figure 2:

In this neural network, the initial layer serves as the input
layer, with each neuron in this layer directly linked to each
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FIGURE 1. Flow chart of the proposed model.

FIGURE 2. The structure of GDFNN.

component of the input vector. The subsequent layer func-
tions as the affiliation function layer, where each neuron
corresponds to an affiliation function. Notably, each input
variable in the second layer encompasses multiple affiliation
functions:

λij(xi) = e−(xi−cij)2/σ 2ij (1)

In Equation (1), i = 1, . . . , r, j = 1, .., u, where r is the
number of input variables and u represents the total number
of rules. λi,j, ci,j are the center of the j-th affiliation function
and the width of the j th affiliation function of xi, respectively.

Each neuron in the third layer represents the IF-part of a
possible rule, where the output of the j-th rule Rj is:

ϕj = e
−

r∑
i=1

(xi−cij)2

σ 2ij (2)

According to the definition of the Mahalanobis distance,
Equation (3) can be obtained:

md(j) =

√
(X − Ci)T

∑−1

j
(X − Cj) (3)

where X = (xj, . . . , xr )T ,Cj = (c1j, c2j, . . . , crj), and

∑−1

j
=



1
σ 21j

0 · · · 0

0 1
σ 22j

0 0

0 0
. . . 0

0 · · · 0 1
σ 2rj

 (4)

Combining Equations (2) and (3), Formula (5) can be
obtained as follows.

ϕj = e−md
2(j) (5)

The fourth layer is normalizing the output of the third layer
and the output of the j-th neuron Nj is:

ψj =
ϕj
u∑

k=1
ϕk

, j = 1, 2, 3, . . . , u (6)

The fifth layer is the output layer and the output of each
neuron is:

y(X ) =

u∑
k=1

ωk · ψk (7)

where y is the output of the variable and ωk is the result
parameter or the concatenation right of the kth rule, i.e..

ωk = ak0 + ak1x1 + . . .+ akrxr (8)

Based on the above equation, we can get the expression
between the output y about the input X:

y(X ) =

u∑
i=1

[(ak0 + ak1x1 + . . .+ akrxr ) · e−||X−Ci||2/σ 2i ]

u∑
i=1

e−||X−Ci||2/σ 2i

(9)

For the output y, traditional fuzzy neurons use an
extreme decision for the input. Positive fuzzy neurons or
negative fuzzy neurons are generally used, as shown in
Figure 3. (a) is a positive fuzzy neuron that maps the
input xi (i = 1, 2, . . . , n) to the best output y, i.e., y =

O(x1, . . . , xn) = max(x1, . . . , xn), which in turn formulates
an optimistic decision for the best case scenario. (b) is a
message neuron that maps the input xi (i = 1, 2, . . . , n) to the
worst output y, i.e., y = P(x1, . . . , xn) = min(x1, . . . , xn),
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FIGURE 3. Input and output of fuzzy neurons.

which in turn formulates a conservative decision for the worst
case scenario.

Both of the above scenarios should result in biased final
outputs for the best and worst decisions in practical appli-
cations. For this reason, we improve the decision-making by
combining positive fuzzy neurons and negative fuzzy neurons
to form a compensated fuzzy neuron that maps the best and
worst inputs to the compensated output y and develops a rel-
ative compromise decision for the best and worst input cases
as shown in the (c) in Figure 2, at which point C(x1, x2) =

x1−ν1 xν2 , and ν is the degree of compensation, 0 < ν < 1.

FIGURE 4. GDFNN structure of dynamic compensation fuzzy neural
network.

Upon the introduction of compensatory fuzzy neurons, the
structure of the GDFNN, with dynamic compensatory fuzzy
neural networks, is depicted in Figure 4. It is evident from
the diagram that the five-layer structure of the dynamic com-
pensatory fuzzy neural network in GDFNN closely resembles
the GDFNN model. The notable alteration occurs in the
fourth layer, where compensatory fuzzy neural elements are
introduced. In this transformation, the normalization layer is
replaced by a compensatory operational layer. This modifica-
tion enhances the system’s fault tolerance and contributes to
its overall stability.

