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Levenberg–Marquardt deep neural 
watermarking for 3D mesh using 
nearest centroid salient point 
learning
Modigari Narendra 1, M. L. Valarmathi 2, L. Jani Anbarasi 1 & Amir H. Gandomi 3,4*

Watermarking is one of the crucial techniques in the domain of information security, preventing the 
exploitation of 3D Mesh models in the era of Internet. In 3D Mesh watermark embedding, moderately 
perturbing the vertices is commonly required to retain them in certain pre-arranged relationship 
with their neighboring vertices. This paper proposes a novel watermarking authentication method, 
called Nearest Centroid Discrete Gaussian and Levenberg–Marquardt (NCDG–LV), for distortion 
detection and recovery using salient point detection. In this method, the salient points are selected 
using the Nearest Centroid and Discrete Gaussian Geometric (NC–DGG) salient point detection 
model. Map segmentation is applied to the 3D Mesh model to segment into distinct sub regions 
according to the selected salient points. Finally, the watermark is embedded by employing the Multi-
function Barycenter into each spatially selected and segmented region. In the extraction process, 
the embedded 3D Mesh image is extracted from each re-segmented region by means of Levenberg–
Marquardt Deep Neural Network Watermark Extraction. In the authentication stage, watermark bits 
are extracted by analyzing the geometry via Levenberg–Marquardt back-propagation. Based on a 
performance evaluation, the proposed method exhibits high imperceptibility and tolerance against 
attacks, such as smoothing, cropping, translation, and rotation. The experimental results further 
demonstrate that the proposed method is superior in terms of salient point detection time, distortion 
rate, true positive rate, peak signal to noise ratio, bit error rate, and root mean square error compared 
to the state-of-the-art methods.

Keywords Discrete Gaussian geometric, Salient point detection, Multi-function barycenter, Levenberg–
Marquardt, Deep neural network

The improvement of computer graphics and multimedia processing has improved the potential use of 3D mul-
timedia content for several applications. As communication networks have evolved to transfer 3D multimedia 
content over internet more routinely, the security and authenticity of multimedia data have been concerns among 
the research community. 3D meshes have been used in several domains, such as virtual reality, computer-aided 
design (CAD) entertainment, and so on. Digital watermarking is a type of information security that embeds 
cover image or 3D model either in a visible or invisible manner for efficient third-party interference detection. 
Only an authorized user can then use the extracted information to verify the cover data.

Fragile watermarking authenticates the multimedia data by detecting even the smallest alterations. Robust 
watermarking embeds a simple image or any kind of data in multimedia content through watermarking to 
protect the ownership information. The embedding has to be carried out in such a way that the visual distortion 
of the host model doesn’t affect considerably. The watermarked model must be robust against attacks that can 
modify the shape of the models indirectly which changes the representation of mesh data without modifying 
the shape (distortion less attack) or directly (Geometrical attacks) and should be able to retrieve the watermark 
information with minimum possible loss.

Mesh segmentation of shapes is a well-researched field for watermarking where 3D models with less visual 
distortion and robust towards attacks are the difficult issues that need to be resolved. The basic ideas behind 
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computer graphics and the animation process are analyzed to deal with the relationship that exists between the 
model skeleton and the boundaries making segmentation and skeletonization a crucial issue for identifying 
the elite points to embed the watermark. In contrast to many other models, certain models are consistent in all 
poses. Any segmentation algorithm must be able to establish consistency across all object families. Common 
mesh segmentation typically does not directly alter the geometry of the object. Instead, it focuses on locating 
the boundaries between object parts to segment them. Prior to segmentation, most algorithms set an objective 
function; if they don’t, they try to find the concavity of the surface models.

3D salient point detection is a vital issue in computer graphics and computer vision. Salient points with local 
features in 3D models are distinct features crucial for object recognition, pose estimation, motion tracking, and 
3D reconstruction and pivotal for efficient data processing and representation. These points are typically char-
acterized by their uniqueness, stability, and importance in representing the overall structure and appearance of 
the 3D object. The salient points exhibit great stability with respect to geometric transformation and, though to 
a less extent, to shape deformation.

Motivation
To achieve optimal stability concerning both rigid and non-rigid transformations, it’s essential to perform an 
enhanced data embedding process that circumvents visual distortion. Analyzing the intricacy of the 3D mesh 
model is crucial to pinpoint areas that exhibit visual consistency and semantic importance. This approach ensures 
that data embedding is facilitated without compromising the visual integrity of the 3D model. Instances of 
compromised extraction from spatial and frequency domains by potential attackers should be prevented, with 
a focus on elevating the process through the integration of Artificial Intelligence models.

To attain the high embedding with less distortion a Nearest Centroid Discrete Gaussian and Levenberg 
Marquardt (NCDG-LV) Deep Learning method for watermark authentication of 3D models is proposed in this 
paper. More precisely, Salient points were extracted by employing the Nearest Centroid and Discrete Gauss-
ian geometric measure, and 3D models were segmented using map segmentation. In addition, multi-function 
barycenter is used for embedding and Levenberg Marquardt Deep Neural Network Watermark Extraction is 
performed to concentrate specifically on the perceptual relevant regions.

Contribution
The key contributions of the proposed algorithm can be pointed out as,

• The NCDG-LV deep learning method efficiently identifies salient points in 3D models using the Nearest 
Centroid and Discrete Gaussian geometric (NCDG) approach, leveraging Gaussian curvature to overcome 
data discretization challenges.

• Map segmentation is achieved through a plane partitioning goal function, minimizing distortion during 
watermark embedding while segmenting the salient point region.

• Watermark embedding is performed using a multifunction barycenter obtained through nearest centroids, 
ensuring effective embedding without compromising model integrity.

