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ABSTRACT1
This work proposes a methodology considering the dynamic features of motorists in the vicinity2
of railway level crossings (RLCs) to the Australian Level Crossing Assessment Model (ALCAM).3
The dynamic features include real-time train movements, the severity of traffic incidents nearby4
RLCs, and the risky manoeuvres of motorists when crossing RLCs. We collected train timeta-5
bles and network data provided by the TfNSW Open Data Hub and real-time trajectories of trains6
provided by GTFS feeds (General Transit Feed specification) to demonstrate real-time train move-7
ments around level crossings. To quantify the severity of traffic incidents in the RLC vicinity, we8
used NSW road crash data sets, including crash, number of victims, and unit profiles. To identify9
driving risky manoeuvres, we investigated the speed, XY acceleration, and the G-force of road ve-10
hicles to define safe-points and brake-points in the vicinity of RLCs. Furthermore, we employed a11
neural network clustering method to identify dynamic characteristics of each safe-point and brake-12
point in the vicinity of RLCs. We integrated three dynamic elements to the nominated weightings13
with sensitivity analysis. The proposed method lays the foundation stone for considering dynamic14
features of motorists and assess the rail crossing safety by using public open data. It paves the way15
for analysing the historical behaviour of motorists in the vicinity of RLCs and anticipate key risks16
at each RLC in Australia.17

18
Keywords: Safety assessment, Railway level crossing, Behaviour of motorists, Neural network19
clustering20
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INTRODUCTION1
In Australia, securing safety at railway level crossings (RLCs), where motorists and trains intersect2
at the same grade, is one of the crucial concerns in an integrated multi-modal transport network.3
Crashes at RLCs have involved severe fatalities, injuries, and came with significant economic ex-4
penses even if the number of crashes at the RLC constitutes below 1% of total crashes in New South5
Wales (NSW) in Australia for the last several decades. For example, Salmon et al. (1) analysed the6
systemic and psychological factors causing the tragedy at an RLC near Kerang, Victoria, Australia,7
on 5 June 2007. Eleven train passengers were killed by a loaded semi-trailer truck striking a pas-8
senger train at the RLC. This incident additionally involved 13 injured passengers and an injured9
truck driver. They used two juxtaposed human factors approaches to produce insights into the10
contributory factors underlying the incident. They concluded that the tragic event could be caused11
by the lack of fully active controls from the systemic perspective and a Looked-But-Failed-To-See12
(LBFS) error triggered by an inappropriate schema from the psychological perspective.13

To systematically assess the vulnerability of an individual RLC location preventing prevent14
recurrence of the tragedy in Australia, the national ALCAM group developed the Australian Level15
Crossing Assessment Model (ALCAM), which is an assessment tool used to identify key potential16
risks at level crossings and to assist in the prioritisation of crossings for upgrades in (2). This17
complex scoring process is outlined in Australian Standard and New Zealand Standard (AS/NZS18
4360:2004) includes a matrix of weightings that measures the influence of the designated char-19
acteristics at RLCs on the possible accident mechanisms. ALCAM continues to be updated with20
fine-tuning weightings to consider new control technology and modifications. Due to its reliable21
and robust assessment mechanism for RLCs, the Australian Transport Council of Commonwealth,22
State and Territory, the Standing Committee of Transport (SCOT), all state and territory transport23
ministers, and New Zealand agreed to adopt the ALCAM to identify potential accident causal24
factors and overall effects of proposed treatments.25

This study aims to introduce the dynamic characteristics of motorists and trains in addition26
to the factors already involved in the ALCAM. We used a data-driven analysis based on NSW27
open-sourced data to identify hot spots of RLCs in NSW, Australia. In this study, the dynamic28
characteristics include real-time train movements, the severity of traffic incidents nearby RLCs,29
and risky manoeuvres of motorists nearby RLCs. We collected train timetables and network data30
from TfNSW Open Data Hub to explain the real-time train movements at an individual RLC lo-31
cation. We used NSW road crash data sets, including crash, persons, and unit profiles, to estimate32
the severity of traffic incidents nearby each RLC. We investigated the acceleration, deceleration,33
G-force, and speed of road vehicles to understand risky manoeuvres of motorists defined by safe-34
points and brake-points in the vicinity of RLCs. We identified hot spots of RLCs in NSW in the35
proposed assessment method by integrating the three dynamic elements to the nominated weight-36
ings with a sensitivity analysis. The specific contributions of the study are given below:37

• investigating the microscopic dynamics of motorists and the severity of traffic incidents38
enables to introduce near misses in the vicinity of RLCs in a safety assessment mecha-39
nism.40

• the data-driven analysis based on open-sourced data takes full advantage of data acces-41
sibility and flexibility if a large amount of data is secured.42

• the sensitivity analysis helps to understand the varied influence of each dynamic factor43
on the identification of hotspots of RLCs.44

To achieve the research goal, this article is organised as follows. The literature review for45
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safety assessment methods for RLCs and data profiles is presented in Sections 2 and 3, respec-1
tively. The assessment methods and results for dynamics of motorists and trains nearby RLCs are2
demonstrated in Section 4. Finally, Section 6 provides the conclusions of this study and future3
research directions.4

LITERATURE REVIEW5
This section summarises the studies on railway level crossings, considering the behaviour of mo-6
torists and trains in an RLC safety assessment and identifies the research gaps this study tackled.7

