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Potholes and traffic signs 
detection by classifier with vision 
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Detecting potholes and traffic signs is crucial for driver assistance systems and autonomous vehicles, 
emphasizing real-time and accurate recognition. In India, approximately 2500 fatalities occur annually 
due to accidents linked to hidden potholes and overlooked traffic signs. Existing methods often 
overlook water-filled and illuminated potholes, as well as those shaded by trees. Additionally, they 
neglect the perspective and illuminated (nighttime) traffic signs. To address these challenges, this 
study introduces a novel approach employing a cascade classifier along with a vision transformer. 
A cascade classifier identifies patterns associated with these elements, and Vision Transformers 
conducts detailed analysis and classification. The proposed approach undergoes training and 
evaluation on ICTS, GTSRDB, KAGGLE, and CCSAD datasets. Model performance is assessed using 
precision, recall, and mean Average Precision (mAP) metrics. Compared to state-of-the-art techniques 
like YOLOv3, YOLOv4, Faster RCNN, and SSD, the method achieves impressive recognition with a 
mAP of 97.14% for traffic sign detection and 98.27% for pothole detection.

In the present context, global transportation options encompass air travel, metros, buses, and various personal 
vehicles. Among these, road transportation stands out as a widespread and economical means of connecting 
diverse locations. However, owing to diverse road conditions or lapses in driver attention, accidents are a daily 
occurrence. While drivers are expected to focus on the road, additional assistance can enhance their awareness 
and alert them to potential emerging hazards. This assistance has the potential to minimize human errors by 
actively monitoring the driving environment and providing timely warnings along with recommendations and 
alarms. This study focuses on the development of an Intelligent Transport System designed to alert drivers to 
potential degradation. Specifically, the research addresses the challenges associated with detecting potholes and 
traffic signs in the conditions prevalent on Indian roads.

The statistics starkly illustrate the detrimental impact of potholes on road safety. In 2018, accidents stem-
ming from potholes led to the tragic loss of 15 lives. The gravity of the situation is further highlighted by the 
figures for preceding years, with 9423 accidents and 3597 fatalities in 2017, 6424 accidents and 2324 lives lost 
in 2016, and 10,876 incidents resulting in 3416 deaths in 20151. Similarly, in 2014, accidents related to potholes 
claimed the lives of 3039 individuals. According to the Ministry of India, Uttar Pradesh recorded the highest 
number of fatalities attributed to potholes in 20182, with 1043 cases, followed by Haryana with 222 instances 
and Maharashtra with 166 fatalities. The issue persisted, causing 4775 incidents in 2019 and 3564 accidents in 
2020. This worrisome trend highlights the pressing need for effective measures to address the impact of potholes 
on road safety in India.

The efficacy of Intelligent Transport Systems, as well as autonomous and assisted driving, hinges heavily 
on the precise identification of traffic signs and potholes3. This identification empowers drivers with real-time 
information through automated traffic sign detection and pothole detection, enabling better control of their 
actions and elevating the safety and convenience of operating motor vehicles. Automated traffic sign and pothole 
detection is a fundamental component for automated driving systems. Its potential advantages for the future are 
substantial. Nonetheless, challenges such as variations in illumination, adverse weather conditions contribute 
to the intricacies of real-world traffic scenarios, indicating that the domain of traffic sign and pothole detection 
still harbors numerous unanswered questions. The crucial aspect of traffic sign and pothole detection lies in the 
ability to recognize minor signs and tiny potholes within a complex environment, ensuring the resilience and 
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accuracy of the detection system. Numerous studies have extensively explored methods for identifying traffic 
signs4. Leveraging the geometric shapes and vibrant colors of traffic signs, algorithms based on color and shape 
have been proposed. These algorithms extract relevant information to produce features from the region of inter-
est (ROI) containing the traffic signs.

In recent times, deep learning has gained popularity in the realm of traffic sign and pothole detection. 
Certain attention-based detection approaches incorporate an attention module to extract the ROI from the 
input image and optimize features against complex backgrounds5. The integration of these two techniques sig-
nificantly improves the accuracy of recognizing minor traffic signs while reducing false alarms. However, the 
deployment of deep neural networks on movable platforms poses challenges due to time-consuming processes 
and high computational requirements. Detecting traffic signs and potholes on moving devices becomes chal-
lenging. Consequently, many approaches opt for lightweight network models developed through compression 
techniques. This approach aims to reduce the computational load, enabling real-time traffic sign identification 
on mobile platforms.