• The proposed method employs a Levenberg–Marquardt deep neural network for watermark extraction, utiliz-
ing the nonlinear characteristics of the optimized kernel to guarantee error stability and weights boundedness.

The remainder of this paper is organized as follows. Section “Literature survey”, discuss various research 
works performed in the area of 3D model watermarking along with the pros and cons. In Section “Nearest Cen-
troid Discrete Gaussian and Levenberg–Marquardt (NCDG-LV) Deep Learning method”, the proposed Nearest 
Centroid Discrete Gaussian and Levenberg–Marquardt (NCDG-LV) Deep Learning method is discussed in 
detail. Experimental results, including comparisons with existing methods, are provided in Section “Results and 
Discussion”. The conclusion and the future work of this paper are described in Section "Conclusion".

Literature survey
Zein et al.1 performed Fuzzy C-Means (FCM) clustering for watermark insertion through optimized selection of 
vertices, minimizing perceptual distortion and enhancing robustness against attacks. This work attained Vertex 
Signal to Noise Ratio SNR values from 122.53 to 140.16 dB and RMSE values between 0.13 *  10–3 and 0.27 *  10–3 
across different models and demonstrated greater resilience to cropping attacks, maintaining high resistance 
even at 70% cropping level. Liu et al.2 leveraged the multiresolution adaptive parameterization of the surface 
(MAPS) approach to classify vertices into coarse and fine levels for watermark embedding. This selection process 
strategically embeds watermark information into areas that are less prone to perceptible degradation exhibiting 
robustness against noise, smoothing, and simplification attacks by correlation values (ρ) ranging from 0.98 to 
0.49 for noise attacks, 0.91–0.48 for smoothing attacks, and 0.51–0.56 for simplification attacks across different 
models and attack parameters.

Hou et al.3 performed on layer slicing to overcome watermark removal attacks and employed spread spec-
trum signal watermarking attaining correlation coefficients of 0.69 for noise attacks, 0.61 for smoothing, 0.565 
for quantization, and 0.693 for 5% cropping. Liu et al.4 introduced a novel blind watermarking technique for 
3D point cloud models where vertices with larger mean curvature are embedded with a secret watermark. With 
20% simplification, it achieves 0.4936 accuracy but decreases with increased noise, rotation, and cropping. Borah 
et al.5 proposed a semi-fragile, blind watermarking method called, 3D-Minimum Distortion Angle Quantiza-
tion Index Modulation (3D-MDAQIM) in spatial domain. The 3D mesh is traversed with a topology-oriented 
strategy to obtain the elite vertex units for watermark embedding. The watermark embedding is performed by 
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deploying dither modulation to spherical angular values of the identified vertices, causing minimum distortion, 
but the true positive rate is not focused on understanding the model performance.

Liang et al.6 performed Discrete Cosine Transform (DCT) and subsequently encrypted them using the RSA 
algorithm to embed the watermark. The mapping of float DC coefficients to the integer domain presents chal-
lenges, as it necessitates rounding off the float part, potentially resulting in shape loss between the original and 
recovered 3D models. Peng et al.7 enhanced the fidelity of reversible watermarking methods for 3D mesh models 
by extending 2D region nesting to n-dimensional spaces with the help of a general region nesting technique to 
embed semi-fragile watermarks based on vertex projection and mesh topology, facilitating authentication and 
integrity verification of 3D mesh models.

Delmotte et al.8 introduced a novel blind watermarking algorithm designed specifically for 3D printed objects 
that employed subtle modifications to the distribution of surface norms, particularly focusing on the distance 
between the surface and the center of gravity. Furthermore, the algorithm subdivides the mesh into bins and 
disperses the data across the entire surface, effectively reducing the impact of local printing artifacts. Peng et al.9 
performed double modulation to mitigate distortion for transforming a 3D model into the spherical coordinate 
system through quantization modulation. Watermarks are embedded in both plaintext and encrypted domains 
and was able to detect malicious tampering across two domains while minimizing distortion with an average 
distortion of 3.749 ×  10−5, an average maximum distortion of 0.999 ×  10−4, an average signal-to-noise ratio (SNR) 
of 90.870 across 7 models and zero Bit Error Rate.

Bhardwaj et al.10 performed a novel reversible data hiding technique for 3D mesh models in the compressed 
domain while preserving the original mesh topology and vertex order, facilitating accurate message extraction 
and seamless reconstruction of the cover 3D mesh model attaining a PSNR value of 96.40 dB for an embedding 
rate of 6.94 bits per vertex with Hausdorff distance of 0.2358. Peng et al.11 proposed a method using virtual 
polygon projection where extraction is based on vertex positions overcomming tampering attack. With double 
modulation strategy, the average and maximum distortion are decreased by 0.0411 and 0.1608, and the average 
SNR is increased by 2.5649 compared with IQIM (Fei Peng et al.12), respectively.

Lee et al.13 performed zero-watermarking method that includes coordinate correction, spatial partition, gene 
feature extraction, and genotype detection. The statistical examination of distortion attacks on a zero-water-
marking method demonstrated robust resistance to noise addition (1.00 ratio), cropping (correlation > 0.88), and 
subdivision attacks (correlation > 0.94 in the midpoint scheme). Peng et al.14 performed spherical crown volume 
division to minimize embedding distortion and topological transformations during watermark generation. By 
grouping the converted spherical coordinates based on their one-ring neighborhood, tampering localization 
accuracy is improved. Yang et al.15 analyzed a steganalysis algorithm to enhance the 3D watermarking techniques 
developed by Cho et al. for detecting the embedded watermark through bimodal distribution of histogram bins’ 
means/variances based on radial coordinates. Rather than integrating each watermark bit within a continuous 
statistical feature this model embedded within a discrete statistical measure, particularly focusing on the variance 
between two adjacent bins. The steganalysis algorithm achieves 98.65% accuracy in estimating the number of 
bins in the variance-based method and demonstrates robustness against noise addition, smoothing, quantiza-
tion, subdivision, and simplification, maintaining high correlation coefficients even after significant attacks.