Behaviour of motorists in the vicinity of RLCs8
RLCs have been regarded as hotspots of reduced traffic safety in multi-modal urban networks9
since a single crash between trains and vehicles has brought about its swingeing damage at RLCs.10
Understanding behaviour of motorists in the vicinity of RLCs is one of the key factors to secure11
safe operating and driving environment at RLCs in (3), (4), (5), (6), (7), and (8).12

Tenkink and Van der Horst (4) examined the behaviour of car drivers at two RLCs, in13
which flashing warning lights are installed using analysing recorded video. Evans (9) investigated14
fatal accidents and fatalities at RLCs in Great Britain from 1946 to 2009 from a macroscopic15
perspective. They found that the number of fatalities per year have decreased by 65% in the first16
half of the study period, whereas after that they have been relatively constant by the end of the17
study period. Evans and Hughes (10) continued to conduct the safety investigation at RLCs from18
a microscopic perspective in Great Britain. They investigated relationships between traverses,19
delays, and fatalities to road users at RLCs to confirm an additional risk for the users.20

Salmon et al. (8) mentioned that the situation awareness and the decision-making of mo-21
torists are not sufficiently considered in existing methodologies to evaluate the safety performance22
of RLCs. They conducted an on-road network analysis to examine the situation awareness of mo-23
torists at RLCs. Zhao and Khattak (11) investigated injuries of motorists involved in train-motor24
vehicle crashes at RLCs using three injury severity models based on ordered probit, multinomial25
logit, and random parameter logit. They found that the likelihood of more severe crashes increases26
when they involve higher train and vehicle speeds, freight trains, older drivers, and female drivers.27
Liang et al. (12) analysed the macroscopic behaviour of motorists while crossing RLCs during the28
closure cycle. They used the violation rate of speeding to define the risky behaviour of vehicle29
drivers estimated during RLCs closure cycles.30

Safety assessment for RLCs31
Gitelman and Hakkert (13) used a hazard index to evaluate the RLCs safety based on limited histor-32
ical accident statistics in Israel. Russell and Mutabazi (14) adopted to calculate a designated rating33
for each considered feature to construct a ranking table for RLCs closures in Kansas, the United34
States. Miranda-Moreno et al. (15) evaluated Canadian RLCs based on an accident history of 535
years using the traditional negative binomial model, the heterogeneous negative binomial model,36
and the Poisson log-normal model. They confirmed that a list of hazardous RLCs significantly de-37
pends on the model assumptions and raking criteria. Hu and Wu (16) conducted an empirical study38
to identify accident frequency and severity. They employed a logit model to categorise severity into39
three levels: no-severity, minor-severity, and serious-severity. Gruyter and Currie (17) carried out a40
detailed literature review to develop an international synthesis of RLCs impacts. They revealed 1841
different types of impacts associated with RLCs; meanwhile, safety defined by accident frequency42
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and severity at RLCs is one of the essential factors in an RLC safety assessment process. They as-1
serted that using empirical evidence to support impact assessments is required to understand RLCs2
impacts better.3

Recently, a machine learning approach was introduced for safety assessment for RLCs.4
Soleimani et al. (18) introduced a machine learning approach to develop a comprehensive RLC5
Consolidation Model. They mainly considered train operational factors, geometric conditions of6
RLCs, and traffic conditions at RLCs. The developed classifier based on the extreme gradient7
boosting (XGboost) algorithm produced that 62% of current RLCs should be closed or improved in8
Louisiana, the United States. Haleem (19) analysed safety issues and improvement measurements9
at private RLCs in the United States. To identify safety problems linked to increased injuries10
and fatalities, they used temporal crash characteristics, geometry, railroad, traffic, vehicle, and11
environment predictors in mixed logit models. Keramati et al. (20) used the random survival forest12
(RSF) to investigate the crash severity at RLCs. They found that additional stop signs and audible13
devices could reduce the crash likelihood, property damage only, injuries, and fatal crashes at14
RLCs. Keramati et al. (21) analysed the influence of geometric conditions, including acute crossing15
angle, the number of tracks, the distance from the RLC to the nearest intersection, and the number16
of lanes, on crash occurrence and severity likelihoods at RLCs.17

Research gaps18
We discover two significant research gaps from the comprehensive review studies to introduce19
dynamic characteristics of motorists and trains in the vicinity of RLCs in a safety assessment20
process.21

First of all, current safety assessment processes of RLCs mainly deal with geometric con-22
ditions of RLCs, road and railway traffic volumes, and historical crash records. In the meantime,23
microscopic dynamics of motorists have been overlooked in the safety assessment processes of24
RLCs due to difficulties in data collection and unclear linkages between microscopic dynamics of25
motorists and safety at RLCs. Over the past several decades, a variety of methods have been devel-26
oped to model longitudinal and lateral interactions of vehicular movements on the road, called a27
car-following (CF) and a lane-changing (LC) model, respectively, at the microscopic level in (22).28
The modelling of these two microscopic two-dimensional manoeuvres has played a significant role29
in the comprehensive understanding of characteristics of traffic flows as well as traffic safety in an30
urban network. In this study, we investigated acceleration, deceleration, G-force, and speed of mo-31
torists to analyse near misses in the vicinity of RLCs from the perspective of a safety assessment32
of RLCs.33