B. FUZZY RULES
Define the systematic error based on the data observed in the
system, and let tk be the desired output with respect to the
input when the systematic error is:

||ek || = ||tk − yk || (10)

When ||ek || ≥ ke, we add a new fuzzy rule, where ke is con-
stantly changing in the continuous learning in the dynamic
neural network with the change criterion:

ke =


emax, 1 < k < n/3
max[emax · βk , emin], n/3 ≤ k ≤ 2n/3
emin, 2n/3 < k < n

(11)

In Equation (11), emin is the minimum error, emax is the
maximum error, k represents the number of samples that

have been learned, and β =

(
emin
emax

)3/n
, 0 < β < 1 is the

attenuation coefficient.
According to the first fuzzy rule established, a new affili-

ation function is next assigned to the elements of the input
sample of the GDFNN based on the Euclidean distance.
Also, for a new sample Xk , the Gaussian width is con-
stantly corrected. The closest rule to the sample is found by
calculating the Marginal distance between the sample and
the center of the affiliation function of all rules. If both
||ek || > k and mdk,min ≤ kd are satisfied, then yXk can
be decomposed into the corresponding one-dimensional vari-
able xi (i = 1, 2, . . . , r). The width of the closest affiliation
function to this variable σij can be corrected according to
Equation (12):

σij,new = α · σij,old (12)

where

α =

{
1/[1 + kw(Bij − 1/r)2], Bij < 1/r
1, Bij ≥ 1/r,

kw

is the width decay rate. Equation (12) shows that if the
significance of the i-th input variable falls below the average
importance of all input variables in the j-th rule, it is advisable
to decrease the width of the affiliation function corresponding
to that variable within the j-th rule.

In the case of GDFNN, researchers and scholars primar-
ily employ the least squares method to determine its resul-
tant parameters. While the least squares method is globally
optimal, its accuracy diminishes as the sample size grows.
Hence, this paper introduces Linear Least Squares (LLS) with
recursive regression least squares to segment the resultant
parameters. This enhancement renders GDFNNmore flexible
and adaptive in comparison to DFNN. Despite the increased
complexity of the trainingmethod, GDFNN entails fewer pre-
set training parameters. Furthermore, the fuzzy rules derived
from this algorithm exhibit improved comprehensibility.
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C. RL-GDFNN
To assess the physical education information processing sys-
tem constructed on the foundation of DFNN, this section
introduces Reinforcement Learning (RL) into the system.
It combines RL’s state value evaluation with the proposed
formulation of student learning plans in the physical educa-
tion information processing system under the precision of the
GDFNN model. This approach allows for the assessment of
the quality of choices made by the intelligent agent in the
current state by estimating the value function of both the state
and the action. Moreover, it designs an inverse controller for
the coordination system equipped with online evaluation and
correction capabilities.

Upon analysis, it becomes evident that for a system that
remains incompletely understood, such as the physical edu-
cation teaching information processing system that we have
developed, the system should leverage past experiences to
forecast future behavior. This involves predicting aspects like
students’ training plans in the future and teachers’ instruc-
tional plans based on student fitness data. Learning to predict
stands out as the most fundamental and widely applicable RL
algorithm for this purpose. The key advantage of learning to
predict lies in its unsupervised nature, as it relies on training
samples derived from a real-time sequence of data rather than
pre-existing teacher signals.

Given the non-deterministic nature of the time-sequenced
information stored and recorded in physical education, the
use of temporal difference learning, serving as an incremental
online learning algorithm, becomes pertinent. This approach
entails estimating the value of the state before execution
based on the value of the new state at the end of each time
step as the system progresses through a sequence. This is
accomplished without waiting for the final output to be gener-
ated and then adjusting the values of all states simultaneously.
Therefore, at the moment t+1, it is possible to immediately
form a goal and generate the appropriate update values using
the observed rt+1 and estimated V (st+1). The computation
process is as follows:

V (st ) = V (st ) + α[rt+1 + γV (st+1) − V (st )] (13)

Further, we can obtain the time-differentiated signal TD(t)
based on introducing this formula into GDFNN:

TD(t) = rt+1 + γV (xt+1) − V (xt ) (14)

where V (xt ) is the state value of GDFNN at time t and r
is the reinforcement signal. An estimation of the state value
can be made based on the time-differential deviation, and the
performance of the GDFNN can be evaluated as:

En =

t=k+T∑
t=k

TD(t)

T
(15)

IV. EXPERIMENTS AND ANALYSIS
In this section, we will conduct a simulation experiment
focusing on the Mackey-Glass chaotic time series. We will

employ the DFNN method within the fuzzy neural net-
work [5], the RBF method in the feedforward neural net-
work [31], and the BP algorithm [32], along with its five
enhanced variants. We aim to compare and analyze the exper-
imental outcomes of each method.