Jiang et al.16 performed bit-stream encryption to embed the watermark using data-hiding key in least-signif-
icant bits. Leveraging spatial correlation within natural mesh models, ensured the good recovery of the original 
mesh achieving an embedding rate of 0.7 bits per vector. On the Princeton Shape Retrieval dataset, the average 
error rate stands at 4.2%, while with the Stanford 3D Scanning Repository, error rates range between 9.7 and 
11.4%. Nassima et al.17 derived salient points using a 3D salient point detector based on the Auto Diffusion Func-
tion, followed by segmentation of the 3D model into regions anchored to these salient points. The watermark 
is then inserted into each region using the embedding technique of Cho et al. By employing geodesic Voronoi 
segmentation, the surface is divided into cells associated with feature points, allowing for precise watermark 
embedding and extraction and able to achieve Haussdorff distance (HD) values ranging from 0.33 to 10.7 ×  10–3 
and minimal roughness.

Niu et al.18 discusses the use of Laplace–Beltrami eigen functions that are invariant to rigid transformations 
to extract salient points representing distinctive regions computed based on specific criteria, including clustering 
and geodesic distance computations. Feng et al.19 presented a novel mesh visual quality metric that integrated 
saliency considerations to estimate local distortions in the mesh. Li et al.20 performed multiresolution 3D wavelet 
analysis, Laplacian smoothing and normalization and Wavelet Coefficient for watermarks embedding and extrac-
tion. Zhang et al.21 enhanced Reversible Data Hiding approach using prediction-error expansion and embedded 
the watermark in adjacent neighbors generating a ring pattern for easy prediction vertex. Data bits are embedded 
reversibly into 3D mesh models via operations like expansion, shifting, and LSB replacement with smoothness 
sorting and a twice-layered strategy and achieved a good SNR of 45 dB with 0.7 bits per vertex embedded.

The need for robust and secure methods to protect 3D models has led to an increase in the significance 
of research in the area of deep learning approaches and 3D mesh watermarking in recent years. Deep learn-
ing methods promise great embedding capacity, robustness against attacks, and imperceptibility of embedded 
watermarks, providing distinct advantages in capturing intricate features and learning complicated mappings 
within 3D meshes. Several obstacles must be overcome by researchers as they work in this field, including a lack 
of labeled training data, overfitting, interpretability issues, adversarial attacks, and computational complexity. 
Notwithstanding these obstacles, there is a lot of potential for revolutionizing digital material security and 
authentication through the investigation of deep learning techniques for 3D mesh watermarking.

Zhu et al.22 employs a Graph Attention Network (GAT) to extract local features from vertex relations, provid-
ing robustness even after mesh simplification. Additionally, an attack layer perturbs the watermarked vertices to 
augment robustness against cropping, noise, rotation, translation, and scaling attacks. Wang et al.23 introduces 
the deep 3D mesh watermarking network, where the curvature consistency loss function is created to limit the 
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local geometry smoothness of watermarked meshes in order to maintain the visual quality of 3D meshes. The 
architecture includes embedding, extracting sub-networks, and attack layers, employing topology-agnostic graph 
convolutions for flexible mesh handling. The approach tried to ensure robustness with adaptive attack layers and 
maintains visual quality via a curvature consistency loss for smooth watermarked mesh geometry.

Abouelaziz et al.24 computed visual saliency using a method based on mean curvature and Gaussian filtering 
to select relevant patches from rendered 2D projections of the 3D model. Then a simple local contrast normaliza-
tion is applied to address illumination and contrast variations. For feature learning and quality score estimation, 
three pre-trained CNN models (AlexNet, VGG, and ResNet) are fine-tuned, and their extracted features are 
combined using Compact Multi-linear Pooling (CMP) to interact multiplicatively. The combined features are fed 
into fully connected layers followed by a regression layer for quality score prediction. This approach showcases 
the integration of deep learning and saliency analysis for efficient and accurate quality assessment of 3D meshes.

The advancements in 3D mesh watermarking techniques have seen significant progress, with various methods 
addressing different aspects of robustness, imperceptibility, and resilience against attacks. From employing clus-
tering algorithms like Fuzzy C-Means for vertex selection to leveraging multiresolution adaptive parameterization 
and spread spectrum signals for watermark embedding, researchers have explored diverse approaches to enhance 
the security and authentication of 3D models. Techniques such as deep learning-based approaches, reversible 
data hiding, and graph attention networks have shown promise in overcoming challenges like overfitting, inter-
pretability issues, and adversarial attacks. Despite obstacles such as a lack of labeled data and computational 
complexity, the field of 3D mesh watermarking is poised for further development, especially with the integration 
of deep learning methodologies, saliency analysis, and robust watermark embedding strategies. These advance-
ments hold the potential to revolutionize digital material security and authentication, paving the way for more 
secure and reliable methods in the realm of 3D model protection.

Nearest Centroid Discrete Gaussian and Levenberg–Marquardt (NCDG-LV) Deep 
Learning method
Structure of the proposed method for 3D mesh authentication is demonstrated in Fig. 1. Initially, the Nearest 
Centroid and Discrete Gaussian geometric (NC–DGG) Salient Point Detection model is used to detect the 
optimally and computationally efficient salient points. Second, with the detected salient points, 3D Mesh model 
is segmented into regions using map segmentation. Third, the watermark is inserted into each region using 
the multi-function barycenter-based Watermarking Embedding model. Finally, the watermark is extracted by 
employing the Levenberg–Marquardt deep neural network watermark extraction model for achieving good 
imperceptibility and robustness against attacks.

