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Abstract

Reconstructing 3D clothed avatars from single images is a challenging task, es-
pecially when encountering complex poses and loose clothing. Current methods
exhibit limitations in performance, largely attributable to their dependence on
insufficient 2D image features and inconsistent query methods. Owing to this, we
present Global-correlated 3D-decoupling Transformer for clothed Avatar recon-
struction (GTA), a novel transformer-based architecture that reconstructs clothed
human avatars from monocular images. Our approach leverages transformer archi-
tectures by utilizing a Vision Transformer model as an encoder for capturing global-
correlated image features. Subsequently, our innovative 3D-decoupling decoder
employs cross-attention to decouple tri-plane features, using learnable embeddings
as queries for cross-plane generation. To effectively enhance feature fusion with
the tri-plane 3D feature and human body prior, we propose a hybrid prior fusion
strategy combining spatial and prior-enhanced queries, leveraging the benefits of
spatial localization and human body prior knowledge. Comprehensive experiments
on CAPE and THuman2.0 datasets illustrate that our method outperforms state-of-
the-art approaches in both geometry and texture reconstruction, exhibiting high
robustness to challenging poses and loose clothing, and producing higher-resolution
textures. Codes are available at https://github.com/River-Zhang/GTA.

1 Introduction

As virtual worlds and metaverse technology gain popularity, the demand for advanced techniques to
reconstruct 3D clothed human avatars from single images is rapidly increasing. These techniques [,

,3,4,5,6,7,8,9] are employed across various areas, such as AR/VR, social telepresence, virtual
try-on, or the movie industry. However, in-the-wild images often present challenges, such as loose
clothing and complex poses, which are not typically found in training data. As a result, there is a
pressing need for models that can effectively generalize to these scenarios and reconstruct accurate,
animatable, and high-resolution 3D human avatars.

In light of the significant progress made in 3D clothed human avatar reconstruction, existing models
still face two main limitations: (i) Overreliance on 2D image features. Sole dependence on 2D
CNN-based features compromises the accuracy of 3D object reconstructions due to the lack of
global correlation. Despite the integration of 3D features from human body priors in methods
like [3, 2, 7, 10], their inconsistent performance with loose clothing and challenging poses (See
Fig. 2) indicates insufficient integration. Additionally, optimization-based methods [4, |1, 12,

can be complex and prone to errors, reducing reliability. (ii) Inconsistent query methods. Current
strategies for querying features differ and have drawbacks. The pixel-aligned method [ !, 6] directly

t: the corresponding author.
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Figure 1: Given a monocular image as input, GTA reconstructs the full 3D geometry and texture of
the subject portrayed, allowing for various applications such as virtual try-on and animation.

projects query points on feature maps but lacks guidance from human body prior, while the prior-
guided strategy [7] integrates features on a human body prior but may lead to loss of detailed
information on the image and result in 3D avatar reconstructions with an increased level of fuzziness.

Considering the limitations discussed above, we propose that 2D feature maps are insufficient for
3D reconstruction tasks, while global-correlated 3D feature representations offer a more effective
solution. Traditional 3D representations are space-intensive and inefficient, necessitating alternatives
such as the memory-conserving tri-plane representation [ 14]. However, generating global-correlated
3D representations from monocular images remains challenging due to difficulties in obtaining
orthogonal plane feature maps. Our approach employs learnable embeddings and cross-attention
mechanisms to effectively model intricate cross-plane relationships, enabling robust and precise
3D feature extraction. Furthermore, it is important to develop a strategy that synergizes various
query methods while maintaining simplicity and efficiency. By combining existing strategies for
3D features, our method leverages localized spatial features and prior knowledge of human body
structure, resulting in a balanced feature extraction process that improves reconstruction performance.