Subsequently, we perform an ablation experiment on the
proposed model to assess the impact of compensated fuzzy
neurons and RL on the model. This will enable us to explore
the effectiveness of the GDFNN method, which introduces
compensated fuzzy neurons and reinforcement learning in the
context of information processing within physical education
for time series data prediction.

A. EXPERIMENTAL INDICATORS
In the evaluation of the modeling system, our primary focus is
on assessing the predictive performance of GDFNN. A high
predictive performance indicates its suitability for applica-
tion in a physical education information processing system,
enabling the alignment of teaching and training plans with the
data collected from students. Given the diversity of predic-
tive evaluation metrics available and their broad applicability
across various domains, this paper employs the following
predictive evaluation measures: RMSE, NRMSE, and EQU.
RMSE represents the average deviation of actual values from
predicted values. NRMSE quantifies the correlation between
the average deviation of actual values and predicted values.
EQU gauges the proximity of the actual data curve to the
predicted curve.

RMSE is calculated as:

Ermse =

√
1

S−1

∑s
t=1 [y

′(t) − y(t)]2 (16)

NRMSE is calculated as:

Enrmse =

√
1

(S−1)σ 2
∑s

t=1 [y
′(t) − y(t)]2 (17)

where σ is the standardized variance. From the perspective
of the definition domain, it can be seen that Enrmse it is
greater than or equal to zero. When Enrmse is closer to 0,
it indicates that the prediction effect is better. On the contrary,
the prediction effect becomes worse gradually.

NRMSE is calculated as:

Eequ = 1 −

√∑s
t=1 [y′(t) − y(t)]2√∑s

t=1 y
2(t) +

√∑s
t=1 y

′2(t)
(18)

In Equation (18), 0 < Eequ ≤ 1. If the closer the actual data
curve is to the predicted result curve, the closer Eequ is to 1,
indicating that the prediction effect is better. On the contrary,
the prediction effect is not good.

B. PARAMETER SETTING
In this paper, the Gaussian function is employed in the second
affiliation function layer of the GDFNN network structure.
The specific values for σ (sigma) and µ (mu) for the Gaus-
sian function are determined through experimental proce-
dures. As the fuzzy rules of GDFNN evolve in response to
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incoming data, the structure of GDFNN is not pre-defined
in the absence of data. It adapts and forms as data becomes
available.When the first observation data (x1, t1) is input, this
observation data is regarded as the first fuzzy rule of GDFNN,
which is c1 = x1, σ1 = σ0 = 0.98.
From the premise parameter allocation principle of fuzzy

rule generation criterion ci = xi, σi = k × dmin is obtained,
where k is the overlap factor and dmin is the minimum length
of the input space. In the comparison and ablation experi-
ments k = 1.2 and dmin = 0.25. In the premise parameter
adjustment strategy, when new data comes, there is no need
to add new fuzzy rules, but only need to adjust the center as
well as the width of the Gaussian function in the affiliation
function layer. For ||ei|| > ke, dmin ≤ σ i−1

k , the Gaussian
function unit needs to be adjusted, and the adjustment method
is σ ik = 1.1 × σ i−1

k .
The setting of each initial parameter in the GDFNN and

comparison experiments is that dmin = 0.2, γ = 0.977, β =

0.9, emax = 1.1, emin = 0.02, k = 1.2, η = 6. In the
experiments, 1000 samples between 118 ≤ t ≤ 1117 are
selected as the prediction experimental data. Among them,
the first 500 points are used for training and the last 500 points
are used for testing.

FIGURE 5. Comparison of RMSE among different models.