Second, open-sourced data sets were not attractive options in safety assessment methods34
of RLCs due to data quality, reliability, and accessibility. In recent years, the debut of informa-35
tion and communication technologies (ICT) in traffic engineering has diversified spatial-temporal36
dimensions and resolutions of available data sets for transport systems analysis. A multitude of37
traffic data sources is available on an urban transportation network to improve temporal and spatial38
coverages of intermodal traffic patterns in real-time. The multiple data-sources include fixed sen-39
sors and mobility sensors in (23), (24), (22) and (25). Conventional fixed sensors are a relatively40
reliable and robust-data source, whereas expensive construction and maintenance costs are inher-41
ent in this type of sensor. In the meantime, personal mobility data sources can provide the detailed42
spatial and temporal behaviour of moving objects’ movements, although this type of data requires43
effective statistical sampling techniques because of the sparsity of available data. In this study, we44
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used train timetables and crash data sets obtained from TfNSW Open Data Hub and FCD derived1
from GPS data from Compass IoT in NSW to maximise data accessibility. Moreover, we con-2
ducted the sensitivity analysis among safety features at RLCs to understand the varied influence of3
each dynamic factor on the identification of hotspots of RLCs and maximise the flexibility of data4
analysis.5

DATA ANALYSIS6
We secured five data sets from four different data sources. The first data is an information sheet7
about RLCs obtained from NSW public level crossing finder1. The information sheet contains8
the profiles of 1360 RLCs, including identification number, road name, control type, owner, line9
section, suburb, number of tracks, longitude, and latitude.10

The second data is a historical unplanned incident profile from 16 August 2006 to 11 Au-11
gust 2021 obtained from Traffic Management Centre (TMC) in NSW. The historical incident pro-12
file involves over a million incident records that have been recorded together with information13
regarding location, duration, type, link ID, segment ID, direction, and Sector ID. These historical14
incident records allowed us to access high-resolution location information of a single incident for15
hot-spots identification of RLCs; meanwhile, the severity of crashes was not provided.16

The third data is a historical crash profile from 1 January 2015 to 31 December 2019 pro-17
vided by TfNSW Open Data Hub2. This data set contains crash profiles and information on the18
people and units involved. In crash profiles, they provided a degree of the crash, street of the crash,19
type of location, primary permanent, temporary, and hazardous features, surface conditions, natu-20
ral lights, signals operations, speed limit, users movement, short description, first impact type, the21
number of traffic units involved, and the number of killed, the number of serious, moderately, and22
minor-other injured. They linked crash profiles to profiles of people involved, including gender,23
age group, road user class, degree of casualty, and units, containing a role in the first impact, types,24
direction of travel, manoeuvre and the first and the second crashed objects.25

The fourth data consists of railway timetables and network profiles from 1 January 201926
to 31 August 2021 obtained from TfNSW Open Data Hub and Google GTFS. Railway timetables27
provide information on a train service schedule, including departure station, departure time, arrival28
station and arrival time for each passenger train service. The Railway network includes information29
on train line geometry and train station location.30

The fifth data is microscopic dynamics of motorists from 1 March 2021 to 31 August31
2021 provided by Compass IoT 3. Compass IoT is a data aggregation and analytic company that32
uses connected vehicles to generate in-depth insights into vehicular trajectories across transport33
networks. They collected trajectories data from private and public data providers to provide the34
average speed profiles and volumes in a single link across the Australian road network. The col-35
lected microscopic dynamics of motorists enable us to evaluate the driving behaviour of vehicles36
in the vicinity of RLCs by analysing vehicular manoeuvres, including braking, acceleration, and37
deceleration of a single-vehicle.38

These five data sets were used to analyse profiles of RLCs, traffic incidents, railway opera-39
tions, and microscopic behaviour of motorists described in the following subsections.40

1https://appln.transport.nsw.gov.au/mapservices/proxy/levelCrossings/map.html
2https://opendata.transport.nsw.gov.au/
3https://console.compassiot.cloud/
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Railway level crossing1
We investigated general information on RLCs in NSW. The data set of train level crossings in2
NSW contains the following features: CROSSING NUMBER, ROAD NAME, LOCATION, CON-3
TROL TYPE, CONTROL CATEGORY, RAIL OWNER, LINE SECTION, LGA NAME, SUB-4
URB, RAIL KM, NO OF TRACKS, OBJECT ID, lon, and lat. The features of lon and lat were5
used for map-matching in a QGIS program.6

NSW_Level_Crossing_with_Crash
Boom gates & Flashing Lights [256]

Flashing Lights [162]

Give way signs [135]

Position Markers Only [2]

Rail operated gates [2]

Stop Signs [789]

FIGURE 1: The distributed locations of railway level crossings in NSW.

Active and passive types of level crossing controls are installed across NSW. In the active7
type, boom gates and flashing lights are installed at 256 RLCs. Flashing lights are operated at8
162 of RLCs across NSW. Rail-operated gates are installed at two places of RLCs. In the passive9
type, stop signs and give way signs are installed at 789 and 135 RLCs, respectively. Fig. 1 presents10
distributed locations of each level crossing control category at RLCs. Stop signs in the passive type11
are widely installed across regional NSW, whereas boom gates and flashing lights in the active type12
are mainly installed in the Sydney metropolitan area.13

Traffic incidents14
We investigated two open-sourced traffic incident data sets, including historical unplanned inci-15
dent profiles over ten years and crash profiles for five years. Unplanned incident logs present the16
summarised information of over a million incidents in NSW, whereas crash profiles illustrate the17
detailed information of each crash of over 100 thousand. In unplanned incident logs, we filtered18
this data set to extract only train-related incidents, and the remaining findings revealed that 2,54919
were train-related incidents. The data revealed an average duration of 139 minutes or train dis-20
ruption, representing quite a considerable time interval with no train service in affected areas or21
trains blocked in specific train networks without being able to continue their journey. The maxi-22
mum duration of a train incident has reached 7,663 minutes and was signalled in Glenyalla north23
of Kankool on 15 February 2015.24

