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A B S T R A C T

Mechanisms to incentivize divestment strategies, such as divestment schedules, are an important component of
carbon reduction strategies. We use dynamic asset allocation methodologies to assess this impact over time on
index portfolios (S&P 500 and FTSE 100), and global exchange-traded funds (ETFs). Although return profiles
are not affected, the risk profile of S&P 500 divestment portfolios is impacted by rapid divestment strategies as
divestment concentration increases. Instantaneous divestment may benefit management structure, while slower
divestment provides greater stability in portfolios’ tracking errors and benefits carbon reduction, especially
from reinvested capital. Divesting from energy and utilities sectors reduces carbon footprint of up to 7%, while
ETFs’ divesting from highly carbon concentrated ETFs offers further carbon footprint reductions. Investing
in funds with low carbon footprint results in lower dividend returns and management fees. Although ETFs’
returns are insensitive to divestment strategies and schedules, their risk profiles are affected, proportionally to
their carbon intensity, especially for rapid divestment and at the expense of higher tracking errors. Divestment
strategies based on ESG rating screening of FTSE 100 portfolios improve diversification and impact risk/return
performance. Our study underscores the importance of considering investors’ demographics, such as dividends,
management structure, and carbon reduction targets.
1. Introduction

Fossil fuel divestment strategies are important for climate risk miti-
gation in asset management. Public discourse shifts (Bergman, 2018)
are incentivizing ethically motivated investors to consider divesting
to reduce the carbon footprint of their portfolios (Frankel et al.,
2015, Richardson, 2017 and Scipioni et al., 2012) or influence the
fossil fuel industry to reduce carbon emissions (Arabella-Advisors, 2015
and Dawkins, 2018). The increasing global focus on the macroeconomic
domain of environmental, social, and governance (ESG) has driven
change in investment practices with priority on addressing elements
of climate change in addition to the classical risk/return trade-offs.

Balancing the long-term economic feasibility of ESG objectives and
meeting financial objectives in the investment process is an ongoing
challenge in divestment practice. Furthermore, the speed with which
ESG attributes are integrated in investments has been identified as an
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important consideration (Eccles et al., 2014). Often the class being
considered for divestment practices relates to companies that are pri-
mary producers of fossil fuel, such as oil and gas companies. These
companies are so entrenched in investor portfolios that they have
become too large and too widely held for divestment to be performed
easily and rapidly without significant cost and impact on drawdown,
capital loss, and dividend cash flow reduction. Pension and investment
funds have held sizable positions of carbon-intensive companies in their
portfolios (Mooney, 2017), and selling all positions in short periods can
negatively impact the market and be a costly operation. Fund managers
are also often required by regulation and as a fiduciary duty to investors
to follow practices that govern best execution and risk management
when making large divestment decisions. It is typically impractical for
large portfolios to implement an instantaneous divestment strategy that
involves one-time withdrawal of capital from all unfavorable assets.
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Environmental and financial performance considerations posit the need
for investors to review the different rates at which portfolios are
divested over time. Financial attributes such as dividends, management
fees, and diversification should also be factored in. Thus, three perti-
nent questions arise for investors: What factors influence the decision
on the optimal rate of divestment? How does the rate of divestment
affect portfolio risk/returns and carbon reduction strategies? How does
the rate of divestment affect different investor demographic profiles
that target aspects such as, ESG target, dividend yield, management
fees, effective tracking error performance, or diversification? This paper
addresses these types of questions.

We conduct three comprehensive case studies, over a 10-year period
(2010–2020), on dynamic portfolio active management for various
divestment strategies and schedules to address divestment rates. These
studies investigate divestment practice based on a broad sector portfo-
lio invested in S&P 500 companies, a managed funds perspective based
on ETFs, and an ESG rating screening perspective based on FTSE 100
companies. More specifically, we employ a multi-period portfolio op-
timization approach with divestment schedules to assess the impact of
divestment rates over long-term horizons and for a comprehensive list
of portfolio construction methodologies. Beyond the risk/return profile
and the carbon reduction of the divested portfolios, the assessment is
based on practical attributes such as the consistency of behavior of
the portfolios’ risk profile, diversification structure, and their tracking
error. We also extend the analysis to examine these effects from an
investors’ demographic stance, including effects on dividend yields,
management structure, and diversification.

The first case study focuses on S&P500 divestment strategies and
refines the three main questions by firstly investigating the impact of
divestment schedules on the stability of portfolio weights and on the
relative performance, and the stability1 of risk/return profiles overtime.
We find an overall consistency in stability of the relative risk/return
over time between the different rates of divestment strategies is ob-
served. Even though the difference in mean returns between the origi-
nal and divested portfolios is not statistically significant, the effect on
risk profiles becomes increasingly evident as divestment concentration
increases. Furthermore, short positions in rapid divestment are far less
volatile of the leverage position than those in the slow divestment (or
no divestment) option, implying that an increasing rate of divestment
may benefit management fees. Therefore, investors indifferent to re-
turns performance may favor rapid divestment to avoid leverage fees.
Slow divestment also provides better tracking performance, thus may
be more attractive to fund managers/investors who prioritize tracking
performance.2

To evaluate the efficiency of carbon reduction of S&P 500 di-
vestment strategies, we introduce two new measures based on the
reinvestment principle, namely, divesting/reinvesting sector weights
and the carbon divesting-reinvesting (CDR) ratio. We demonstrate that
industrials, information technology, financials, health care, and discre-
tionary sectors benefit from divestment by getting a further injection
of capital from divested assets. Another novelty of this analysis is
identifying the differences between divesting by withdrawing capital
and divesting by shorting stock (and then reinvesting). We find that
divesting from the energy and utilities sectors, the two leading sectors
with substantial incentives for carbon reduction, offers the highest
carbon reduction. However, short positions in energy and utilities
strongly and negatively impact carbon reduction targets. In addition,
we investigated the impact of divestment on diversification and cor-
relation structure and confirmed diversification benefits in divestment

1 Stability refers to the consistency of standardized performance measures
ver time. For a detailed explanation of this concept, refer to Appendix E.

2 Tracking performance refers to the ability to keep minimal difference in
eturn/risk measures between the benchmark or original portfolio and the
ivested portfolio.
2

p

strategies. These results underscore the importance of reinvestment
designs and diversification benefits in the performance of divestment
strategies.

The second case study considers the effects of divestment sched-
ules on less diversified portfolios (compared to the S&P 500), the
developed and emerging market ETFs with higher concentration in
fossil-fuel related assets. We explore the impact of divestment on the
distribution of excess returns, and the stability of overall performance
of ETF portfolios overtime, their performance tracking, tracking error,
as well as effects on dividend yields and management fees. We find that
divestment schedules do not affect the return profiles of the underlying
ETFs but significantly impact their risk profiles, especially for ETFs
with high concentration in carbon-intensive assets. We also build a
causal regression relationship to evaluate impact of divestment practice
in relation to ESG score, carbon reduction, management fees, and
dividend yield. Based on a selection of five iShares ETFs of considerable
size, with dividend payouts and varying levels of concentration on
fossil-fuel stocks (reaching 48%), we find that divestment strategies
have a negative impact on dividends and management fees.3 Investing
in funds with a low carbon footprint (or high ESG score) results in lower
dividend yields and management fees at any rate of divestment. Thus,
investors may incur a penalty for requiring fund managers to meet ESG
targets and dividend yield reductions potentially driven by additional
charges in the production processes of less-technologically advanced
industries.

In the third case study, we explore the role of divestment screen-
ing from the FTSE 100 asset universe based solely on ESG ratings
criteria and its influence on portfolios risk/return profiles, correlation
structure, and diversification.4 More specifically, to evaluate the ef-
fect of divestment on diversification, we propose a novel measure,
namely Portfolio Diversification Ratio (PDR), which is decomposed to
three parts, the sector variance contribution ratio (SVCR), the sector-
excluded variance ratio (SEVR), and the sector-excluded correlation
(SEC). We find that, while reinvestment leads to an increase in vari-
ation within the sectors, divestment based on ESG rating screening
has the reverse effect. For all sectors, as the intensity of divestment
increases, the overall diversification and diversification between sectors
improve. Thus, divesting from corporations with low environmental
ratings may improve portfolios’ diversification, affect risk/return per-
formance, while provides a robust covariance structure of the divested
portfolios.

The study makes three key novel contributions to advance research
on asset management divestment practices. Firstly, our study is one
of the very few studies that addresses the critically unexplored gap
in academia and practice with respect to the impact of the rate of
divestment. The importance and impact of gradual transition on divest-
ment decisions has been verified by Flora and Tankov (2023), but only
in relation to energy transition projects. The impractical assumption
of most studies conducted on fossil fuel divestment is instantaneous
divestment. Divestment from fossil fuels and utilities achieves higher
risk/adjusted returns by including clean energy through instantaneous
divestment from fossil fuel industries and reinvestment in green in-
dustries (Henriques and Sadorsky, 2018 and Hunt and Weber, 2019),
but Trinks et al. (2018) finds contradictory effects based on companies
classified by Standard Industry Classification (SIC) codes or Carbon
Underground 200 (CU200). Bolton and Kacperczyk (2021) find that
high-emitting firms earn higher returns, yet their divestment strategies

3 We assume that ETF reinvests the funds within their investment universe.
e take this approach as it is unlikely in practice that an ETF will give up all

ts capital.
4 This is an interesting case study because in the major UK market index

ortfolios there is a significantly different mix of assets by market capitaliza-
ions (compared to S&P 500.) Furthermore, the selection of the divestment set
s not based on the CU200 list which is largely US focussed but instead was

erformed based on Environmental, Social and Governance (ESG) ratings.
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are based only on scope 1 intensity emission screening and fossil-fuel-
intensive industries. In addition, the effectiveness of decarbonization in
the energy stock market fluctuates significantly (Kuang, 2021 and Abid
et al., 2023). Divestment announcements also decrease the share price
of fossil fuel companies, thus divestment can impact the financial
performance of affected companies (Dordi and Weber, 2019).5 We
ontribute to this research direction by performing a comprehensive
nalysis of divestment practice with practical relevance, as we model
nd study the impact of divestment schedules. Furthermore, our analy-
is offers a dynamic assessment based on the evolution of the impact of
ivestment strategies over time. Most fossil fuel divestment research ex-
ludes all high-carbon stocks throughout the study period and assumes
hat the fossil-free portfolio remains unchanged over time. Thus, these
tudies provide only an aggregate assessment of divestment strategies,
hile our study offers a dynamic assessment based on the evolution
f the impact of divestment strategies over time. In fact, we quantify a
ar more substantial impact on the risk profiles of divestment strategies
ver time.

Second, we assess the impact of divestment schedules on risk-return
rofiles and on carbon reduction, both for broad sector portfolios6 and
rom a more targeted managed funds perspective based on ETFs. Stud-
es in different equity markets have documented empirical evidence on
he diverse impact of divestment strategies on portfolio performance,
ee for instance Henriques and Sadorsky (2018), Trinks et al. (2018)
nd Bolton and Kacperczyk (2021). Note that, decarbonization of eq-
ity mutual funds in the US and Europe, associated with divestment
rom carbon-intensive stocks, leads to an average decrease of stock
rices of divested firms and, to an average reduction of their carbon
missions (Humphrey and Li, 2021, Huynh et al., 2021, and Rohleder
t al., 20227). Furthermore, decarbonization may induce herding be-
aviors in hedge funds (Benz et al., 2020). We show that, even though
ome of these results typically hold, the coverage of these effects may
ary over time and is affected by divestment schedules. Also, in line
ith (Rahat and Nguyen, 2022), who show that divestment based on
nvironmental scores or carbon intensity improves performance (in
he BRICS stock markets), we also confirm the benefits of divestment
ractice based on environmental score screening in the FTSE 100 case.

Third, we assess divestment practice through the lens of trade-offs
etween factors of practical relevance such as ESG targets, manage-
ent fees, tracking errors, dividends, and diversification. This aspect

f the analysis is of critical importance as it informs the financial
mplications of divestment strategies. The trade-off between carbon
ootprint, tracking error, and expected returns of decarbonized indexes
s assessed by Andersson et al. (2016) using constrained optimization
echniques. Social pressure to contribute to carbon emission targets by
olding socially responsible investments is material in the mutual funds

5 See Whelan et al. (2021) for an overview on ESG and financial per-
ormance, and Engle et al. (2020) and El Ouadghiri et al. (2022) for a
extual-based analysis to model investor attention on climate change risks and
ossil fuel divestment. Via a Media Climate Change Concerns index, Ardia
t al. (2023) find that in an unexpected increase in climate change concerns,
he green (brown) firms’ stock prices benefit (decrease). Although divestment
s recognized as one of the strategies to actively manage climate risks,
vidence suggests that institutional investors believe alternative strategies such
s engagement and risk management are more effective in combating this
isk (Krueger et al., 2020).

6 For example, studying both FTSE 100 and S&P 500 as special case studies
ffers a richer, more diverse analysis that can influence divestment outcomes.
hile the S&P 500 is more technology-centric, the FTSE 100 traditionally leans

owards sectors like energy and commodities.
7 This result is in line with the equilibrium theory of Heinkel et al. (2001),

nd derived from a measure of portfolio decarbonization based on a weighted
verage carbon intensity index compiled by the Task Force of Climate-related
inancial Disclosure and a decarbonization selling pressure metric on stocks that
solates the ‘‘decarbonization trades’’ of fund-quarters.
3

(

industry regardless of attracting higher management fees and lower
returns (Riedl and Smeets, 2017 and Humphrey and Li, 2021). We
show that ETFs with a high carbon footprint attract higher management
fees. Furthermore, the comovements between European stock prices
and carbon prices identified by Millischer et al. (2023) can provide
an incentive for firms to decarbonize, as it benefits stock returns. We
investigate the impact on both the return and risk profiles of ETFs
and find that risk profiles are also affected proportionally to their
intensity of carbon, especially for rapid divestment and at the expense
of higher tracking errors. Also, we find that carbon divestment in
ETF portfolios may be related to lower dividend yields (Chen and
Guo, 2005). Regarding diversification, we show that generally divesting
from FTSE 100 companies with low environmental ratings improves
diversification (Trinks et al., 2018 and Naqvi et al., 2022). In conclu-
sion, by employing a multi-period portfolio optimization approach with
divestment schedules, our study extends these idealistic approaches
to enable a robust, dynamic, and realistic representation and assess-
ment of divestment strategies. It details divestment effects in equities
and ETFs and integrates assessment on risk/return profiles, carbon
reduction and practical aspects such as ESG targets, dividends, and
management fees.8

The remainder of this paper is structured as follows. Section 2
explains the methodology and the experimental design. The dynamic
impact of divestment schedules on S&P 500 portfolios and ETF markets
is presented in Section 3 and Section 4, respectively. FTSE 100 portfolio
diversification effects of divestment strategies based on ESG consid-
erations are analyzed in Section 5. Section 6 concludes and discusses
financial implications.

2. Methodology and experimental design

The novelty of this paper pertains to the manner in which we design
the study of divestment practice and its influence on the performance
of a given portfolio in terms of four important criteria: return dy-
namics, risk profile, portfolio stability in position concentrations, and
risk/return performance, and importantly, carbon footprint reduction.
Unlike existing studies on divestment practice, we consider four dimen-
sions of the divestment challenge jointly: (1) what effect the divestment
rate has on the risk/return characteristics of a portfolio, (2) how
divestment practice influences the stability of a portfolio’s performance
over time, (3) what is the optimal selection of the divestment asset sets
that reduces the carbon footprint of a portfolio; and importantly, (4)
how to quantify the carbon reduction achieved by portfolio divestment.
Each of these dimensions is also explored in the context of investor’s
demographics, meaning whether the investor may be non-satiated, risk-
averse, seeking growth or may be retiring and seeking consistency in
cash flow and dividend yields or enhanced growth potential. Lastly, we
examine two classes of investor types. Investors who would invest with
a broad market diversification perspective and those who target specific
objectives in investing as delineated in a specialized investment vehicle,
such as actively managed ETFs. Accordingly, we consider a large US
market, e.g. the S&P 500, as well as international markets through
ETFs selected from a variety of developed and emerging markets. We
propose divestment strategies accommodating a range of divestment
schedules and a multi-period assessment of the performance of the
divested portfolios.

8 Based on the divestment strategies and evaluation methods proposed in
his paper, we have also developed an open-source software, called Divfolio,
hich can be accessed on GitHub at . This publicly available portfolio analytics

oftware tool enables the construction of a variety of portfolios (from personal
o elaborate institutional portfolios) that consider decarbonization and ESG
nvesting, and evaluates/compares performance of divestment practices. The
ool grants users access to data and facilitates the application of divestment
trategies to portfolios, especially those based on assets listed in global
ndices. Guidelines for its use along with examples on divestment strategies
onstruction and evaluation are detailed in the paper by Marupanthorn et al.
2023). This software can also be used to reproduce the results of the paper.



Energy Economics 136 (2024) 107724P. Marupanthorn et al.

a
t
h
w
i
c

1

a
d

𝐷

f
f
b
b
a
c
f
F
w
t

2

l
t
c
i
w
s
f
p
b
i
f
s
m
a
v
b

m

2.1. Rate of divestment

The sale of fossil fuel firm shares as a result of divestment should
exert downward pressure on the share price, making it more difficult
for the company to attract capital. The key to a divestment strategy is
to divest the stocks of companies with significant carbon emissions and
invest simultaneously in the stocks of greener companies in the portfo-
lio. However, divestment may affect the risk profile and performance of
the portfolio. This becomes challenging for funds such as pension funds
and ETFs, which have specific investment objectives and/or governing
regulation compliance constraints. We propose a divestment schedule
as a time-dependent decaying ‘‘box constraint’’ on the sum of the
weights of stocks in a divestment list. This divestment schedule controls
the amount of divested carbon assets across time and allows a gradual
divestment to occur rather than an instantaneous divestment can have
market impacts and slippage. Recall that instantaneous divestment
refers to one-time withdrawal of capital from all unfavorable assets.

Let the divestment schedule 𝐷(𝑡) be a decreasing function along time
𝑡, 𝐰𝑑𝑖𝑣 be a vector of weights of the stocks to divest from, and 𝐰𝑖𝑛𝑣 be a
vector of weights of stocks not in the divestment list. One then invests,
such that 𝟏𝐓𝐰𝑑𝑖𝑣+𝟏𝐓𝐰𝑖𝑛𝑣 = 1, where 𝟏 is a column vector with entry one.
Here 𝐷(𝑡) is a bound of the sum of the weights of stocks to divest, where
we separate the divestment listed assets into those with long positions,
of which there are 𝐿 such assets to divest, and where the divestment
bound over time imposes the restriction that the net position in such
assets is reduced over time by ∑

𝑙∈𝐿 𝐰𝑑𝑖𝑣
𝑙 ≤ 𝐷(𝑡). We also limit the

short position of the stocks to divest, where there are 𝑆 such assets
to divest, and we aim to maintain minimal interaction with such
assets by imposing a restriction ∑

𝑠∈𝑆 𝐰𝑑𝑖𝑣
𝑠 ≥ −𝐷(𝑡).9 The divestment

schedule is calculated and applied when the portfolio is rebalanced
(which is monthly in this paper). Since the divestment schedule is time-
dependent, optimal portfolio weights need to be calculated under the
time-dependent constraint. An example of a valid divestment schedule
can include, for instance, the monotonically decreasing functional form
𝐷(𝑡) = 1∕𝑡𝑎, where 𝑎 is a positive constant that controls the rate of
divestment or a simple linear functional form with a negative slope as
seen in Fig. 1.

