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Abstract
Complement inhibition has shown promise in various disorders, including COVID- 19. 
A	prediction	tool	 including	complement	genetic	variants	 is	vital.	This	study	aims	to	
identify crucial complement- related variants and determine an optimal pattern for 
accurate disease outcome prediction. Genetic data from 204 COVID- 19 patients hos-
pitalized	between	April	2020	and	April	2021	at	three	referral	centres	were	analysed	
using	 an	 artificial	 intelligence-	based	 algorithm	 to	predict	 disease	outcome	 (ICU	vs.	
non-	ICU	admission).	A	 recently	 introduced	alpha-	index	 identified	 the	30	most	pre-
dictive	 genetic	 variants.	 DERGA	 algorithm,	 which	 employs	 multiple	 classification	
algorithms, determined the optimal pattern of these key variants, resulting in 97% 
accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 
variants per patient, with 977 total variants detected. This study demonstrates the 
utility of alpha- index in ranking a substantial number of genetic variants. This ap-
proach enables the implementation of well- established classification algorithms that 
effectively determine the relevance of genetic variants in predicting outcomes with 
high accuracy.
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1  |  INTRODUC TION

The	 ongoing	 coronavirus	 disease	 (COVID-	19)	 pandemic,	 caused	
by	 the	 severe	 acute	 respiratory	 syndrome	 coronavirus-	2	 (SARS-	
CoV-	2),	has	resulted	in	remarkable	global	morbidity	and	mortality	
among patients.1 Despite continuing vaccination efforts, there is 
still a need to reduce the impact of the disease, particularly in spe-
cific	populations.	Studies	have	revealed	that	SARS-	CoV-	2	triggers	
a cycle of immune dysfunction, endothelial injury,2 and microan-
giopathy,3 resulting in severe COVID- 19 being characterized as a 
multisystemic vascular disease.4 Given that complement is a sig-
nificant regulator of endothelial injury syndromes such as throm-
botic	microangiopathies	 (TMAs),	and	severe	COVID-	19	seems	to	
resemble	complement-	mediated	TMAs,	researchers	have	studied	
the role of complement activation in severe COVID- 195,6 and dis-
covered genetic variants that may increase an individuals' suscep-
tibility	 to	severe	disease.	Additionally,	a	number	of	studies	have	
investigated the use of complement inhibitors as a potential treat-
ment for severe COVID- 19,7,8 with encouraging results mostly 
seen in case series. Complement inhibitors such as eculizumab,9–15 
ravulizumab,16,17 Cp40,18,19	AMY-	101,20,21 emapalumab,22 narso-
plimab,23,24 conestat alpha,25,26 and LFG- 31627 have the poten-
tial to impact the treatment of severe disease. However, broader 
use of these drugs is limited by cost and accessibility, as well as 
the need for more appropriate patient selection and larger stud-
ies. To address these challenges, robust prediction tools utilizing 
critical genetic variants, age and gender are essential in identi-
fying patients who may benefit from complement inhibition. The 
authors of this study aim to identify key complement- related ge-
netic variants that predict severe COVID- 19 using a recently pro-
posed alpha- index. This index was initially introduced for ranking 
haematological indices that impact the outcome of COVID- 19 
cases.28 In addition, a novel data ensemble refinement greedy al-
gorithm	(DERGA)	is	utilized,	in	order	to	demonstrate	the	optimal	
subset	 combination	 (pattern)	 of	 these	 genetic	 variants	with	 the	

best prediction accuracy regarding the outcome of each patient's 
illness.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

Our study recruited adult patients who were hospitalized for COVID- 19 
at	three	referral	centres	(Georgios	Papanicolaou,	Attikon	Hospital	and	
Johns	Hopkins	Hospital)	 from	April	2020	to	April	2021.	We	studied	
204	patients,	124	hospitalized	in	intensive	care	units	(ICU)	and	80	in	
COVID- 19 general ward. Figure 1 summarizes demographics accord-
ing to disease severity, age and gender. Participants were confirmed to 
have	SARS-	CoV-	2	infection	through	RT-	PCR	(reverse-	trancriptase	pol-
ymerase	chain	reaction)	testing.	The	medical	history	and	progress	of	
each patient were recorded by their treating physicians and followed 
until their discharge or death. Patients with non- available data on clini-
cal course and outcome were not included in the latter analysis. The 
study was approved by the Institutional Review Boards of the referral 
centres and conducted in accordance with the Declaration of Helsinki.