C. MODEL COMPARSION
For assessing the model’s performance, five improvement
algorithms for the BP algorithm are considered: the addi-
tional momentum improvement algorithm [31] (abbrevi-
ated as AM), the adaptive tuning parameter improve-
ment algorithm [33] (abbreviated as AD), the elastic
BP algorithm [34], the conjugate gradient improvement
algorithm [35] (abbreviated as CG), and the LM improvement
algorithm [36]. In this paper, eight methods are employed as
comparison approaches for prediction experiments to evalu-
ate the effectiveness of GDFNN methods in prediction.

The results, as depicted in Figure 5, demonstrate that the
mean square error for the BP algorithm within the feedfor-
ward neural network method is 0.0987. In contrast, the mean
square error scores for the improved algorithms incorporating

additional momentum, adaptively adjusted parameters, the
elastic BP algorithm, conjugate gradient, and LM are 0.0981,
0.0975, 0.0966, 0.0952, and 0.0398, respectively. The opti-
mized BP neural network with these improved algorithms
exhibits higher prediction accuracy compared to the tradi-
tional BP neural network.

Moreover, the prediction effectiveness of the RBF method
and the GDFNN method is relatively superior. The mean
square error for the RBF method is 0.0195, while for the
GDFNNmethod proposed in this paper, it is 0.0025. Notably,
GDFNN significantly outperforms RBF. Although GDFNN’s
generalization performance may be slightly less favorable
than that of the RBF method in practical applications, this
does not substantially affect GDFNN’s overall prediction
capability.

FIGURE 6. Comparison of uniformity among different models.

Then, we compare the uniformity and NRMSE of the
various algorithms. As indicated in Figure 6, among the feed-
forward neural networks, the LM algorithm exhibits the most
favorable prediction performance. However, once again, the
dynamic fuzzy neural network method surpasses the feedfor-
ward neural network method in terms of prediction quality.

Upon comprehensive analysis, it can be deduced that both
the GDFNN method and the DFNN method deliver com-
mendable prediction performance, achieving equality coeffi-
cients of 0.9356 and 0.9366, respectively. While the DFNN’s
prediction performance may be slightly less effective than
that of the GDFNN in practical applications, this difference
is not significant enough to substantially impact overall pre-
diction capability.

However, in the context of a system like the sports
teaching information processing system, which handles
time-sequenced data characterized by uncertainty, the more
uncertain the data, the better the compensatory role of the
GDFNN algorithm’s fuzzy neurons. This leads to the perfor-
mance of DFNN being gradually overshadowed by that of
GDFNN.

To further validate the comparative performance of the
algorithms, as shown in Figure 7, it’s evident that the numer-
ical changes in the regularized root mean square error of
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FIGURE 7. Comparison of NRMSE among different models.

the algorithms closely mirror the variations in their equality
coefficients. Once again, both the GDFNN method and the
DFNN method exhibit superior performance, with their reg-
ularized root mean square errors reaching 0.2668 and 0.2673,
respectively. In contrast, the RBFmethod registers the highest
regularized root mean square error, reaching 0.2877.

This demonstrates that while GDFNN may have weaker
generalization abilities, its superior regularized root mean
square error enables it to be effectively utilized in the physical
education information processing system.

FIGURE 8. Predictive results of GDFNN.

D. ABLATION EXPERIMENTS
The prediction results for the Mackey-Glass chaotic time
series are presented in Figure 8, with the horizontal axis
representing the sampling data and the vertical axis denoting
the real values (RV) and predicted values (PV) of the time
series. As depicted in Fig. 6, the RV and PV of the time series
align nearly perfectly at various sampling points, with errors
not exceeding 0.03. Furthermore, when the sampling points
fall within the range of 150 to 400, the error remains below
0.01.

These findings illustrate that the predicted values pro-
duced by the proposed GDFNN closely match the desired

output values, demonstrating exceptional generalization per-
formance.

FIGURE 9. The uniformity of GDFNN (with no compensates fuzzy neurons
and RL).

To assess the performance enhancement achieved by the
GDFNN algorithm, ablation experiments were conducted
based on the previous experiments. These experiments com-
pared GDFNN without the addition of compensating fuzzy
neurons and reinforcement learning, GDFNNwith only com-
pensating neurons, and GDFNN with only reinforcement
learning. The graph depicting the equality coefficient of
GDFNN without compensating fuzzy neurons and reinforce-
ment learning is displayed in Figure 9. The equality coef-
ficient initially increases, then decreases as the number of
sampling points rises and ultimately stabilizes. At this point,
the equality coefficient reaches a maximum of 0.9251, and
after stabilization, it rests at 0.9189, which is evidently sub-
optimal.