Specifically, we consider three levels of divestment schedules, nam-
ely, slow, fast, and instantaneous divestment. The slow divestment ap-
proach is modeled by using a linear decay rate specified by the equation

𝐷𝑠𝑙𝑜𝑤(𝑡) = 𝑚𝑡 + 𝑐, (1)

where 𝑡 is a time in a month, 𝑐 is an initial sum of weights of the assets
to divest, and 𝑚 < 0 is the rate of the linear divestment.10 Fig. 1 depicts
the linear decay rate for 𝑚 = −𝑐∕120. The fast divestment schedules are
generated by the decreasing function of the form

𝐷𝑓𝑎𝑠𝑡(𝑡) =

{

1∕𝑡𝑎, 𝑡 ≤ 120,
0, 𝑡 > 120,

(2)

where 𝑎 is an exponent of the decay rate. In this study, 𝑎 is set to
1.5 as a representative ‘‘medium-speed’’ decay rate so we can observe
the decreasing behavior of the divestment schedule. The instantaneous
divestment method has been used extensively in research. All divesting

9 Note that the short position is also bounded by the divestment schedule on
ccount of the short-selling mechanism. Shorting a stock can temporarily drop
he price by borrowing the stock from a broker. Here, we assume stocks are
ighly liquidity, therefore borrowing is available for short positions. However,
e need to buy the stock and return it to the broker when the short position

s closed. Therefore, the short-selling mechanism indirectly supports carbon
ompanies at the times the short positions are adjusted.
10 For instance, monthly rebalancing between January 1, 2010, to November
4

, 2020, implies that 𝑡 = 1, 2,… , 130.
Fig. 1. Example of three rates of the divestment schedules: linear, exponential with
𝐷(𝑡) = 1∕𝑥0.5, and exponential with 𝐷(𝑡) = 1∕𝑥.

ssets are excluded instantaneously at the start of the study period. The
ivestment schedule for instantaneous divestment is given by

𝑖𝑛𝑠𝑡(𝑡) = 0, (3)

or all 𝑡. Since the divestment schedule is time-dependent, optimal port-
olio weights, such as the global minimum variance portfolio, need to
e calculated under the time-dependent constraint. Thus, the problem
ecomes a multi-period portfolio optimization. We accordingly seek an
pproximate solution by solving a multiple sequence of progressively
onstrained single-period problems through time with consecutive port-
olio rebalancing. Each single-period problem consists of two steps.
irst, the weights of the standard portfolio are calculated. Second, the
eights are scaled according to the divestment schedule, as detailed in

he following section.

.2. Portfolio construction

The rate of divestment may yield different risk profiles for portfo-
ios. To comprehensively assess the impact of the rate of divestment on
he risk profile and performance of portfolios, we consider five portfolio
onstruction methodologies. Passive Equal-Weighted Portfolio (PEW)
s a buy-and-hold portfolio that serves a long-term investment strategy
ith minimal interaction with the market. The weights of all assets are

et to be equal and to never change through time, that is, 𝑤𝑖 = 1∕𝑁 ,
or 𝑖 in the assets universe, which contains 𝑁 assets and prohibits short
ositions. Active Equal-Weighted Portfolio (AEW) is a portfolio that
alances the weights to obtain relative equal weighting. In other words,
t is a return-weighted portfolio that aims to obtain the same return
rom each asset. Global Minimum Variance Portfolio (GMV) portfolio
eeks the diversification of the assets with the least portfolio risk as
easured by variance (Markowitz, 1968, 1952). The optimal weights

re allocated by an optimization problem subject to minimizing the
ariance of the return of the portfolio. The GMV’s optimization is given
y

in 1𝐰Σ𝐰𝐓 s.t. 𝐰𝟏 = 1, (4)

𝐰 2
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where 𝛴 is the covariance matrix of the returns, 𝐰 is the vector of the
asset weights, and 𝟏 is the column vector with one entry.11 Maximum
Sharpe Ratio Portfolio (MS) is a portfolio that serves as a benchmark
to achieve the highest return per unit risk. The weights are allocated
by the optimization problem subject to maximizing the Sharpe ratio of
the portfolio (Maller et al., 2010). The MS’s optimization is given by

max
𝐰

𝐰𝑇 𝜇 − 1
2
𝐰Σ𝐰𝐓 s.t. 𝐰𝟏 = 1, (5)

where 𝜇 is the expected portfolio return.1213 Lastly, Principal Portfo-
lios (PC) is constructed by a convex combination of the sub-portfolio
generated by each principal component of the covariance matrix. The
convex weight coefficient is given by the eigenvalues,

𝑅𝑃𝐶 =
𝑑
∑

𝑘=1
𝜆𝑘

𝑁
∑

𝑖=1
𝑣𝑖,𝑘𝑅𝑖, (6)

where 𝑖 is an index of the asset in universe with 𝑁 assets, and 𝑘
s an index of the principal component with 𝑑 outstanding principal
omponents such that 0 ≤ 𝑑 ≤ 𝑁 , 𝜆𝑘 is a normalized eigenvalue of the
rincipal component 𝑘 such that ∑𝑑

𝑘=1 𝜆𝑘 = 1, and 𝑣𝑖𝑘 is the coordinate
f the principal component 𝑘 of asset 𝑖 (Yang, 2015). The method to
enerate the PC’s weights is detailed in Appendix B.

As short and long positions are allowed in portfolio construction,
xcept for the PEW portfolio, an extreme weight may occur when
erforming asset allocations that result in an excessive concentration
f positions in a few assets.14 In the hedge fund industry, the short-
elling portion of a portfolio is usually limited by the Federal Reserve
oard Regulation 𝑇 to be 50% of the portfolio weight, i.e., 150–50
und investment strategy.15 In practice, the short-selling ratio ranges
rom 120–20 to 150–50, with 130–30 being the most common. Conse-
uently, we limit the sum of the short-selling weights to no more than
0% of all positions by a box constraint.16 We approximate the box
onstraint in the multi-period portfolio optimization by renormalizing
sset weights progressively rather than adding them to the optimiza-
ion. We also approximate the optimization by rounding approximation
s the process is significantly faster and more stable than solving the
ptimization directly, as demonstrated in Appendix C.

11 The analytic solution for Eq. (4) is 𝐰 = Σ−𝟏𝟏∕𝟏𝑇𝛴−1𝟏.
12 The analytic solution of Eq. (5) is 𝐰 = Σ−𝟏𝜇∕𝟏𝑇𝛴1𝜇.
13 Note that GMV and MS are based on the covariance approach. The
ovariance matrix is calculated using the past six months of historical data.
he covariance matrices are usually numerically unstable when the number of
sset becomes large. To control for this, we employ the robust estimation of the
ovariance matrix to prevent numerical instability in calculating the portfolio
eights. In practice, the covariances of asset returns of the covariance-based
ortfolio need to be estimated since it is usually close to being singular. To
vercome this problem, the robust estimator of the covariance matrix is used.
he details are given in Appendix A.
14 The only constraint is that weights must sum to unity.
15 See Federal Regulations: Part 220 - Credit by Brokers and Dealers (Regu-

ation T), 220.12 Supplement: Margin requirements in https://www.ecfr.gov/
urrent/title-12/chapter-II/subchapter-A/part-220.
16 The computation process is to scale the sum of the short positions to 0.3,

f the sum of the short ratio is greater than 0.3,

𝑠
𝑏𝑜𝑥 =

{

0.3 × (𝑤𝑠∕
∑

𝑠∈𝑆 𝑤𝑠),
∑

𝑠 𝑤𝑠 > 0.3,
𝑤𝑠,

∑

𝑠 𝑤𝑠 ≤ 0.3,
(7)

where 𝑤𝑠 is a short-selling weight with index 𝑠 in a short-selling asset universe.
Next, a sum of long positions is normalized to be 1.3 when the long ratio
exceeds the limit,

𝑤𝑙
𝑏𝑜𝑥 =

{

1.3 × (𝑤𝑙∕
∑

𝑙∈𝐿 𝑤𝑙),
∑

𝑙 𝑤𝑙 > 1.3,
𝑤𝑙 ,

∑

𝑙 𝑤𝑙 ≤ 1.3,
(8)

where 𝑤𝑙 is a long position weight with index 𝑙 in a long position asset
universe.
5

2.2.1. Multi-period divestment and reinvestment weights
In this section, we outline a methodology that can be used to

solve the multi-period divestment problem.17 Note that, the divestment
practice adds an additional constraint on the portfolio optimization
problem. Thus, we propose an approximation18 of the optimization
problem for divestment and reinvestment as outlined in the following
three stages:

Stage 1: Rebalancing
The portfolio is rebalanced at time 𝑡, where we calculate the weight

of the portfolio by the standard formula used in the portfolio construc-
tion methodology with box constraints of the 130–30 portfolio.

Stage 2: Divestment
Consider sets 𝐿 and 𝑆 to be sets of indices of the long-position and

short-position assets, respectively, and the superscript ⋅𝑑𝑖𝑣 stands for the
asset to divest. If the sum of the weight of the divesting assets reaches
the bound 𝐷(𝑡), ∑𝑙∈𝐿 𝑤𝑙,𝑑𝑖𝑣

𝑏𝑜𝑥 ≥ 𝐷(𝑡) or/and ∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥 ≤ −𝐷(𝑡), then it

is limited at the bound by scaling,

𝑤̃𝑙,𝑑𝑖𝑣 = 𝐷(𝑡) ×
𝑤𝑙,𝑑𝑖𝑣

𝑏𝑜𝑥
∑

𝑙∈𝐿 𝑤𝑙,𝑑𝑖𝑣
𝑏𝑜𝑥

or/and 𝑤̃𝑠,𝑑𝑖𝑣 = −𝐷(𝑡) ×
𝑤𝑠,𝑑𝑖𝑣

𝑏𝑜𝑥
∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥

. (9)

Otherwise, we keep the weights without scaling, e.g., 𝑤̃𝑠,𝑑𝑖𝑣 = 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥

or/and 𝑤̃𝑙,𝑑𝑖𝑣 = 𝑤𝑙,𝑑𝑖𝑣
𝑏𝑜𝑥 .

Stage 3: Reinvestment
The excess weights from the divestment are allocated to the assets

to invest according to their proportion in the portfolio. Thus, they can
be calculated by

𝑤𝑒𝑥 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

𝑙∈𝐿 𝑤̃𝑙,𝑑𝑖𝑣
𝑏𝑜𝑥 −𝐷(𝑡), if ∑

𝑙∈𝐿 𝑤𝑙,𝑑
𝑏𝑜𝑥 ≥ 𝐷(𝑡)

∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥 +𝐷(𝑡), if ∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥 ≤ −𝐷(𝑡)

∑

𝑙∈𝐿 𝑤𝑙,𝑑𝑖𝑣
𝑏𝑜𝑥 +

∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥 , if ∑

𝑙∈𝐿 𝑤𝑙,𝑑𝑖𝑣
𝑏𝑜𝑥 ≥ 𝐷(𝑡) and

∑

𝑠∈𝑆 𝑤𝑠,𝑑𝑖𝑣
𝑏𝑜𝑥 ≤ −𝐷(𝑡)

0, otherwise.

(10)

Thus, assets with heavier weights gain more than those with less
weight,

𝑤̃𝑖𝑛𝑣 = 𝑤𝑖𝑛𝑣 + 𝑤𝑖𝑛𝑣
∑

𝑙∈𝐿 𝑤𝑖𝑛𝑣 ×𝑤𝑒𝑥. (11)

It is not difficult to verify that 𝐰̃𝑙,𝑑𝑖𝑣𝟏 + 𝐰̃𝑠,𝑑𝑖𝑣𝟏 + 𝐰̃𝑖𝑛𝑣𝟏 = 1. Here the
uperscript ⋅𝑖𝑛𝑣 stands for the asset to invest. Aside from scaling the
roportion of all non-divesting assets, other weight allocation methods
an also be applied in Step 3.

.2.2. Measuring portfolio performance and stability
We gauge the performance of each portfolio by constructing a se-

uence of risk profiles that were taken progressively using the historical
aily performance of each portfolio strategy measured over the last 𝜏
ays, where we set 𝜏 = 100. The risk profiles comprise 10 risk and
erformance measures, each calculated on a daily basis and consisting
f features that characterize the dynamic risk profile of each portfolio.

17 This is a multi-period divestment problem because the divestment
schedule, 𝐷(𝑡), depends on time.

18 The approximation method has three distinct advantages when used in
practical applications for large portfolios over many portfolio rebalancing
periods. Its performance is computationally far superior in compute time
compared to optimal solvers, especially when large portfolios of 100’s of assets
are considered. Secondly, it is very accurate in the approximation performance
when compared to exact solvers. Thirdly, it is very simple to implement
in practice, making it more reliable and stable than equivalent solvers that
attempt exact solutions. A detailed analysis of the performance is provided in
Appendix C.

https://www.ecfr.gov/current/title-12/chapter-II/subchapter-A/part-220
https://www.ecfr.gov/current/title-12/chapter-II/subchapter-A/part-220
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These features are calculated at the portfolio level and correspond to
the following set of daily values: expected return 𝐸𝑅𝑡,𝜏 ; cumulative
expected return 𝐶𝐸𝑅𝑡,𝜏 ; standard deviation of returns 𝑆𝐷𝑡,𝜏 ; Sharpe ra-
io 𝑆𝑅𝑡,𝜏 ; Maximum Draw-Down 𝑀𝐷𝐷𝑡,𝜏 ; Value-at-Risk 𝑉 𝑎𝑅𝑡,𝜏 ; Omega

ratio 𝑂𝑅𝑡,𝜏 ; Sortino ratio 𝑆𝑜𝑟𝑅𝑡,𝜏 ; Beta ratio 𝐵𝑅𝑡,𝜏 ; and Treynor ratio
𝑇𝑅𝑡,𝜏 , all of which are detailed in Appendix D. In this notation, we use
the first sub-index to indicate the date of calculation in days from the
initial time of study and 𝜏 the lookback window from day 𝑡 used to
alculate this performance or risk measure, which is calculated during
he interval [𝑡 − 𝜏, 𝑡]. To assess the divestment’s effect on the stability
f the behavior of the given portfolios, we apply the Clustering Large
pplications (CLARA) algorithm to the time series of the risk pro-

iles (Kaufman and Rousseeuw, 1986). The technical and computational
etails are explained in Appendix E.

.3. Case studies: Methods & data descriptions

We analyze three different types of asset universes in order to carry
comprehensive study of divestment practice. These included: a broad

ector US market based on the S&P 500 assets, a specialized collection
f global portfolios representing various thematic ETFs, and, the FTSE
00 universe of assets representing the UK equity market. This allowed
s to undertake studies that have international significance and for
ifferent investor types.

We construct portfolios using the financial time series of the con-
tituent companies of the S&P 500 index and collections of assets
creened according to the selection criteria of various themed ETFs and
he FTSE 100. The sample period for our empirical studies extends from
anuary 1, 2010, to November 1, 2020. This range was intentionally
elected to avoid required adjustments to account for the extremities of
he 2008 Financial Crisis, the Covid-19 outbreak, and the global energy
risis.19 The S&P 500 Composite index and the FTSE 100 are chosen as
he investible universes. In the case of the S&P 500, it is the broadest
ndex to reflect the overall US equity universe with approximately
5% of all market capitalization, with FTSE 100 representing a similar
eight in the UK. Furthermore, each asset universe represents a broad

pectrum of companies within sectors and industries making up the
conomy in the US and the UK. Missing prices are linearly interpolated.
he prices are transformed into a relative return, 𝑅𝑡 = 𝑃𝑡∕𝑃𝑡−1 − 1,
here 𝑅𝑡 is a relative return at time 𝑡 and 𝑃𝑡 is a close price at

ime 𝑡, to achieve stationarity. Portfolios are rebalanced monthly, and
hen the portfolios are rebalanced, the corresponding asset weights
re also recalculated based on the three-stage procedure outlined in
ection 2.2.1.20

.3.1. S&P 500 broad market study: selection of divestment and reinvest-
ent sets of assets

In the first case study, we consider the assets in the S&P 500 index
nd assess the impact of divesting high-carbon assets under the two
ivestment set scenarios. The first divestment asset set excludes the
igh-carbon companies listed commonly in the CU200 and S&P 500 (as
isted on September 30, 2021), which include 23 stocks and represent
.904% of the portfolio’s assets. Most divestment assets belong to the
nergy sector (20 stocks out of 23), and most assets in the energy
ector in the S&P 500 are also listed in CU200 (20 stocks out of 21).

19 To mitigate the effects of the global energy crisis, which commenced in
ecember 2020, and the Covid-19 outbreak, we stop the sample period in
ovember 2020. Our divestment process, specifically the full divestiture from
arbon assets across all portfolios was completed prior to the onset of the
andemic, namely, in January 2020. Even though we could have controlled
or the associated effects, we decided to not further complicate the analysis
y considering additional controls/adjustments.
20 Aiming at a market timing evaluation, Rahat and Nguyen (2022) consider
ortfolio rebalancing based on changes in sustainability factors and find that
6

his portfolio construction benefits the market timing of green portfolios.
The CU200, provided by FFI Solutions (https://fossilfreefunds.org/),
identifies the top 100 publicly traded coal reserves and top 100 publicly
traded oil and gas reserves in the world, sorted by the potential carbon
emissions content of their claimed reserves. Most of the common assets
between CU200 and S&P 500 belong to the energy sector, which
represents direct producers and is the sector with the second-highest
carbon intensity (Table 1).

The utilities sector has the highest carbon intensity. Unlike com-
panies in the energy sector, companies in the utilities sector may not
be primary producers of fossil fuels. However, many industries in the
utilities sector, such as transportation, also release carbon from their
secondary consumption of fossil fuels as part of their business activity.
Therefore, in the second divestment asset set scenario, the list of assets
considered for divestment includes all assets in the energy and utilities
sectors of the S&P 500, with the proportion of the divestable asset
to the total number of assets (in the S&P 500) given by 9.879% (49
stocks out of 496).21 The daily historical close price of the stocks
was retrieved from the Bloomberg database, and the amount of direct
carbon emission of the companies in the S&P 500 was retrieved from
the Refinitiv Datastream database.

The S&P 500 index consisted of 504 stocks in 2020, and we fix
the list of the assets over the 10-year study period. For practicality,
some companies with less than one year of available historical data
and the subsidiaries with high correlation, such as Google (GOOGL
and GOOG from Alphabet), are excluded from the analysis, leaving 496
assets remaining.22

2.3.2. Global markets ishares ETFs: selection of divestment and reinvest-
ment sets of assets

The meteoric rise of ETFs is a recurrent topic in financial studies
of passive versus active wealth management; see discussion in Deville
(2008). Most supporters of low-cost index funds have welcomed these
investment vehicles that typically have simple portfolios constructed
around a common theme, sometimes called thematic investing, which
includes: classical index tracking (total market, mega-cap, large-cap,
mid-cap, and small-cap collections fo assets), sector index tracking
(health care, industrials, etc.) all the way through to more specialized
themes such as algorithmic (momentum, low volatility, covered call
hybrids of equities and derivatives, leveraged) and specific themes such
as (energy, green energy, solar, wind, robotics, automation, blockchain,
agricultural commodities, metals, real-estate REITS, etc.). Hence, we
see that typically, ETFs are established to target specific investment
objectives within a selected theme, these may include passive or active
management styles that seek to track for instance index volatility or
obtaining a high dividend. Moreover, ETF managers need to follow
more stringent regulations than those for a standard index fund.

Thus, to gauge the effect that the divestment practice may have
on this important component of the wealth management industry, we
assess the impact of certain divestment strategies on the risk profiles
and performance of various selected ETFs from a large ETF provider
known as iShares. iShares is a group of ETFs provided by BlackRock,
which purchased the name and company from Barclays in 2009. To
date, iShares has managed more than 900 ETFs. We select the largest
ETFs that have net assets exceeding $100 billion. We also select ETFs
according to the proportion of carbon assets in their portfolio holdings
to assess the impact of divestment on the risk profiles and performance

21 This divestment selection makes our study comparable to the studies
of Trinks et al. (2018), Yook and Hooke (2020), and Plantinga and Scholtens
(2021).