In response to the identified challenges, we present GTA (Global-correlated 3D-decoupling
Transformer for clothed Avatar reconstruction), employing a novel global-correlated 3D-decoupling
transformer and a hybrid prior fusion strategy for comprehensive 3D geometry and texture recon-
struction. Our vision transformer-based encoder extracts global-correlated features from the input
image, while our unique 3D-decoupling decoder disentangles tri-plane 3D features using learnable
embeddings as queries. This integration of global-correlated encoding and 3D-decoupling decoding
effectively captures the 3D avatar structure from a single image. To further enhance feature fusion,
our hybrid prior fusion strategy combines spatial and prior-enhanced queries, leveraging the benefits
of spatial localization and human body prior knowledge. This efficient and accurate integration
strategy achieves state-of-the-art performance in single-view human avatar reconstruction.

Our proposed model, trained on THuman2.0 [15], outperforms state-of-the-art(SOTA) methods in
geometry and texture reconstruction. We achieve a significant reduction in Chamfer distance on
CAPE-FP [ 16] test dataset, below 0.8cm for the first time, and demonstrate superior side-view normal
performance, illustrating our method’s efficacy in reconstructing accurate 3D clothed human avatars.
Our model excels in handling complex poses and loose clothing, and attains state-of-the-art texture
reconstruction with higher PSNR scores. Moreover, it can be extended to animation and virtual try-on
applications, showcasing its wide-ranging real-world potential. Our main contributions include:

* We introduce a novel global-correlated 3D-decoupling transformer that effectively disentan-
gles tri-plane features, thereby substantially enhancing the reconstruction of clothed avatars
from 2D images. To the best of our knowledge, our approach is the pioneering application
of transformers in 3D feature decoupling for monocular human avatar reconstruction tasks.

* We put forward an innovative hybrid prior fusion strategy for feature query, combining
spatial query’s localization capabilities with prior-enhanced query’s ability to incorporate
knowledge of the human body prior, ultimately leading to improved geometry and texture
reconstruction performance.

* Our proposed model achieves state-of-the-art performance in both clothed human geometry
and texture reconstruction, outperforming previous models and exhibiting enhanced side-
view normal performance.



Figure 2: GTA vs. SOTA. SOTA methods (red) are vulnerable to challenging poses and loose
clothing, leading to artifacts such as non-human shapes (PIFu [1], PaMIR [3]), incomplete clothing
reconstruction (ICON [2]), and erroneous stitching (ECON [4]). GTA deals with these challenges
and produces high-quality results (blue).

2 Related Work

Monocular Human Reconstruction has been an active area of research for many years. This task
is inherently ill-posed due to the lack of 3D information, requiring additional assumptions or prior
knowledge to recover the full 3D structure. Previous research has proposed effective parametric
human prior models [17, 18, 19, 20, 21], which employs statistical methods to reduce the variations
in human body shape and pose to a compact set of parameters. By leveraging this model, subsequent
research has proposed novel methods to estimate or regress the model parameters from a single RGB
image [22, 23, 24, 25, 26]. However, the human prior models can only capture a minimally clothed
body without complex details like garments, adornments, or hairstyles. To address this limitation,
some researchers add offsets on the top of prior body vertices to simulate outfits [27, 28, 29, 30, 31].
While these methods can effectively represent clothing close to the body surface and use blending
weights of surface vertices to drive the clothing, they are not suitable for geometry topology far from
the human body, such as robes and dresses.

In order to overcome the constraints imposed on reconstruction by clothing shape and type, researchers
have explored various alternative representations for the human body, including voxels [32, 33], visual
hulls [34], double depth maps [ 1, 12, 13, 4], and UV maps translation [35]. Among these diverse
methods, implicit function-based methods [36] have shown the most remarkable performance. Saito
et al. introduced PIFu [ 1], which firstly incorporates implicit functions into the problem of human
body reconstruction. The method leverages a CNN-based neural network to extract features from
2D images and uses implicit functions to express the spatial geometry field, such as signed distance
functions (SDF) [37] and occupancy fields [38]. While implicit function-based methods [ 1, 39, 6]
can accurately reconstruct the complex topology of clothed human body surfaces, they may generate
non-anatomical shapes for out-of-distribution poses due to the lack of regularization.