In crash profile data, we analysed crashes, units involved in crashes, and people involved25
in crashes in the vicinity of RLCs. We filtered 379 crashes nearby RLCs among all crashes from26
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1 January 2015 to 31 December 2019. The definition of the vicinity of RLCs is within a radius of1
150m from the location of RLCs in this study. In Fig. 2, we illustrated characteristics of crashes2
in the vicinity of RLCs. Most crashes have occurred from 6:00 to 19:59 in Fig. 2a. Two-time3
intervals, 10:00 – 11:59 and 16:00 – 17:59, include over 100 crashes for the last five years. We4
found around a one-hour time lag between peak hours from the perspective of road traffic and peak5
intervals of crashes nearby RLCs. 67% of crashes in the vicinity of RLCs have included injured6
people in Fig. 2b. Moreover, 23% of crashes have contained seriously injured people, in which7
this proportion is much more significant than that involved in general road crashes. Although most8
crashes were on the road with 50 and 60 km/h of the speed limit, over 100 crashes have occurred on9
the road over 80 km/h of the speed limit in Fig. 2c. Almost 200 crashes have occurred nearby RLCs10
where the control device is not installed. Moreover, active control devices at RLCs have played a11
critical role in preventing crashes nearby RLCs. In Fig. 2d, the majority of crashes are involved12
right-angle crashes and vehicle-to-object crashes. Vehicle-to-train direct crashes occurred below13
20 crashes over the last five years. One hundred fifty crashes occurred on the two-way undivided14
road, whereas T-junction and X-intersection included around 100 crashes each nearby RLCs.15

We found three significance from analysing RLCs statistics. First of all, crashes in the16
vicinity of RLCs have generally involved severe injuries in NSW (Fig. 2b. In addition, we found17
time lags between peak hours of road traffic and peak time intervals of crashes nearby RLCs in18
NSW (Fig. 2a). Furthermore, analysing all crashes nearby RLCs helps understand safety issues19
at RLCs because the number of direct crashes between vehicles and trains is small among first20
crashes nearby RLCs in NSW (Fig. 2d).21
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(a) 2 hours intervals

Fatal (2%)

Minor/Other Injury (13%)

Moderate Injury (29%)

Non-casualty (towaway) (33%)

Serious Injury (23%)

(b) Degree of crash

(c) Speed limit (d) Type of the first crash

FIGURE 2: Crashes in the vicinity of RLCs

Railway operations1
This section describes the frequency of passenger trains in NSW using RLC train timetable data.2
The service frequency of railway systems reflects how busy the specific RLC is in terms of trains3
passing the RLC. The train frequency has been an essential characteristic of RLCs in developing4
safety scores at RLCs in ALCAM for the last several decades. The busier RLC has increased the5
risk of crashes and more severe consequences.6

We used three data sets: RLC profiles, train timetables, and train networks. RLC profiles7
collected from NSW Public Crossing Finder contain ID, road name, control type, owner, line sec-8
tion, suburb, number of tracks, longitude, and latitude. Train timetables involve departure station,9
departure time, arrival station and arrival time for each passenger train service. The data was col-10
lected from TfNSW Open Data Hub. Train network data include geometric conditions of train11
lines and locations of train stations. The data was also collected from TfNSW Open Data Hub.12

Three data sets were processed through two steps: map matching and arrival time estimat-13
ing. In the map matching, the locations of the RLCs are not precisely located on the train lines14
since the RLCs data and the train network data set are collected from different organisations. As15
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a result, we employed a map matching technique to find the correct location of the RLCs on the1
train lines.2

We identified 590 (43%) of RLCs, which are operating with the given timetables in the3
passenger train line, while 770 (57%) of RLCs are not. They are illustrated in Fig. 3a and Fig. 3b,4
respectively. In the estimating step of train arrival time at RLCs, we excluded 770 of RLCs from5
the investigation because the given passenger timetable data do not cover them.6

(a) RLCs that can be projected (b) RLCs that cannot be projected

FIGURE 3: The results of the map matching

After the map matching of the RLCs, we estimated the arrival time of each train service at7
each RLC. We used the departure time at the last train station and the arrival time at the next train8
station to estimate the RLC arrival time. As shown in Fig. 4, there is a level crossing L, which is9
located between two stations S1 and S2.10

FIGURE 4: Estimating arrival time at RLCs.

The arrival time at the RLC, L, is estimated by using the following equation:11
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a = d1 +
DistanceS1,L × (a2 −d1)

DistanceS1,S2

(1)

where d1 is the departure time at station S1,1
a2 is the arrival time at station S1,2
DistanceS1,L is the distance from station S1 to RLC L along the train line,3
and DistanceS1,S2 is the distance from station S1 to station S2 along the train line.4

Behaviour of motorists5
This section investigated the driving behaviour in the vicinity of RLCs using the Compass IoT data.6
The primary purpose of this investigation is to identify repetitive risky driving behaviour nearby7
TLCs with a high risk for collisions or near-misses due to driver misbehaviour.8