3D mesh model representation
A 3D mesh has structural construct of a 3D model consisting of polygons. Triangle mesh has type of polygon 
mesh. It includes a set of triangles in three dimensions that are linked with edges or vertices. 3D mesh model has 
denoted as three-dimensional object that includes points (i.e., vertices), lines (i.e., edges), and faces (i.e., surfaces). 

Figure 1.  Nearest Centroid Discrete Gaussian and Levenberg–Marquardt Deep Learning method.
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These elements are employed to refer the shape of the modeled 3D object. The 3D mesh model is comprised of a 
set of vertices ‘ V  ’ in Cartesian coordinates and a set of edges ‘ E ’ represented as ‘ G = (V ,E) ’. Let us consider that 
‘ Vi ’ corresponds to the vertex indexed by ‘ i ’ and is designated by its corresponding 3D coordinates ‘ (Pi ,Qi ,Ri) ’. 
The vertices group that is adjacent to a neighborhood vertex ‘ Vi ’ is referred to as ‘ 1− ring ’ of the vertex, and the 
number of vertices that is adjacent to neighborhood vertex ‘ Vi ’ in the ‘ 1− ring’is referred to as the degree of the 
vertex ‘ Vi ’. In a similar manner, the ‘ k − thring ’ neighborhood vertices around vertex ‘ Vi ’ can be obtained by 
means of the K-Nearest Centroid Discrete Gaussian geometric measure. Some of the 3D mesh models used in 
the proposed work is shown in Fig. 2.

Nearest centroid & discrete Gaussian geometric (NC–DGG) salient point detection
The salient characteristics of 3D mesh models are distinctiveness, resilience, invariance, repetition, localiza-
tion, semantic meaning, efficiency, and scalability. These geometric properties are essential and has significant 
importance in several applications, such as shape analysis, recognition, and embedding. These points typically 
include regions with significant curvature, points of utmost magnitude, angular points, and locations along the 
boundary. Identifying them is crucial for acquiring complex features, essential structural elements, and unique 
geometric properties to embed secrets in the mesh model. Embedding approaches, utilizing salient points, can 
efficiently encode and depict geometric information while exhibiting resilience against noise, distortion, and 
geometric attacks.

Figure 3 shows the structure of the Nearest Centroid and Discrete Gaussian geometric (NC–DGG) salient 
point detection model. The 3D mesh model salient point detection method, is analyzed using the 3D models 
obtained from Princeton Shape Benchmark to identify prominent features from the geometric attributes and 
its spatial relationships. Initially, the method employed the nearest centroid technique to identify central points 
within the mesh, serving as potential candidates for salient points. Leveraging an Optimal 3D salient point detec-
tion function, the method assesses various geometric properties and vertex densities to discern salient features 
from background elements. By applying a Discrete Gaussian Kernel function, local distributions of vertex densi-
ties are computed, illuminating regions of higher significance. Subsequently, a 3D salient point counter function 

Figure 2.  Some of the 3d mesh models used in the proposed method.

Figure 3.  Structure of Nearest Centroid and Discrete Gaussian geometric (NC–DGG) Salient Point Detection 
model.
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quantifies the saliency of each candidate point based on its proximity to dense vertex clusters and its contribution 
to shape distinctiveness. The evaluation extends to analyzing the Euclidean distance of neighborhood vertices, 
which aids in discerning salient features amid the mesh’s structural complexity. By scrutinizing the distribution 
and spatial relationships of salient points, including the alignment of right-angled lines connecting neighbor-
ing vertices, the method systematically identifies and characterizes salient features within the 3D mesh model, 
enabling effective feature extraction and shape analysis for diverse computational applications.

As shown in Fig. 3, for every vertex v on a 3D mesh model, n denotes the normalized vector. Only one right-
angled plane exists for this vertex v , which is estimated as:

where (p, q, r) denotes the coordinates of vertex ‘ v ’ and 
(

pv , qv , rv
)

 represents the vertex normal. The average 
distance of the kth ring neighborhood vertices around vertex ‘ Vi ’ is formulated as:

where ‘ 
(

pij , qij , rij
)

 ’ corresponds to the ‘ j − th ’ coordinate of the 3D mesh model in ‘ Vi(k) ’ for ‘ N ’ different sam-
ples. Consider that ‘ M

(

p, q, r
)

 ’ denotes the 3D mesh model acquired from 25. New 3D mesh models Mα

(

p, q, r
)

 are 
generated around vertices in the original mesh model. These new models are created based on the neighborhood 
vertices surrounding the target vertex and are related to the original mesh through the application of a discrete 
Gaussian kernel function. The purpose of employing this function is to determine the salient scale, providing 
insight into the significant geometric features within the local neighborhood of the target vertex v.

where ‘ α = (ε, 2ε, 3ε, . . . .nε) ’ corresponds to the standard deviation of the respective 3D Discrete Gaussian 
Kernel filter ‘ DG ’ and ‘ ε ’ refers to the distance of the main slant in the nearest neighbor vertex of the model. 
Based on the distance geometric measure, a 3D salient point counter function is defined that authorizes us to 
extract non-cognitively significant salient points from 3D mesh models. For any vertex ‘ Vi ’ in a 3D mesh model, 
we utilize the counter function as follows:

where ‘ β ’ corresponds to the distance geometric measure of vertex ‘ v ’ in scale ‘ s = 1, 2, 3, . . . n ’, which is modeled 
based on the minimum distance function ‘ Min

(

Dis′s
)

 ’ and maximum distance function ‘ Max
(

Dis′s
)

 ’ in which 
‘ Dis′ ’ represents the summation. With the obtained 3D salient point counter function for every vertex ‘ v ’, the 
value of the counter function is compared for every vertex ‘ v ’ in its Nearest Centroid rings. If the value of ‘ β ’ is 
greater than all the values ‘ β ’ in its Nearest Centroid rings, the vertex ‘ v ’ is said to be the selected optimal salient 
point; otherwise, the vertex ‘ v ’ is not a salient point. The pseudo code representation of Nearest Centroid and 
Discrete Gaussian salient point detection is given below. 