To improve pose robustness, recent research [3, 2, 4, 5, 7] has utilized the prior knowledge to guide
implicit function representation. These methods have shown promising results in enhancing the
quality and accuracy of reconstruction geometry, particularly for challenging poses. However, these
methods, like previous ones, still rely on 2D features extracted from CNN-based networks, even
though some of them incorporate 3D features obtained from human body prior. In the reconstruction
process, the feature obtained by 2D projection may result in incomplete reconstructions from other
viewpoints and diminish overall reconstruction accuracy. Our method extracts global-correlated
3D-aware feature to efficiently represent the clothed human avatar.

Transformers in Vision. The transformer architecture, initially proposed by Vaswani et al. [40], has
achieved immense success across domains like NLP, speech recognition, and multimodal applications.
Inspired by this, many studies have attempted to adapt the transformer architecture to the field of
computer vision. Among these explorations, the Vision Transformer (ViT) proposed by Dosovitskiy
et al. [41] has shown impressive performance in 2D visual tasks. Meanwhile, transformer’s ability to
model global and long-range correlation is also suitable for 3D vision tasks. Therefore, we leverage
a ViT-based 3D transformer with cross-plane attention to efficiently extract global-correlated 3D
features for better human reconstruction.

Generative 3D-aware Feature. Recent studies [14] have proposed the tri-plane 3D feature repre-
sentation method, which efficiently extracts features from objects in three orthogonal orientations.
Tri-plane representation has been demonstrated high efficacy in generating 3D objects [42], particu-
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Figure 3: GTA Overview. GTA has two key modules: (1) the global-correlated 3D-decoupling
transformer and (2) the hybrid prior fusion strategy. The former module extracts a latent h from the
input image and integrates it with learnable embeddings z via 3D-decoupling decoders, producing
disentangled tri-plane features. The latter module employs spatial (red) and prior-enhanced ( )
queries to merge features from the two tri-planes, thus enabling geometry and texture reconstruction.

larly 3D human bodies [43, 44, 45]. Thus, the tri-plane representation method holds potential for
application in human body reconstruction. Nevertheless, the challenge of establishing a reasonable
relationship between the input monocular image and the three planes of features remains an unre-
solved problem. In our method, we introduce learnable embeddings to represent features of spatial
planes that are not directly visible, and utilize cross-attention mechanisms to establish relationships
between the input image and other planes.

3 Method

We introduce an implicit function-based framework for reconstructing 3D clothed human models
from a single image (See Fig. 3). Our model employs a global-correlated 3D-decoupling transformer
to disentangle tri-plane features and harnesses a hybrid prior fusion strategy for reconstructing the
full 3D geometry and texture of the clothed avatar. In the following sections, we will discuss the
preliminaries of GTA in Sec. 3.1, the global-correlated 3D-decoupling transformer in Sec. 3.2, and
the hybrid prior fusion strategy in Sec. 3.3.

3.1 Preliminary

SMPL. The Skinned Multi-Person Linear (SMPL) model [18] is a widely-used parametric human
body model. The SMPL model utilizes shape parameters 3 € R'? and pose parameters 8 € R3*X
to parameterize the deformation of the human body mesh M:

M(B,0): B x 0 — RN (D

where K = 24 joints and N = 6890 vertices. Shape parameter 3 describes the body’s overall size
and proportions and pose parameter 6 defines the positions and orientations of the joints relative
to their default positions. SMPL enables effective representation and manipulation of human body
shape and pose in various applications.

Implicit Function. Implicit function is a powerful tool for modeling complex geometries with neural
networks. Our implicit function maps an input point to a scalar value that represents the spatial
field including occupancy field and color field. The occupancy field takes a point in space as input
and outputs a binary value indicating whether the point is inside or outside the human surface. Our
reconstructed human surface can be represented as Szr:

Szr ={z e R’ | IF(x) = (0,c)} @)

where occupancy o = 0.5, color ¢ € R3, and ZF represents the implicit function.