Compass IoT is a data aggregation and analytic company that uses connected vehicles9
to generate in-depth insights across transport networks. It is a new innovative way of surveying10
roads, collecting data, and planning cities. Compass IoT collected data from private and public data11
providers and developed sophisticated algorithms to predict speed and volume across Australian12
roads. We analysed three pros and cons of Compass IoT data to assess the safety of RLCs in NSW.13
First of all, it helps to evaluate the driving behaviour in the vicinity of RLCs. In addition, it helps to14
analyse the breaking/acceleration/deceleration manoeuvres of drivers nearby the RLCs. Moreover,15
it can reveal near-misses events based on G-force evaluation. In the meantime, the current fleet16
for collecting the data is limited to 700,000, in which more vehicles have been passing by each17
RLC regularly that are not captured in Compass IoT. The Compass IoT only collected autonomous18
vehicle data from March 2020, so no prior information is available for understanding old crashes19
and events nearby RLCs.20

The Compass IoT data consists of safe-point and breakpoint data. safe-point data is de-21
signed to leverage the accelerometer readings from the connected vehicles to determine events of22
interest in the road network. Specifically, these data sets include observations of harsh vehicle23
movements, and violent events, indicating a near miss, a collision, an incident, or another high24
G-force event. brake-point data maps the G-force, speed, curvature, and driving violence every25
second.26

We employed a G-force methodology to analyse the behaviour of vehicles nearby each27
RLC. A G-force is a measure of acceleration. 1g is measured as the acceleration resulting from28
gravity. Gravity is measured in m/sec2. The value of acceleration is 9.806 m/sec2. We used a29
definition of the X/Y/Z axis specified in ISO 8855:1991 to estimate the G-force. Fig. 5 illustrated30
the x-axis points towards the front of the vehicle, the y-axis towards the left, and the z-axis upwards31
(right-hand system) with the origin at the most forward point on the centreline of the vehicle for32
dynamic data measurements.33
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Longitudinal (x)

Lateral (y)

Vertical (z)

Yaw ψ

Pitch θ

Roll φ

Driving manoeuvres Target g-force

Cornering

Mild Left 0.2 – 0.3 G’s

Moderate Left 0.3 – 0.4 G’s

Hard Left 0.5 – 0.6 G’s

Mild Left 0.2 – 0.3 G’s

Moderate Right 0.3 – 0.4 G’s

Hard Right 0.5 – 0.6 G’s

Braking

Mild 0.4 – 0.5 G’s

Moderate 0.5 – 0.6 G’s

Hard 0.6 – 0.7 G’s

Acceleration from 

stationary position

Mild 0.2 G’s

Hard 0.3 – 0.4 G’s

Turns

Mild Left 0.2 – 0.3 G’s

Moderate Left 0.4 – 0.5 G’s

Hard Left 0.6 – 0.7 G’s

Mild Left 0.2 – 0.3 G’s

Moderate Right 0.4 – 0.5 G’s

Hard Right 0.6 – 0.7 G’s

FIGURE 5: The x/y/z axis definition in vehicular manoeuvres.

The severity of the g-force is represented in the platform as harsh acceleration and harsh1
braking in Fig. 5. Deceleration or braking from 60 km/h to 0 km/h in 3.0 seconds at 0.6 g is con-2
sidered as harsh braking. Accelerating from 0 km/h to 60 km/h over 0.5 g’s is hard acceleration.3
Swerving or cornering is considered harsh when it is over 0.47 g’s.4

We first extracted the harsh driving behaviour around 50 metres, 100 metres, and 150 me-5
tres from all public level crossing locations from the safe-point data in Compass IoT. The choice6
for analysing various radii in the vicinity of the TLCs is to understand the level of details that can7
be captured in the vicinity of RLCs. While 50 metres might be considered a good location, some8
TLCs might be in the vicinity of more complex road structures; therefore, the need to extend the9
analysis to a 150m radius. Secondly, we evaluated all RLCs according to the number of harsh10
driving behaviours and near misses. Thirdly, we analysed the G-force and the maximum speed to11
identify typical types of harsh driving behaviours around RLCs. Lastly, we inferred the reasons12
for these harsh driving behaviour and near misses of the top 10 level crossings. We extracted the13
average speed, volume, and speed limit around the top ten vulnerable RLCs. In addition, we in-14
vestigated google street view to further identify the possible improvement of the RLC according15
to the geometry and traffic signs.16

Compass IoT data is collected for 17 months, from 1 March 2020 to 31 August 2021. It17
includes 62, 109, and 172 near-miss events detected at 50, 100, and 150 metres, respectively, within18
the radius of RLCs in NSW.19

ASSESSMENT RESULTS20
We assessed all RLCs in NSW from three perspectives, including incident factors, railway opera-21
tional factors, and behaviour factors of motorists. Moreover, we provided the integrated final risk22
index score with sensitivity analysis.23

Incident factors24
We employed the QGIS program to count how many crashes exist in the designated radius from the25
location of RLCs in NSW. We identified all crashes near the site of RLCs in Fig. 6. One hundred26
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ninety-two of RLCs included more than one crashes nearby the RLCs. We assigned the weight to1
the degree of a casualty involved in crashes near each RLC. The values of the weight are 5, 4, 3, 2,2
and 1 for the killed, the seriously injured, the moderately injured, the minor injured, and the traffic3
units involved. The top ten safety hotspots are illustrated in Table 1.4

FIGURE 6: Distributed locations of crashes in NSW.