Subsequently, the GDFNN was modified by introducing
compensating fuzzy neurons and RL. The results obtained
are presented in Figure 10. In Figure 10, (a) illustrates the
performance after adding compensating neurons, while (b)
demonstrates the outcome after introducing only reinforce-
ment learning. It is clear that the incorporation of compen-
sating fuzzy neurons or reinforcement learning significantly
enhances the performance of GDFNN, with the equality coef-
ficient essentially maintaining a value of 0.9339.

FIGURE 10. Add the equality coefficient of GDFNN that compensates
fuzzy neurons or reinforcement learning.

E. DISCUSSION
Based on the experimental results, the Generalized Dynamic
Fuzzy Neural Network designed in this paper combines the
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strengths of fuzzy logic and neural networks. Our scheme
achieves remarkable performance metrics, with RMSE,
RRMSE, and EQU reaching 0.0025, 0.2668, and 0.9356,
respectively. When compared to eight algorithms, such as the
RBF method and BP algorithm commonly used in contem-
porary feedforward neural networks, our scheme outperforms
them with improvements of 9%, 11.1%, and 6.7% in terms of
RRMSE and EQU performance metrics, respectively.

Additionally, the results from simulation experiments on
the Mackey-Glass chaotic time series underscore the superi-
ority of this algorithm. The Real Values (RV) and Predicted
Values (PV) of the time series at each sampling point closely
align, with an error of no more than 0.03. Given that data
related to students’ physical fitness and other factors often
exhibit characteristics of chaotic time series, the GDFNN
model’s affiliation function and fuzzy rules effectively pro-
cess the input information in the physical education informa-
tion processing system. This leads to accurate output results,
facilitating the efficient analysis and processing of physical
education information. This, in turn, assists teachers in gain-
ing a better understanding of students’ physical education
skills and areas needing improvement.

Furthermore, the GDFNN model constructed in this paper
offers the advantages of online learning and hierarchi-
cal learning. The model can continuously adapt and opti-
mize according to new data, making it well-suited for the
dynamic nature of sports teaching information. To sum up,
the DFNN-based physical education information processing
system effectively enhances teaching quality and students’
learning efficiency. Through this intelligent system, teachers
can gain a more accurate understanding of each student’s
learning status and predict their future progress. This enables
the customization of teaching plans and strategies, offering
valuable insights for ongoing instruction. The system holds
great significance and practical value in improving the quality
of physical education teaching.

V. CONCLUSION
The GDFNN designed in this paper harnesses the advantages
of both fuzzy logic and neural networks. The performance
metrics of RMSE, NRMSE, and EQU in our scheme reach
impressive values of 0.0025, 0.2668, and 0.9356, respec-
tively. In comparison to eight well-known feedforward neu-
ral network algorithms, including the RBF method and BP
algorithm, our scheme exhibits an improvement in RMSE,
RRMSE, and EQU by 9%, 11.1%, and 6.7%, respectively.

Furthermore, the simulation results for the Mackey-Glass
chaotic time series highlight the superior performance of the
proposed algorithm. At each sampling point, the RV and
PV of the time series align perfectly with an error of less
than 0.03. Since data such as students’ physical fitness often
exhibit characteristics of chaotic time series, the GDFNN
model effectively processes input information using mem-
bership functions and fuzzy rules within the physical educa-
tion information processing system. This results in accurate
output data and efficient processing and analysis of physical

education information, aiding teachers in gaining a better
understanding of students’ physical skill levels and areas
requiring improvement. Additionally, the GDFNN model
developed in this paper possesses features of online learning
and hierarchical learning, enabling continuous adjustment
and optimization of the model with new data to adapt to
evolving physical education information.

In conclusion, the physical education information process-
ing system based on DFNN effectively enhances teaching
quality and students’ learning efficiency. Through this intelli-
gent system, teachers can gain a more accurate understanding
of each student’s learning status, predict their future progress,
and customize teaching plans and strategies accordingly. This
system provides a valuable reference for ongoing teach-
ing, holding significant importance and application value in
improving and enhancing the quality of physical education.
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