3.2 Global-correlated 3D-decoupling Transformer

Directly extracting 3D information from a single 2D image is not feasible, this is largely due to
the fact that 3D features include information from planes orthogonal with the image plane (also
noted as xy-plane, principle-plane). To effectively decouple cross-plane features from a monocular
image input, it is crucial to have additional guiding information. This is where the idea of learnable
embeddings and the use of a cross-attention mechanism prove valuable. Inspired by this, we devise
a novel transformer-based architecture including a global-correlated encoder and a 3D-decoupling
decoder to disentangle 3D features from single input images.

Global-correlated Encoder. In our method, we employ a vision transformer to encode the input
image and capture global correlations in the image, resulting in high-dimensional global-correlated
image features. Our encoder module processes the input image by dividing it into non-overlapping
n X n patches and subsequently mapping them to image features through transformer blocks. This
procedure generates a latent h for a image 1.

3D-decoupling Decoder. To decode 3D tri-plane features from the encoder output, we propose to use
two types of decoders: the principle-plane decoder and the cross-plane decoder. Our principle-plane
decoder generates xy-plane features, which share the same plane as the input image. This decoder
effectively reverses the encoding operation, leveraging a self-attention mechanism on the encoder
output and converting the image features into a principal feature map F,, € RIXWXC

In order to generate plane features orthogonal with the principle plane while preserving global
correlation with the principle plane, we employ the cross-plane decoder to decode yz and xz plane
features from input image features. To guide the decoder in decoding features from different planes,
we introduce a learnable embedding z that supplies additional information for decoupling new planes.
The learnable embedding z is first processed through self-attention encoding. It is then used as a
query in a multi-head cross-attention mechanism with the output image latent h from the encoder
stack. The image features are converted into keys and values for the cross-attention mechanism,

(WQSelfAttn(2))(WER)T)
Vd

CrossAttn(z, h) = Softmax( YWV h) 3)

where W@, WX, and WV are learnable parameters and d is the scaling coefficient. Following
the original transformer architecture [40], our model employs residual connections [46] and layer
normalization [47] after each sub-layer. The entire decoder consists of multiple identical layers, and
we use two such decoders to produce feature maps F,, € RT*W*C and F,, € REXWx*C,

Principle-plane Refinement. In accordance with the approach demonstrated in [6], higher-resolution
feature maps play a crucial role in producing detailed geometry and sharper textures. Hence, we use
both the original image and the principle-plane feature map, to produce a higher-resolution feature
map. The original image is initially down-convoluted to match the principle-plane size and then
concatenated along the channel dimension. Subsequently, they are fed into a streamlined Hourglass
network and a super-resolution module for refinement. This process generates a higher-resolution
feature map Fc/ine € R2H>2WxC,

F;;fi"e = SuperRes(Hourglass(DownConv(I)OF,,)) 4

where © means concatenation operation. The resulting xy plane (principle-plane) exhibits a higher
resolution than the yz and xz planes and incorporates more information from the original image,
leading to higher fidelity reconstruction.

Tri-plane Division. After obtaining each plane, we evenly divide the plane features along the channel
dimension into two groups, creating two tri-planes. For one group, we perform a spatial query to
acquire features for query points, while for the other group, we utilize a prior-enhanced query to
integrate the human body prior. Please refer to the next section for a detailed introduction to our
novel hybrid prior fusion strategy.



Figure 4: Qualitative 3D human reconstruction for real images showcasing diverse poses and clothing
variations. For each example, we show the input image along with two views of the reconstructed
geometry and front view of the reconstructed texture. Our approach is robust to challenging poses
and loose clothing, and contains detailed geometry and texture. See SupMat. for more results.

3.3 Hybrid Prior Fusion Strategy

In previous works, two primary methods have been utilized for acquiring query point features, each
with significant limitations as previously discussed in Sec. 1. To address this, we propose a hybrid
prior fusion strategy that combines the strengths of both spatial query and prior-enhanced query.