Improving the robustness and accuracy of traffic sign recognition and pothole detection systems relies heav-
ily on the ability to effectively recognize and interpret minor traffic signs and tiny potholes within complicated 
different environments. Extensive research has been devoted to the exploration of various techniques in this 
domain4. Given that traffic signs typically exhibit geometric shapes such as triangles, circles, and rectangles, 
coupled with vibrant colors, several algorithms have been proposed that leverage color and shape-based informa-
tion for traffic sign detection. These proposed algorithms extract pertinent features from the region of interest 
(ROI) encompassing the traffic sign. In recent years, deep learning has gained significant popularity within the 
realm of traffic sign detection. Advanced network architectures have been devised to enhance detection accuracy, 
particularly for small-sized traffic signs. To effectively recognize traffic signs in intricate environments, numerous 
approaches have incorporated image segmentation techniques.

Additionally, attention-based detection methods have emerged, employing attention modules to extract ROIs 
from input images and fine-tune features within complex backgrounds5. By leveraging these strategies, the 
accuracy of traffic signs and potholes recognition has been greatly improved while minimizing the occurrence 
of false alarms. However, one major challenge arises when attempting to deploy deep neural networks on mov-
ing platforms. The process of deploying these networks is often time-consuming and computationally intensive, 
making real-time traffic sign detection on movable devices a formidable task. Furthermore, the recognition of 
minor traffic signs and potholes in complex environments is a critical aspect of traffic sign detection systems. 
Researchers have dedicated substantial efforts to develop effective techniques that leverage deep learning, image 
segmentation, attention mechanisms, and compression methods to enhance the accuracy and efficiency of traffic 
sign recognition, particularly for small-sized signs.

The current scenario lacks a comprehensive model capable of effectively alerting concerned authorities and 
drivers about the condition of roads. In this work, we propose an innovative approach that utilizes image recog-
nition and computer vision techniques for the identification of potholes and traffic signs. This endeavor holds 
immense industrial potential, particularly in the domains of Driver Assistance Systems and Intelligent Autono-
mous Vehicles6. The first step of a typical pothole and traffic sign identification technique involves locating the 
precise position of potholes and traffic sign regions. The second step is assigning suitable classifications to the 
detected potholes and traffic signals. In our study, we have developed a gradient-boosting cascade classifier 
specifically tailored to accurately locate potholes and traffic signs even on challenging road surfaces. Addition-
ally, we employ a vision transformer to effectively identify and assign labels to the detected potholes and traffic 
signs. By combining these techniques, we aim to provide a robust and reliable system for comprehensive road 
analysis and safety enhancement.

Based on existing literature, conventional approaches to pothole detection face limitations in identifying 
water-filled potholes and those either illuminated or concealed by tree shadows. Similarly, current traffic sign 
identification algorithms lack the ability to recognize perspective-oriented traffic signs and exhibit reduced 
accuracy in detecting illuminated signs at night. This research aims to introduce a more efficient and distinctive 
approach, specifically tailored for challenging climatic and topographical conditions.

The main aim of this work is to develop a model that will detect potholes and traffic signs in challenging 
environmental conditions. The notable contributions of this research include:

•	 Detection of water-filled potholes and potholes affected by illumination and obscured by tree shadows.
•	 Recognition of perspective traffic signs and tiny traffic signs affected by illumination.
•	 A novel model capable of detecting both potholes and traffic signs under diverse conditions.

The rest of the paper is organized as follows: Section II illustrates a review of existing literature relevant to 
the research topic. Section III illustrates detailed information on how the research was conducted, including 
the research design, participants, materials, and procedures. Section IV illustrates a presentation of the findings 
obtained from the research and interpretation and analysis of the results. Section V discusses a summary of the 
main findings and their significance. Section VI illustrates a list of all the sources cited in the paper.

Literature survey
Pothole detection
A novel model for pothole detection utilising CNN and LSTM was developed by Varona et al.7, which reached 
93% accuracy. Dhiman et al.8 proposed using deep learning and stereo-vision analysis to spot the potholes in 
the road. A novel CNN method proposed by Aparna et al.9 has achieved 97% accuracy in identifying potholes 
in road pavements. The pothole detection model was developed by Sawalakhe et al.10 for use on a single-board 
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Raspberry Pi. This model acquires the image/audio, processes it using computer vision algorithms, and then 
pinpoints the location of any potholes in the road. At last, the GPS coordinates of the pothole will be sent to 
the relevant authorities so that they may take the necessary next steps. A location-aware convolutional neural 
network (CNN) model was proposed by Chen et al.11. It leaves out the global context in favour of localised 
analysis of discriminative areas in road photographs. There are two steps: first, find the potholes, and then, sort 
them into categories. The overall accuracy of this model is 95.2%. An Internet of Things (IoT) model dubbed 
"DeepBus" was proposed by Bansal et al.12 to locate road defects in India. Internet-of-Things sensors are used to 
track the locations of the craters in real time. Users and authorities everywhere may now see an interactive map 
showing the precise locations of all known potholes. Users and administrators alike will get alerts so they may 
take appropriate measures as soon as possible.