2.2  |  Genetic analysis

The	 study	 utilized	 next-	generation	 sequencing	 (NGS,	 Illumina,	
San	 Diego,	 California)	 to	 analyse	 DNA	 that	 was	 extracted	 from	
peripheral blood samples. The analysis focused on a panel of 
complement- related genes, which included complement factor H/
CFH, CFH- related, CFI, CFB, CFD, C3, CD55, C5, CD46 and thrombo-
modulin/THBD,	 as	well	 as	TMA-	associated	ADAMTS13 (a disinte-
grin	and	metalloproteinase	with	 thrombospondin	 type	1	motifs).	
The design of probes was done using DesignStudio (Illumina, 
San	 Diego,	 California)	 to	 include	 all	 exons	 and	 an	 additional	 15	
bases of the intronic regions, resulting in 98% coverage. The 

F I G U R E  1 Study	population	
categorized by age, gender and disease 
severity	(requiring	or	not	hospitalization	in	
intensive	care	unit	[ICU]).
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initial	 amount	of	DNA	material	used	was	10 ng	per	pool	and	 the	
libraries	 were	 quantified	 using	 Qubit	 (Thermofisher	 Scientific,	
Waltham,	 Massachusetts).	 The	 sequencing	 of	 the	 libraries	 was	
performed	 on	 an	 Illumina	 System	 in	 a	 2 × 150 bp	 run	 (Illumina,	
San	Diego,	California).	Both	Ensembl	and	Refseq	resources	were	
utilized to annotate the output files. The variants' clinical signifi-
cance was determined using ClinVar and the current version of the 
Complement Database.

2.3  |  Compilation of genetic variants database

According	 to	 the	 genetic	 analysis	 conducted	 in	 204	 patients	with	
COVID- 19, a database, that was comprised from 204 datasets and 
corresponded to the 204 patients, was synthesized. Each dataset 
was specified by 980 parameters. The first two parameters cor-
responded to age and gender of the patient, the next 977 corre-
sponded to genetic variants detected in the patient, and the last 
parameter specified the severity of the patient's illness. Database is 
appended to this paper as Data S2 (excel file entitled Database—with 
all	977	Genetic	Variants).

2.4  |  Optimal pattern of variants affecting the 
COVID- 19 outcome

The main objective of this study is to identify the optimal pattern 
of genetic variants that determines the outcome of the patients' ill-
ness,	 specifically	whether	 they	 require	 admission	 to	 the	 intensive	
care	unit	(ICU).	To	achieve	this	goal,	appropriate	techniques	and	al-
gorithms of artificial intelligence have been employed, under the as-
sumption that the number of variants and their respective possible 
combinations	were	not	excessively	large.	Additionally,	the	database	
must be reliable and able to statistically describe the phenomenon 
being studied.

The database for 204 patients and 977 variants has been anal-
ysed and the possible combinations have been determined through 
the	application	of	the	following	equation.

where nv is the number of the genetic variants in database. Setting the 
value nv = 977,	we	get	2.554676 × 10294 possible combinations.

To	address	this	issue,	two	objectives	were	identified:	(i)	reduce	
the number of 977 variants to a subset which contains the most cru-
cial variants that predict the outcome of the patients' illness and can 
be	rapidly	computed,	and	(ii)	identify	the	optimal	pattern	using	only	
this subset of crucial variants.

Taking into consideration these objectives, the next two sections 
present a recently proposed index for identifying the most crucial 
variants and a novel algorithm for identifying the optimal subset of 
variant combinations.