Spatial Query. Following [!4], we extend the pixel-aligned query into 3D space, denoted as
spatial query. This method projects query points onto the xy, yz, and xz planes of a tri-plane group,
producing localized features that capture important details for reconstruction. We combine the F} .
and F),, features by summation and concatenate the result with F’ ;51‘ ine to generate the spatial query
feature Fsq(x):

F39(x) = Fo2(x)O(F)2 (x) + Fyl(x)) ©)

where FS2 (), F9(z), F22 () are extracted from F¢/"¢, F, .. F,.. and © is concatenation.

Prior-enhanced Query. For the other tri-plane, we project the human body prior [18, 19] mesh
vertices onto the three planes similar to the spatial query above to obtain the feature F'7'?(v), v € M,
where M is the body prior mesh. For each query point x, we find the nearest triangular face
te = [V0,v1,v2] € R3*3 and use barycentric interpolation to integrate features for & (See Fig. 3),
denoted as Fpg():

FPQ(z) = uFT?(vo) + vFTQ(vy) + wFFP?(vy) (6)

where [u, v, w] represents the barycentric coordinates of the query point & projected onto triangle #,.

Hybrid Prior Fusion Strategy. Spatial query projects the query points directly onto tri-plane features,
providing detailed information but lacking prior knowledge. On the other hand, the prior-enhanced
query merges body prior information but may causes an increased level of fuzziness. Therefore, we
concatenate these two query features to capitalize on each method’s strengths and compensate for
their weaknesses. Furthermore, we also include the signed distance between query point and human
prior mesh SDF p,.;o-(x) and pixel-aligned normal feature Fjs(x) as input to the implicit function
for predicting occupancy and color. Consequently, the reconstructed human surface Sz can be
represented as:



Table 1: Quantitative comparison on geometry against other methods. *: obtained from [2, 4].

Method Training Data CAPE-NFP [16] CAPE-FP [10] THuman2.0 [15]
Chamfer | P2S| Normals| Chamfer | P2S] Normals| Chamfer| P2S] Normals]
PIFu [!] THuman2.0 [15] 2.458 2.117 0.094 1.786 1.639 0.071 1.586 1.530 0.088
PIFu* [I] Renderpeople [4&] 2.973 2.940 0.111 2.100 2.093 0.091 - - -
PIFuHD* [6]  Renderpeople [48] 3.767 3.591 0.123 2.302 2.335 0.090 - - -
PaMIR [3] THuman2.0 [15] 1.603 1.429 0.068 1.502 1.291 0.064 1.276 1.247 0.080
PaMIR* [3] Renderpeople [48] 1.413 1.321 0.063 1.225 1.206 0.055 - - -
ICON [2] THuman2.0 [15] 1.096 1.085 0.046 0.969 0.987 0.041 1.249 1.368 0.076
ICON* [2] Renderpeople [48] 1.070 1.013 0.059 1.202 1.170 0.055 - - -
ECON [4] THuman2.0 [15] 0.942 0.933 0.035 0.904 0.894 0.033 2.120 1.807 0.074
ECON* [4]  THuman2.0[I5] 0926 0917  0.037 - - - - - -
Ours THuman2.0 [15] 0.911 0.917 0.042 0.763 0.763 0.035 0.814 0.862 0.055
3 S P
Szr = {z e R® | IF(F?(z), F"?(2), SDF prior (), Fyr(@)) = (0, €)} @

where occupancy o = 0.5, color ¢ € R3, and Z.F represents the implicit function.

Training Objectives. For each 3D scan, we consider two sets of points as training data, denoted as
G, and G.. G is sampled uniformly with a slight perturbation along the normals of the mesh surface,
whereas G, is sampled according to the same strategy as in PIFu [1], where points are sampled near
the mesh surface and throughout the entire space.