Traffic sign detection
The YOLOv3 layer-based network pruning along with a patch-wise approach for recognising very small traf-
fic signals was introduced by Rehman et al.13. In addition, an anchor box selection algorithm was presented to 
determine the optimal anchor set. It decreases the overall miss rate and the proportion of false positives. It was 
trained and evaluated using data derived from traffic signs in Germany and Sweden, where it scored best in terms 
of mean absolute precision. A traffic sign-detection model was proposed by Wang et al.14, and it uses a refinement 
classifier and a lightweight super-clad detector. It boosts processing speed by using spatial statistics. The model 
only has 6.49 million parameters, making it rather simple. It was tested and refined using the Tisunga—Tencent 
100k dataset, where it achieved 92.16% mAP with a per-frame processing time of 0.150 s.

To better recognise traffic signs, Wang et al.15 suggested a lightweight approach based on YOLOv4 tiny. An 
enhanced K-means clustering technique is employed to increase the recall rate and preciseness of the target 
position. A large-scale feature map technique is presented to enhance the precision of large-scale tiny item 
detection. The mAp and recall rates were both increased by 5.73 percentage points and 7.29 percentage points, 
respectively, after being trained and evaluated on the TT 100k dataset. To detect and identify traffic signs, Cao 
et al.16 proposed an improved sparse R CNN model. To distinguish even the tiniest of traffic signals, a unique 
detection model is provided, and a multiscale fusion structure technique is used. All of the research relies on the 
TT100k dataset, which achieved 62.3 mAP.

The IFA-FPN method was developed for traffic sign recognition by Tang et al.17. The Tsinghua-Tencent 100k 
dataset (TT100k), the Swedish Traffic Sign Dataset (STSD), and the German Traffic Sign Detection Benchmark 
(GTSDB) are utilised for the evaluations. The experimental results demonstrate the efficacy of the proposed IFA-
FPN in detecting traffic signs. When the recommended IFA-FPN is applied to the Cascade RCNN, it receives a 
mAP of 80.3% in GTSDB, which is 9.9% higher than FPN; a mAP of 65.2% in STSD, which is 3.5% higher than 
FPN; and a mAP of 93.6% in TT100k, which is 1.6% higher than FPN.

Satti et al.18 presented a system for recognizing traffic signs on Indian highways. The traffic sign objects are 
found using a cascade classifier, and the traffic signs are classified using CNN. It simplifies the model since CNN 
just takes the frames that include the traffic sign objects. The trials were conducted using the ICTS dataset, and 
greater mAP values were obtained. A technique for identifying traffic signs was presented by Yang et al.19. The col-
our probability model and colour HOG are used for feature extraction and localization. CNN is in charge of traffic 
sign categorization. The experiments are carried out and assessed using datasets from the GTSDB and CTSD.

Most existing methods exhibit low detection accuracy in low-light conditions, and they often struggle to 
detect occluded and perspective traffic signs. Additionally, many models lack the capability to identify traffic 
signs in low-light situations. Furthermore, there is a gap in addressing the detection of potholes covered by 
tree shadows and filled with water. Moreover, the size and severity of potholes are not quantified or adequately 
addressed in the current approaches.

In an effort to maintain focus on the road while driving, drivers often overlook traffic signs and potholes. Such 
lapses pose potential dangers to both the driver and surrounding individuals. This issue might be mitigated with 
an effective means of alerting the driver without requiring a shift in their attention. The majority of tasks related 
to traffic sign recognition and pothole detection have primarily been executed on foreign roads, where the road 
conditions significantly differ from those in India. This research proposal centers on the development of models 
specifically tailored for detecting traffic signs and potholes in Indian road conditions. The objective is not only to 
enhance road safety but also to instil a sense of confidence in drivers navigating unfamiliar or challenging routes.

Moreover, the application of AI with ML or DL techniques has revolutionized the world today. For instance, 
applications like predicting the air passenger traffic flow30, health monitoring in urban traffic in the VANET 
network31, tracking moving vehicles from the video footage for automatic traffic flow analysis33, object detection 
in video surveillance systems34,35, etc. Furthermore, In order to assist traffic flow analysis (TFA) and solutions 
that need the forecast of many traffic variables, such as driving behaviour, journey time, speed, density, incident, 
and traffic flow, the paper32 analyses the application of data fusion (DF) approaches in Intelligent Transportation 
Systems.

Proposed system
Overview
Upon delving into the extensive literature survey outlined in Section II, it becomes apparent that the realm of 
recognizing potholes and traffic signs on Indian road surfaces has been largely unexplored. In light of this, the 
proposed system sets forth a groundbreaking approach to tackle this challenge and revolutionize the recognition 
process within the context of Indian road conditions. To begin with, a meticulously designed cascade classifier 
takes center stage, diligently working to pinpoint the exact locations of potholes and traffic signs strewn across 
the vast expanse of Indian roads. This initial phase serves as a crucial foundation for the subsequent steps. 
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Subsequently, leveraging the power of Vision Transformer, a cutting-edge technique is employed to unleash 
the potential for precise prediction of both potholes and traffic signs. Figure 1 serves as a visual representation, 
showcasing the architecture of this innovative system, where the synergistic integration of cascade classifiers and 
vision transformers propels the realm of pothole and traffic sign prediction.