22 We assume a static asset universe, where divested capital is reinvested in
existing investable assets. In practice, portfolios usually consist of top-quality
assets selected for liquidity and return stability. Rebalancing typically adjusts
the investment weights of these assets, maintaining the portfolio’s risk/return
profile. Exceptions may arise if an asset underperforms due to unforeseen

events.

https://fossilfreefunds.org/
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Table 1
Average environmental scores and amount of carbon emission of some companies in S&P 500 separated by Global Industry
Classification Standard (GICS) sector ranked by direct CO2 emissions, where 𝑛𝑐𝑜2 is the number of the assets available for
calculating the amount of carbon emissions, and 𝑁𝑐𝑜2 is the number of whole assets in the sector.

Rank GICS.Sector E score CO2 Emissions (Ton) CO2 Emissions (%) 𝑛𝑐𝑜2 𝑁𝑐𝑜2

1 Utilities 14.90 29,884,383.57 46.06 21 28
2 Energy 15.64 16,488,511.67 25.41 15 21
3 Materials 13.08 6,951,694.12 10.71 24 28
4 Industrials 7.38 3,572,568.61 5.51 45 74
5 Communication Services 1.19 2,566,298.00 3.96 13 24
6 Consumer Staples 7.42 2,539,331.17 3.91 24 30
7 Consumer Discretionary 4.00 1,384,162.29 2.13 41 63
8 Information Technology 3.45 618,047.76 0.95 48 73
9 Real Estate 3.55 390,973.88 0.60 24 29

10 Health Care 1.49 337,598.75 0.52 39 64
11 Financials 1.56 147,601.10 0.23 38 64

Note: We cannot obtain the amount of carbon emissions from all companies in S&P 500. The coverage ratio can be calculated
by 𝑛𝑐𝑜2∕𝑁𝑐𝑜2.
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f the portfolios as the proportion of the divested assets increases. A
escription of the five selected ETFs follows.

The iShares MSCI United Kingdom ETF (EWU) replicates the
investment performance of the FTSE Index, with 11% of the holdings on
fossil-fuel stocks from the total of 89 assets and the relative carbon foot-
print (RCF) of 97 emissions per unit of investment (tonnes CO2/$1M

SD invested).
The iShares Global Clean Energy ETF (ICLN) mirrors the invest-

ment performance of an index made up of global clean energy equities,
called the S&P Global Clean Energy Index, with 19% of the holdings
in fossil-fuel stocks from the total of 84 assets and the RCF of 279
emissions per unit of investment (tonnes CO2/$1M USD invested).

The iShares Select Dividend ETF (DVY) replicates the investment
performance of an index of relatively high-dividend-paying U.S. stocks,
called the Dow Jones U.S. Select Dividend IndexSM, with 32% of the
holdings on fossil-fuel stocks from the total of 102 assets and the RCF of
434 emissions per unit of investment (tonnes CO2/$1M USD invested).

The iShares U.S. Infrastructure ETF (IFRA) replicates the invest-
ent performance of an index comprising of stocks of U.S. corporations
ith infrastructure exposure, called the NYSE FactSet U.S. Infrastruc-

ure Index, and that may benefit from an expansion in domestic infras-
ructure activity. It holds 37% in fossil-fuel stocks from the total of 152
ssets with the RCF of 832 emissions per unit of investment (tonnes
O2/$1M USD invested).

The iShares Global Infrastructure ETF (IGF) replicates the perfor-
ance of an infrastructure index comprising developed market shares,

alled the S&P Global Infrastructure Index, with 48% of the holdings
n fossil-fuel stocks from the total of 77 assets and the RCF of 534
missions per unit of investment (tonnes CO2/$1M USD invested).

In this second case study, the divestment set is again based on
he CU200, the oil/gas industry, the coal industry, and the carbon-
econd consumer in the scope 1 and 2 emissions. Additional data are
ollected for the ETF case study, including the RCF and the num-
er of fossil fuel assets, which were each compiled from the Fossil
ree Fund.23 The absolute greenhouse gas footprint of a portfolio is
easured in tons of carbon dioxide equivalents (tCO2e). Based on

he ‘‘ownership principle’’, this metric calculates the total annualized
reenhouse gas emissions for which an equity portfolio is accountable.
his is accomplished by adding up the proportionate carbon emissions
f the portfolio’s companies based on the ownership stake of the
nvestor. Furthermore, the cross-section data of the equity ETFs, such
s holdings, Net Expense Ratios (NERs), Net Assets Values, Market
ypes, TD Returns, MSCI ESG Quality Scores, and 2-month Trailing
ield (dividends), are obtained from the iShares fact sheet (https://
ww.ishares.com). To simplify the analysis, all of the assets universe,
ivestment assets, and cross-sectional data are fixed according to the
ate that the data are retrieved is September 30, 2021.

23 See https://fossilfreefunds.org/.
7
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2.3.3. FTSE 100 broad market study: selection of divestment and reinvest-
ment sets of assets

In the third case study, we consider the assets in the UK FTSE
100 index and assess the impact of divesting practice based on ESG
rankings.

The asset universe comprises all FTSE 100 assets from which their
ESG scores can be obtained (77 of 100 assets). The ESG score ranges
from 0 to 100, with high scores suggesting that companies are man-
aging ESG risks well compared to peers. Four scenarios are considered
where the selection of corporations for divestment are made based on
removing those with the lowest environmental, social, governance, and
overall ESG scores over the investment horizon. The portfolios with
divestable assets may include 10%, 20%, 30%, 40%, 50%, 60%, and
70% of corporations with the lowest environmental, social, governance
and overall ESG scores. The divestment processes on divesting on AEW
and GMV are long-only and optimized-based portfolios with monthly
rebalancing. The linear divestment schedules with 𝑐 = 0.91 and 𝑚 =
0.0075, and 𝑐 = 1.3 and 𝑚 = −0.0108 are applied for the AEW
nd GMV. The simulation focuses on the environmental score, as it is
onsidered an indirect indicator of carbon emissions.

Overall, this study achieves two additional objectives not covered
y the first two case studies on the S&P 500 and the ETF case studies.
t explores the role of ESG in divestment practice and studies the role
f divestment concentration and loss of diversity in portfolios due to
ivestment asset screening based on popular ratings, such as ESG. This
an negatively impact the risk/return of the portfolio, due to reduced
iversification, and reduce the overall rating of the subsequent portfo-
ios’ ESG score. This highlights the importance of careful consideration
y investment managers when undertaking the screening process re-
uired to select the divestible assets, as there are often non-trivial
rade-offs.

. Carbon divestment from assets in the S&P 500

We use the assets in the S&P 500 to construct five types of portfolio
trategies (see the five core portfolio allocation strategies presented in
ection 2.2, namely, PEW, AEW, GMV, MS, and PC) and consider two
ivestment asset set scenarios with various divestment schedules. We
un three levels of divestment schedules, slow, fast and instantaneous
ivestment (see Eqs. (1), (2) and (3), respectively) from January 1,
010 to January 1, 2020 (120 months). In each case, we utilize the
hree-stage method of divestment optimal portfolio strategy outlined
reviously on the time series of the returns of the assets in S&P 500
etailed in Section 2.2. To comprehensively examine the effects of
he rate of divestment on investors’ behavior, we assess the impact of
he rate of divestment based on four attributes: dynamics of portfolio
eight during divestment, stability of the portfolios’ risk profile over

ime, risk/return performance, and carbon reduction of the divested

https://www.ishares.com
https://www.ishares.com
https://www.ishares.com
https://fossilfreefunds.org/
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Fig. 2. Time series of the sum of the fossil fuel weights when divesting from CU200 (left panels) and the energy and utilities sectors (right panels) with benchmark (no divestment),
fast and slow divestment rates for the five core portfolios: AEW, GMV, MS and PC portfolios. Note that PEW and the instantaneous divestment rate are not included in the plot
since the weight does not change over time, and the weight is zero at the beginning.
portfolios. To this end, we investigate the following questions: How
does the rate of divestment/divestment strategy affect the stability of
portfolio weights? What is the impact of divestment on the relative per-
formance and stability of risk/return profiles overtime? Which sectors
benefit from the divestment of CU200 or the energy and utility sectors
in terms of reinvestment value? How efficient does divestment strategy
impact on reducing the portfolio carbon footprint? What is the impact
of divestment on diversification and correlation structure?
8

3.1. Dynamics of portfolio weight during divestment

We begin with a discussion on the behavior of portfolio weights
for long and short net positions for each portfolio strategy for various
divestment set scenarios and rates of divestment. The bar plots in Fig. 2
illustrate the sum of the portfolio weights of the assets to divest in
each divestment set scenario: CU200 (left) and energy and utilities
sectors (right) over time with the three levels of divestment schedule
rates for the five core portfolios. If the investment sum of the assets
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in the divestment list exceeds the bounds, 𝐷(𝑡), the excess weight
will be reallocated to the other assets in the given portfolio under
consideration. The dashed vertical line in each plot is the terminal time
when the weight of the assets to divest hits zero.

Several observations can be made. First, the decreasing trend of
the total weight of divesting assets bounded by the divestment sched-
ules can be seen clearly in all portfolios. In the short term, a large
withdrawal of capital from the divesting assets occurs in the fast
divestment, while it gradually occurs in the slow divestment.24 The
fast and instantaneous divestment may result in a sudden change or
shock in the risk profiles of the portfolios under consideration in a short
period, whereas the slow divestment may cause less impact on the risk
profiles as it is dissipated over a longer time span.

Second, the short positions under slow divestment exhibit greater
volatility over time for a range of portfolio strategies, including the
GMV, MS, and PC portfolios, and both the divestment set scenarios,
namely, the CU200 and energy and utilities sectors.25 The rapid divest-
ment scenario displays far less volatility in the short positions compared
to the slow divestment scenario for both GMV and MS portfolios, an
outcome that is consistent in both divestment set scenarios. This is
relevant to consider as such volatility in asset short positions may
significantly impact the funding rate of the portfolio, which would
subsequently have a carry-on effect on management structure fees. A
portfolio with variability in the short positions would potentially attract
higher management fees. From this analysis, if one is indifferent to all
other attributes, a rapid divestment would be the preferred option.

Third, the PC portfolio strategy results demonstrate some interesting
findings in divestment of energy and utilities sectors. If one compares
the non-divestment PC portfolio (no divestment is considered), a sig-
nificant variability over time is evident in the asset positions reaching
levels of −0.289, with more often and greater magnitude change com-
pared to other portfolio strategies that changing reach maximum levels
of −0.050, see Fig. 2. If one then adds divestment into the PC portfolio
strategy, with either divestment set scenario, it is observed that for all
rates of divestment, the addition of divestment practice has a tendency
to both reduce significantly and stabilize the volatility of short-position
asset weights. Thus, for the PC portfolio strategies, divestment provides
stability to the short-position dynamics of portfolio weights, and it
typically proves to be easier to manage risk. We find that the PC
portfolio strategy without divestment is not favorable from risk/return
and portfolio stability perspectives. However, this reverses completely
when divestment is incorporated; the PC portfolio with divestment is
one of the best-performing portfolio strategies. This is because the PC
portfolio does not produce significantly sized short positions, and so
lower leverage and portfolio management would be required, which
would subsequently attract lower management fees.

3.2. Stability of portfolio risk profiles over multi-period divestment horizons

We are now interested in understanding how the stability of the
portfolio performance is affected over time by various divestment prac-
tices. To assess portfolio stability, we adopt widely accepted benchmark
risk and performance measures of the wealth management industry.
The risk measures are assessed dynamically overtime on a daily ba-
sis, and each day they produce an observed feature vector {𝐸𝑅𝑡,𝜏 ,
𝐶𝐸𝑅𝑡,𝜏 , 𝑆𝐷𝑡,𝜏 , 𝑆𝑅𝑡,𝜏 , 𝑀𝐷𝐷𝑡,𝜏 , 𝑉 𝑎𝑅𝑡,𝜏 , 𝑂𝑅𝑡,𝜏 , 𝑆𝑜𝑟𝑅𝑡,𝜏 , 𝐵𝑅𝑡,𝜏 , 𝑇𝑅𝑡,𝜏}.
When such feature vectors are calculated daily over the study period,

24 All portfolio weights are similar in the long term (after January 1, 2020,
ashed line) for every divestment schedule owing to the exclusion of divesting
ssets from all portfolios.
25 For example, the total weight of carbon assets in the GMV portfolio
ith CU200 reaches −0.023 and −0.012, for slow and fast rates before
ecreasing to zero at the end of the divestment period in January 2021. In
ontrast, portfolios employing instantaneous divestment strategies start with
9

ero weight in carbon assets, eliminating the need for short positions.
a collection of observed portfolio risk features is produced that can be
studied to assess the stability of the risk performance of each of the
portfolio strategies and divestment practice combinations. This allows
us to accurately determine the role that divestment practices have on
portfolio stability over time. Furthermore, this analysis is performed
over each portfolio strategy as it is not at all obvious whether stability
in performance is more affected by the strategy type, divestment asset
set, or rate of divestment.

Given the collection of portfolio feature vectors observed over
time, we quantify stability using a class of statistical unsupervised
learning methods known in the domain of clustering methodology as
CLARA (Kaufman and Rousseeuw, 1986). We define portfolio stability
as consistency in the temporal characteristics of a given portfolio
strategy’s risk/return profile. This is quantified in our framework by
consistency in the clustering outcome in the observed risk/return
feature space of the portfolio over time. Such consistency in cluster
assignment quantifies a measure of homogeneity/stability in the ob-
served risk/return performance feature set for each portfolio type over
time.26 Therefore, we analyze the changes in cluster groupings over
time to provide a measure of the stability of the divested portfolios. We
display the results of this stability analysis as a collection of heatmaps
that demonstrate the sequential clustering results obtained over time
from the time series of the labels for the divestment sets of the CU200
and energy and utilities sectors as shown in Figs. 3 and 4, respectively.

We find that for investors who hold portfolios that constitute a
broad market exposure, comprised of assets from all sectors in the S&P
500, when CU200 divestment is introduced to their portfolio, most risk
profiles for a given portfolio strategy, irrespective of divestment rate,
remain stable and consistent throughout the divestment time horizon.
The feature sets summarizing the portfolio risk/return dynamic, where
multi-period divestment is performed, belong to the same cluster group-
ing through time. This is evident from the consistency of the label
within the group of portfolio types, separated by the solid black line in
the heatmap (benchmark, slow rate, fast rate, and instantaneous rate).
The clustering label of the heatmap plots rarely changes across time
as the returns change.27 However, the risk profiles obtained from fast
and instantaneous divestment schedules show more variation in cluster
labels from the baseline than those obtained from slow divestment,
especially for the PC portfolios.

This result is highly consequential as it demonstrates that divest-
ment rate does not tend to create portfolio instability in terms of
the risk/return profile of a given portfolio strategy over time when
one has diversification offered by portfolios with exposure to a broad
market set of investment assets, encompassing all sectors of the S&P
500. Furthermore, since the selection of a portfolio strategy type is
typically affected by the attributes of a given investor demographic,
this result indicates that divestment practice does not affect a particular
sub-investor category or demographic. To further elaborate on this,
consider the following investor sub-demographic partition given by age
stratification. One may expect that younger investors will naturally
select portfolio strategies based on capital growth potential with the
view to building a secure net worth in the future, and they would
therefore be willing to take on excess risk to achieve their financial
objectives compared to those closer to retirement age or in retirement.
This second investor demographic would be significantly more risk
averse, and their portfolio strategy objectives and construction would
reflect such risk aversion compared to those in younger demographics.
We demonstrate that when this type of investor demographic decom-
position is considered, there is no adverse selection or burden placed

26 To assess such stability, we determine whether clustering between all the
different combinations of portfolio strategies varies or remains consistent over
time.

27 For example, the max draw-down of the MS portfolios with fast and
instantaneous divestment schedules was categorized into a different group

from their benchmark and slow divestment in 2012.
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Fig. 3. Heatmap of the time series of the cluster labels for 18 portfolio types (including the five core portfolios with different divestment schedules — instantaneous, slow, and
fast) separated by the risk profiles of the portfolios containing the assets in S&P 500 with CU200 divestment between 2010 and 2020. The risk measures are expected return,
cumulative expected return, the standard deviation of returns, Sharpe ratio, Maximum Draw-Down (MDD), Value-at-Risk (VaR), Omega ratio, Sortino ratio (SR), Beta, and Treynor
ratio.
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Fig. 4. Heatmap of the time series of the cluster labels for 18 portfolio types (including the five core portfolios with different divestment schedules — instantaneous, slow, and
fast) separated by the risk profiles of the portfolios containing the assets in S&P 500 with the energy and utilities sectors divestment between 2010 and 2020. The risk measures
are expected return, cumulative expected return, the standard deviation of returns, Sharpe ratio, Maximum Draw-Down (MDD), Value-at-Risk (VaR), Omega ratio, Sortino ratio
(SR), Beta, and Treynor ratio. PEW is not included as it does not divest, and the instantaneous rate does not appear as the weight is zero at initiation.
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Fig. 5. Heatmap of time series of the cluster labels for 18 different portfolio types (including the five core portfolios with different divestment schedules — instantaneous, slow
and fast) with overall risk profiles of the portfolios containing the assets in S&P 500 with CU200 divestment (left) and with the energy and utilities sectors divestment (right)
between 2010 and 2020.
on any particular group. More precisely, there is no excess risk borne
by one investor demographic compared to another when it comes to
divestment practices. In each type of investment strategy that charac-
terizes a variety of risk profiles held by different investor demographics,
the effect on the stability of the investment portfolio strategy is not
materially impacted over time by the divestment practice, whether it
be fast or slow divestment. This should be understood purely from
financial risk and return perspective since the clustered feature set
focused on portfolio characteristics is based on these classical measures
of performance.

As one may expect, as the size of the set of divestable assets is
increased, such as when we consider divesting assets from both the
energy and utilities sectors in the S&P 500 (outlined in Section 2.3.1),
then a market effect of divestment on stability prevails. While most
portfolio strategy risk profiles remain consistent in the cluster grouping
they belong to — demonstrating the same cluster consistently over
time, a measurable separation between the clusters of the benchmark
and the slow, fast, and instantaneous divestment rates is apparent and
more frequent compared to the CU200 divestment. Passive investors
who are typically investing in non-active funds over long periods
and may be seeking low fund management fees or low churn and
trading costs — often in wealth management packages offered to retail
investors via banks and pension funds — may begin to experience
less portfolio risk/return stability compared to more actively managed
investment portfolios. This difference may reasonably imply that the
degree of portfolio diversification present in a given portfolio strategy
prior to any form of divestment strategy application will be a core
determinant of the resulting stability of the portfolio during a divest-
ment exercise. This is consistent with what is expected from standard
Markowitz modern portfolio theory.

To complete the assessment based on the stability and performance
of the divested portfolios, we also consider the aggregate performance
clustering generated by a combination of all risk profiles to control
for biases of risk profiles over time. Accordingly, we cluster the core
portfolios over time by considering all risk profiles as a collection of
features that are structured into a feature matrix over time to represent
each core portfolio in a particular year.28 Fig. 5 depicts the results of
this aggregate assessment that largely echo the findings just presented.