2.5  |  Crucial genetic variants

In order to reduce the 977 variants into a much smaller subset which 
comprise only the variants that affect outcome of the disease, alpha- 
index, which was recently proposed by the authors for ranking hae-
matological indices that also affect the outcome of patients with 
COVID- 19, was utilized.28 This index is defined as

where
i corresponds to ith genetic variant (i = 1–977),
μnot in ICU
i

 is the mean value of the ith genetic variant for COVID- 19 
infected	patients	who	did	not	require	hospitalization	in	ICU	andμin ICU

i
 

is the mean value of the ith genetic variant for COVID- 19 infected pa-
tients	who	require	hospitalization	in	ICU.

Based	on	 the	above	equation,	 the	 index	 takes	values	between	
−100	 and	 100.	 A	 genetic	 variant's	 effectiveness	 in	 determining	
whether	a	patient	will	be	admitted	to	the	ICU	is	directly	proportional	
to this index value:

1. First, if a genetic variant is present in both sets of patients 
(ICU/not	 in	 ICU)	 the	 index	 has	 a	 value	 of	 0,	 indicating	 that	
the	 variant	 does	 not	 affect	 a	 patient's	 admittance	 to	 the	 ICU.

2. Second, if a genetic variant is present only in the set of patients 
admitted	 to	 the	 ICU	and	not	present	 in	 the	 set	of	 patients	not	
admitted	to	the	ICU	the	index	has	a	value	of	−100,	indicating	that	
the variant has a significant effect on a patient's admittance to the 
ICU.

3. Third, if a genetic variant is not present in the set of patients ad-
mitted	to	the	 ICU	and	 is	present	only	 in	the	set	of	patients	not	
admitted	to	the	ICU	the	index	has	a	value	of	100,	indicating	that	
the variant has a significant effect on a patient's non- admittance 
to	the	ICU.

The	 above-	stated	 index	was	 used	 to	 rank	 the	 977	 variants.	 A	
subset	of	the	most	crucial	variants	that	segregate	with	requirement	
for	hospitalization	in	the	ICU	was	selected.

2.6  |  DERGA, the proposed greedy algorithm

Based on the previously presented alpha- index, the number of ge-
netic variants that predict severity of a COVID- 19 patient's illness 
can be significantly reduced. However, the number of possible com-
binations of these variants that can be used as input parameters in a 
classification	model	to	predict	ICU	admission	remains	large,	and	the	
solution process remains challenging. To address this issue, a new 
data	ensemble	refinement	greedy	algorithm	(DERGA)	is	proposed	in	
this	section.	The	objective	of	DERGA	is	to	identify	the	optimal	com-
bination of essential genetic variants by first ranking them through 
the	alpha-	index	and	subsequently	employing	a	set	of	classification	

(1)Combinations = 2

nv
∑

i=1

nv !

i ! (nv − i) !
= 2

(

2nv − 1
)

(2)alpha (i) − index =
(

μnotinICU
i

− μinICU
i

)

100
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algorithms with combinations of the remaining variants, after rank-
ing them using the alpha- index.

The proposed algorithm can be described in the following finite 
number of steps:

Step	1.	A	set	Α, |Α| = m, is defined using widely adopted classifi-
cation	algorithms	in	the	literature.	Each	algorithm,	Ai, i = 1,	…,	m, will 
be fitted to training data for predicting if a COVID- 19 patient will be 
admitted	to	ICU	or	not.

Step 2. During the training and development of the heuristic 
classification	algorithm	Ai in Step 1, the entirety of the genetic vari-
ants	(nm)	that	have	been	selected	using	the	alpha-	index	are	used	as	
input parameters. Performance indices are determined with respect 
to the achieved prediction level.