Dataset
To implement this model, 5000 pothole images and 19,775 traffic signs of 40 classes are acquired at diverse 
road conditions using the Samsung Galaxy C7 Pro mobile. The sample pothole and traffic sign images from the 
obtained dataset are shown in Figs. 2 and 3, respectively. Figure 4 shows the sample images of the challenged 
traffic signs for detection. Table 1 showcases the comprehensive distribution of the pothole and traffic sign data-
set, meticulously curated to facilitate the training and testing of our innovative model. On the flip side, Table 2 
shows a detailed breakdown of the dataset allocation specifically for both training and testing purposes. To 
ensure optimal image quality, a series of preprocessing techniques have been applied to the dataset. Notably, the 
implementation of Gaussian filtering and CLAHE20 techniques has been instrumental in enhancing the overall 
clarity and visual fidelity of the images, thus fortifying the foundation for accurate and reliable model training 
and evaluation.

Figure 1.   Proposed pothole and traffic sign prediction architecture.

Figure 2.   Pothole samples from dataset.
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Haar feature extractions
In this section, we delve into the fascinating process of extracting Haar-like features to build a powerful cascade 
classifier. By applying the Convolutional kernels depicted in Fig. 5 to the image, we unlock a realm of valuable 
information. Kernels 1 and 2 skillfully capture the essence of edge features, while kernels 3 and 4 go a step 
further, to capture both edge and diagonal features. This strategic combination of kernels equips our cascade 
classifier with the ability to detect and distinguish these distinctive visual characteristics, ensuring reliable and 
precise identification.

Figure 3.   Collected traffic sign samples.

Figure 4.   Challenging samples from the ICTS dataset.

Table 1.   Distribution of collected potholes.

Environmental condition Total images collected Samples used for training (80%) Samples used for validation (20%)

Day Time 1700 1360 340

Rainy 1600 1280 320

Low Light 1700 1360 340

Total 5000 4000 1000
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Object detection using cascade classifier
Boosting strategies, as a general approach, play a pivotal role in transforming weak learners from Section C into 
robust learners. This technique empowers each newly constructed tree with an enhanced version of the original 
dataset. Initially, in the gradient boosting algorithm (gbm), a decision tree is trained, assigning equal weight to 
each observation. Following the evaluation of this primary tree, the weights of challenging-to-classify data points 
are increased, while the weights of easily classifiable observations are decreased. Consequently, the subsequent 

Table 2.   Distribution of collected traffic sign symbols36.

Labels # of images Training (80%) Testing (20%)

200 m 508 406 81

100–500 m 272 218 44

Barrier ahead 288 230 46

Broad wideness ahead 421 337 67

Crossroad 523 418 84

Cattle 275 220 44

Cycle crossing 899 719 144

Dangerous dip 726 581 116

Falling rocks 200 160 32

Ferry 369 295 59

Gap in median 788 630 126

Guarded 200 m 274 219 44

Guarded 50–100 m 272 218 44

Hump 666 533 107

Left-hand curve 495 396 79

Left hair pin bend 510 408 82

Left reverse bend 653 522 104

Loose gravel 200 160 32

Major road ahead 775 620 124

Men at work 413 330 66

Narrow bridge 434 347 69

Narrow road ahead 400 320 64

Pedestrian 2033 1626 325

Right hair pin bend 739 591 118

Right reverse bend 235 188 38

Right-hand curve 912 730 146

Round about 120 96 19

Steep ascendant 912 730 146

Steep descendant 420 336 67

Staggered intersection 420 336 67

Slippery road 382 306 61

Side road right 382 306 61

Side road left 1350 1080 216

School ahead 288 230 46

Traffic signal ahead 170 136 27

Unguarded 200 m 382 306 61

Unguarded 50–100 m 272 218 44

Y-intersection 272 218 44

Total 19,775 15,819 3163

Figure 5.   Convolutional Kernels used to extract Haar features.
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tree is constructed based on this weighted data, with the primary aim of improving the prediction accuracy of 
the initial tree. The fusion of the primary and secondary trees gives birth to a novel model. Next, the classifica-
tion error of the two-tree cascade model is measured, and a new tree (third) is developed to predict the modified 
residuals. This iterative process is repeated for multiple epochs, wherein each successive tree aids in identifying 
observations that were not well-categorized by the previous tree models. The essence of gradient boosting lies 
in training numerous models incrementally, conservatively, and chronologically. By utilizing gradients in the 
loss function, gbm effectively identifies the areas where improvement is needed. The loss function serves as a 
guiding measure to assess the accuracy of the model coefficients. The selection and design of the loss function 
depend on the specific objectives and requirements of the problem at hand, dictating the conceptual perspective 
through which it is formulated and utilized. Figure 6 illustrates the process of training the cascade classifier.