For the points in G, we employ the following loss function:

L, |G| > BCE(os — 0z) ®)

zcG,

where 0, denotes the model’s predicted occupancy, while o, signifies the ground truth occupancy.
For the sampled points in G, we apply the following loss function:

1
Lo=— és — Ca )
|G|Z| |

lzeq,

where €, represents the predicted color at location « by the model, while ¢,, indicates the true color
of the mesh at «. The overall loss function is expressed by:

L:GTA = l:o + ‘Cc (10)

4 Experiments

Strategy for Point Sampling. In the context of each training subject, our approach involves obtaining
2048 points for occupancy, denoted as GG,,, and 2048 points for color, symbolized as GG.. The method
for occupancy point sampling is aligned with the strategy illustrated in [1]. Color points are sampled
uniformly, with a minor Gaussian disturbance, expressed as A (0, ), wherein our experiment o is
set at 0.1 cm. This disturbance occurs along the normals of the mesh surface. We obtain labels for
the ground truth geometry, which specify whether a point is inside or outside the surface, through the
application of Kaolin [49] to ascertain if a point lies within the ground truth mesh. The source of the
ground truth color labels is the UV texture map of the 3D meshes.

Model Structure. To generate global-correlated latent features, we utilize a Vision Transformer
(ViT) [41] model of depth 6, functioning as our global-correlated encoder, and generating an output
of size 1024 x 256. Our 3D-decoupling decoder incorporates both cross-plane and principal-plane
decoders, each with a depth of three. The cross-plane decoder is initialized with learnable embeddings
that experience a Gaussian perturbation to align cohesively with the encoder’s output shape. The
configuration of the cross-plane decoder corresponds with the structure described in [40], while
the principal-plane decoder emulates the global-correlated encoder. Each decoder outputs a feature
map F € R1Z8x128%64 Dyring refinement, a 2-stack hourglass and a transpose convolution module
are integrated to generate a higher resolution principal-plane feature map Frefine ¢ R128x128x64
Following the feature acquisition through our hybrid prior fusion method, two identical Multllayer



Perceptrons (MLPs) are employed for separate predictions of occupancy and color, each with layer
sizes of [512, 1024, 512, 256, 128, 1]. In the inference phase, we utilize Rembg [50] for background
subtraction in in-the-wild images. The Marching Cubes algorithm [51] is employed for generating 3D
meshes, while off-the-shelf models from ICON [2] are leveraged for the production of normal maps.
This normal map is further processed through a 2-stack hourglass to achieve a size of 128 x 128 x 6.
Besides the front/back normal maps are also used as input into the encoder with the image. The
model, implemented in PyTorch Lightning [52], is trained for 10 epochs with a learning rate of le-4
and a batch size of 4, over a span of 2 days on a single NVIDIA GeForce RTX 3090 GPU.

Datasets. Our model was trained on the THU-  qpje 2: Normal Evaluation of Different Views
man2.0 [15], featuring 526 high-quality human  , THuman2.0 [15]. These views are obtained by
scans, with 505 designated for training and 21 positioning a virtual camera at the front, left, back,

for evaluation. Testing was primarily conducted right, above, and below the reconstructed human.
on the CAPE [16] and THuman2.0, with the

Normals of Different Views

former divided into "CAPE-FP" and "CAPE- Method : Average

NFP" subsets to examine model generalization Front Left Back Right Above Below

on different pose types. Further dataset and im- PIFu[1] 0.053 0.143 0.046 0.109 0.067 0.066 0.081
: : : : PaMIR [3] 0051 0.124 0.068 0077 0051 0054 0071

plementation details are available in SupMat. ICON [2] 0.074 0.091 0.0647 0.076 0.044 0.044  0.066

ECON [4] 0.043 0.123 0.045 0.083 0.050 0.041 0.064

Metrics. We employ Chamfer and point-to-
surface (P2S) distances, capturing significant Ours 0.048 0.069 0.044 0.061 0.035 0.040 0.050
geometric errors, to evaluate the accuracy of the

reconstructed meshes. We assess the quality of local details and the efficacy of 3D features via the
L2 error between normal images of reconstructed and ground-truth meshes from six views. Finally,
the quality of texture prediction is measured using Peak Signal-to-Noise Ratio (PSNR), comparing
images rendered from both reconstructed and ground-truth surfaces across different views.