3.3. Risk/return performance of portfolio strategies over multi-period divest-
ment horizons

This section presents a risk/return performance assessment of di-
vested portfolios. The analysis is consistent with the portfolio stability

28 For example, the clustering generated by the PC core portfolio in 2012 is
obtained by first calculating all the daily risk profiles over a 100-day sliding
window for 2012 and then using all these as a feature matrix to cluster the
portfolios. Next, all risk profiles over this period are fed into the clustering
algorithm to determine the cluster grouping for a particular year.
12
analysis undertaken in Section 3.2. This would allow us to understand if
the stability analysis is consisted across all dimensions of performance
and risk analysis or is largely influenced by a few particular features.
This is important for investors to further refine their perspectives on
divestment approaches and the potential influence such investment
practices may have on core metrics regarding the performance of their
portfolios. Accordingly, we examine each component of the portfolio
performance risk/return feature vector used in the stability analysis,
given by {𝐸𝑅𝑡,𝜏 , 𝐶𝐸𝑅𝑡,𝜏 , 𝑆𝐷𝑡,𝜏 , 𝑆𝑅𝑡,𝜏 , 𝑀𝐷𝐷𝑡,𝜏 , 𝑉 𝑎𝑅𝑡,𝜏 , 𝑂𝑅𝑡,𝜏 , 𝑆𝑜𝑟𝑅𝑡,𝜏 ,
𝐵𝑅𝑡,𝜏 , 𝑇𝑅𝑡,𝜏}.

To assess the impact of the divestment on the portfolio’s risk profile,
we also calculated the average monthly risk profile for each portfo-
lio strategy combination of divestment set and divestment rate over
the study period from 2010 to 2020. For each portfolio strategy, we
consider as a reference benchmark comparison the given portfolio
strategy with no divestment. Then for each of these reference portfolio
sets of averaged performance results, we also present the results of
the same strategy, including the divestment for each divestment asset
set and divestment rate. These divestment results are presented as a
relative change compared to the given portfolio reference. All results
are averaged over the study time period, and the standard deviation
of these results is also reported. We measure relative performance to
the benchmark for each portfolio strategy based on a relative change
calculated as follows:

𝑅𝐶𝑝 =
𝑅𝑃 𝑝

𝑑𝑖𝑣 − 𝑅𝑃 𝑝
𝑛𝑜𝑛−𝑑𝑖𝑣

𝑅𝑃 𝑝
𝑛𝑜𝑛−𝑑𝑖𝑣

, (12)

where 𝑅𝐶𝑝 is the relative change, 𝑅𝑃 𝑝
𝑑𝑖𝑣 is the risk profile of the

divested portfolio, and 𝑅𝑃 𝑝
𝑛𝑜𝑛−𝑑𝑖𝑣 is the risk profile of the non-divested

portfolio 𝑝. The results of this S&P 500 divestment analysis using two
divestment sets, namely, CU200 and energy and utilities sectors, are
shown in Table 2 and Table 3, respectively.

This decomposed analysis provides further insight into the influ-
ence of divestment on particular measures of risk/return performance.
A measurable difference can be seen in certain risk measures when
assessing a strategy with and without divestment. Even though this
difference is not significant in the overall stability assessment of the
portfolios, it is meaningful in practice to gauge where such deviations in
the risk profiles of a strategy may occur due specifically to divestment.
Regarding the effects on the relative changes in returns, we find that,
across all portfolio strategies, the proposed divestment strategies gener-
ally produce portfolios with performance that outperform the average
returns of an equivalent non-divestment strategy but these results are
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Table 2
Average monthly risk profiles from January 1, 2010, to November 1, 2020, of the portfolios containing the assets in S&P 500 with the CU200 divestment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.060 1.248 0.919 0.124 −2.051 −1.322 1.683 0.188 0.961 0.072
(±0.196) (±4.094) (±0.683) (±0.218) (±0.501) (±1.157) (±1.117) (±0.329) (±0.109) (±0.214)

𝛥 Instant 0.037 0.038 −0.009∗ 0.033 0.000 −0.012∗ 0.020 0.031 0.003 0.028
(±0.192) (±3.994) (±0.673) (±0.222) (±0.512) (±1.138) (±1.197) (±0.335) (±0.109) (±0.207)

AEW None 0.059 1.223 0.916 0.123 −2.058 −1.319 1.670 0.186 0.962 0.069
(±0.197) (±4.115) (±0.680) (±0.218) (±0.508) (±1.153) (±1.100) (±0.328) (±0.108) (±0.213)

𝛥 Slow 0.029 0.029 −0.006∗ 0.024 −0.002 −0.009∗ 0.014 0.023 0.003 0.019
(±0.192) (±3.999) (±0.669) (±0.220) (±0.513) (±1.138) (±1.143) (±0.332) (±0.105) (±0.205)

𝛥 Fast 0.035 0.036 −0.009∗ 0.032 −0.001 −0.013∗ 0.018 0.028 0.003 0.027
(±0.191) (±3.987) (±0.668) (±0.222) (±0.516) (±1.134) (±1.166) (±0.333) (±0.106) (±0.204)

𝛥 Instant 0.036 0.037 −0.010∗ 0.033 −0.000 −0.013∗ 0.018 0.029 0.003 0.029
(±0.191) (±3.984) (±0.668) (±0.222) (±0.517) (±1.133) (±1.168) (±0.333) (±0.107) (±0.204)

GMV None 0.055 1.158 0.739 0.133 −2.112 −1.064 1.735 0.198 1.156 0.052
(±0.159) (±3.285) (±0.573) (±0.227) (±0.607) (±0.983) (±1.319) (±0.335) (±0.143) (±0.141)

𝛥 Slow 0.032 0.033 −0.006∗ 0.022 −0.000 −0.009∗ 0.014 0.022 −0.004 0.047
(±0.156) (±3.228) (±0.564) (±0.229) (±0.623) (±0.968) (±1.389) (±0.339) (±0.154) (±0.140)

𝛥 Fast 0.030 0.031 −0.006∗ 0.020 −0.001 −0.010∗ 0.013 0.019 −0.005 0.057
(±0.156) (±3.224) (±0.563) (±0.229) (±0.622) (±0.966) (±1.399) (±0.339) (±0.158) (±0.141)

𝛥 Instant 0.033 0.033 −0.007∗ 0.020 −0.001 −0.012∗ 0.013 0.019 −0.004 0.060
(±0.155) (±3.215) (±0.563) (±0.229) (±0.622) (±0.965) (±1.397) (±0.338) (±0.159) (±0.140)

MS None 0.064 1.332 0.901 0.123 −2.069 −1.290 1.651 0.184 0.949 0.074
(±0.183) (±3.809) (±0.665) (±0.212) (±0.555) (±1.111) (±1.072) (±0.316) (±0.111) (±0.200)

𝛥 Slow 0.006 0.006 −0.001 0.009 −0.001 −0.002 0.007 0.008 −0.003 0.003
(±0.180) (±3.744) (±0.660) (±0.213) (±0.555) (±1.104) (±1.107) (±0.318) (±0.115) (±0.195)

𝛥 Fast 0.007 0.008 −0.003 0.013 0.000 −0.005 0.013 0.016 −0.004 0.006
(±0.180) (±3.737) (±0.659) (±0.214) (±0.558) (±1.102) (±1.144) (±0.322) (±0.117) (±0.194)

𝛥 Instant 0.004 0.005 −0.004∗ 0.010 0.001 −0.005 0.012 0.014 −0.003 0.004
(±0.179) (±3.733) (±0.659) (±0.214) (±0.560) (±1.101) (±1.139) (±0.322) (±0.117) (±0.194)

PC None 0.072 1.498 1.178 0.114 −2.050 −1.677 1.613 0.172 0.733 0.148
(±0.254) (±5.315) (±0.824) (±0.214) (±0.496) (±1.360) (±1.038) (±0.319) (±0.159) (±0.471)

𝛥 Slow 0.047 0.048 −0.007∗ 0.034 −0.004 −0.011 0.014 0.037∗ 0.008∗ 0.051
(±0.245) (±5.110) (±0.813) (±0.215) (±0.501) (±1.337) (±1.058) (±0.322) (±0.161) (±0.477)

𝛥 Fast 0.057 0.058 −0.009∗ 0.045 −0.003 −0.014∗ 0.020 0.048∗ 0.006 0.064
(±0.245) (±5.103) (±0.812) (±0.217) (±0.503) (±1.335) (±1.074) (±0.325) (±0.162) (±0.477)

𝛥 Instant 0.059 0.060 −0.009∗ 0.047 −0.002 −0.014∗ 0.021 0.049 0.006 0.067
(±0.245) (±5.104) (±0.812) (±0.218) (±0.505) (±1.334) (±1.075) (±0.325) (±0.162) (±0.477)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the monthly average risk profile is statistically different from the
non-divestment benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile.
r
w

ypically29not statistically significant in mean. This level of relative
change is ordered by the rate of divestment.

Furthermore, across all portfolio strategies for the CU200 divest-
ment set, the only portfolio risk features that are noticeably influenced
by divestment are the standard deviation and VaR.30 This difference
is most pronounced when comparing the non-divestment portfolio and
instantaneous divestment portfolio in each portfolio strategy type. With
regard to the energy and utilities sectors divestment set, when compar-
ing non-divestment and instantaneous divestment strategies, we find
that portfolios’ standard deviation, VaR, Beta, and Treynor display a
statistically significant difference for each strategy type. These findings
confirm the importance of the premise of the current study, that no
matter the investor demographic or profile there is a relevance to
considering the divestment rate as well as the divestment asset sets.

In addition, an assessment of each portfolio’s tracking performance.31

for the S&P 500 broad market portfolios relative to the index is
performed. We find that the best tracking performances are obtained
from the slow divestment across all portfolio strategy types, while

29 The only exceptions with statistically significant difference in the mean
f returns, at 95% confidence, include: the PEW portfolio with instantaneous
ivestment shows a 5.9% difference in the energy sector, and the GMV
ortfolio with instantaneous divestment shows a 7.2% difference in the utilities
ector.
30 There is some statistical significance indicating a change in performance
etween the non-divestment and divestment portfolios.
31
13

The tracking performance can be evaluated by Eq. (12).
the worst tracking performance is obtained from the fast divestment
practice, comparing based on the minimum and maximum change
across all risk measures, as indicated by green blocks and red blocks,
respectively, in Tables 2 and 3. This result has implications for fund
managers who recognize a tension between performance fees is often
linked to tracking error performance and the desire of investors to
divest as soon as possible to meet ESG reporting expectations. This
could be particularly important in the ETF fund management context
and thus is explored further next in the second case study in greater
detail.

3.4. Carbon reduction efficiency

Would divestment from CU200 and the energy and utilities sectors
benefit other sectors in terms of reinvestment value and reduction of
the carbon footprint of portfolios? We address these questions next.

3.4.1. Assessment of sectors which benefit from divestment
S&P 500 can be cataloged into 11 sectors according to the GICS

characterization.32 We assume that the assets in the same sectors have
similar emission profiles because of their activity in production or
common product types. To assess the benefit that the attained sectors
eceived from divestment and reinvestment, we introduce an average
eight for reinvestment/divestment for each sector as an indicator.

32 See Table 1 for the full list of the GICS sectors.
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Table 3
Average monthly risk profiles from January 1, 2010, to November 1, 2020, of the portfolios containing the assets in S&P 500 with the energy and utilities sectors
divestment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.060 1.248 0.919 0.124 −2.051 −1.322 1.683 0.188 0.961 0.072
(±0.196) (±4.094) (±0.683) (±0.218) (±0.501) (±1.157) (±1.117) (±0.329) (±0.109) (±0.214)

𝛥 Instant 0.059∗ 0.058∗ 0.017∗ 0.030 0.000 0.016∗ 0.029 0.033 −0.028∗ 0.091∗

(±0.199) (±4.138) (±0.676) (±0.224) (±0.513) (±1.152) (±1.271) (±0.340) (±0.110) (±0.220)

AEW None 0.059 1.223 0.916 0.123 −2.058 −1.319 1.670 0.186 0.962 0.069
(±0.197) (±4.115) (±0.680) (±0.218) (±0.508) (±1.153) (±1.100) (±0.328) (±0.108) (±0.213)

𝛥 Slow 0.037 0.037 0.008∗ 0.019 −0.000 0.006 0.015 0.020 −0.013∗ 0.049
(±0.195) (±4.066) (±0.670) (±0.220) (±0.511) (±1.145) (±1.162) (±0.333) (±0.108) (±0.211)

𝛥 Fast 0.055 0.055 0.016∗ 0.029 0.000 0.014∗ 0.026 0.028 −0.025∗ 0.085∗

(±0.197) (±4.105) (±0.671) (±0.223) (±0.515) (±1.145) (±1.230) (±0.337) (±0.110) (±0.215)
𝛥 Instant 0.061 0.060 0.017∗ 0.031 −0.000 0.016∗ 0.028 0.030 −0.027 0.093∗

(±0.198) (±4.116) (±0.671) (±0.223) (±0.516) (±1.146) (±1.235) (±0.338) (±0.109) (±0.216)

GMV None 0.055 1.158 0.739 0.133 −2.112 −1.064 1.735 0.198 1.156 0.052
(±0.159) (±3.285) (±0.573) (±0.227) (±0.607) (±0.983) (±1.319) (±0.335) (±0.143) (±0.141)

𝛥 Slow 0.038 0.037 0.015∗ 0.017 0.001 0.022∗ 0.010 0.018 −0.018∗ 0.062∗

(±0.160) (±3.322) (±0.562) (±0.229) (±0.583) (±0.985) (±1.345) (±0.339) (±0.144) (±0.144)
𝛥 Fast 0.064 0.061 0.025∗ 0.035 0.001 0.031∗ 0.035 0.040 −0.032∗ 0.129∗

(±0.163) (±3.372) (±0.563) (±0.234) (±0.588) (±0.989) (±1.508) (±0.349) (±0.151) (±0.150)
𝛥 Instant 0.072∗ 0.069 0.026∗ 0.037 0.000 0.031∗ 0.034 0.042 −0.033∗ 0.140∗

(±0.163) (±3.371) (±0.563) (±0.233) (±0.586) (±0.989) (±1.500) (±0.348) (±0.152) (±0.150)

MS None 0.064 1.332 0.901 0.123 −2.069 −1.290 1.651 0.184 0.949 0.074
(±0.183) (±3.809) (±0.665) (±0.212) (±0.555) (±1.111) (±1.072) (±0.316) (±0.111) (±0.200)

𝛥 Slow 0.011 0.011 0.012∗ −0.004 −0.003 0.016∗ −0.002 −0.003 −0.016∗ 0.028
(±0.183) (±3.802) (±0.659) (±0.212) (±0.525) (±1.104) (±1.067) (±0.317) (±0.111) (±0.200)

𝛥 Fast 0.034 0.034 0.027∗ 0.010 0.001 0.028∗ 0.014 0.014 −0.034∗ 0.072∗

(±0.186) (±3.878) (±0.662) (±0.216) (±0.531) (±1.107) (±1.135) (±0.325) (±0.112) (±0.207)
𝛥 Instant 0.035 0.035 0.028 0.009 0.002 0.029∗ 0.014 0.014 −0.034 0.075∗

(±0.187) (±3.885) (±0.663) (±0.216) (±0.533) (±1.108) (±1.138) (±0.325) (±0.112) (±0.207)

PC None 0.071 1.479 1.171 0.114 −2.050 −1.668 1.614 0.172 0.747 0.146
(±0.253) (±5.293) (±0.827) (±0.214) (±0.496) (±1.363) (±1.040) (±0.319) (±0.202) (±0.471)

𝛥 Slow 0.050 0.052 −0.032∗ 0.053∗ −0.005 −0.036∗ 0.029 0.060∗ 0.034∗ −0.002
(±0.234) (±4.875) (±0.807) (±0.217) (±0.499) (±1.319) (±1.110) (±0.328) (±0.188) (±0.459)

𝛥 Fast 0.067 0.069 −0.032∗ 0.062 −0.003 −0.037∗ 0.036 0.069 0.029∗ 0.019
(±0.235) (±4.899) (±0.807) (±0.219) (±0.506) (±1.320) (±1.136) (±0.331) (±0.186) (±0.460)

𝛥 Instant 0.072 0.074 −0.030∗ 0.064 −0.003 −0.035∗ 0.039 0.071 0.027∗ 0.024
(±0.236) (±4.913) (±0.808) (±0.219) (±0.507) (±1.322) (±1.146) (±0.331) (±0.185) (±0.461)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment
benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile.
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Here benefit refers to the reinvest weights from the divestment capital
eallocation into other sectors. Let 𝑘 be a sector index from the set 𝐾

of the 11 GICS sectors; ℎ be a position index for ℎ ∈ {Long, Short}; 𝑝
be a non-benchmark portfolio index from the set 𝑃 of 13 portfolios;33

𝑡 be a time in a day for 𝑡 ∈ {1, 2,… , 𝑡𝑒𝑛𝑑}; |𝑇 | be the number of days
during the study period; 𝑖 is an asset’s index for 𝐼𝑘, where 𝐼𝑘 is a set of
assets 𝑖 in the sector 𝑘; and 𝑗 is an index of all assets in the universe of
S&P 500 where 𝑗 ∈ {1,… , 469}. The average reinvestment/divestment
weights are calculated by the difference between the benchmark and
divested portfolio, defined by

𝛥𝑗 =
1
|𝑇 |

∑

𝑡∈𝑇

(

𝑤𝑝
𝑗,𝑡 − 𝑤̃𝑝

𝑗,𝑡

)

for 𝑗 ∈ {1,… , 469}, (13)

where 𝑤̃𝑝
𝑗,𝑡 is a portfolio weight of the 𝑗-asset in the divested portfolio

of type 𝑝, and 𝑤𝑝
𝑗,𝑡 is the portfolio weight of the benchmark portfolio 𝑝,

with no divestment at time 𝑡. 𝛥𝑗 indicates a change of portfolio weight
after the divestment of the asset 𝑗. Next, we separate the 𝛥𝑗 according
to the sector, holding position, and portfolio types, 𝛥ℎ,𝑝

𝑖 . The average
reinvestment/divestment weight of each sector is defined by

𝑤̄ℎ,𝑝
𝑘 =

∑

𝑖∈𝐼𝑘

𝛥ℎ,𝑝
𝑖 for ℎ ∈ 𝐻, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾. (14)

33 The 13 portfolios include PEW Inst, AEW Slow, AEW Fast, AEW Inst, GMV
low, GVM Fast, GMV Inst, MS Slow, MS Fast, MS Inst, PC Slow, PC Fast, and
C Inst.
14
For the divested sector, 𝑤̄ℎ,𝑝
𝑘 is an average divestment weight with

sign that is opposite to the holding position. Otherwise, it represents
n average reinvestment weight with a similar sign to the holding
osition. We separate the average reinvestment/divestment weight by
he holding position to prevent the cancellation of the signs because
e divest the carbon assets separately for short and long positions.
ccordingly, the reinvestment/divestment weight of each sector, 𝑤̄ℎ,𝑝

𝑘 ,
is used to observe the average weight allocations to each sector from
divestment and reinvestment.

The numbers in the heatmaps in Figs. 6(a) and 6(b) represent the
average reinvestment/divestment weights of each sector (%) of core
portfolio types calculated by Eq. (14) for CU200 divestment and the
energy and utilities sectors divestment, respectively. Most assets listed
in CU200 belong to the energy sector, thus we use the energy sector as a
reference. The opposite sign to the holding position refers to the weight
from the divested sector. The numbers in the divested sector show the
excess weight from the divestment schedule, and in the non-divested
sector, the numbers show the allowed reinvesting weight. For example,
in the first row (PEW Inst) of the long position heatmap, we divest
the energy sector with the weight of 3.98%, then reinvested this with
the following weights: 0.06% in utilities, 0.06% in materials, 0.71%
in industrials, 0.22% in communication, 0.30% in staples, 0.59% in

discretionary, 0.71% in information, 0.28% in real estates, 0.60% in
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Fig. 6. The average reinvestment/divestment weights of each sector (%) of core portfolios types of the CU200 divestment (top panel) and the energy and utilities sectors divestment
(bottom panel).
health care, and 0.60% in financials.34 The sectors that benefit from
the divestment energy sector can be identified by the brightness of the
gradient color on the heatmap.