(1)nT
[

p− pv , q− qv , r − rv
]T

= 0

(2)Disij =
nT

[

pij , qij , rij
]T

− nT
[

pv , qv , rv
]T

N

(3)Mα

(

p, q, r
)

= M
(

p, q, r
)

∗ DG
(

p, q, r,α
)

(4)T(n,α) = e−αMi(α)

(5)DG
(

p, q, r,α
)

=

∞
∑

n=−∞

f
(

p− n
)

f
(

q− n
)

f (r − n)T(n,α)

(6)β =
Dis′s −Min

(

Dis′s
)

Max
(

Dis′s
)

−Min
(

Dis′s
) ,where Dis′ =

n
∑

i=1

Dis′i
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Algorithm 1.  Nearest Centroid and Discrete Gaussian.

Map segmentation
After acquiring the salient points, the 3D mesh models are further segmented into distinct sub regions Green 
plane, and Blue plane with the plane partitioning map function. The map functions are separated geographic 
regions in the model, associated to the salient points, and constructed by means of a plane partitioning goal 
function. The planes are then divided into ‘ n ’ sub regions SR = SR1, SR2, SR3, . . . ., SRn in such a manner that 
each region consists of approximately a ratio of ‘ 1n ’ green partitions and ‘ 1n ’ blue partitions. For each subregion 
 SRi, Eq. (7) computes the sum of the intersections of the green plane ‘G’  (PlaneG) and the blue plane ‘B’  (PlaneR). 
The maximum value across these intersections represents the evolved regions resulting from the segmentation 
process.

Multi-function barycenter and Levenberg Marquardt Deep Learning Model
Following the segmentation process, the multi-function barycenter is utilized to perform watermarking embed-
ding. Figure 4 shows the structure of the multi-function barycenter-based watermarking embedding model.

The watermark ‘ W = (W1,W2,W3, . . . ,Wn) ’ is embedded by persuading each ‘ Wi ’ with a small shift in a sub-
set of ‘ V ’. A vertex v is noted as ‘ V

(

pv , qv , rv
)

 ’ or ‘ V
(

pv ′, qv ′, rv ′
)

 ’ before or after embedding, respectively. Calculate 
displacement factor l  used to adjust the positions of the barycenters within the mesh as shown in Eq. (8). Higher 
values of l  could lead to larger displacements, resulting in more significant changes in the mesh geometry. For 
each being a salient point ‘ v ’, its ‘ pv ’ value is divided by the parameter ‘ Gw ’ that controls granularity or scale of 
the embedding to nearest integer. By controlling the scale of the adjustments made to ‘ pv ’ as shown in Eq. (8), 
the watermark can be embedded in a way that is resilient to common attacks or transformations applied to the 
mesh model, such as scaling, rotation, or translation, ensures consistency across the embedding process, allow-
ing for reproducible results and predictable behavior when embedding the watermark into different regions of 
the mesh or across multiple meshes.

(7)G(SR1, SR2, SR3, . . . ., SRn) = MAX

([

PlaneG ∩ SRi

n

]

+

[

planeB ∩ SRi

n

])
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Next, for each salient point its ‘ qv ’ and ‘ rv ’ barycenters are measured by obtaining the mean of the coordinates 
of its Nearest Centroids as:

where ‘ NC(v) ’ refers to the set of ‘ v′s ’ nearest centroid value; and ‘ |NC(v)| ’ corresponds to the size of ‘ NC(v) ’. 
Finally, the watermark ‘ Wi ’ and hash value ‘ H(Wi) ’ are embedded in ‘ ME

v ’formulated as given below:

Finally, S denotes the embedded watermark, Cryptography hash function is used for calculating H(Wi) , and 
the length of H(Wi) is 128 bit. The embedding perturbs ‘ ME

v  ’ toward the original value ‘ 
(

pv , qv , rv
)

 ’ with a small 
shift ‘ Shj ’, which is always less than ‘ j = (2, 3)’.

Levenberg–Marquardt deep neural network watermark extraction
In the watermark extraction stage, ‘ Gw ’ and ‘ H ’ serve as the pivotal elements for detecting any malicious pat-
terns. In the proposed work, with the objective of improving the precision and recall involved in the watermark 
embedding and extraction process, a Levenberg–Marquardt deep neural network watermark extraction model is 
used. Figure 5 displays the structure of Levenberg–Marquardt deep neural network watermark extraction model.

Figure 6 demonstrates the structure of Levenberg–Marquardt deep neural network to perform watermark 
extraction. It includes an input layer, hidden layer, and output layer. In the input layer, ‘ Vi ’ is a dynamic vertex 
that passes over the entire 3D Mesh model, initiating from ‘ Vi ’, to inspect the model. In the hidden layer, the 
corresponding ‘ qv ’ and ‘ rv ’ barycenters of each salient point and segmented portions are estimated using Eqs. (9) 
and (10), respectively, and then used to extract the watermarks as follows:

For each vertex ‘ Vi ’, the weights associating the input-hidden and hidden-output layers are updated according 
to the desired output, and the process is iterated until the convergence. Subsequently, the network trained model 
is utilized for classification of the test set. This process is performed two times, one for the top half segmented 
regions ‘ TH ’ and the second for the bottom half ‘ BH ’ segmented regions. This is formulated in Eqs. (14) and (15):

Finally, the output layer constitutes the extraction result, i.e., distorted regions or non-distorted regions. 
To speed up the watermark extraction process and minimize the memory, the Levenberg– Marquardt 
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Figure 4.  Structure of Multi-function Barycenter-based Watermarking Embedding Model.
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back-propagation is employed while training network by setting the learning rate to 0.01. The pseudo code rep-
resentation of multi-function barycenter and Levenberg–Marquardt Deep Learning Extraction is given below. 