4.1 Evaluation

Evaluation of Geometry. We compare our GTA model with body-agnostic methods like PIFu [1],
PIFuHD [6], and body-aware methods such as PaMIR [3], ICON [2], and ECON [4]. Our evaluation
is thorough, involving training and testing these models ourselves and incorporating testing results
from [4, 2] for a comprehensive comparison. As depicted in Tab. 1, GTA excels in terms of Chamfer
and P2S distances on images with out-of-distribution (OOD) poses and diverse clothing. Notably,
GTA is the first to reduce the Chamfer distance to less than 0.8 cm on CAPE-FP. On par with ECON
for normals on CAPE, GTA sets a new state-of-the-art on THuman2.0. Fig. 8a visually underlines
our model’s superior performance on the THuman2.0 benchmarks.

Quantitative Evaluation of Side-face Reconstruction. In our novel quantitative evaluation of
side-face reconstruction, we spotlight the advantages of 3D features in crafting plausible side-faces
and accurate thickness. Using six virtual camera angles, we render normal images of the reconstructed
human and compute the normal difference for each face on the THuman2.0 [15] dataset. As shown
in Tab. 2, GTA surpasses other models in 5 out of 6 views, matching ECON only in the front view,
thereby underscoring our model’s prowess in capturing inherent 3D structures within an image. For
visual results, refer to Fig. 2 and SupMat.

Evaluation of Texture. In evaluating texture reconstruction, uPIFU = ARCH mARCH++ mPHORHUM 1 S3F = Ours
we compare GTA with color-predicting models like PIFu [ 1],
ARCH [8], ARCH++ [9], PHORHUM [5], and S3F [7]. By

20 18.05

14.81

rendering textured meshes from multiple angles and calculating 15

the PSNR with respect to ground truth images, we find GTA = s em
outperforms other models on THuman2.0. As Fig. 5 demon- &

strates, GTA exceeds the state-of-the-art S3F [7] by 22% in 5 ' I

PSNR. Notably, our model provides superior textures on the 0

front side and accurately predicts invisible regions, as seen in

Fig. 8b, highlighting the effectiveness of 3D features. Figure 5: Quantitative Evaluation

of Texture on THuman2.0 [15].
4.2 Ablation Study

Ablation Details. To ensure a fair and unbiased experimental setup, we employed an approach
wherein the implicit functions of each ablation experiment were augmented with front and back



Table 3: Ablation study of several of our designs on CAPE [16] dataset.

(a) Different networks. (b) 2D features vs. 3D features.  (c) Different query methods.
Method Chamfer] P2S| Normals| Method  Chamfer] P2S] Normals] Method Chamfer| P2S| Normals]
use convolution 0.991 0.968 0.055 2D+SQ 1.054 1.052 0.054 3D+SQ 0.987 0.965 0.049
w/o cross-atten  0.937 0.922 0.051 2D+PQ 1.133 1.116 0.053 3D+PQ 1.059 0.987 0.048
w/o refine 0.890 0.882 0.053 2D+hybrid  1.008 0.967 0.051

Ours 0.861 0.866 0.045

Ours 0.861 0.866 0.045 Ours 0.861 0.866 0.045
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Figure 6: Texture change of different ablation settings.
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Figure 7: Application of our model in animation and virtual try-on.

normal features and signed distances from the human prior body. For the ablation experiments
pertaining to different network architectures, we replaced the corresponding components of our
network structure with three identical UNet [53] and Vision Transformer [4 1] decoders solely based
on self-attention, respectively. Moreover, for the ablations on 2D features, we generated a 2D feature
map of size 256 x 256 with UNet. Additionally, for the ablations on the hybrid prior fusion strategy,
we employed a single tri-plane for the spacial query and the prior-enhanced query, respectively.