Step	3.	Next,	the	algorithm	is	fitted	for	nm	cases	of	parameters,	
with one genetic variant removed each time. Performance indices 
are determined for each case, with respect to the achieved predic-
tion level. From the nm cases of algorithm execution, the one that 
corresponds to the smallest value of the performance index for the 
prediction level, defines which genetic variant affects the prediction 
level the least and is removed from the set of nm variants. This pro-
cess is repeated for nm- 1 times, removing a variant each time.

With the completion of this procedure, the following are 
determined:

1. The achieved prediction for the case, where all genetic vari-
ants are used as input parameters in the currently executed 
heuristic classification algorithm.

2.	 The	 optimal	 combination	 of	 genetic	 variants	 (pattern)	 in	 the	
currently executed heuristic classification algorithm that corre-
sponds to the best prediction level.

3. The ranking of all variants according to their contribution to the 
prediction.

4. The ranking of the remaining variants according to their signifi-
cance of prediction in contrast to other black box metaheuristics, 
which only determine the remaining variants and not their relative 
significance.

5. The most crucial variant, which is the one remaining during the 
repetitive process of the proposed algorithm.

6. The above five findings correspond to each executed algorithm 
Ai. The optimal among all the algorithms executed define the best 
algorithm and the global optimum genetic variant pattern, as well 
as the global crucial genetic variant.

The	 proposed	 algorithm	 (DERGA),	 is	 characterized	 as	 greedy	
and local hill- climbing heuristic, as it seeks to remove the variant 
(input	parameter)	that	contributed	the	least	to	the	prediction	level	
in each iteration j = 0,…,29	of	 the	currently	executed	algorithm	Ai, 
i = 1,2,…,m. By removing a variant from the training datasets in each 
iteration, the algorithm makes data reduction in steps of removing 
columns from the training data.

The reliability of the proposed algorithm is established by the 
magnitude of the achieved prediction level. The greater the pre-
diction score, the greater the reliability of the proposed algorithm 

and	 the	 proposed	 combination	 of	 genetic	 variants	 (patterns).	
Additionally,	for	the	studied	case	of	predicting	if	a	COVID-	19	patient	
will	require	hospitalization	in	ICU	or	not,	the	achieved	accuracy	of	
prediction must be greater than 95%.

3  |  RESULTS

The proposed algorithm used a database of 204 COVID- 19 patients, 
consisting of 204 datasets and containing 977 genetic variants. The 
number of genetic variants per patient varied ranging from 40 to 
161. By applying the alpha- index, the 30 most crucial genetic vari-
ants were identified and ranked in decreasing absolute value, as 
shown in Figure 2. The database of 30 most crucial genetic variants 
is appended to this paper as Data S1 (excel file entitled Database—
with	30	most	crucial	Genetic	Variants).

The	 proposed	DERGA	 algorithm	was	 used	 to	 find	 the	 optimal	
combination of the 30 most crucial genetic variants, by utilizing five 
different classification algorithms. These algorithms were selected 
from widely adopted and available literature, including Decision 
Trees,29 Extra Trees,30 Random Forrest,31 Gradient Boost32 and 
Gaussian Process classification algorithms,33 for their superior per-
formance in solving the current problem.

The 204 datasets of the database, containing the 30 most crucial 
genetic variants, were divided into two distinct groups. Specifically, 
one group, constituting 70% of the data and referred to as the 
Training datasets, was utilized for the training of the proposed algo-
rithm. The other group consisted of the remaining 30% of the data, 
termed the Testing datasets, employed to assess the performance of 
the	algorithm.	Notably,	these	two	data	groups	were	selected	from	
10	random	partitions	(70–30)	to	minimize	performance	indices	devi-
ation between Training and Testing datasets. This careful selection 
enhances the reliability and robustness of the algorithm evaluation 
process.

Accuracy	plots	 of	 proposed	DERGA	algorithm	 for	 the	 five	dif-
ferent classification algorithms are demonstrated in Figure 3. 
Additionally,	Table 1 presents the achieved performance indices34–37 
for each of these five algorithms, along with the number of genetic 
variants used as input parameters for the best prediction score of 
whether	a	COVID-	19	patient	was	admitted	to	the	ICU	or	not.