We find that (for most core portfolio types), Industrials, Informa-
tion Technology, Consumer Discretionary, Financials, and Health Care
are consistently the main sectors that benefit by divesting from the
energy and utilities sectors. This result is robust for both divestment
strategies considered in this study, with more pronounced effects when
divesting from the energy and utilities sectors, compared to divesting
from CU200. The rank is strongly correlated to the number of assets in
the sector, as shown in Table 1. We separate short and long positions
to prevent the sign cancellation in portfolio calculation, given that

34 Note that the sum of all divestment and reinvestment weights is not equal
to zero because of the average over time in Eq. (13), but it should approximate
to zero.
15
short selling can be considered an indirect support to carbon-intensive
companies. Another finding from the divested weights of the energy
sector is that a faster rate of divestment can eliminate more carbon
asset weights in the portfolios over time (see the last column of both
heatmaps in Fig. 6(a) and the second last column in Fig. 6(b)).

3.4.2. Assessment of carbon footprint efficiency
Beyond the top carbon-emitting sectors of energy and utilities,

other sectors from the S&P 500 index also directly emit carbon in the
process of producing their products or running their businesses. Table 1
presents the direct carbon emissions of each sector. In the proposed
divestment strategy, capital is diverted from divestment set assets to
other assets in the portfolio, based on the weight allocations of the
given portfolio strategies for each non-divestment asset. Accordingly,
we aim to assess how efficient or effective this strategy may be in
reducing the portfolio carbon footprint for each possible portfolio
strategy studied. For instance, is there any relationship between risk
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Table 4
The carbon divesting-reinvesting ratio in Eq. (15) for the energy sector (E), and the energy and utilities sectors (E&U) divestment of each portfolio. The dash in the short positions
refers to the absence of the short position.

PEW AEW GMV MS PC

Inst Slow Fast Inst Slow Fast Inst Slow Fast Inst Slow Fast Inst

(Long) E 0.117 0.119 0.119 0.119 0.229 0.262 0.274 0.195 0.234 0.259 0.152 0.146 0.142
(Short) E – – – – 0.917 0.339 0.260 0.800 0.407 0.309 – 33.333 25.000
(Long) E&U 0.070 0.070 0.070 0.070 0.089 0.098 0.100 0.093 0.101 0.103 0.144 0.119 0.115
(Short) E&U – – – – 0.300 0.125 0.109 0.185 0.113 0.102 0.014 0.013 0.013
aversion, as demonstrated through the selection of a particular portfolio
strategy, and the resulting portfolio carbon footprint after divestment
is performed?

Let 𝐾𝑑𝑖𝑣 denote the set of sectors selected to be divested from and
𝐾𝑖𝑛𝑣 to be the complement of this set, corresponding to the set of sectors
selected for investment. To evaluate the effectiveness of the divestment
strategy, we propose the CDR,35 which is defined as the ratio between
an estimated amount of the carbon generated from reinvested capital
in sectors contained in set 𝐾𝑖𝑛𝑣 obtained from the capital diverted from
divested assets in sectors 𝐾𝑑𝑖𝑣 calculated by

𝐶𝐷𝑅ℎ,𝑝 =

|

|

|

|

|

|

|

|

|

∑

𝑘∈𝐾𝑖𝑛𝑣

𝐶𝑘𝑤̄
ℎ,𝑝
𝑘

∑

𝑘∈𝐾𝑑𝑖𝑣

𝐶𝑘𝑤̄
ℎ,𝑝
𝑘

|

|

|

|

|

|

|

|

|

, for ℎ ∈ 𝐻 and 𝑝 ∈ 𝑃 , (15)

where 𝐶𝑘 is the amount of carbon emitted by sector 𝑘 from Table 1.36

he numerator of the CDR represents the portfolio-weighted average
mount of carbon reinvested in the non-divested sectors over time,
hile the denominator is the average amount of carbon in the divest-
ent sectors if their capital is not re-allocated to other sectors over

ime. Therefore, CDR represents the proportion of carbon generated by
he divestment strategy and the carbon generated by the sectors in a
ortfolio without carbon management. A successful divestment strategy
ould yield a CDR of less than one with an ideal of zero CDR for the
ost efficient optimal divestment strategy.

Table 4 displays the CDRs obtained by Eq. (15) for the two dif-
erent divestment sets given by the energy sector (CU200) and the
nergy and utilities sectors separated by the holding position for all
ivested portfolios. Most CDRs are smaller than one, which indicates
hat the amount of carbon generated by divested portfolios is smaller
han that of the portfolio strategy reference without divestment. The
esults of this analysis also clearly demonstrate that for the portfolio
trategies 𝐺𝑀𝑉 , 𝑀𝑆, and 𝑃𝐶, the slow divestment rate produces the
owest value of CDR over time. This interestingly indicates that slow
ivestment seems to be optimal, not only based on the risk/return
rofile of a portfolio but also with regard to the benefit of the carbon
eduction effect arising from reinvested capital being re-deployed to
ther industries or sectors not contained in the divestment list of assets.
his finding is consistent across both sets of divestment assets.

The best carbon reduction for long positions is reported for the
nstantaneous divestment in the PEW portfolio (generated only 11.7%
nd 7.0% for the energy sector and energy and utilities sectors divest-
ent, respectively), compared to its reference non-divestment equiva-

ent portfolio. Conversely, the worst reinvestment results are associated
ith the short positions of the PC portfolios, with a substantial increase

n carbon intensity. The high values of CDRs for the short-selling posi-
ions of PC portfolios with fast and instantaneous divesting suggest that
he short-selling positions of those portfolios tend to reinvest more into
arbon-intensive assets compared to their reference non-divestment
ortfolio. Indeed, the PC portfolios with fast and instantaneous di-
esting reduce carbon intensity in long positions but require more

35 Recall that CDR stands for carbon divesting-reinvesting ratio.
36 In this study, we use parameter 𝐶𝑘 that remains constant over time and
cknowledge that it is an approximation.
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investment in short positions. However, covering short-selling positions
can be considered as an indirect support to high-carbon companies as
it involves the purchase of the borrowed stock in order to return it to
the lender.37

Regarding carbon footprint reduction benefits, divesting from the
energy and utilities sectors is more efficient than divesting only from
the energy sector. The best-performing portfolios for both divestment
strategies are the basic portfolios: PEW and AEW, while the more
dynamically constructed PC portfolios (with energy sector divestment)
involving short positions tend to increase carbon intensity. Thus, to
fully appreciate carbon emission reduction benefits from divestment,
it is important to be mindful of the variability of the outcomes based
on the divestment assets set and reinvestment strategies.38

3.5. Impact of divestment practices on portfolio diversification and correla-
tion

The role of correlation between assets in a portfolio is critical to
understanding the degree of diversification present in a given portfolio.
Therefore, it is meaningful to assess the change in portfolio correlations
and diversification over time as divestment is applied for each of the
portfolio strategies considered. To understand conceptually why this
is relevant to divestment practice assessment, consider the following
perspective. In the energy sector, the carbon-intensive products sup-
plied by primary carbon producers, such as fossil fuel, oil, and gas
companies, subsequently become a direct input to the production of
products from companies in another sector, which may be considered
as secondary producers of carbon and not necessarily have direct
inclusion in a resulting divestment set. Let us consider for example
energy companies producing oil or gas and their customers such as
aviation or transportation companies. In this example, divesting from
primary carbon producers, such as oil and gas companies, but not from
transportation consumer companies, that directly utilize the products
of such divested companies, may adversely influence the risk measure
performance of a portfolio. For instance, draw-down may increase in a
portfolio that re-allocates capital significantly to any non-divestment
assets that have a significant positive correlation with the assets in
the divestment set. Thus, in a framework involving divestment and
reinvestment as proposed in this study, we identify the sectors that
one should consider to reinvest diverted capital in order to ensure
that the portfolio is not overly correlated to or exposed to adverse
price movements in divested assets. These instances may arise as a
consequence of increased divestment practices over time.

The results of this analysis are presented in correlation matrix
heatmaps shown in Fig. 7. These plots depict the linear correlation
between the returns of the assets in S&P 500 ordered by sector in
January 2010 (left) and November 2020 (right). A strong positive
correlation between and within sectors is evident in many sectors,
including the energy sector, with the effects marginally stronger in

37 Note that the capital invested in carbon-intensive assets in the short
position did not reach the divestment schedule of the slow rate, preventing
the calculation of the CDR in this context.

38 More dynamic assessment tools, in line with the ones employed in our
study, can reveal very different outcomes.
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Fig. 7. The correlations matrix of the returns ordering assets by GICS sector during January 2010 (left) and November 2020 (right). The solid lines separate the block of the GICS
sectors.
2020 than in 2010. The brightness of the block-diagonal structure
represents a high correlation within the sector. The health care and
consumer staple sectors are reasonably independent of others, and as
demonstrated in Table 1, typically have less carbon emission compared
to other sectors. Thus, an effective divestment/reinvestment strategy in
terms of diversification is to divest from the high-carbon sectors, such
as energy and utilities, and reinvest in low-carbon emission sectors such
as health care and consumer staple, which are least correlated with the
divestment assets in the energy and utilities sectors.

4. Carbon divestment on leading global ETF portfolios

ETFs offer flexibility as they are aligned with different attributes;
some with dividend cash flow, some with growth, and some with
particular sectors such as energy and technology. However, ETFs tend
to be less diversified in terms of global market exposure compared
to the broad market portfolios such as the S&P 500. Therefore, we
evaluate the extent of the influence of divestment practice on the
stability and performance of such ETF funds and in what aspects this
influence occurs. Specifically, we investigate the following questions:
What is the impact of divestment on dividend yields and management
fees? Which portfolio strategy of the clone portfolios closely mimics the
portfolio strategy of the ETFs? What is the impact of divestment on the
performance tracking, tracking error, the distribution of excess returns,
and the stability of overall performance of ETF portfolios overtime?

We gauge the effects of divestment strategies on these specialized
portfolios and their impact on the investor by studying the role of
divestment and its effect on portfolio weights, risk profile, and relative
performance of divested portfolios. In addition, we explore in the
ETF context the influence divestment has on investor cash flows from
such investment through the dividend returns as well as the influence
that may arise from changes in the management fees. These can be
influenced by changes in available investible assets and changes in
tracking performance that may arise from divestment at different rates.
These are important considerations as ETFs typically attract significant
management fees to investors, which depending on the ETF structure,
may be aligned with performance, growth, high-yield dividend returns,
reference benchmark tracking, or out-performance.

To offer a comprehensive assessment, we select a collection of five
global iShares ETFs. These are chosen as they have a sufficiently large
capital allocation to funds under management and are representative of
a global market study, including developed and developing economies.
17
These ETFs are also selected to include dividend payouts, and they have
varying levels of concentration in fossil-fuel stocks included in their
investment portfolios, reaching up to 48%. The selected ETFs include
the MSCI United Kingdom ETF (EWU), Global Clean Energy ETF (ICLN),
Select Dividend ETF (DVY), U.S. Infrastructure ETF (IFRA), and Global
Infrastructure ETF (IGF).39 Most of the selected ETFs aim to track the
index return, except the iShares Select Dividend ETF (DVY), which is
made to track the dividend rather than the return.

4.1. Impact of fossil-fuel divestment on the dividend yields and management
fees of an ETF

While fund managers are mindful of integrating ESG criteria when
constructing investment strategies for ETFs, investors becoming in-
creasingly concerned about the impact of management fees on their
funds. Two natural questions then arise. First, would investors incur a
penalty for requiring fund managers to meet their ESG expectations?
Second, would an additional premium be required by fund managers
to incentivize them to divest aiming to meet ESG expectations? In
this section, we seek empirical support to determine whether: (a)
ESG/Carbon Footprint performance can influence management fees,
as measured by the Net Expense Ratio (NER),40 and (b) ESG/Carbon
Footprint can influence the yield an investor would receive if they had
held their investment in the fund over the last 12 months, which is
captured by the 12-month trailing yield (TY).

To investigate the impact of the divestment on the NER and the
dividend return (via TY) of ETFs, we control for the following key
variables: Relative Carbon Footprint (RCF), Net Assets (NA), Binary
Market type indicator for developed versus developing markets (MAR),
Yield-to-date Return (YTDR) and MSCI ESG Quality Score (ESG).41

We begin this analysis by exploring the relationships between the
covariates and regression responses. Fig. 8 shows the linear correla-
tion between each pair of variables. It is evident that RCF holds a

39 See Section 2.3.2 for a detailed description of these funds.
40 NER (%) is the fee charged to investors, including Management Fee,

Acquired Fund Fees and Expenses, and Foreign Taxes and Other Expenses.
NER is one of the factors that investors consider when selecting an ETF. It
represents the administrative and overhead costs that are generally covered by
investors. Such costs represent a small percentage of investment and depend
upon the type of ETF and underlying investment strategy. The growth in the
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Fig. 8. Linear correlation between pairs of the factors on the upper triangular block, their plots with the regression and boxplot (for the type of market) on the lower triangular
block, and the distribution plot of each factor on the diagonal block. The types of the binary market are Developed (yellow) and Emerging (green). Note ∗ ,∗∗ ,∗∗∗ means statistical
significant from the 𝑡-test for the slope at 𝛼 = 0.05, 0.01 and 0.005, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
statistically significant correlation with all variables, except the NA
and YTDR. The sign of the correlation between the RCF and all other
factors is negative, with the exception of the TY. The TY holds the
strongest positive correlation with the RCF, indicating that carbon
divestment aligns with a reduction of the ETF dividend. It is historically
the case that the high-carbon intensive companies often have paid high
dividends, including companies in the energy sector such as fossil-
fuel production companies like Exxon Mobil Corp. Note that these
companies not only drill and refine such fossil fuel products, but they
also often operate vast networks of pipelines that allow them to act as
suppliers. They are able to transport energy, which in turn generates

ETF industry has generally driven the expense ratios down, making them more
affordable.

41 RCF describes the greenhouse gas footprint of a monetary investment. It
is calculated using metric tonnes of CO2 or CO2 equivalents per $1 million
USD invested. The carbon footprint of a fund takes into consideration both
direct and indirect emissions (fossilfreefunds.org). NA is the net assets of the
fund in USD. MAR is categorical variables representing the characteristics of
the market: (1) Developed and (0) Emerging markets. YTDR (%) is the annual
profit or loss realized by an investment. MSCI ESG Quality Score (ESG) (0–10)
is the weighted average of the ESG scores of fund holdings.
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a consistent cash flow from their customers who consume on a regular
basis the fossil fuels produced and piped on demand. Given that energy
demand is relatively predictable and recession-resistant, they can often
afford to keep paying high dividends and even raise them over time
to incentivize investments. Hence, if ETFs hold large concentrated sub-
portfolios in such fossil-fuel-based companies, then divestment should
lead to a reduction in the RCF, which in turn is likely to lead to
a reduction in the dividends paid to investors. This outcome could
be consequential for some demographics of investors who may seek
these ETF investments in order to obtain a consistent cash flow. Thus,
divestment may materially influence their investment outcomes and
cause them to shift their capital from such funds in search of greater
dividend yield.

Fig. 8 also displays pairs of boxplots. These boxplots represent
comparisons of each pair of variables based on the binary market
indicator, thereby allowing for a distinction between developed and
emerging markets. The results show that the ETFs in emerging markets
tend to hold more carbon stocks than those in developed markets. ETFs
in the developed market tend to have taken more decisive actions to
date owing to the increasing focus and expectations of investors on
carbon reduction and ESG policies. The NER in the emerging market
is also more expensive than that in the developed market. This may
arise since a fund manager who incorporates emerging market assets
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Table 5
Parameter estimates.

Panel A: Net expense ratio

Estimate Std Error 𝑝 Value

(Intercept) 0.000 0.053 1
12 m Trailing Yield −0.019 0.062 0.759
Net Assets −0.234 0.053 1.787e−05∗∗∗

ESG Quality Score 0.216 0.063 0.001∗∗∗

Binary Market −0.534 0.069 2.421e−13∗∗∗

YTD Return −0.045 0.057 0.425
Carbon Footprint 0.110 0.064 0.089.

Panel B: 12-month trailing yield

Estimate Std Error 𝑝 Value

(Intercept) 0.000 0.056 1
Net Expense Ratio −0.021 0.070 0.759
Net Assets 0.000 0.059 0.997
ESG Quality Score 0.286 0.066 2.414e−05∗∗∗

Binary Market −0.129 0.081 0.114
YTD Return −0.032 0.060 0.598
Carbon Footprint 0.469 0.0610 4.351e−13∗∗∗

Panel A reports the parameter estimates of regression (16) for the Net Expense Ratio.
Residual standard error: 0.149 on 229 degrees of freedom; Multiple R-squared: 0.3609,
Adjusted R-squared: 0.3414; F-statistic: 18.48 on 7 and 229 DF, p-value: 2.2e−16. Panel

reports the parameter estimates of regression (17) for the 12-month Trailing Yield.
esidual standard error: 0.84 on 229 degrees of freedom; Multiple R-squared: 0.3144,
djusted R-squared: 0.2935; F-statistic: 15 on 7 and 229 DF, p-value: 4.302e−16. The

∗ ,∗∗ ,∗∗∗ denote the 10%, 5% and 1% level of significance, respectively.

may take on additional risks, such as those related to geo-political
differences, compared to the risk profiles of investments in developed
economics. Furthermore, reporting, regulation, and taxation regimes
are significantly more complex to manage when working between a
developed market and an emerging market. Subsequent additional due
diligence analysis of investments would be more onerous as a result
of less standardization in the adoption of reporting and transparency
requirements found in developed nation economies. Hence, it would
be expected that they would charge a greater management fee to
compensate for the additional difficulties in management, differences
in regulation standards, and less liquidity in markets that could produce
market frictions.

With regard to the strong connection between the RCF and the NER,
we conjecture that this is most likely an indirect effect arising from the
fact that many high-carbon producing companies are in the emerging
market, which charges an expensive management fee. The NER has a
strong negative correlation with the NA and YTD due to expense ratio
calculation, that is, expense ratio as the ratio of total cost to total asset.

To further refine the arguments above, we identify the factors
that causally affect the NER and the TY of ETFs, by undertaking the
following two regressions42:

NER = 𝛽𝑁𝐸𝑅
0 + 𝛽𝑁𝐸𝑅

1 RCF + 𝛽𝑁𝐸𝑅
2 NA + 𝛽𝑁𝐸𝑅

3 ESG

+ 𝛽𝑁𝐸𝑅
4 YTDR + 𝛽𝑁𝐸𝑅

5 TY + 𝛽𝑁𝐸𝑅
6 IMAR + 𝜀𝑁𝐸𝑅, (16)

TY = 𝛽𝑇𝑌0 + 𝛽𝑇𝑌1 RCF + 𝛽𝑇𝑌2 NA + 𝛽𝑇𝑌3 ESG

+ 𝛽𝑇𝑌4 YTDR + 𝛽𝑇𝑌5 NER + 𝛽𝑇𝑌6 IMAR + 𝜀𝑇𝑌 , (17)

where 𝜀𝑁𝐸𝑅 and 𝜀𝑇𝑌 denote the i.i.d. Gaussian errors from regressions
(16) and (17), respectively. The estimated coefficients are shown in
Table 5.43

The (standardized) coefficients in Panel A of Table 5 reveal that
market type, NA, ESG quality score, and carbon footprint are influential

42 The direct effect of the factors on these two response variables is in-
estigated via the regression coefficients (the magnitude and sign) of such
egression relationships.
43 We consider the regression models on the standardized variables so the
stimated coefficients are on comparable scales.
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factors that causally affect the management fees (measured by the
NER). As expected, the management fees are significantly impacted
by the type of market (developed versus emerging markets), while the
carbon emission variables, namely, ESG score and carbon footprint, also
positively impact the management fees. Therefore, we conclude that
investors may incur a penalty for requiring fund managers to meet their
ESG expectations, despite the fact that this may have a negative impact
on the capital of fund managers (NA). Since NA under management
is significantly and negatively related to NER, fund managers must be
willing to reduce their NER to attract significant amounts of capital.
This is consistent with findings in a mutual funds study demonstrating
that social pressure to deliver carbon emission targets is reflected in
higher management fees (Riedl and Smeets, 2017). Panel B of Table 5
displays the influential factors affecting the dividend returns (measured
by TY). We find that carbon intensity indicators, namely, carbon foot-
print and ESG score, are positively and significantly associated with
TY. Consequently, we postulate that fund managers may require an
additional premium to be paid by investors when the climate risk
exposure within ETF portfolios increases. Thus, carbon divestment in
ETF portfolios may be related to lower dividend yields.