Figure 5.  Levenberg–Marquardt deep neural network Watermark Extraction Model.

Figure 6.  Structure of Levenberg–Marquardt deep neural network.
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Algorithm 2.  Multi-function Barycenter and Levenberg–Marquardt Deep Learning Extraction.

Results and discussion
The proposed Centroid Discrete Gaussian and Levenberg–Marquardt (NCDG-LV) model for embedding and 
extraction of watermark in 3D models are implemented in MATLAB R2023a. The experiments were conducted 
in a PC with the hardware specification of Windows 10, core i7 3.40GHZ Processor, 16 GB RAM, 1 TB (Solid 
state drive) and Graphics Card NVIDIA Quadro RTX 5000 16 GB.

Dataset
The proposed Centroid Discrete Gaussian and Levenberg–Marquardt (NCDG-LV) was tested on the Princeton 
Shape Benchmark  dataset25. The benchmark dataset comprises of a 3D polygonal models obtained from the 
World Wide Web. For each 3D model, there is polygonal geometry model and a JPEG image file which is a 
thumbnail view of the model. The dataset includes 1814 models of various sizes and mesh pattern. It is useful 
to estimate shape-based retrieval and analysis, involving progress in matching, classification, clustering, and 
recognition of 3D models. Herein, the benchmark dataset was divided into a training and test set. The training 
et consists of 1451 models, and the test database consists of 363 models.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6942  | https://doi.org/10.1038/s41598-024-57360-z

www.nature.com/scientificreports/

Estimation of salient point detection time
The detection of salient point is an essential parameter since it reveals the portions to be watermarked in a precise 
manner during watermark embedding. The salient point detection time is measured as follows:

The salient point detection time ‘ SPDt ’ is measured in milliseconds (ms) for each 3D mesh models used in 
the watermarking process ‘ Mi ’ and the time consumed in detecting the actual salient point ‘ Time[β] ’. Herein, 
salient point detection is performed on various 3D mesh models, and the resultant results are shown in Fig. 7. 
The estimation was performed for the models with size lower to higher showing the time taken for small size 
models are less and inverse for the other case.

Due to the different sizes of 3D mesh models, the salient point detection time varied. The salient point detec-
tion time complexity is significantly smaller for a single 3D mesh model and higher for large number of models. 
For the first simulation run, the salient point detection time obtained by the proposed NCDG-LV method, 
Laplace–Beltrami  3D18, 3D-MDAQIM5, and Deep 3D mesh watermarking  network23 was determined to be 7.75, 
9.25, 10.25 and 8.15, respectively. The better salient point detection time of NCDG-LV, which was 30%, 48% and 
18% faster than the three other respective methods, can be attributed to the Nearest Centroid function employed 
via the Discrete Gaussian Kernel function.

Embedding and extraction
Watermarks are embedded into the segmented regions obtained by plane partitioning mapping through the 
extracted salient points. The watermark which is the thumbnail view of the 3D model is embedded into the 
resulting region through multi-function barycenter and is shown in Fig. 8. The resulted 3D model after embed-
ding shows some visible visual distortions depending on the size of the original 3D model and the watermark. 
The watermarked model is trained and tested to extract the watermarks from the salient point through Leven-
berg–Marquardt deep neural network.

Performance evaluation of centroid discrete Gaussian and Levenberg–Marquardt
To evaluate the performance of the proposed method, four objective parameters, including watermark extrac-
tion against different attacks, spatial detection time, distortion rate, true positive rate, and PSNR are considered.

Peak Signal to Noise Ratio
The peak signal-to-noise ratio (PSNR) is evaluated to evaluate the imperceptibility based on the mean square 
error using the Eq. (17) and the results obtained from different methods are shown in Table 1:

where MAX is the maximum possible value coordinate.
Root Mean square Error (RMSE) given in Eq. (18) identifies the geometrical distortion between two meshes, 

where v,
′
v refers to the vertices of original mesh M and deformed meshes surface M′ , and N refers to number of 

vertices in the mesh model.

Table 1 provides a comparative analysis of the PSNR of the four different methods. For fair comparison, the 
above analysis was conducted using 10 3D mesh models, namely rabbit, vase, bee, face, horse, table, bird, spider, 
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Figure 7.  Salient point detection time of first 10 models.
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ant, and dog models. In PSNR with attacks, 14.7 KB image size is considered to evaluate the experiments. The 
average PSNR of proposed NCDG-LV for 10 models is 55.02, whereas the PSNR of  existing5,18,23 is 52.52, and 
50.38, and 53.35 respectively.

Bit Error Rate (BER)
Bit error rate measures the accuracy of watermark extraction, representing the ratio of incorrectly decoded bits 
to the total number of bits in the watermark as given in Eq. (19). Achieving a lower bit error rate with better 
embedding capacity plays a major role in watermarking scheme and the results obtained from different methods 
are shown in Table 2:

where nb is the number of bits embedded, and δ is the Kronecker delta function.

(19)BER
(

M,M ′
)

= 1−
1

nb
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(
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Figure 8.  Watermark embedding on 3D mesh models.
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From Tables 1 and 2, we can observe the better PSNR and bit error rate as compared to the other state of the 
art methods after embedding the watermark information in 3D mesh models.