A. Different Networks for 3D Feature Decoupling. We evaluate alternative architectures by
modifying our global-correlated encoder and 3D-decoupling decoder, confirming the strength of
our proposed transformer. We experiment with UNet [53], also used in [7], as a convolution filter
representative, and employ three separate UNets to compose the tri-plane. We also test a transformer
encoder-decoder with only self-attention and without the refinement module or additional learnable
embeddings. Results (see Tab. 3 and Fig. 6) suggest that a purely convolution-based network struggles
to decouple 3D features due to limited correlation and receptive field constraints. While the refinement
module shows minor geometric improvements, it is crucial for texture reconstruction. Additional
learnable embeddings and cross-attention blocks notably enhance geometry results.

B. 2D Features vs. 3D Features. We analyze the effectiveness of 3D features by conducting an
ablation study using solely 2D feature maps for reconstruction. Utilizing UNet [53] to generate
high-dimensional 2D features, we compare spatial query (SQ), prior-enhanced query (PQ), and our
hybrid prior fusion strategy. Results highlight the inferiority of 2D features in producing accurate
reconstructions (Tab. 3), emphasizing the importance of 3D features.

C. Hybrid Prior Fusion Strategy vs. Others. We evaluate our hybrid prior fusion strategy against
individual use of spatial query (SQ) and prior-enhanced query (PQ). Results show that spatial
query surpasses prior-enhanced query in both geometry and texture quality due to its provision of
localized features for detailed reconstruction. However, combining both methods optimizes geometry
performance while preserving texture quality, demonstrating the effectiveness of our hybrid strategy.

4.3 Applications

Reconstruction of Images in-the-wild. The GTA model demonstrates significant prowess in recon-
structing 3D human meshes from unconstrained, real-world images (refer to Fig. 4 and SupMat.),
addressing the complexities posed by varied poses and clothing styles. This capability of recon-



structing high-fidelity 3D models from in-the-wild images paves the way for extensive applications,
notably in virtual and augmented reality.

Animation and Virtual Try-On. We present a robust ,Q /’« /“\ 1
approach for generating novel poses of 3D clothed hu- 1 A/ ”ﬁ( ]/ e ; a \g
man meshes, catering to applications in animation and :
virtual try-on (See Fig. 7). We extend the S3F [7] model Q} YR %3 & 9> 5%
by employing estimated body shape and pose parameters ‘ ‘\ /?F ‘ w j [
to derive tri-plane features, facilitating realistic deforma- " "‘m; . ](0*\ L(m . n(i“ :
tions. For a single-image clothed human reconstruction,
our method excels by only needing the target pose, thus
overcoming the limitations of previous deep learning meth- v{j; 4
ods. Additionally, our model supports virtual try-on by e
enabling feature replacement across body parts of differ- e
ent parametric bodies. By selectively interchanging these PIFu ﬁk 8] %‘
features, we can simulate changes in clothing on the tar- _ N
get image. Our method, therefore, provides a versatile 2 3
solution for both animation and virtual try-on applications, ¢ g' i ﬂ k N ﬁ‘ -
merging the strengths of previous methods while alleviat- L | A 4 .
ing their weaknesses. More technical details and results o
are available in SupMat.

(a) Qualitative comparison of geometry.

Front Back

(b) Qualitative comparison of texture.

Figure 8: Comparison of geometry and
5 Conclusion texture on THuman2.0 [15] benchmark.

In conclusion, we present the GTA model, a cutting-edge approach for reconstructing 3D clothed
human from single images. Our global-correlated 3D-decoupling transformer effectively extracts
latent representations from input images and integrates them with learnable embeddings through
3D-decoupling decoders, generating disentangled tri-plane features. Moreover, our hybrid prior
fusion strategy integrates the benefits of spatial query’s localization capabilities with the prior-
enhanced query’s ability to incorporate knowledge of the human body prior, ultimately leading to
improved geometry and texture reconstruction performance. We demonstrate that our proposed model
outperforms state-of-the-art methods in geometric and texture reconstruction, exhibiting resilience
against challenging poses and loose clothing, enabling a wide range of applications.
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