Road name Control Suburb Tracks Crashes
Safety
score

Units
involved Killed

Seriously
injured

Moderately
injured

Minor
injured

Boothenba Road
Boom Gates &
Flashing Lights DUBBO SINGLE 14 108 29 1 9 10 4

Gosford Road / Rawson Road
Boom Gates &
Flashing Lights WOY WOY MULTIPLE 16 75 33 0 3 8 3

St James Road
Boom Gates &
Flashing Lights ADAMSTOWN MULTIPLE 18 72 32 0 4 6 3

Nolan Street
Boom Gates &
Flashing Lights UNANDERRA SINGLE 6 57 14 0 7 5 0

Bundarra Street
Boom Gates &
Flashing Lights BLACKHEATH MULTIPLE 10 47 20 0 2 5 2

Summer Street / Mitchell Highway
Boom Gates &
Flashing Lights ORANGE SINGLE 10 42 16 0 3 4 1

Old Mendooran Road Stop Signs DUBBO SINGLE 5 33 9 0 1 4 4

Darling Street
Boom Gates &
Flashing Lights DUBBO MULTIPLE 6 30 12 0 0 6 0

Marina Drive
Boom Gates &
Flashing Lights COFFS HARBOUR SINGLE 4 29 8 0 4 1 1

Brisbane Street Flashing Lights EAST TAMWORTH SINGLE 6 28 12 0 2 2 1

TABLE 1: The safety scores of the top ten hotspots.

In Table 1, the RLC on Boothenba Road produced the highest safety score, 108, due to the5
involvement of one death, nine seriously injured and ten moderately injured people in the crashes6
in the vicinity of this RLC. The RLC on St. James Road included the highest number of crashes,7
18, with 72 on the safety score.8
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Railway operational factors1
We constructed the ranking tables for entire stations in NSW through railway operational data2
analysis. In NSW, we observed 57 level crossings with a daily service frequency higher than ten3
trains per day. The top ten most circulated RLCs in NSW are described in Table 2.4

Rank Road name Suburb Frequency (trains/day)
1 Pine Road Fairfield 241
2 Glenrock Parade Koolewrong 102
2 Gosford Road Woy Woy 102
2 Railway Parade Corrimal 102
2 Bellambi Lane Bellambi 102
2 Park Road Woonona 102
7 Beaumont Street Hamilton 87
8 School Parade Clifton 84
8 Warnervale Road Warnervale 84

10 Bandon Road Vineyard 72
10 Garfield Road Riverstone 72
10 Mulgrave Road Mulgrave 72
10 Fairey Road Windsor 72
10 Bouke Street East Richmond 72
10 Level Crossing Road Vineyard 72
10 Racecourse Road Clarendon 72

TABLE 2: The top ten most circulated RLCs in entire NSW

On average, two hundred forty-one trains per day at the first rank revealed that trains are5
passing Pine Road every 6 minutes, which might make the road vulnerable RLCs for collisions6
between trains and motor vehicles. We additionally investigated hourly train service frequency at7
the RLC on Pine Road. Fig. 7 demonstrates the daily number of trains aggregated per hour. The8
busiest hour of the day seems to be 7:00 with 15 hours passing by, one train passing by every 49
minutes, followed by 18:00 with 16 trains per day, one train passing by every 3.75 minutes. The10
RLC on Pine Road is operated by the active boom gates and flashing lights on multiple rail tracks.11
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FIGURE 7: Hourly train service frequency at the RLC on Pine Road.
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This section investigates the train service frequency at each train level crossing in NSW.1
We apply a 3-step method, including map matching, arrival time estimation and service frequency2
counting, to calculate the train service frequencies. Results revealed 57 busy train level crossings3
in the entire area of NSW and 42 busy train level crossings in the regional area, which are serviced4
the most by daily train trips. The top-level crossing 945 in the entire NSW has daily 241 train5
services and more than ten train services every hour in the daytime.6

Behaviour factors of motorists7
We present the top ten RLCs according to the number of incidents and near misses in a 150-metre8
radius. In Table 3, all RLCs are controlled by an active type of control. Boom gates and flashing9
lights control 9 out of 10 RLCs. We detect 18 near misses in the 150-metre vicinity of the RLC10
on Mulgrave Road, Mulgrave. Furthermore, eight near misses were observed in the vicinity of the11
RLC on Borenore Road and Amaroo Road, Borenore. Six RLCs involve over five near misses in12
addition to the above two RLCs across NSW.13

Rank Road name Suburb LGA Control type Control category Mear misses

1 Mulgrave Road Mulgrave Hawkesbury Active
Boom gates &
Flashing lights 19

2
Borenore Road/
Amaroo Road Borenore Cabonne Active

Boom gates &
Flashing lights 8

3 Darling Street Dubbo Dubbo Active
Boom gates &
Flashing lights 7

4 Pine Road Fairfield Cumberland Active
Boom gates &
Flashing lights 7

5 Fitzroy Street Dubbo Dubbo Active
Boom gates &
Flashing lights 6

6 Bandon Road Vineyard Blacktown Active
Boom gates &
Flashing lights 5

7 Eulomogo Road Wongarbon Dubbo Active
Boom gates &
Flashing lights 5

8 Muldoon Street Taree Mid-coast Active
Boom gates &
Flashing lights 5

9
Vitoria Street/

Mitchell Highway Dubbo Dubbo Active
Boom gates &
Flashing lights 4

10 Castlereagh Highway Ben Bullen Lithgow City Active Flashing lights 4

TABLE 3: Top ten level crossings according to near misses in a 150-metre radius.

We analysed the average speed and XY accelerations of all near misses around each RLC14
in a 150-metre radius. The number of near-misses from the first ranked RLC to the 88th ranked15
RLC is described in Fig. 8. In the meantime, average speed, average X acceleration, and average16
Y acceleration are illustrated inFig. 9, Fig. 10, and Fig. 11.17
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FIGURE 8: Near misses in a 150m radius.
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FIGURE 9: Average speed.
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FIGURE 10: Average X acceleration.
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FIGURE 11: Average Y acceleration.