Distortion rate between the host and watermarked model
The robustness of the proposed watermarking method is analyzed for the distortions created due the embed-
ded watermark. To evaluate the robustness of the proposed method, the distortion rate ‘DR’ was calculated as 
follows (Eq. 20):

Distortion rate refers to the amount that a watermark is not detected in the attacked 3D mesh model and is 
based on the number of detected false negatives ‘ #FN[D] ’ and the total number of detections ‘ D ’. In other words, a 
smaller distortion rate value is desirable. Herein, the Levenberg–Marquardt Deep Learning Extraction algorithm 
is evaluated on fifty distinct 3D mesh models, and the resultant results are shown in Fig. 9. Despite the very high 
number of 3D mesh models for the simulation, the proposed method achieved a smaller distortion rate compared 
to Laplace–Beltrami  3D18, 3D-MDAQIM5, and Deep 3D mesh watermarking  network23.

Figure 9 presents the graphical representation of distortion rate using the three approaches for 50–500 differ-
ent 3D mesh models. The 3D Mesh distortion rate refers to the degradation process involved in the watermarked 
3D mesh model due to secret embedding. From the results, it can be inferred that the distortion rate obtained 
by the three different methods is directly proportional to the number of 3D mesh models provided as input. In 
other words, by increasing the number and size of 3D mesh models, a significant amount of distortion is also 
said to occur. As the rate of embedding increases, a small amount of visual degradation is caused, therefore 
resulting in the distortion. For 50 3D mesh models, the distortion rate of NCDG-LV, Laplace–Beltrami  3D18, 
3D-MDAQIM5, and Deep 3D mesh watermarking  network23 was found to be 1.2, 1.6, 2 and 1.4 respectively. The 
reason behind the improvement of the proposed method can be owed to the incorporation of multi-function 
barycenter using Levenberg-–Marquardt, which separates the top half and bottom half of the segmented sub-
regions and subsequently reduces the distortion.

(20)DR =
#FN[D]

D

Table 1.  PSNR of NCDG-LV method, Laplace–Beltrami  3D18, and 3D-MDAQIM5, Deep 3D  mesh23 on a set 
of 10 distinct 3D mesh model.

Model NCDG-LV Laplace–Beltrami 3D 3D-MDAQIM Deep 3D mesh

Model1 56.08 54.15 51.22 55.48

Model2 58.58 56.08 52.56 57.56

Model3 52.56 46.54 45.20 50.02

Model4 58.58 54.15 51.22 56.43

Model5 54.15 52.56 50.06 53.56

Model6 56.08 54.15 51.22 55.11

Model7 51.22 49.04 47.30 50.02

Model8 56.08 54.15 52.56 55.22

Model9 52.56 51.22 50.06 51.87

Model10 54.13 53.12 52.18 48.23

Table 2.  Bit error rate of NCDG-LV method, Laplace–Beltrami  3D18, and 3D-MDAQIM5, Deep 3D  mesh23 on 
a set of 10 distinct 3D mesh model.

Model NCDG-LV Laplace–Beltrami 3D 3D-MDAQIM Deep 3D mesh

Model1 2.15 3.25 4.00 2.85

Model2 2.35 3.85 4.15 3.15

Model3 3.15 3.95 4.35 3.65

Model4 3.85 4.15 4.85 4.05

Model5 4.15 5.00 5.15 4.65

Model6 5.35 5.65 5.25 5.45

Model7 6.25 7.00 8.15 6.85

Model8 8.00 7.35 8.35 7.75

Model9 9.15 8.00 9.25 8.45

Model10 12.00 8.25 12.55 11

Average 5.64 5.645 6.605 5.785
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Performance analysis of true positive rate
The true positive rate, or sensitivity, refers to the percentage of testing models that have been properly authen-
ticated with a watermark. The true positive rate ‘ TPR ’ is measured using Eq. (21):

True positive rate is based on the true positives ‘ TP ’ (authenticated with the 3D mesh watermark) and false 
negatives ‘ FN ’ (not authenticated with 3D mesh watermark but is assumed to be authenticated). To demonstrate 
the watermark authentication efficiency of the proposed NCDG-LV, the obtained true positive rate was compared 
to those of three other methods, as seen in Fig. 10. Figure 10 presents the true positive rate results of the three 
methods in the watermark authentication process. As shown in the graphical results, the true positive rate of three 
different methods gets increased or decreased while increasing or decreasing the input from 50 and 500. This is 
because the true and false watermark authentication depends on the detection of salient points being detected 
and on the map segmentation performed for the detected points. The obtained true positive rate was compared 
to those of three other methods. From the results show that the true positive rate was found to be 90%, 88%, 
84% and 89% using the four methods, respectively. The better performance is attained due to the enhancements 
generated by the multi-function barycenter and Levenberg–Marquardt Deep Learning Extraction functions.

Watermark extraction against different attacks
To prove the robustness of the proposed approach, the watermarked model is tested with smoothing, Gaussian 
noise, cropping, and translation attacks on four different methods, including NCDG-LV, Laplace–Beltrami  3D18, 
and 3D-MDAQIM5, and Deep 3D mesh watermarking  network23.

(21)TPR =
TP

TP + FN
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Smoothing attack
In more complex models, you might want to retain some degree of sharpness in certain areas while smoothing 
others. A surface smoothing algorithm is applied to test the robustness of the proposed method over 5, 10 and 
15 iterations and compared with other state of the art methods in terms of PSNR and shown in Fig. 11.

The bit error rate of the proposed NCDG-LV and existing  methods7,18,22 is calculated with smoothing attack 
(of 10 iterations) and without smoothing attack and is shown in Table 3. The bit error rate (training: 7.78%, 
testing: 5.64%) found to be significantly reduced using the proposed NCDG-LV method both with and without 
smoothing attack compared to Laplace–Beltrami 3D (8.79%, 5.65%)18, 3D-MDAQIM (9.65%, 6.61%)5, and Deep 
3D  mesh23 (8.34%, 5.78%).