Figure 3 demonstrates the efficacy of proposed algorithm in suc-
cessively identifying and eliminating the least critical genetic variants 
from the initial set of 30 key variants selected with the alpha- index 
(Figure 1).	The	peak	of	the	curve	for	each	algorithm	represents	the	
maximum prediction score attainable with that particular algorithm 
and determines the number of parameters, that is, genetic variants 
that are omitted and not considered in the estimation process for 
determining	ICU	admission	for	a	patient.

The results in Figure 3 and Table 1 display that the Decision 
Trees algorithm performed best, with an accuracy of 0.9706, while 
only employing 22 out of the 30 genetic variants. Table 2 lists the 
genetic variants that were used as input parameters for the optimal 
Decision Tree classifier. The ranking in the leftmost column is based 
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on the reverse order of removal of variants during the execution of 
the	proposed	DERGA	algorithm.

The high prediction score achieved demonstrates the ef-
fectiveness	 and	 reliability	 of	 the	 proposed	 DERGA	 algorithm.	
Additionally,	 it	 is	noteworthy	that	for	the	optimal	Decision	Trees	
algorithm as well as for all the algorithms studied, the most crucial 
variant is rs551397 (gene CFH),	which	 confirms	 the	 reliability	 of	
the alpha- index for ranking genetic variants in terms of their asso-
ciation	with	ICU	admission.

4  |  DISCUSSION

In this study, we introduce a novel prediction tool based on robust 
variables which demonstrates a high degree of accuracy in predict-
ing	 the	 outcome	 of	 COVID-	19.	 Additionally,	 this	 study	 showcases	
the reliability of the recently proposed alpha- index28 in ranking ge-
netic variants according to their impact on disease outcomes.

To	 date,	 genome-	wide	 association	 studies	 (GWAS)	 have	 iden-
tified multiple genetic loci that are either associated with intense 

F I G U R E  2 Ranking	of	the	top	30	
genetic variants based on the proposed 
new alpha- index. Red colour signifies 
that the occurrence of the variant is 
dominating	in	patients	admitted	to	ICU,	
while blue signifies the occurrence of the 
variant	for	those	not	admitted	in	ICU.

F I G U R E  3 Accuracy	plots	for	the	
DERGA	procedure	for	each	used	
classification algorithm.
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disease severity or increased susceptibility to COVID- 19.38 For dis-
ease severity, key findings include variants in genes such as DPP9,39 
TLR7,40,41 IFNAR2 and FOXP4.14 In addition, associations have been 
observed with genes that modulate the immune response to viral 
infection, such as TYK239 and IFNAR2.14,38 Regarding COVID- 19, 
genetic susceptibility is primarily linked to polymorphisms in the 
angiotensin- converting enzyme 2 (ACE2)	 gene,14,42,43	 ABO	 blood	
group,44,45 SLC6A20 gene46,47 and interferons.43,48

As	 far	 as	 complement-	related	 variants,	 few	 studies	 about	
COVID-	19	have	emerged	with	significant	outcomes.	A	recent	study,	
aimed at exploring the association between genetic variation at 
chromosome	3p21.31	and	the	ABO	blood	group	with	complement	
activation	and	COVID-	19	severity,	identified	a	variant	(rs11385942)	
that predisposes individuals to severe COVID- 19. This variant was 
found to be associated with increased complement activation, as 
evidenced by elevated levels of circulating C5a, sC5- C9 and C5a in 
individuals belonging to the non- O blood group.49 Moreover, a ge-
netic and transcriptional analysis documented 23 study- wide signif-
icant	SNPs	in	12	complement	genes.50 Integrative analysis of these 
data	highlighted	4	SNPs	in	human	complement	genes	(C4BPA, C5AR1 
and C3)	that	encode	for	missense	polymorphic	variants	(rs2230199,	
rs1047286,	 rs45574833	 and	 rs4467185)	 associated	 with	 SARS-	
CoV- 2 susceptibility.51 In addition, Delanghe et al characterized 
C3 polymorphisms as confounders in the spread and outcome of 
COVID- 19 using a multivariate model.52