Based on the three dynamic features, we classified RLCs into five groups according to1
the severity of the g-force. The severity of the g-force is represented in the platform as harsh2
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acceleration and harsh braking in Fig. 5. Deceleration or braking from 60 km/h to 0 km/h in 3.01
seconds at 0.6 g is considered as harsh braking. Accelerating from 0 km/h to 60 km/h over 0.5 g’s2
is hard acceleration. Swerving or cornering is considered harsh when it is over 0.47 g’s. The RLCs3
in NSW are categorised into 18 RLCs as hard brake and stiff steering, 54 RLCs as hard brake and4
no steering, 4 RLCs as lightweight brake and stiff steering, and 3 RLCs as lightweight brake and5
no steering, and 9 RLCs as accelerating and stiff steering.6

By classifying the behaviours of incidents around RLCs, we also infer the reasons for each7
type. When drivers do “hard brake and hard steering”, they must drive through a curvy road and8
slow down to avoid an accident harshly. When drivers do “hard brake and no steering”, they must9
drive through a straight road and slow down to avoid an accident harshly. When drivers do “light10
break and hard steering”, they must drive through a curvy road and slow down to avoid an accident11
slightly. When drivers do “light break and no steering”, they must drive through a straight road12
and slow down to avoid the accident slightly. When drivers do “accelerate and hard steering”, they13
must drive through a curvy road and need to accelerate to avoid an accident. When drivers do14
“accelerate and have no steering”, they must drive through a straight road and need to accelerate15
to avoid an accident.16

Moreover, we adopted a neural network clustering method to propose a novel grouping of17
vehicular dynamics in the vicinity of RLCs depending on three factors: average speed, average X18
acceleration, and Y acceleration in the near misses in a 150-metre radius of RLCs. We used the19
neural network clustering program provided by MATLAB R2022a to group RLCs. In the neural20
network, we set the map size value to ten, which corresponds to a grid with ten rows and columns,21
and the map has 100 neurons. We generated self-organising maps (SOM) neighbour weight dis-22
tances and SOM sample hits to analyse the training results in Fig. 12. Each neuron is represented23
by each of the hexagons in the plots. The input space is three-dimensions, including three fea-24
tures in each input vector. The weight vectors fall within this space. The relationships among the25
three-dimensional cluster centres are visualised in two dimensions. In Fig. 12a, the blue hexagons26
depict the neurons. Red lines in the several coloured regions connect neighbouring neurons. The27
colours in the regions imply the distances between neurons. The lighter colours (i.e.amber) repre-28
sent smaller distances, whereas the darker colours (i.e.black) denote more considerable distance.29
We can classify the RLCs into six or seven divided by a band of darker regions in Fig. 12a.30
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FIGURE 12: Self-organising maps with hits

Moreover, we demonstrated how many RLCs are associated with each of the neurons in1
Fig. 12b. The maximum number of RLCs associated with a neuron is four, in which the neuron is2
closely related to the surrounding neurons.3

Fig. 13 describes a weight plane for average speed, average X acceleration, and average4
Y acceleration at each RLC. These plots show the weight connecting each attribute to each neu-5
ron, with darker colours showing larger weights. According to these plots, three features are not6
correlated with each other; meanwhile, features play a significant role in clustering RLCs at each7
platoon of neurons in this analysis. Furthermore, the clustering result by a neural network pro-8
duced similar grouping results derived from analysing behaviour of incidents around RLCs based9
on G-force.10
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FIGURE 13: Weights in the neural network clustering.

To further investigate the reasons for the harsh driving behaviour, we look at the Google11
maps street view and the travel speed and traffic volumes from the Compass brake-point Data at12
the RLC on Mulgrave Road, Mulgrave, which includes 19 near misses from March 2020 to August13
2021.14
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We discovered two significant manoeuvres entering the RLC and turning left after leaving1
the RLC. Both manoeuvres contain extreme deceleration in several cases of near misses. We2
described critical manoeuvres points and Google street view in Fig. 14.3

(a) The recorded trajectory points of vehicles (b) Google street view

FIGURE 14: The selected direction at the RLC on Mulgrave Road

In Fig. 14a, green points represent safe driving behaviour, whereas red points denote less4
driving behaviour. Red points are primarily distributed in the vicinity of directions entering the5
RLC and turning left after leaving the RLC on Mulgrave Road. Moreover, we found that various X6
and Y acceleration points are greater than 0.47 and less than -0.47 among red points. This means7
that two significant manoeuvres entering the RLC and turning left after leaving the RLC entail8
sudden deceleration and acceleration manoeuvres in the vicinity of the RLC on Mulgrave Road.9