For a more comprehensive and targeted assessment, we also exam-
ine the impact of carbon divestment on management fees and dividend
yields, with a sub-analysis based on an ETF that is tracking dividend
yield, namely, the Select Dividend ETF (DVY). The methodology used
for this sub-analysis and the associated results are presented in Ap-
pendix F. These results further confirm that investors investing in funds
with low carbon footprints can expect lower dividend yields and man-
agement fees. Furthermore, if a fund divests and reduces its portfolio
carbon footprint, this has a tendency to reduce the dividend yield to
investors. Nonetheless, it may be possible to offset this effect with
a subsequent future reduction in management fees, thereby allowing
funds to still retain and attract new capital.

4.2. Analysis of performance tracking of portfolio strategies synthesizing
actual ETFs

Since we seek to study a variety of ETFs and their performance
under divestment at the individual portfolio level, we are required to
synthesize or clone these portfolio strategies. This is necessary because
while we can identify the holdings of each of the ETFs at the present
time, we are unable to have access to each of these ETFs’ specific
portfolio strategy. Hence, we must first determine if the proposed
synthetic clone portfolios adequately replicates or approximates the
portfolio dynamics of the ETFs under study without any divestment
practice incorporated. If we find that our portfolio strategies adequately
mirror the risk/return profiles of the ETFs, then we may develop a
suite of scenarios based on our cloned portfolio strategies to study these
individual ETFs under various divestment settings.44

Hence, we assess the results obtained from a specialized portfolio
study that utilizes the same portfolio strategies used in the S&P 500 case
study ({𝑃𝐸𝑊 ,𝐴𝐸𝑊 ,𝐺𝑀𝑉 ,𝑀𝑆, 𝑃𝐶}). However, we set up a collec-
tion of investment scenarios that produces more concentrated portfolios
than the broad market S&P 500 portfolio, where this collection of 5
investment scenarios mirrors the holdings of each of the ETFs used in
this study. Our replication scenario studies use the assets in the given
ETFs to construct each portfolio strategy and assume that no new assets
are added during the study period.45

44 Note that this analysis is based on historical price data from January 1,
2010, to November 1, 2020.

45 One can think of these scenario studies as a method to simulate effective
clones or replicate portfolios with the same assets as the original ETFs. Then we
are able to use these clone portfolios to explicitly test the effect of divestment
on these less diversified ETF-type portfolios under a variety of risk aversion

levels as captured by the different portfolio strategies.
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Table 6
Average percentage of the excess return between the ETF’s real returns and core
portfolio types.

PEW AEW GMV MS PC

DVY −0.0061% −0.0039% −0.0048% −0.0039% −0.0215%
(±0.2621) (±0.2781) (±0.3438) (±0.3476) (±0.6252)

EWU −0.0393% −0.0504% −0.0373% −0.0491% −0.0249%
(±0.7075) (±0.7297) (±0.8533) (±0.8379) (±0.9858)

ICLN −0.0464% −0.0528% −0.0225% −0.0458% −0.0724%
(±1.0195) (±1.1173) (±1.3379) (±1.2233) (±2.0227)

IFRA −0.0170% −0.0115% −0.0286% −0.0233% −0.0580%
(±0.4703) (±0.5723) (±0.5636) (±0.5726) (±0.8604)

IGF −0.0198% −0.0216% −0.0190% −0.0303% −0.0615%
(±0.6018) (±0.6409) (±0.8235) (±0.7003) (±1.0612)

The number in the parenthesis is the tracking error (standard deviation of the
excess return), and the highlighted cells are the nearest portfolios to the selected
ETFs according to both excess return and tracking error.

To assess the effectiveness of such a methodology, we seek to evalu-
te the closeness of the five portfolio strategy types to the performance
f the given ETFs. Finding the closest clone portfolio strategy is then
chieved by considering the excess return and the tracking error. The
xcess return is calculated by subtracting the return of the clone from
he ETF. The tracking error is approximated by the standard deviation
f the excess returns. The negative average excess return indicates the
lone’s returns are superior to the original ETFs. The nearest clone
ortfolio gives the average excess return closest to zero and the lowest
racking error. Therefore, we combine these two criteria when under-
aking the selection of the closest clone portfolio strategy by finding
he minimum weighted combination of the average excess return (AER)
nd the tracking error (TE), 0.5|AER|+0.5TE. We exclude the PEW from

this analysis since it can be divested only at the instantaneous rate.
Table 6 presents the average excess returns (in percentage terms)

of all clone portfolio strategies that seek to mirror the ETFs, with
the tracking errors in the brackets. The closest clone portfolios to the
selected ETFs are shown in the highlighted cells. It is not surprising that
all closest clones are AEW portfolio type as the ETFs hold long positions
only.46

4.3. ETFs divestment: Performance and stability analysis

The results in Section 4.2 confirm that the clone portfolios repli-
cate adequately the performance of the ETFs based on the proposed
portfolio strategies. Therefore, we can proceed with the performance
and stability analysis of the selected ETFs’ divestment. We reconstruct
clone portfolios from the portfolio strategy types using the assets in
the ETFs from iShares: EWU, ICLN, DVY, IFRA, and IGF. We apply
the divestment methodology with three rates of divestment, namely,
instantaneous, fast and slow divestment, similar to the S&P 500 study
(see Eqs. (1), (2), and (3), respectively).47 Tables 7 to 11 present the
impact of divestment strategies on the risk/return profile of the EWU,
ICLN, DVY, IFRA, and IGF ETFs, respectively. We also add an extra
column of the dividend yield in Table 9 to verify the results regarding
the impact of divestment on the dividend yield discussed in Section 4.1.

The following results emerge. First, for all ETFs (except ICLN with
MS portfolios), we find no statistically significant impact of divest-
ment strategies on the returns, irrespective of the portfolio type and
divestment schedules. Indeed, the returns might increase or decrease

46 A high excess return and tracking error may occur when the target ETFs
iversify the assets using different techniques from the five core portfolio
ypes. The fund adding new assets regularly may be difficult to track due to the
act that we use fixed assets in the simulation. This could require increasing
he universe of assets over time, a consideration excluded in this study.
47 The divested assets account for direct and indirect (scope 1 and 2)
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missions that covers CU200, and oil/gas.
depending on the type of portfolio and the number of carbon assets
to divest. However, the behavior of the return rarely changes in a
statistically significant manner when compared to the non-divestment
performance. This finding indicates that even in these less diversified
portfolios, the implementation of various divestment strategies do not
materially impact the return performance. Second, although the risk
profile of the ETF with the lowest concentration in carbon-intensive
assets (EWU 11%) is not sensitive to divestment strategies, the risk
profile of the other ETFs is impacted to some extent depending on
the types of portfolios under consideration, and the rate of divestment.
For example, the standard deviation, VaR, and Beta for GMV and MS
portfolios for the ICLN ETF (with 19% on divested assets) exhibit
significant differences. Similarly, the standard deviation and VaR for
GMV and MS portfolios demonstrate significant increases in Beta in all
portfolios of the DVY ETF (with 32% on divested assets). For the IFRA
ETF (with 37% on divested assets), all divestment schedules yielded
statistically different values of the standard deviation, VaR, and Beta
for all portfolios except for PC portfolios, where this is present in
only fast and instantaneous divestment schedules (and the Treynor
coefficient for GMV and MS portfolios only). The ETF with the highest
concentration in our study, IGF, (48% on divested assets) displays a
significant difference in the risk profile (standard deviation and VaR)
of GMV and MS portfolios, whereas divestment has a significant impact
on the Beta for all portfolios.

Fig. 9 depicts the boxplots of the excess returns and reveals that the
divestment rate has a clear impact on the distribution of the excess re-
turn.48 For any divestment schedule, there is no significant difference in
the excess return for each portfolio strategy when considering a broad
market diversified portfolio, as in the S&P 500 index portfolio. How-
ever, as the rate of divestment increases the impact on tracking error
on the ETFs is substantial, with DVY, ICLN, IFRA, and IGF experiencing
the strongest effect. There is also a clear trend between the tracking
error and the proportion of the assets to divest. The more carbon assets
are divested, the stronger the impact on the portfolios’ tracking error.
Consequently, fund managers who seek to control tracking errors are
advised to divest slowly over time to balance the trade-off of meeting
investor and regulatory ESG reporting requirements. While maintaining
the feasibility of tracking performance, this often directly influences
the remuneration and management fees of the fund managers, thus
incentivizing the maintenance and feasibility of such ETF active fund
management.

To enhance the assessment of the divestment effects on the sta-
bility of the ETFs’ risk measure, we again apply the same clustering
methodology as outlined previously on the risk/return measures of each
ETF clone portfolio over time. Fig. 10 depicts the overall clustering
performance of the portfolio strategies replicating each of the ETFs
and suggests that the risk profiles of ETFs change from the baseline
model more when the proportion of the assets to divest increases. The
EWU and ICLN ETFs show a more stable pattern than the other ETFs
considered in this study. Thus, divestment may change the structure or
stability of the risk profile if the proportion of the assets to divest is
large enough.

Overall, there is no significant difference in the return profile for
most of the ETFs, but the risk profiles of the ETFs are impacted, with the
most significant effect shown in the ETFs with the largest proportion
of divestable assets: IGF (48%), IFRA (37%) DVY (32%), and ICLN
(19%). The risk profiles of the ETFs, depending on the portfolio type,
are impacted to some extent by divestment strategies, with the effects
mainly on the standard deviations, VaR, and Beta for GMV and MS
portfolio types, with differences also within the divestment schedules.
With the uncertainty of future information, the divestment schedule is
a useful tool to help fund managers to manage the risk they can accept
due to divestment, especially for a fund holding significant portions of
carbon assets to divest.

48 The length of the body of a boxplot measures the interquartile range that
can be used to robustly estimate the tracking error.
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Table 7
Monthly average performances over ten years of the fossil-fuel divestment from the iShares MSCI United Kingdom (EWU) ETF with 11% divested assets and the relative
carbon footprint of 97 emissions per unit of investment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.041 0.864 0.846 0.097 −2.081 −1.226 1.618 0.153 0.783 0.081
(±0.203) (±4.361) (±0.556) (±0.238) (±0.557) (±0.998) (±1.212) (±0.358) (±0.252) (±0.291)

𝛥 Instant 0.061 0.063 −0.005 0.032 −0.004 −0.012 0.013 0.028 −0.016∗ 0.059
(±0.204) (±4.374) (±0.542) (±0.239) (±0.559) (±0.968) (±1.227) (±0.359) (±0.253) (±0.304)

AEW None 0.052 1.099 0.850 0.111 −2.075 −1.235 1.703 0.172 0.766 0.107
(±0.213) (±4.581) (±0.551) (±0.247) (±0.634) (±1.045) (±1.275) (±0.369) (±0.261) (±0.344)

𝛥 Slow 0.034 0.035 −0.005 0.025 −0.005 −0.009 0.008 0.025 −0.000 0.025
(±0.216) (±4.631) (±0.543) (±0.248) (±0.627) (±1.023) (±1.287) (±0.371) (±0.258) (±0.360)

𝛥 Fast 0.044 0.045 −0.006 0.039 −0.007 −0.016∗ 0.019 0.041 −0.007 0.007
(±0.216) (±4.631) (±0.540) (±0.249) (±0.625) (±1.023) (±1.334) (±0.374) (±0.257) (±0.364)

𝛥 Instant 0.044 0.045 −0.005 0.036 −0.007 −0.019∗ 0.019 0.041 −0.014 0.015
(±0.215) (±4.624) (±0.540) (±0.248) (±0.629) (±1.022) (±1.333) (±0.375) (±0.257) (±0.365)

GMV None 0.038 0.799 0.721 0.098 −2.055 −1.032 1.625 0.149 0.773 0.096
(±0.160) (±3.438) (±0.448) (±0.244) (±0.673) (±0.827) (±1.323) (±0.359) (±0.309) (±0.291)

𝛥 Slow 0.074 0.079 0.012∗ 0.020 −0.000 0.008 0.018 0.016 −0.032∗ 0.357
(±0.162) (±3.464) (±0.444) (±0.245) (±0.623) (±0.811) (±1.566) (±0.363) (±0.315) (±0.418)

𝛥 Fast 0.101 0.107 0.019∗ 0.031 0.003 0.017 0.016 0.021 −0.040∗ 0.401
(±0.162) (±3.467) (±0.445) (±0.246) (±0.631) (±0.814) (±1.551) (±0.361) (±0.313) (±0.428)

𝛥 Instant 0.134 0.141 0.022∗ 0.047 0.004 0.017 0.018 0.034 −0.045∗ 0.410
(±0.162) (±3.474) (±0.445) (±0.246) (±0.633) (±0.814) (±1.554) (±0.360) (±0.312) (±0.430)

MS None 0.050 1.065 0.925 0.087 −2.033 −1.345 1.516 0.138 0.633 0.129
(±0.193) (±4.142) (±0.541) (±0.219) (±0.606) (±1.017) (±1.000) (±0.327) (±0.242) (±0.387)

𝛥 Slow 0.045 0.049 −0.009 0.007 0.000 −0.011 0.000 0.002 −0.008 0.113∗

(±0.192) (±4.128) (±0.483) (±0.221) (±0.596) (±0.862) (±0.996) (±0.328) (±0.251) (±0.403)
𝛥 Fast 0.056 0.061 −0.007 0.014 −0.001 −0.007 0.005 0.008 −0.017 0.119

(±0.194) (±4.159) (±0.484) (±0.223) (±0.590) (±0.863) (±1.017) (±0.330) (±0.249) (±0.409)
𝛥 Instant 0.048 0.053 −0.008 0.008 0.002 −0.008 0.005 0.003 −0.021∗ 0.109

(±0.193) (±4.147) (±0.484) (±0.223) (±0.597) (±0.862) (±1.019) (±0.331) (±0.245) (±0.409)

PC None 0.028 0.563 1.240 0.041 −2.112 −1.811 1.359 0.069 0.487 0.218
(±0.277) (±5.992) (±0.673) (±0.239) (±0.589) (±1.139) (±0.948) (±0.344) (±0.252) (±1.127)

𝛥 Slow 0.129 0.138 −0.024∗ 0.087 −0.010 −0.024∗ 0.011 0.064 0.031∗ −0.033
(±0.275) (±5.945) (±0.656) (±0.240) (±0.577) (±1.141) (±0.956) (±0.346) (±0.242) (±0.987)

𝛥 Fast 0.227 0.243 −0.022∗ 0.134 −0.018 −0.027∗ 0.010 0.096 0.030 −0.013
(±0.274) (±5.907) (±0.656) (±0.237) (±0.583) (±1.147) (±0.927) (±0.343) (±0.236) (±0.982)

𝛥 Instant 0.190 0.205 −0.022∗ 0.103 −0.017 −0.029∗ 0.005 0.071 0.027 −0.019
(±0.272) (±5.876) (±0.656) (±0.236) (±0.585) (±1.147) (±0.921) (±0.342) (±0.235) (±0.982)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment
benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile. The box around the portfolio type
indicates the closest to the original ETF according to the excess return and tracking error.
5. Divestment by ESG rating screening: The FTSE 100 case

Portfolio diversification is an important consideration for retail
investors, wealth managers, and pension funds. To assess the role of
divestment and its potential to induce a loss of portfolio diversity in
broad market portfolios, it is necessary to consider a different screening
criterion than simply selecting divestable assets from the most carbon-
intensive primary industries, as assumed in Section 3. We now focus
on the effect of divestment from an ESG rating screening perspective
and explore the practical impact that arises when divestable assets are
screened based on ESG, E, S, or G score with varying thresholds on
the performance of each company’s ESG scores.49 With such screen-
ing criterion, divestment can be setup using underperforming assets
across all sectors, not just energy and utilities. Thus, the proportion
of divestable assets would vary across the asset universe. The asset
universe comprises all FTSE 100 assets (from which their ESG scores
can be obtained) and we utilize a linear divestment schedule and varied
the proportion of relevative ESG, E, S or G score ratings to determine
divestible assets in each sector of the FTSE 100. Most specifically, the

49 This is a controversial rating being increasingly adopted to assess Envi-
onmental, Social, and Governance relative scores of companies across a broad
ange of criteria; see Christensen et al. (2022), Berg et al. (2022) for discussion
n the challenges associated with the scoring and ratings from various ESG
ating providers. We do not enter into this debate in this work.
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divestable assets are selected from the 10%, 20%, 30%, 40%, 50%,
60%, and 70% of corporations with the lowest E, S, G, and overall
ESG scores, see Section 2.3.3 for the full details of the experimental
design. Accordingly, we address the question of how the proportion of
divestable assets impacts the tracking performance and portfolio diver-
sification. Thus, the following questions are investigated: What is the
impact of divestment by E, S, G, ESG rating screening on the portfolio
risk/return performance and correlation structure? and What is the
impact of divestment by ESG rating screening on the diversification of
FTSE 100 portfolios?