The loss function is estimated based on the negative log probability that is converted to log.
Step 1: Start the model with a constant

where L indicates loss function and Yi and γ represents observed and expected value respectively. At this level, 
the initial tree is to be constructed with a single leaf, after which trees with a larger depth are built. Usually, the 
mean Yi values are for regression and log values for classification.

Step 2: for m = 1 to M {M indicates no of trees to construct}

Equation (2) returns the negative gradient of each observation for all trees that form the expected values of the 
previous classifier.

(b) Add a regression tree to the γim values and generate terminal regions Rjm for j = 1, 2, . . .m.

Equation (3) gets the cumulative predicted values of each terminal node of all tees with shrink loss function, as 
well as the prediction of preceding learners.

where η is the learning rate.
Step 3: Get the output Fm(x).
Thus, gbm constructs the ultimate prediction by accumulating inputs from each tree.

Object classification using vision transformers
ViTs, short for Vision Transformers, revolutionize the field of computer vision by leveraging the Transformer 
model, originally designed for natural language processing. By adopting this powerful architecture, ViTs have 
garnered immense attention and have emerged as frontrunners in diverse image classification tasks, delivering 
state-of-the-art outcomes21. Figure 1 offers a comprehensive overview of Vision Transformers, illustrating their 

(1)F0(x) = argmin
∑n

i=1
L(Yi , γ )

(2)(a) Compute γim = −

[

∂L(Yi , F(xi))

∂F(xi)

]

F(x)=F(m−1)(x)

for i = 1, . . . n

(3)(c) For j = 1, 2, . . .m measure γjm = argmin
∑

xi∈Rij
L(Yi , Fm−1(xi)+ γ )

(4)(d) Modernize Fm(x) = Fm−1(x)+ η
∑Jm

j=1
γjmI(x ∈ Rjm)

Figure 6.   Training cascade classifier using gradient boosting method.
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functionality. To process an input image, it is first partitioned into a grid of smaller regions known as patches. 
These patches typically encompass a fixed number of pixels, such as 16 × 16 or 32 × 32. Subsequently, the patches 
are transformed into flattened structures and undergo linear projection, producing lower-dimensional feature 
vectors referred to as patch embeddings. These embeddings effectively encapsulate local information from dis-
tinct areas of the image, enabling comprehensive analysis and understanding.

The embedded transformer receives a sequence of 1D token embedding as an input. In order to handle the 
2D images, the original image x is flattened into a series of reshaped 2D patches xP.

Here, H and W indicate the height and width of the input image and C indicates the channel of the input image 
(either 1 or 3). ( P, P ) represents the height and width of each patch, N is the total obtained patches and it can 
be computed by (7).

These patches are aid as the actual input for the transformer. Equation (8) is used to reshape the patches and 
project them into D dimensions. The outcome of the projection is referred to as the patch embeddings.

Similar to the Transformer model in NLP, Vision Transformers incorporate positional information into the 
input data. Positional embeddings represent the spatial relationship between different patches in the image. They 
encode the position and order of the patches and are added to the patch embeddings. The patch embeddings, 
along with the positional embeddings, serve as input to a stack of Transformer encoder layers. Each encoder 
layer consists of two sub-layers: the multi-head self-attention mechanism and the feed-forward neural network.

The self-attention mechanism allows the model to capture dependencies and relationships between different 
patches. It computes weighted sums of the patch embeddings, where the weights are determined by the similarity 
between patches. The attention mechanism attends to all patches simultaneously, enabling global context under-
standing. After self-attention, a feed-forward neural network is applied to each patch independently. This network 
consists of fully connected layers, allowing non-linear transformations and feature extraction. The output of the 
Transformer encoder is a sequence of feature vectors, each representing a patch. To obtain a final classification, 
a global average pooling is applied to aggregate the patch representations into a single vector. This vector is then 
passed through a fully connected layer with softmax activation to produce class probabilities for different labels.

Training a Vision Transformer involves optimizing the model parameters, including the patch embeddings 
and the weights of the Transformer encoder, using labeled data. This is typically done through techniques like 
stochastic gradient descent (SGD) and backpropagation, where the model’s predictions are compared to the 
ground truth labels, and the gradients are computed to update the parameters. During inference, a trained Vision 
Transformer can take an input image, extract patch embeddings, pass them through the Transformer encoder, 
and produce class probabilities for image classification tasks.

The proposed algorithm

The following algorithm illustrates the procedure of the proposed method for traffic sign and pothole detection 
using cascade classifier with the vision transformer.