Final risk index score10
In this section, we produced a novel risk index score of RLCs in NSW. We normalised the number11
of historical incidents nearby RLCs, the service frequency of trains at RLCs, and the number of12
near misses in the vicinity of RLCs. We integrated the normalised values into one index score by13
varying each weight. The proposed formula is given as follows:14

ri = αxi +βyi + γzi (2)
where ri, xi, yi, and zi denote final risk index score, the normalised historical incidents, the15

normalised service frequency, and the normalised near misses, respectively, at ith RLC. α , β , and16
γ represent weight values corresponding to each normalised index. We calculated the mean and the17
standard deviation values for xi, yi, and zi are 1.29, 5.88, 7.37, 19.02, and 0.13, 0.77, respectively,18
for a normalising process. We varied three weight values from 0.0 to 1.0 by 0.2, and the total of19
three weights is 1.0. We constructed 19 cases of combinations, including evenly distributed weights20
(i.e. all values are equal to 0.33). We identified the top 20 safety hotspots of RLCs from points of21
view, including historical incidents, service frequency, and near misses described in Table 4.22
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ID ROAD_NAME LGANAME SUBURB Incidents Rank Frequency Rank Near misses Rank xi yi zi
945 Pine Road CUMBERLAND FAIRFIELD 85 2 241 1 7 3 1.00 1.00 1.00
53 Mulgrave Road HAWKESBURY MULGRAVE 21 14 72 10 19 1 1.00 1.00 1.00
350 Nolan Street WOLLONGONG UNANDERRA 49 6 67 17 2 15 1.00 1.00 0.99
644 Clarinda Street BLUE MOUNTAINS FAULCONBRIDGE 108 1 65 21 2 15 1.00 1.00 0.99
348 Bellambi Lane WOLLONGONG BELLAMBI 8 39 102 2 3 11 0.87 1.00 1.00
51 Bandon Road BLACKTOWN VINEYARD 8 39 72 10 5 6 0.87 1.00 1.00
645 Bundarra Street BLUE MOUNTAINS BLACKHEATH 50 5 58 26 1 31 1.00 1.00 0.87
56 Bourke Street HAWKESBURY RICHMOND 8 39 72 10 2 15 0.87 1.00 0.99
437 St James Road NEWCASTLE ADAMSTOWN 33 9 48 33 1 31 1.00 0.98 0.87
347 Park Road WOLLONGONG WOONONA 7 50 102 2 2 15 0.83 1.00 0.99
435 Glenrock Parade CENTRAL COAST KOOLEWONG 11 30 102 2 1 31 0.95 1.00 0.87
351 Princes Highway WOLLONGONG UNANDERRA 8 39 67 17 1 31 0.87 1.00 0.87
52 Level Crossing Road HAWKESBURY VINEYARD 3 115 72 10 2 15 0.61 1.00 0.99
1494 Darkes Road WOLLONGONG DAPTO 1 195 67 17 3 11 0.48 1.00 1.00
352 West Dapto Road WOLLONGONG KEMBLA GRANGE 1 195 67 17 2 15 0.48 1.00 0.99
434 Gosford Road / Rawson Road CENTRAL COAST WOY WOY 43 7 102 2 0 N/A 1.00 1.00 0.43
770 Beaumont Street NEWCASTLE HAMILTON 29 12 87 7 0 N/A 1.00 1.00 0.43
50 Garfield Road BLACKTOWN RIVERSTONE 76 3 72 10 0 N/A 1.00 1.00 0.43
55 Racecourse Road HAWKESBURY CLARENDON 38 8 72 10 0 N/A 1.00 1.00 0.43
637 Tynan Road ALBURY CITY TABLE TOP 24 13 4 103 3 11 1.00 0.43 1.00

TABLE 4: The top 20 safety hotspots according to the final risk index with even weights.

The RLC on Pine Road is the top-ranked due to frequent passenger train service, high1
historical incident rates, and the high chance of near misses in the vicinity of the RLC. Moreover,2
the RLC on Mulgrave Road is the second top-ranked due to its high chance of near misses, although3
the RLC is located in a regional area of NSW. Other RLCs are usually highly ranked in each4
criterion except for the RLCs on Gosford Road, Beaumont Street, Garfield Road, and Racecourse5
Road. Even if the number of near misses is zero nearby these four RLCs, the number of historical6
incidents and service frequency is relatively higher than other RLCs in NSW. The varied risk7
index scores combined with the weights provide the sensitivity of the final risk index scores of the8
vulnerable RLCs according to a case containing the different values of weights corresponding to9
each dynamic feature. We confirmed that the risk index scores of the top-ranked vulnerable RLCs10
are continuously sustained regardless of varied weights to each dynamic feature.11

CONCLUSIONS12
The ALCAM has been widely used in Australia and New Zealand to identify potential risks at13
level crossings and assist in prioritising crossing for upgrades in Australia and New Zealand due14
to its reliable and robust assessment mechanism. In this study, We newly introduced dynamic15
characteristics of motorists in the vicinity of RLCs and factors involved in the ALCAM. The dy-16
namics include real-time train movements, the severity of traffic incidents nearby RLCs, and risky17
manoeuvres of motorists in the vicinity of RLCs. We identified hotspots of RLCs in NSW by18
integrating the three dynamic elements into the nominated weightings. The proposed study in-19
cludes three contributions. First of all, investigating the microscopic dynamics of motorists and20
the severity of traffic incidents enables the introduction of near misses in the vicinity of RLCs in a21
safety assessment mechanism. Second, the data-driven analysis based on open-sourced data takes22
full advantage of data accessibility and flexibility if a large amount of data is secured. Last, the23
clustering analysis helps to understand the varied influence of each dynamic factor to define the24
risky behaviour of drivers nearby RLCs.25

The proposed method lays the foundation stone for applying dynamic features of motorists26
to assess traffic safety of RLCs using public open data. It paves the way for analysing the historical27
behaviour of motorists in the vicinity of RLCs to anticipate key risks at each RLC in Australia.28
For future research directions, the proposed method will include temporal analysis of motorists’29
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dynamics, including speed and XY accelerations, to assess the time-series evolution of dynamics1
according to implementing traffic safety facilities at RLCs in NSW. Besides, the applicability of the2
data-based approaches will be studied to construct flexible and robust safety assessment procedures3
at RLCs.4
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