5.1. Impact on portfolio risk/return performance and correlation structure

Fig. 11 displays all divestment results based on environmental score
scanning. Figs. 11.a and 11.b illustrates the boxplots of the excess
returns between portfolios with and without divestment of AEW and
GMV. The tracking error can be determined by observing the breadth
of the boxplots’ bodies and the scattering data. One can see a di-
rect correlation between the fraction of divestable assets and tracking
errors in this study.50 Similar to the previous section, the tracking

50 The tracking errors for the AEW portfolio range from 0.0005 to 0.0020,
while those for the GMV portfolio range from 0.0005 to 0.0030. These values
correspond to the concentration of the scanning criteria from 0% to 70%
divestment.
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Table 8
Monthly average performances over ten years of the fossil-fuel divestment from the iShares Global Clean Energy (ICLN) ETF with 19% divested assets and the relative
carbon footprint of 279 emissions per unit of investment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.001 0.016 0.008 0.108 −2.065 −0.012 1.776 0.160 0.759 0.001
(±0.002) (±0.065) (±0.005) (±0.281) (±0.494) (±0.010) (±1.839) (±0.417) (±0.345) (±0.005)

𝛥 Instant 0.164 0.165 0.085∗ −0.003 −0.005 0.086∗ −0.008 −0.030 −0.106∗ 0.359
(±0.003) (±0.072) (±0.005) (±0.290) (±0.486) (±0.010) (±1.591) (±0.424) (±0.350) (±0.007)

AEW None 0.001 0.020 0.009 0.119 −1.987 −0.012 1.815 0.179 0.698 0.002
(±0.003) (±0.067) (±0.006) (±0.277) (±0.460) (±0.010) (±1.692) (±0.409) (±0.365) (±0.010)

𝛥 Slow 0.143 0.129 0.037 0.026 0.002 0.051∗ 0.010 0.014 −0.038∗ 0.364
(±0.003) (±0.071) (±0.006) (±0.282) (±0.454) (±0.011) (±1.700) (±0.414) (±0.368) (±0.014)

𝛥 Fast 0.182 0.168 0.073∗ 0.017 −0.003 0.089∗ 0.016 0.007 −0.097∗ 0.514
(±0.003) (±0.074) (±0.006) (±0.290) (±0.447) (±0.011) (±1.702) (±0.426) (±0.353) (±0.014)

𝛥 Instant 0.169 0.154 0.074∗ 0.010 −0.001 0.092∗ 0.013 −0.005 −0.102∗ 0.477
(±0.003) (±0.074) (±0.006) (±0.290) (±0.441) (±0.011) (±1.705) (±0.426) (±0.346) (±0.014)

GMV None 0.000 0.008 0.007 0.094 −2.117 −0.010 1.644 0.143 0.770 0.001
(±0.002) (±0.045) (±0.005) (±0.258) (±0.669) (±0.010) (±1.450) (±0.372) (±0.425) (±0.007)

𝛥 Slow 0.094 0.086 0.075∗ 0.021 −0.019 0.080∗ 0.017 0.029 −0.072∗ 0.066
(±0.002) (±0.048) (±0.005) (±0.262) (±0.593) (±0.010) (±1.436) (±0.383) (±0.404) (±0.008)

𝛥 Fast −0.063 −0.061 0.285∗ −0.151 −0.008 0.284∗ −0.030 −0.157 −0.362∗ 6.377
(±0.002) (±0.057) (±0.005) (±0.272) (±0.610) (±0.010) (±1.277) (±0.393) (±0.372) (±0.046)

𝛥 Instant −0.125 −0.098 0.298 −0.160 −0.009 0.299∗ −0.032 −0.165 −0.373 6.262
(±0.002) (±0.058) (±0.005) (±0.272) (±0.606) (±0.010) (±1.276) (±0.394) (±0.367) (±0.043)

MS None 0.001 0.016 0.009 0.095 −2.066 −0.014 1.650 0.147 0.632 0.010
(±0.002) (±0.063) (±0.007) (±0.250) (±0.583) (±0.010) (±1.452) (±0.367) (±0.305) (±0.091)

𝛥 Slow 0.355∗ 0.340∗ 0.121∗ 0.071 −0.007 0.125∗ 0.035 0.065 −0.105∗ 0.108
(±0.003) (±0.072) (±0.007) (±0.252) (±0.577) (±0.013) (±1.598) (±0.374) (±0.279) (±0.092)

𝛥 Fast 0.226 0.212 0.236∗ −0.019 −0.005 0.282∗ −0.010 −0.046 −0.251∗ −0.611
(±0.003) (±0.078) (±0.007) (±0.252) (±0.540) (±0.014) (±1.387) (±0.372) (±0.235) (±0.015)

𝛥 Instant 0.194 0.184 0.234∗ −0.016 −0.002 0.282∗ −0.013 −0.054 −0.253 −0.636
(±0.003) (±0.078) (±0.007) (±0.252) (±0.536) (±0.014) (±1.380) (±0.370) (±0.230) (±0.015)

PC None 0.001 0.027 0.020 0.042 −2.038 −0.028 1.468 0.071 0.258 −0.257
(±0.006) (±0.163) (±0.011) (±0.274) (±0.546) (±0.017) (±1.130) (±0.410) (±0.197) (±2.626)

𝛥 Slow 0.097 0.097 0.010 0.021 −0.007 0.006 0.008 0.014 −0.012 −0.619
(±0.006) (±0.161) (±0.011) (±0.273) (±0.529) (±0.016) (±1.251) (±0.408) (±0.189) (±1.132)

𝛥 Fast 0.146 0.146 0.049∗ 0.024 −0.012 0.040∗ 0.012 0.005 −0.068∗ −0.538
(±0.006) (±0.169) (±0.012) (±0.275) (±0.532) (±0.017) (±1.272) (±0.412) (±0.177) (±1.147)

𝛥 Instant 0.107 0.114 0.048∗ 0.005 −0.012 0.042∗ 0.005 −0.034 −0.074∗ −0.825
(±0.006) (±0.169) (±0.012) (±0.274) (±0.518) (±0.017) (±1.266) (±0.409) (±0.174) (±0.805)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment
benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile. The box around the portfolio type
indicates the closest to the original ETF according to the excess return and tracking error.
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error tends to increase as the proportion of divestable assets in the
portfolio increases.51 For the AEW, the relative behavior of the return
bserved from the stable cluster in the heatmap 11.c does not alter
ppreciably. As the returns move in the same direction but have dif-
erent values, the stable cluster may produce a large tracking error.
n contrast, the relative behavior of the GMV starts changing at the
roportion 30%, see Fig. 11.d. The cumulative returns of the AEWs and
MVs are given in Fig. 11.e and 11.f. Both portfolios yield positive
umulative returns at the end of the study period, with the wealth
evels approximately reaching 1.25.52 The scanning criteria of 30%

and 40% seem to yield better cumulative return performance, despite
experiencing a significant downturn due to the Covid-19 pandemic. The
AEW portfolios demonstrate a higher degree of resilience to divestment
activities (compared to the GMV portfolios). This resilience is particu-
larly evident in the disparity in ten year cumulative return outcomes
as the percentage of divestable assets increases. More specifically, the
maximum difference of the return in the ten year cumulative return

51 The average wealth (cumulative return) of the divested portfolio exhibits
tatistically significant differences in mean from that of the original portfolio
t a 95% confidence level, as determined by the 𝑡-test, across all portfolios.
52 Over ten years, the cumulative return drops to 0.975 for the non-divested
ortfolio and reaches 1.042 with 30% divestment for the AEW. For the GMV, it
rops to 0.866 with 60% divestment and reaches 1.074 with 30% divestment,
22

s seen in Fig. 11. t
evels of the AEW portfolios was less than 0.1, whereas for the GMV
nd GMV60 portfolios, the difference reached 0.3.

The stacked bar charts with the number of the remaining assets in
he FTSE 100 in various ESG thresholds separated by their industry
ector after complete divestment, are shown in Fig. 12. We find that,
ssets in the Energy, Industrials, and Utilities sectors are evaluated
t high environmental risk scores compared to others, whereas the
inancial Services sector is evaluated at high governance risk scores.

In addition, sector analysis of the tracking error is examined. The
oxplots showing the excess return between the original and divested
EWs and GMVs are depicted in Figs. 13 and 14, respectively. It allows
s to study the tracking error sources for each sector. Except of the
eal Estate and Technology sectors, tracking errors in AEWs do not
ppear to differ considerably by industry. These two sectors are less
mpacted by divestment because the Real Estate industry has a stable
SG risk evolution across all score levels, while the Technology sector
as only one asset. See Fig. 12 for a rudimentary illustration of the
racking error caused by divestment in the Energy, Industrials, and
tilities sectors, from which most holdings are sold. While the large

racking error caused by reinvestment can be found in the Financials
ector, overall, these sectors produce significant tracking errors in both
EW and GMV portfolios.

Fig. 15 compares the cumulative return of the original and divested
EWs and GMVs based on their S, G, and overall ESG scores. According
o the S and G scores, the divested AEWs are likely more profitable than
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Table 9
Monthly average performances over ten years of the fossil-fuel divestment from the iShares Select Dividend (DVY) ETF with 32% divested assets and the relative carbon
footprint of 434 emissions per unit of investment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor Yield
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.035 0.737 0.911 0.083 −2.076 −1.312 1.500 0.130 0.918 0.056 3.206
(±0.187) (±3.893) (±0.722) (±0.209) (±0.465) (±1.182) (±1.043) (±0.316) (±0.200) (±0.214) (±0.337)

𝛥 Instant 0.016 0.003 0.119∗ −0.033 0.002 0.115∗ 0.021 −0.014 −0.107∗ 0.482 −0.045
(±0.217) (±4.519) (±0.738) (±0.216) (±0.486) (±1.232) (±1.166) (±0.332) (±0.194) (±0.323) (±0.523)

AEW None 0.033 0.692 0.907 0.081 −2.073 −1.303 1.488 0.125 0.911 0.053 3.176
(±0.189) (±3.948) (±0.707) (±0.210) (±0.456) (±1.190) (±1.029) (±0.315) (±0.200) (±0.217) (±0.413)

𝛥 Slow −0.020 −0.028 0.066∗ −0.025 0.003 0.074∗ 0.008 −0.002 −0.047∗ 0.301 −0.010
(±0.202) (±4.211) (±0.707) (±0.213) (±0.477) (±1.205) (±1.080) (±0.325) (±0.204) (±0.284) (±0.474)

𝛥 Fast −0.025 −0.039 0.112∗ −0.046 0.005 0.120∗ 0.024 −0.014 −0.097∗ 0.414 −0.044
(±0.214) (±4.458) (±0.712) (±0.217) (±0.487) (±1.217) (±1.202) (±0.335) (±0.194) (±0.304) (±0.545)

𝛥 Instant −0.004 −0.019 0.116 −0.039 0.005 0.124∗ 0.027 −0.009 −0.101 0.434 −0.057
(±0.215) (±4.478) (±0.712) (±0.218) (±0.488) (±1.217) (±1.210) (±0.335) (±0.191) (±0.305) (±0.575)

GMV None 0.034 0.710 0.746 0.082 −2.064 −1.071 1.526 0.128 1.005 0.048 4.376
(±0.158) (±3.261) (±0.581) (±0.213) (±0.494) (±0.943) (±1.390) (±0.324) (±0.291) (±0.180) (±0.487)

𝛥 Slow 0.015 0.002 0.058∗ −0.012 0.001 0.054 0.009 0.002 −0.031∗ 0.105 0.025
(±0.165) (±3.425) (±0.546) (±0.213) (±0.523) (±0.953) (±1.427) (±0.327) (±0.281) (±0.188) (±0.544)

𝛥 Fast 0.075 0.058 0.072∗ 0.010 −0.003 0.064∗ 0.000 0.021 −0.056∗ 0.204 −0.034
(±0.165) (±3.431) (±0.542) (±0.211) (±0.518) (±0.950) (±1.283) (±0.324) (±0.275) (±0.192) (±0.532)

𝛥 Instant 0.085 0.067 0.072∗ 0.014 −0.002 0.064∗ −0.001 0.023 −0.056∗ 0.211 −0.046
(±0.166) (±3.432) (±0.542) (±0.210) (±0.520) (±0.949) (±1.261) (±0.323) (±0.275) (±0.192) (±0.507)

MS None 0.033 0.691 0.876 0.076 −2.108 −1.250 1.441 0.114 0.888 0.055 4.382
(±0.179) (±3.728) (±0.721) (±0.211) (±0.593) (±1.129) (±0.996) (±0.305) (±0.236) (±0.234) (±0.623)

𝛥 Slow −0.119 −0.126 0.083∗ −0.062 0.001 0.082∗ −0.018 -0.034 −0.050∗ 0.076 0.035
(±0.198) (±4.116) (±0.770) (±0.204) (±0.570) (±1.246) (±0.900) (±0.300) (±0.231) (±0.264) (±0.839)

𝛥 Fast −0.076 −0.092 0.145∗ −0.029 −0.006 0.142∗ 0.011 0.017 −0.114∗ 0.247 −0.031
(±0.211) (±4.390) (±0.773) (±0.211) (±0.583) (±1.256) (±0.997) (±0.317) (±0.214) (±0.289) (±0.844)

𝛥 Instant −0.090 −0.106 0.146 −0.035 −0.006 0.143∗ 0.010 0.012 −0.114∗ 0.239 −0.052
(±0.211) (±4.398) (±0.773) (±0.211) (±0.583) (±1.257) (±1.002) (±0.317) (±0.214) (±0.290) (±0.856)

PC None 0.051 1.061 1.161 0.087 −2.012 −1.649 1.524 0.134 0.706 0.141 3.345
(±0.242) (±5.075) (±0.889) (±0.215) (±0.430) (±1.461) (±1.074) (±0.327) (±0.222) (±0.431) (±0.777)

𝛥 Slow −0.037 −0.044 0.060∗ −0.052 0.010 0.072∗ −0.013 −0.040 −0.020 0.202 −0.016
(±0.243) (±5.079) (±0.965) (±0.212) (±0.452) (±1.540) (±1.049) (±0.323) (±0.224) (±0.669) (±0.761)

𝛥 Fast −0.050 −0.061 0.086∗ −0.073 0.014 0.097∗ −0.019 −0.067 −0.055∗ 0.208 −0.037
(±0.253) (±5.275) (±0.973) (±0.213) (±0.467) (±1.560) (±1.026) (±0.322) (±0.214) (±0.682) (±0.824)

𝛥 Instant −0.038 −0.049 0.090∗ −0.072 0.014 0.101∗ −0.017 -0.066 −0.060∗ 0.224 −0.045
(±0.254) (±5.309) (±0.975) (±0.213) (±0.467) (±1.562) (±1.031) (±0.322) (±0.213) (±0.684) (±0.853)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment. * refers to
the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment benchmark. The
highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile. The box around the portfolio type indicates the closest to the
original ETF according to the excess return and tracking error.
n
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the original portfolio, and the divested GMVs are less profitable than
the original portfolio. Thus, the risk/return profile of a portfolio can be
materially affected by the divestment screening criteria used to select
the divestment set of assets, as well as the portfolio strategy type.

Finally, we simulate the glasso for the AEWs and the GMVs port-
folios using divestment based on E scores. As an illustration, Fig. 16
depicts the estimated spare matrix acquired from the glasso using
the Industrials sector in the AEW, AEW30, and AEW70 (horizontal)
at various times (vertical). The thickness of the links represents the
estimated covariance, while the color green indicates a positive cor-
relation. The divestment commenced on 2010-01-01 (first row) and
concluded on 2020-01-01 (the last row). The divestable assets are
completely eliminated on May 1, 2020 (the third row). We conclude
that, robust correlation structure did not change when the divesting
proportion increased until the weight of some assets was set to zero.53

In other words, the portfolios’ robust correlation structure may not be
broken until certain assets are totally divested. Prior to 2020-05-01,
the robust correlation structures of the AEW, AEW30, and AEW70 were
comparable.54

5.2. Impact on portfolio diversification

To assess the impact of divestment by ESG rating screening on
portfolio diversification, we propose the Portfolio Diversification Ratio
(𝑃𝐷𝑅) that is defined by the ratio of the portfolio variance and the

53 According to the proposed divestment strategy, the divestment and rein-
estment investment weights are uniformly exchanged between the divestable
nd investable assets.
54 Rebalancing allows for the alteration of a portfolio’s robust structure over

ime.
23

s

sum of the portfolio assets variances, i.e., the sum of diagonal of the
covariance matrix. The denominator of the ratio can be considered
as the perfect diversification which zero correlation between assets.
Accordingly, the portfolio diversification ratio is defined as,

𝑃𝐷𝑅 =
Var

(

∑𝑁
𝑗=1 𝑤𝑗𝑅𝑗

)

∑𝑁
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(

𝑤𝑗𝑅𝑗
)
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SEC

, (18)

where the index 𝑘 stands for the constituents in the sector 𝐾 with 𝑁𝐾
assets, 𝑘′ stands for the constituents in the remaining asset in portfolio
without the sector 𝐾 ′ with 𝑁𝐾′ assets, 𝑗 stands for the index of all assets
in portfolio with 𝑁 = 𝑁𝐾 +𝑁𝐾′ assets. If the PDR is close to one means
the portfolio is more well-diversified.

To observe impact of the divestment on portfolio diversification
separated by the GICS sectors, the portfolio diversification, 𝑃𝐷𝑅, is
decomposed into three parts. The sector variance contribution ratio
(SVCR) indicates the proposition of the normalized variance of the
sector 𝐾 compared to the perfect diversified portfolio. The SVRC is non-
egative and can be zero when all assets in the given sector are divested
ompletely. Due to the cancellation of the covariance with other sec-
ors, a high SVCR does not imply an increase in the portfolio’s variance.
he sector-excluded variance ratio (SEVR) indicates the variance of the

ub-portfolio without constituents in sector 𝐾 compared to the prefect



Energy Economics 136 (2024) 107724P. Marupanthorn et al.

w
w
m
S
S

o

Table 10
Monthly average performances over ten years of the fossil-fuel divestment from the iShares U.S. Infrastructure (IFRA) ETF with 37% divested assets and the relative
carbon footprint of 832 emissions per unit of investment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.000 0.010 0.010 0.074 −2.044 −0.015 1.454 0.112 0.747 0.001
(±0.002) (±0.045) (±0.007) (±0.222) (±0.447) (±0.012) (±0.980) (±0.325) (±0.219) (±0.003)

𝛥 Instant 0.196 0.171 0.242∗ −0.069 0.016 0.230∗ 0.016 −0.041 −0.207∗ 0.861∗

(±0.003) (±0.060) (±0.008) (±0.232) (±0.510) (±0.013) (±1.116) (±0.345) (±0.191) (±0.006)

AEW None 0.000 0.009 0.010 0.073 −2.053 −0.015 1.453 0.111 0.737 0.001
(±0.002) (±0.046) (±0.007) (±0.223) (±0.455) (±0.012) (±0.996) (±0.325) (±0.224) (±0.004)

𝛥 Slow 0.156 0.162 0.120 −0.031 0.011 0.112∗ 0.008 −0.014 −0.090 0.614∗

(±0.003) (±0.053) (±0.008) (±0.226) (±0.486) (±0.013) (±1.086) (±0.333) (±0.233) (±0.005)
𝛥 Fast 0.244 0.230 0.233∗ −0.046 0.008 0.227∗ 0.019 −0.022 −0.197∗ 0.911∗

(±0.003) (±0.060) (±0.008) (±0.233) (±0.510) (±0.013) (±1.138) (±0.344) (±0.203) (±0.007)
𝛥 Instant 0.244 0.240 0.239 −0.041 0.007 0.234 0.021 −0.019 −0.204 0.921∗

(±0.003) (±0.060) (±0.008) (±0.233) (±0.510) (±0.013) (±1.141) (±0.345) (±0.198) (±0.007)

GMV None 0.000 0.009 0.009 0.078 −2.071 −0.012 1.457 0.120 0.817 0.001
(±0.002) (±0.035) (±0.007) (±0.205) (±0.505) (±0.011) (±1.022) (±0.308) (±0.303) (±0.004)

𝛥 Slow 0.250 0.237 0.175∗ 0.011 −0.004 0.178∗ −0.004 −0.010 −0.083∗ 0.252
(±0.002) (±0.044) (±0.007) (±0.212) (±0.490) (±0.012) (±0.912) (±0.312) (±0.284) (±0.004)

𝛥 Fast 0.318 0.277 0.379∗ 0.010 −0.017 0.394∗ 0.028 0.002 −0.245∗ 0.504
(±0.003) (±0.054) (±0.008) (±0.225) (±0.481) (±0.013) (±1.046) (±0.337) (±0.214) (±0.005)

𝛥 Instant 0.295 0.251 0.387 0.011 −0.013 0.403 0.028 0.005 −0.251 0.462
(±0.003) (±0.055) (±0.008) (±0.225) (±0.501) (±0.013) (±1.048) (±0.336) (±0.211) (±0.005)

MS None 0.000 0.010 0.010 0.071 −2.085 −0.014 1.376 0.104 0.702 0.001
(±0.002) (±0.041) (±0.007) (±0.199) (±0.474) (±0.012) (±0.781) (±0.286) (±0.262) (±0.003)

𝛥 Slow 0.122 0.114 0.157∗ −0.059 0.015 0.166∗ 0.003 −0.039 −0.094∗ 0.901
(±0.002) (±0.050) (±0.008) (±0.206) (±0.518) (±0.012) (±0.858) (±0.297) (±0.235) (±0.009)

𝛥 Fast 0.265 0.225 0.352∗ −0.075 0.014 0.360∗ 0.008 −0.056 −0.246∗ 1.279
(±0.003) (±0.061) (±0.008) (±0.210) (±0.541) (±0.013) (±0.857) (±0.303) (±0.194) (±0.010)

𝛥 Instant 0.245 0.224 0.357 −0.073 0.013 0.364 0.008 −0.053 −0.250 1.270
(±0.003) (±0.061) (±0.008) (±0.209) (±0.539) (±0.013) (±0.857) (±0.302) (±0.192) (±0.010)

PC None 0.001 0.017 0.014 0.080 −2.019 −0.019 1.508 0.121 0.514 0.003
(±0.003) (±0.065) (±0.008) (±0.225) (±0.415) (±0.014) (±1.117) (±0.336) (±0.250) (±0.021)

𝛥 Slow −0.185 −0.191 0.112∗ −0.137 0.006 0.118∗ −0.023 −0.130 −0.052 −0.394
(±0.003) (±0.072) (±0.010) (±0.227) (±0.449) (±0.015) (±1.126) (±0.342) (±0.211) (±0.020)

𝛥 Fast −0.198 −0.217 0.195∗ −0.165 0.006 0.206∗ −0.029 −0.156 −0.146∗ −0.483
(±0.004) (±0.078) (±0.010) (±0.233) (±0.463) (±0.016) (±1.096) (±0.349) (±0.183) (±0.020)

𝛥 Instant −0.198 −0.213 0.202∗ −0.164 0.005 0.211∗ −0.028 −0.156 −0.152∗ −0.476
(±0.004) (±0.078) (±0.010) (±0.234) (±0.463) (±0.016) (±1.098) (±0.349) (±0.181) (±0.020)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment
benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile. The box around the portfolio
type indicates the closest to the original ETF according to the excess return and tracking error.
diversified portfolio. It measures the impact of the withdrawing all
assets in sector 𝐾 to portfolio diversification. High SEVR implies the
sector 𝐾 reduces the variance of portfolio. The last term is sector-
excluded correlation (SEC) which measures the correlation between the
sub-portfolio excluded sector 𝐾 and the sub-portfolio of sector 𝐾. The
sign of the SEC tells us the direction of the correlation of those two
sub-portfolios. If the SEC is zero, sector 𝐾 is uncorrelated with other
portfolio assets, resulting in perfect diversification between the sector
and portfolio. The SEC is less than zero, indicating that the sector 𝐾
covariance cancels out that of other sectors, resulting in a decrease
in the entire portfolio. Then, a high SVCR is advantageous to overall
diversification. Otherwise, the SEC is greater than zero, indicating that
the sector 𝐾 reduces the overall portfolio variance, hence diminishing
diversification.