Gaussian noise attack
Gaussian noise of 1%, 2%, and 5% is added to the models to test the robustness against noise attacks and the 
amount of distortion after adding noise is shown in Fig. 12 as a value of PSNR and the same is compared against 
the other state of the methods and shown in Table 4.

Cropping attack
The 3D mesh models are cropped 3%, 6%, and 9% to test the robustness against cropping attacks and the amount 
of distortion after cropping is shown in Fig. 13 as a value of PSNR.

The experimental results show that the proposed method exhibits good robustness against attacks mentioned 
above, and the segmented watermarking provides better visual quality on an image compared with Laplace–Bel-
trami  3D18, 3D-MDAQIM5, and Deep 3D mesh watermarking  network23. The Nearest Centroid Discrete Gauss-
ian and Levenberg–Marquardt method displays high imperceptibility and robustness. The watermarked images 
were corrupted by Gaussian noise of 1% variance. For the cropping attack, a small portion of the watermarked 
image was removed.

Ablation analysis
Ablation analysis was carried out to analyze the impact of different modules of the proposed NCDG-LV tech-
nique for enhanced watermark embedding and extraction of 3D model is shown in Figs. 10, 11, 12, and 13. It is 
evident that the model’s overall performance gradually improves with the inclusion of the various process. The 
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Figure 11.  Average PSNR of extracted watermark after smoothing attack over 50 mesh models.

Table 3.  Bit error rate of three methods with smoothing attacks.

Model NCDG-LV Laplace–Beltrami 3D 3D-MDAQIM Deep 3D mesh

Model1 3.25 3.85 4.15 3.55

Model2 3.85 4.25 4.55 4.05

Model3 3.55 4.55 4.65 3.75

Model4 4.35 4.85 5.35 4.65

Model5 5.35 6.15 7.25 5.85

Model6 7.25 8.35 9.00 7.85

Model7 8.55 9.00 10.35 8.75

Model8 10.35 11.55 12.00 11

Model9 15.00 17.35 19.15 16.55

Model10 16.35 18.00 20 17.45

Average 7.785 8.79 9.645 8.345
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metrics employed to demonstrate the performance of the proposed NCDG-LV 3D model watermarking are 
PSNR, bit error rate, distortion rate and TPR. The performance of the proposed method is evaluated based on 
various attacks like smoothing attack, Gaussian noise attack and cropping attack.

NCDG-LV model includes the following process: Salient point detection using Nearest Centroid and Dis-
crete Gaussian geometric (NC–DGG) is considered as the baseline of the proposed model. This selected point 
regions are further segmented using Map Segmentation (MS). This region is embedded with secret watermark 
using multi-function Barycenter to generate the watermarked 3D model (MF_B). The watermarks are extracted 

0 10 20 30 40 50 60

Noise %
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Laplace–Beltrami 3D

3D-MDAQIM
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Noise Addi on 5% 2% 1%

Figure 12.  PSNR for the original watermark and extracted watermark with noise addition of 1%, 2%, and 5%.

Table 4.  PSNR of NCDG-LV method, Laplace–Beltrami 3D 18, and 3D-MDAQIM 5, Deep 3D mesh 23 on a set 
of 10 distinct 3D mesh models with 1%, 2%, and 5% noise.

Model NCDG-LV Laplace–Beltrami 3D 3D-MDAQIM Deep 3D mesh

Model1 51.05 49.12 46.19 50.38

Model2 53.55 51.05 47.53 52.46

Model3 47.53 41.51 40.17 45.58

Model4 53.55 49.13 46.19 51.45

Model5 49.12 47.53 45.03 48.55

Model6 51.05 49.12 46.19 49.68

Model7 46.19 44.01 41.27 45.52

Model8 51.05 49.13 47.53 50.22

Model9 47.53 46.19 45.03 46.88

Model10 51.05 49.13 47.53 49.95
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Figure 13.  PSNR for the original watermark and extracted watermark after cropping the model for 3%, 6%, and 
9%.
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using the Levenberg–Marquardt deep neural network (LM_DN). The ablation study is performed with other 
methods like selection of random vertices instead of salient points, clustering in the process of map segmenta-
tion, LSB  embedding26 instead of barycentric method to show the improvements attained with respect to PSNR 
and Bit Error rate.

Proposed modules

PSNR

Train set Test set

Vertices + clustering + MF_B + LM_DN 22.68 25.84

NC_DGG + Fuzzy clustering + LSB + LM_DN 42.45 40.12

NC_DGG + MS + LSB + LM_DN 52.25 48.12

Proposed NCDG-LV (NC–DGG + MS + MF_B + LM_DN) 58.12 54.13

Conclusion
An effective Nearest Centroid Discrete Gaussian and Levenberg–Marquardt watermarking method for 3D mesh 
authentication is presented. In this technique, a novel geometric Nearest Centroid Discrete Gaussian is used to 
identify the salient points, and bits are embedded into the segmented portion of a 3D mesh using multi-function 
barycenter embedding. This, in turn, helps to reduce the distortion rate. In addition, Levenberg–Marquardt 
extraction is applied to extract the watermarked image. The experimental results demonstrate the proposed 
method achieves good imperceptibility and robustness against attacks and is comparatively better to other state-
of-the-art methods in terms of salient point detection time, distortion rate, and true positive rate.

In future we would like to explore watermarking techniques that dynamically adapt the embedding strength of 
the watermark in accordance with the sensitivity of the mesh model. And, explore new strategies for watermark 
placement within 3D mesh models that are intelligently coordinated with the inherent semantic features of the 
content to provide effective protection with the least amount distortion.

Data availability
The datasets analyzed during the current study are available in the Princeton Shape Benchmark dataset reposi-
tory, https:// shape. cs. princ eton. edu/ bench mark/ class ifica tions/ v1.
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