(5)x ∈ RH×W×C

(6)xp ∈ RN×(P2· C)

(7)N =
H W

P2

(8)z0 =
[

Xclass;X
1
pE;X

2
pE; . . . ;X

N
p E

]

+ Epos Where, E ∈ R(P
2·C)×D Epos ∈ R(N+1)×D
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----------------------------------------------------------------------------------------------------------------------------------------------------------
For each layer, let Cf and d be the maximum false classification and minimum detection rate respectively. Ft is the final false 

classification rate;

Let P and N are positive and negative images set;

Initialize D0=1 and F0=1 for the present layer; {D0: Detection rate, F0: False positive rate}

Set x=0; { x indicates the number of layers}

While Fx > Ft do :
x=x+1;

Fx= Fx-1;

Set nx=0;{ nx is used to  indicate nth weak classifier in xth layer.}

While Fx > Cf * Fx-1 do :
nx=nx + 1;

To train a strong classifier with nx weak classifiers on positive P and Negative N, an optimized 

adaptive boosting algorithm is used;

Compute Dx and Fx of the cascade classifier;

While Dx < d * Dx-1 do :
Adjust the threshold of xth strong classifier;

Compute Dx and Fx of the cascade classifier;

End
End
Initialize N → Empty;

Update N with false classification images.

End
Returns a Strong Cascade Classifierss

Begin   // Vision Transformers
//Initialize the Vision Transformer model

Initialize_vision_transformer_model()

//Load the image

load_image()

//Preprocess the image

preprocess_image(image)

// Use the Vision Transformer for feature extraction

vision_transformer_model(preprocessed_image)

//Initialize the object detection head

initialize_object_detection_head()

//Forward pass through the object detection head

object_detection_head(features)

//Post-process the detection results

post_process_detection_results(detection_results)

//Visualize or use the final detection results

visualize_results(final_detections)

End
------------------------------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 1.   Traffic sign and pothole detection using cascade classifier with vision transformer

Results and discussions
This experiment is conducted on the Windows 10 platform, featuring 64 GB of RAM, an 8 GB NVIDIA RTX 4000 
GPU, and a 3.60 GHz processor. The proposed methodology is implemented using Python programming. The 
collected images of potholes and traffic signs are organized, as detailed in Tables 1 and 2, respectively. To train 
the model, 80% of the dataset is employed, while the remaining 20% is reserved for testing. The Cascade classifier 
ensemble, incorporating a sequence of nine gradient boosting techniques, is trained to detect pothole and traffic 
sign objects in road images, with bounding boxes delineating their locations. The parameters utilized for train-
ing the cascade classifier are outlined in Table 3. Subsequently, vision transformers are employed to predict the 
specific categories of the identified pothole and traffic sign objects. The parameters used for training the vision 
transformers are presented in Table 4. To appraise the efficacy of the proposed model, accuracy, recall, and Mean 

Table 3.   Cascade classifier parameters. 

Image size Gradient boosting levels Scale factor Minimum neighbours Max FAR Minimum hit rate

64 × 64 9 2.0 4 0.27 0.997
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Average Precision (mAP) as performance/evaluation metrics are considered for the taken datasets. These metrics 
are then compared to those obtained from other cutting-edge techniques such as YOLOv3, YOLOv4, Faster 
RCNN, and SSD. This comparison is carried out to determine which system achieves the highest accuracy, recall, 
and mAP. This comparison aids in determining the most effective method for detecting potholes and traffic signs.

Figures 7 and 8 display the confusion matrices for pothole and traffic sign predictions, respectively. A confu-
sion matrix is a performance measurement tool used in machine learning and classification tasks to evaluate the 
accuracy of a model. It’s particularly useful when dealing with supervised learning algorithms where the output 
is categorical. The matrix itself is a table layout that allows visualization of the performance of an algorithm. It 
typically has four sections: True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). It 
is evident from Fig. 7 that the proposed strategy accurately predicted the potholes on the road. Likewise, Fig. 8 
demonstrates the traffic sign prediction through the proposed model and notably, the TP rate is higher than the 
other three metrics. For both scenarios, the evaluation provides insights into the model’s performance. Using 
these components, the confusion matrix provides a comprehensive view of how well a classification model per-
forms by summarizing the model’s predictions against the actual outcomes. It helps in understanding where the 
model is making mistakes, such as misclassifying one class as another.

Table 4.   Vision transformer parameters.

Hyper parameter Value

Learning_Rate 0.001

Weight_Decay 0.0001

Batch_Size 256

Num_Epochs 10

Image_Size 72

Patch_Size 6

Num_Patches (image_size // patch_size) ** 2

Projection_Dim 64

Num_Heads 4

Transformer_Layers_Size 8

Figure 7.   Confusion matrix of pothole prediction.
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Figure 9 presents the Mean Average Precision (mAP) graphs generated during the model training. The 
evaluation of the trained model includes assessment using metrics such as precision, recall, and mAP. For 
instance, accuracy measures the overall correctness of predictions, while precision and recall focus on specific 
aspects like correctly identifying positive cases (presence of a sign or pothole). These metrics help in assessing 
the effectiveness of the models in identifying road signs or potholes, which is crucial for improving road safety 
and infrastructure maintenance.