We simulate portfolio divestment on the AEW and GVM portfolios
ith divestable assets being within 30% and 70% of the corporations
ith low E, S, G, and overall ESG score, and calculate the diversification
easures based on Eq. (18). Figs. 17 to 19 depict the SVCR, SEVR, and

EC of ten sectors in the AEW, AEW30, and AEW70 portfolios.55 The
VCRs for the Communication Services and Financial Services sectors

55 Notably, the Technology sector is omitted due to the undefined covariance
f the single asset. Also, the differences in SVCR, SEVR, and SEC between the
24
increase as the proportion indicating that the divestment reduces di-
versification in the sectors holding the bulk of investable assets. The
sectors in which the majority of constituents were divested yield the
SVCR of approximately or equal to zero. Thus, while reinvestment leads
to the increase in variation within the sector, divestment based on ESG
rating screening has the reverse effect.

Further, in all sectors, the SEVRs of the divested portfolios are
lower than their original values. Thus, the divestment improves the
overall portfolio’s diversification, rather than to increasing the sector’s
variation. As seen by their SVCRs, the majority of sectors experience a
decrease in SVCR due to divestment, except for two sectors; nonethe-
less, the decline in the majority of the sectors contributes more than
the increase in those two. The difference between the SEVR and SVCR
can be used to determine the sector’s variance contribution. Compared
to other sectors, the differences between the SEVR and the SVCR in the
Communication Services and the Financial Services sectors are rather
substantial implying a large proportion of the variance contribution
in the portfolios. For all sectors, the SECs drop as the intensity of di-
vestment grows implying that divestment improves the diversification
between the sectors.

original and all divested portfolios are statistically significant, as determined
by a 𝑡-test at the 95% confidence level.
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Table 11
Monthly average performances over ten years of the fossil-fuel divestment from the iShares Global Infrastructure (IGF) ETF with 48% divested assets and the relative
carbon footprint of 534 emissions per unit of investment.

Portfolio Divestment Return Cumulative Standard Sharpe Max VaR Omega Sortino Beta Treynor
Rate (%) Return (%) Deviation (%) Ratio Draw-down (%) (%)

PEW None 0.000 0.007 0.007 0.097 −2.093 −0.009 1.669 0.142 0.962 0.001
(±0.002) (±0.041) (±0.005) (±0.260) (±0.574) (±0.009) (±1.599) (±0.380) (±0.378) (±0.002)

𝛥 Instant −0.029 −0.015 0.034 0.039 0.002 0.036 0.018 0.035 −0.263∗ 0.686
(±0.002) (±0.045) (±0.004) (±0.277) (±0.519) (±0.009) (±1.591) (±0.394) (±0.355) (±0.004)

AEW None 0.000 0.008 0.007 0.096 −2.123 −0.010 1.655 0.142 0.893 0.001
(±0.002) (±0.043) (±0.005) (±0.261) (±0.686) (±0.010) (±1.400) (±0.379) (±0.393) (±0.006)

𝛥 Slow −0.056 −0.047 −0.010 0.035 −0.020 −0.008 0.032 0.041 −0.103∗ −0.398
(±0.002) (±0.043) (±0.004) (±0.274) (±0.533) (±0.008) (±1.633) (±0.397) (±0.400) (±0.004)

𝛥 Fast −0.111 −0.093 0.019 −0.005 −0.012 0.033 0.029 −0.009 −0.246∗ 2.524
(±0.002) (±0.045) (±0.004) (±0.281) (±0.557) (±0.008) (±1.673) (±0.401) (±0.374) (±0.033)

𝛥 Instant −0.111 −0.094 0.024 −0.007 −0.013 0.044 0.029 −0.011 −0.261 8.621
(±0.002) (±0.045) (±0.004) (±0.280) (±0.553) (±0.009) (±1.675) (±0.400) (±0.363) (±0.105)

GMV None 0.000 0.007 0.005 0.096 −2.058 −0.007 1.685 0.148 0.914 −0.002
(±0.001) (±0.029) (±0.005) (±0.261) (±0.694) (±0.008) (±1.897) (±0.395) (±0.567) (±0.015)

𝛥 Slow 0.000 −0.001 −0.004 −0.030 0.011 −0.016 −0.039 −0.042 −0.097∗ −0.697
(±0.001) (±0.029) (±0.004) (±0.257) (±0.766) (±0.007) (±1.386) (±0.376) (±0.563) (±0.009)

𝛥 Fast 0.094 0.096 0.073∗ 0.015 0.028 0.045 −0.047 −0.022 −0.325∗ −1.324
(±0.001) (±0.031) (±0.005) (±0.254) (±0.750) (±0.007) (±1.208) (±0.365) (±0.504) (±0.008)

𝛥 Instant 0.125 0.120 0.073∗ 0.032 0.025 0.047 −0.047 −0.007 −0.327∗ −1.411
(±0.001) (±0.031) (±0.005) (±0.252) (±0.750) (±0.007) (±1.201) (±0.361) (±0.501) (±0.008)

MS None 0.000 0.009 0.007 0.088 −2.060 −0.010 1.550 0.125 0.795 0.005
(±0.002) (±0.044) (±0.005) (±0.253) (±0.528) (±0.008) (±1.077) (±0.364) (±0.410) (±0.062)

𝛥 Slow −0.116 −0.127 0.044∗ −0.085 −0.032 0.058∗ −0.012 −0.078 −0.099∗ −1.247
(±0.002) (±0.047) (±0.004) (±0.252) (±0.413) (±0.009) (±1.092) (±0.370) (±0.407) (±0.028)

𝛥 Fast 0.186 0.184 0.156∗ −0.002 −0.020 0.154∗ 0.005 0.030 −0.363∗ −35.543
(±0.002) (±0.049) (±0.004) (±0.251) (±0.464) (±0.009) (±1.123) (±0.364) (±0.365) (±1.746)

𝛥 Instant 0.186 0.184 0.160∗ 0.001 −0.021 0.161∗ 0.005 0.032 −0.372 −8.061
(±0.002) (±0.049) (±0.004) (±0.250) (±0.463) (±0.009) (±1.123) (±0.363) (±0.363) (±0.286)

PC None 0.001 0.017 0.012 0.093 −2.006 −0.017 1.924 0.146 0.447 0.013
(±0.003) (±0.070) (±0.007) (±0.275) (±0.472) (±0.014) (±3.535) (±0.426) (±0.302) (±0.086)

𝛥 Slow 0.090 0.102 0.060∗ −0.030 −0.006 0.051 −0.114 −0.027 −0.106∗ 1.159
(±0.004) (±0.079) (±0.007) (±0.274) (±0.494) (±0.013) (±1.549) (±0.413) (±0.288) (±0.171)

𝛥 Fast −0.077 −0.042 0.106∗ −0.166 −0.004 0.112∗ −0.147 −0.165 −0.266∗ −0.827
(±0.004) (±0.084) (±0.008) (±0.273) (±0.479) (±0.013) (±1.439) (±0.409) (±0.276) (±0.085)

𝛥 Instant −0.090 −0.057 0.109∗ −0.184 −0.004 0.120∗ −0.150 −0.179 −0.285∗ −0.717
(±0.004) (±0.084) (±0.008) (±0.274) (±0.477) (±0.013) (±1.437) (±0.410) (±0.269) (±0.079)

The table displays the relative change between the performance of the divested portfolio and its benchmark (no divestment) for slow, fast, and instantaneous divestment.
* refers to the 𝑝-value of the 𝑡-test being significant at a confidence level of 95%. This implies that the average risk profile is statistically different from the non-divestment
benchmark. The highlighted cells indicate the highest (red) and the lowest (green) difference in the performance for each risk profile. The box around the portfolio
type indicates the closest to the original ETF according to the excess return and tracking error.
The results are consistent for the GMV portfolios, see Figs. 20 to 22.56

arge sectors with several constituents, such as Financial Services and
ommunication Services tend to contribute greater variance to the
verall portfolio and lead to higher variations due to divestment. For
ll sectors, SEVRs fall while SECs improve. Fig. 23 also demonstrates
hat PDRs of the divested AEWs and GMVs portfolios are superior to
he original, particularly for the 70% divestment.57 The GMVs permit

short position to reduce portfolio volatility, therefore their PDRs
re much superior to those of the AEWs. Thus, portfolios with better
nvironmental score are more diversified than the original portfolios.

Thus, FTSE 100 divestment strategies based on ESG screening can
ignificantly impact portfolio diversification. Divesting from businesses
ith low environmental ratings on the FTSE 100 may improve port-

olios diversification, while maintains the robustness of the covariance
tructure. This implies that portfolio diversification is possible while
dhering to principles of responsible investing. However, if ratings of
SG scores are not accurately standardized and correctly reflect their
ntended assessments, this can have a material impact on performance.

56 The differences in SVCR, SEVR, and SEC between the original and all
ivested portfolios are statistically significant, as determined by a 𝑡-test at the
5% confidence level.
57 The PRDs of the original and all divested portfolio are statistically
ignificant different at a 95% confidence level under the 𝑡-test assumption for
25

oth AEWs and GMVs.
This contributes to an ongoing debate regarding the credibility of ESG
scores (Berg et al., 2022).

6. Conclusion and financial implications

The impact of a company’s carbon footprint on asset prices and
the risk of stranded fossil fuel assets in reserve-owning companies can
have a significant impact on investors’ portfolios (Conolly et al., 2017).
Divestment provides a means to protect investors from the ‘‘carbon
bubble’’. More recently, the integration of environmental risks into the
investment process has made divestment consistent with the fiduciary
duties of investors, removing the prior held view of the fiduciary
conflict between maximizing shareholder value and considering climate
risk. However, the mechanisms by which divestment occurs can also
significantly impact the risk and return of investors.

We analyze mechanisms to develop dynamic divestment strategies
and schedules, offer a comprehensive assessment of their impact on
investment performance, and further relate this analysis to investor
demographic attributes such as management fees, dividends yields and
carbon footprint reductions. We provide a comprehensive assessment
of divestment practice based on three case studies. The first case study
investigates divestment strategies from the broad S&P 500 asset set,
while the second case study takes a more targeted approach to explore
divestment in ETFs with high carbon concentration. While, carbon
concentration is the typical screening criterion of divestment strategies,
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Fig. 9. Boxplots of the excess returns separated by the types of the portfolios.
which we also employ in the first two case studies, the third case study
analyses ESG based screening for divestment decisions.58

Regarding the impact of divestment strategies on portfolio risk/
returns and carbon reduction strategies, the key findings of our study
follow. The analysis of the S&P 500 case study reveals that the stability
of the risk/return and the mean returns (between original and divested
portfolios) are not impacted by the rate of divestment. On the contrary,
the risk profile of divestment portfolios (compared to non-divestment
portfolios) is positively affected by the rate of divestment and the di-
vestment set, with rapid (instantaneous and fast) divestment strategies
having the most pronounced effects in the expense of higher tracking
errors. Furthermore, by combining the findings from the second case
study on ETFs, we conclude that across all portfolio strategies, as the
size of divestment assets increases (from CU200 divestment to energy
and utilities divestment to high concentration ETFs), the rate of divest-
ment makes a measurable impact on the stability of the risk/return
portfolios profiles, with fast rates introducing the most variation.

In terms of carbon reduction efficiency (from the S&P 500 case
study), we find that slow divestment is optimal, not only based on the
risk/return profile of a portfolio but also about the benefit of the carbon

58 An examination of divestment within a dynamic asset universe that
accommodates the addition of new equities and other asset classes (e.g., fixed
income), and an inquiry into optimal reinvestment strategies tailored to
other particular objectives, such as reinvesting to achieve minimum portfolio
variance within the set of investable assets, necessitate more complex math-
ematical models which can be explored in future research. Furthermore, an
exploration of the underlying factors contributing to risk spillovers can be
another interesting research direction.
26
reduction effect arising from reinvested capital being re-deployed to
other industries or sectors not contained in the divestment list of
assets. Also, divesting by withdrawing capital versus shorting stock
and reinvesting shows distinct offers carbon reduction benefits. Fur-
thermore, divesting from high-carbon sectors (energy and utilities) and
reinvesting in low-carbon sectors (healthcare and consumer staples)
is effective for carbon reduction and portfolio diversification. Thus,
effective divestment strategies need careful reinvestment to maintain
portfolio performance and diversification.

Relative to dividend yields and management fees, which has direct
applicability to the ETFs case study, we find that carbon divestment
in ETF portfolios tends to relate to lower dividend yields and man-
agement fees. Investors in funds with low carbon footprints or high
ESG scores can expect lower dividend yields at any rate of divestment.
There is typically a penalty for requiring fund managers to meet ESG
targets, reflecting higher management fees. These findings highlight the
complexities and trade-offs involved in divestment strategies.

Lastly, the impact of divestment practices based on Environmental,
Social, and Governance (ESG) ratings, as investigated in the FTSE 100
case study, shows that divesting based on ESG scores can negatively
impact the risk/return profile of the portfolio due to reduced diversifi-
cation. While divesting low ESG-scoring assets can reduce a portfolio’s
environmental footprint, it can also lead to decreased diversification
and lower overall ESG scores. The study highlighted the critical role
of ESG in divestment decisions and underscores the trade-offs be-
tween ESG improvements and potential reductions in diversification
and portfolio performance.

Several practical financial implications stem from our findings, in
relation to the speed of divestment, the re-investment and leverage
decisions, and management fees considerations. Firstly, rapid rates of
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Fig. 10. Clustering overall performance of core-type portfolio ETFs.
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Fig. 11. Results from AEW and GMV constructed by the assets in FTSE 100 and their divested portfolios with several proportions of divestable assets of 10%, 20%, 30%, 40%,
50%, 60%, and 70% according to the environmental score.
divestment introduce instability and more risk in the portfolios per-
formance, and consequently more tracking error. Thus, fund managers
who aim to reduce carbon in an existing portfolio but need to control
performance tracking may use a slow divestment schedule to avoid
the instantaneous change in performance in the short term. If tracking
performance is not a concern, then fast divestment strategies can be
preferred as they accelerate the establishment of low-carbon risk port-
folios and better control leverage in heavy shorting asset allocations.
Secondly, there are important consideration regarding divesting from
fossil-fuel intensive sectors and the reinvestment of this capital in other
28
assets59 compared to allowing divestment by using leveraged positions.
Reinvested assets or sectors also emit carbon, as it cannot be assumed
that reinvestment automatically leads to investment in, for example, re-
newables. Despite the increase in clean energy options, the limited scale

59 The reinvestment allocation decision is based on risk profiles. A direction
for further research could be determining the reinvestment allocation based on
other types of constraints, such as based on carbon efficiency, see Andersson
et al. (2016) for a simple dynamic strategy based on carbon footprint.
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Fig. 12. Number of the remaining assets in portfolios with assets in FTSE 100 after divestment with proportions 10% to 70% ranking by the environmental, social, governance,
nd overall ESG scores separated by sectors.
s a major obstacle. From an environmental point of view, the divest-
ent of energy and utilities in S&P 500 portfolios reduces the carbon

ootprint marginally, with leveraged positions in energy and utilities
trongly and negatively impacting the carbon reduction targets.60 Note

also that the lower levels of gross leverage make it significantly easier
to attract funding, decrease borrowing costs, and reduce the potential

60 A direction for further research could be addressing the other social and
nvironmental concerns that may arise from reinvestment, even if divestment
oes reduce carbon emissions.
29
for erosion of equity value, but may attract higher tracking errors.
Lastly, investors tend to pay a penalty (in the form of management
fees) for requiring fund managers to meet carbon reduction targets fast.
However, the financial case for the divestment of fossil fuels is strong
with current market conditions and the outlook facing the coal, oil, and
gas sectors. A potential increase in management fees can be settled by
negotiation, with endowments and small funds that already pay fees
for services making adjustments to include portfolio rebalancing. This
study informs industry and academia on effective gradual divestment
practices and underscores the importance of accounting for investors’
demographic attributes of practical relevance.
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Fig. 13. Boxplots of the excess returns of the divested AEWs with several proportions of divestable assets of 10%, 20%, 30%, 40%, 50%, 60%, and 70% according to the
environmental score, constructed by the assets in the index FTSE 100 by sectors.
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Fig. 14. Boxplots of the excess returns of the divested GMVs with several proportions of divestable assets of 10%, 20%, 30%, 40%, 50%, 60%, and 70% according to the
environmental score, constructed by the assets in the index FTSE 100 by sectors.
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Fig. 15. Cumulative returns of the AEW and the GMV constructed by the assets in FTSE 100 and their divested portfolios with several proportions of divestable assets of 10%,
20%, 30%, 40%, 50%, 60%, and 70% according to the S, G and overall ESG scores.
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Fig. 16. Network of the regularized covariance from the glasso of the AEWs in industrials sector; Here we dropped .L after ticker for visualization purposes.
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Fig. 17. The dynamic SVCR of the AEW and the AEWs divested by the environmental score of 30th and 70th percentiles.
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Fig. 18. The dynamic SEVR of the AEW and the AEWs divested by the environmental score of 30th and 70th percentiles.
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Fig. 19. The dynamic SEC of the AEW and the AEWs divested by the environmental score of 30th and 70th percentiles.
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Fig. 20. The dynamic SVCR of the GMV and the GMVs divested by the environmental score of 30th and 70th percentiles.
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Fig. 21. The dynamic SEVR of the GMV and the GMVs divested by the environmental score of 30th and 70th percentiles.
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Fig. 22. The dynamic SEC of the GMV and the GMVs divested by the environmental score of 30th and 70th percentiles.
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Fig. 23. Portfolio diversification ratio of the AEWs and GMVs with divested 30% and 70% of the worsen environmental score.
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