The proposed model is compared with other state-of-the-art techniques, including YOLOv322, YOLOv423, 
Faster RCNN24, and SSD25, demonstrating superior accuracy. Figure 10 showcases the comparative results on the 
ICTS26-based traffic sign dataset, while Fig. 11 provides a comparative analysis of the proposed model against 
other existing models on the GTSRB27-based traffic sign dataset. Additionally, Figs. 12 and 13 depict the com-
parative analysis of the proposed method with other object detection models on the KAGGLE28 and CCSAD29 
datasets, respectively. It is apparent from these figures that the proposed approach outperforms existing strategies 
in terms of mAP, precision, and recall. The fusion of the cascade classifier with the vision transformer facilitates 
the inherent capabilities of the vision transformer in capturing global context, learning fine details, and adapt-
ability to various conditions making them promising candidates for improving accuracy and robustness in traffic 
sign and pothole detection systems.

Figure 8.   Confusion matrix of traffic sign prediction.

Figure 9.   Precision, recall, and mean average precision (mAP) plots.
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As depicted in Table 5, it is evident that the proposed methodology surpassed other methods, achieving a 
precision value of 97.90%, a recall of 95.69%, and a mean Average Precision of 97.14%. All methods highlighted 
in Table 5 underwent training and evaluation on the ICTS dataset. Moving on to Table 6, a comparative analysis 
of the proposed method on the GTSRDB benchmark dataset reveals that it achieved the highest detection accu-
racy among other object detection models, with a mean Average Precision of 98.57%. Tables 7 and 8 provide a 
comparative analysis of the proposed method with other state-of-the-art object detection models on the KAGGLE 

Figure 10.   Predicting potholes in different conditions on the CCSAD dataset.
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and CCSAD pothole datasets. Across both pothole datasets, the proposed model demonstrates superior detection 
performance, yielding a mean Average Precision of 97.27% and 97.17%, respectively.

Figure 10 shows the detection results of potholes under illumination and tree shadow conditions. All the 
potholes are detected with higher prediction scores and tiny potholes are also detected with the proposed meth-
odology. Figure 11 depicts the detection results of the potholes filled with water (wet potholes). The proposed 
method detects all the water-filled potholes with the higher prediction score and with less training time.

Figure 12 illustrates the prediction outcomes for traffic signs under night time conditions. Notably, traffic 
signs such as hump, pedestrian, 200 m ahead, crossroad, gap in median, narrow bridge, crossroad, men at work, 
y-intersection, gap in median, crossroad, hump, 200 m ahead, hump, pedestrian, and a gap in median exhibit 
higher prediction accuracy under various illumination conditions. Moving to Fig. 13, the prediction results focus 
on perspective traffic signs. Existing methods falter in detecting these signs, but the proposed model excels in 
accurately identifying them.

The proposed approach successfully identifies both potholes and traffic signs, even in challenging conditions. 
In particular, water-filled potholes pose a detection challenge for Faster RCNN and SSD. Although YOLOv3 and 
YOLOv4 detect some of these water-filled potholes, they struggle with tiny or small ones. Potholes obscured by 
tree shadows are detected by Faster RCNN, SSD, YOLOv3, and YOLOv4, but with a high false detection rate. 
In contrast, the proposed method achieves comprehensive detection of all potholes with high accuracy and 
significantly reduces false positives.

Regarding images of perspective traffic signs, Faster RCNN, SSD, and YOLOv3 encounter challenges in 
detection. While YOLOv4 successfully identifies a limited number of slightly angled perspective images, the 
proposed method outperforms by precisely recognizing all perspective images with superior detection accuracy.

Figure 14 illustrates the comparative assessment of the proposed method concerning the training time 
required to train the model. The suggested model exhibits a shorter training duration in comparison to the 
other methods highlighted in Fig. 14.

This efficiency stems from the fact that the proposed model doesn’t rely on image-specific biases, thanks to 
its utilization of multi-head self-attention. The model dissects images into a sequence of positional embedding 
patches, processed by the transformer encoder, thereby capturing both regional and global features of the image. 
Ultimately, when applied to datasets derived from ICTS, GTSRDB, KAGGLE, and CCSAD, the proposed model 
demonstrates superior accuracy with a reduced training time. The achieved mean Average Precision (mAP) of 
97.14% for traffic sign detection and 98.27% for pothole detection surpasses benchmarks set by leading tech-
niques such as YOLOv3, YOLOv4, Faster RCNN, and SSD, showcasing the effectiveness of the proposed method-
ology. Notably, our model showcases remarkable proficiency in accurately predicting potholes concealed in tree 
shadows, affected by varying illumination conditions, or filled with water, all achieved with a higher accuracy rate 
and reduced training time. Furthermore, our model exhibits exceptional competence in predicting traffic signs 
under challenging conditions like illumination variations, perspective distortions, and blurriness. The system’s 
ability to recognize water-filled potholes and illuminated traffic signs, as well as handling perspective distor-
tions and tree shading, marks a significant stride in improving safety under diverse environmental conditions.

Figure 11.   Predicting potholes filled with water.
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Conclusion
In this innovative study, we introduce a groundbreaking approach that transforms the landscape of predicting 
potholes and traffic signs on Indian roads. Our methodology initiates with the creation of a cascade classi-
fier, adept at pinpointing the exact location of potholes and traffic sign objects, skillfully outlining bounding 
boxes around each identified entity. Taking a leap forward, we employ the state-of-the-art vision transformer to 
precisely forecast the specific class of potholes and traffic signs, pushing the boundaries of detection accuracy. 
Thorough training and evaluation of our model are conducted on prominent datasets, including ICTS, GTSRDB, 
KAGGLE, and CCSAD, utilizing quantitative metrics such as precision, recall, and mean Average Precision 
(mAP). Compared to state-of-the-art techniques like YOLOv3, YOLOv4, Faster RCNN, and SSD, the method 
achieves impressive recognition with a mAP of 97.14% for traffic sign detection and 98.27% for pothole detection.

The proposed model’s performance in predicting potholes filled with water, navigating through challenges 
like obscured visibility due to tree shadows, or coping with changing lighting conditions represents a significant 
stride forward in road safety technology. Detecting water-filled potholes is particularly critical, as these can be 
highly hazardous and challenging to identify, especially when combined with shadows or varying light condi-
tions. The proposed model’s ability to discern these obscured or challenging instances substantially enhances 
road safety. Moreover, the system’s remarkable proficiency in predicting traffic signs under adverse conditions 

Figure 12.   Predicting traffic signs at Illumination conditions.
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Figure 13.   Predicting perspective traffic signs.

Table 5.   Comparative analysis on ICTS based dataset.

Methodology Precision (%) Recall (%) mAP@0.5 (%)

YOLOv3 94.77 91.72 92.50

YOLOv4 95.35 94.64 95.07

Faster RCNN 93.73 92.46 93.35

SSD 95.52 94.79 95.89

Proposed model 97.90 95.69 97.14

Table 6.   Comparative analysis of the GTSRB dataset. 

Methodology Precision (%) Recall (%) mAP@0.5 (%)

YOLOv3 93.47 93.26 95.57

YOLOv4 94.14 93.74 96.21

Faster RCNN 94.23 94.60 95.07

SSD 95.19 95.97 97.55

Proposed model 98.09 97.64 98.57
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like fluctuating lighting, perspective distortions, and blurriness significantly elevates its reliability in real-world 
scenarios. These conditions are commonly encountered on roads where factors like changing weather, time of 
day, or camera perspectives can impact the quality of visual data. Additionally, the model’s adaptability to adjust 
to perspective distortions and identify traffic signs under tree shade enhances its versatility in handling diverse 
environmental scenarios. It has the potential to revolutionise automated systems’ ability to perceive and respond 
effectively to various road conditions, thereby reducing accidents and contributing substantially to the overall 
efficiency and safety of transportation infrastructure.

Withstanding to aforementioned advantages, the combined cascade classifier and vision transformer system 
may pose computational challenges, especially when deployed in real-time applications on resource-constrained 
devices. Although the model is trained on diverse datasets, real-world variations may not be fully represented, 
necessitating continuous updates and expansion of the training datasets. Implement adaptive learning mecha-
nisms to enable the system to continually improve and adapt to evolving road conditions and emerging chal-
lenges. Focus on optimizing the proposed approach for real-time implementation on edge devices, considering 
the computational limitations of such platforms. The study lays a strong foundation for advancing pothole and 
traffic sign detection, and ongoing research and development efforts can further refine and expand its applica-
tions in enhancing road safety.

Table 7.   Comparative analysis of the KAGGLE dataset.

Methodology Precision (%) Recall (%) mAP@0.5 (%)

YOLOv3 96.42 97.27 96.38

YOLOv4 96.30 95.46 94.52

Faster RCNN 95.58 96.10 96.22

SSD 97.02 97.52 96.31

Proposed model 98.09 97.15 98.27

Table 8.   Comparative analysis on the CCSAD dataset.

Methodology Precision (%) Recall (%) mAP@0.5 (%)

YOLOv3 95.77 94.06 96.50

YOLOv4 97.35 96.27 94.07

Faster RCNN 95.73 95.64 96.25

SSD 95.52 95.57 95.19

Proposed model 98.23 95.69 97.17
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Figure 14.   Training time comparison.
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The datasets used and/or analysed during the current study are available from the author (Satish Kumar Satti) 
upon reasonable request.
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