There are limited tools for prediction of COVID- 19 disease se-
verity that can be applied to clinical practice or trials. We recently 
developed an algorithm to identify variants in C3, CFH and THBD that 
predict COVID- 19 severity.36 The algorithm predicted COVID- 19- 
related	ICU	hospitalization	based	on	a	combination	of	variants	with	a	
rate of over 80%; however, it did not account for key morbidity and 
mortality factors, such as age and gender. To overcome this limita-
tion,	we	 improved	 the	 algorithm	 to	 include	both	 ICU	and	non-	ICU	
patients and identified variants in complement- related genes (CFRH, 
THBD, C3 and CFH),	known	to	be	dysregulated	in	complement-	related	
disorders.35 The updated algorithm was further implemented using 
an	Artificial	Neural	Network	(ANN)	that	 incorporated	age	and	gen-
der, providing not only the ability to predict morbidity but also mor-
tality in COVID- 19 patients. The present study expands upon our 
prior work through the use of the recently proposed alpha- index28 to 
identify critical complement- related genetic variants. These variants, 
when combined with the application of a novel data ensemble re-
finement	procedure	(DERGA	algorithm)	based	on	six	different	classi-
fication	algorithms,	yielded	a	remarkable	predictive	score	for	the	ICU	
admission	of	COVID-	19	patients.	For	instance,	DERGA-	Decision	Tree	
algorithm managed to attain a 97% prediction accuracy using only 22 
key variants, a result that has not been achieved in previous works.

Gender is considered a major risk factor for COVID- 19 disease. 
Healthy male individuals show higher levels of complement activa-
tion and increased morbidity and mortality.53,54

Studies to date support an important role for the alternative path-
way of the complement system in COVID- 19 pathogenesis, as it is di-
rectly	activated	by	SARS-	CoV-	2.55 Based on the results of alpha- index TA
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ranking, as well as the removal turn of each classification algorithm, 
the most crucial genetic variant was rs551397, which has been char-
acterized as a high- risk factor for age- related macular degenera-
tion	 (AMD).56 In accordance with our findings, recent studies have 
demonstrated	that	COVID-	19	patients	with	AMD	are	at	a	significantly	
increased risk of experiencing severe disease and death.50 The com-
bination of genetic variants in complement- related genes identified in 
our study may be suggestive of COVID- 19 disease biology.

The	 utilization	 of	 machine	 learning	 techniques	 has	 been	 em-
ployed in the development of prediction models for COVID- 19. 
These models have incorporated various data sources, including co-
morbid diseases,57,58 clinical factors,59,60 genetic factors39,42,61 and 
SARS-	COV-	2	viral	clades.62–64 Given the promising results obtained 
from therapeutic approaches, including complement inhibition,65 in 
the treatment of COVID- 19, the development of reliable prediction 
tools based on complement- related variants is of utmost importance. 
The utilization of similar tools in the precision medicine era, holds 
the potential for early patient identification and the implementation 
of a personalized, secure and effective therapeutic approach.66

5  |  LIMITATIONS AND FUTURE WORK

The major limitation of this study is the moderate number of patients 
comprising the variants database. The authors intend to increase the 

size of the database by collecting data from various sources in future 
work. This will lead to greater reliability of the classification proce-
dures presented in this work and establish them as a valuable tool 
for	predicting	admittance	to	ICU	for	COVID-	19	patients.	Additional	
limitations include the inability of our model to account for the 
effect of vaccination status on clinical outcome, as many of our 
samples were collected prior to the availability of widespread vac-
cination. Further, the majority of patients in our study were infected 
with	 the	 alpha	 variants	 of	 SARS-	CoV-	2	 and	 therefore,	 the	 effects	
of the individual spike protein variants on disease severity are not 
extensively studied in our model. Moreover, our cohort comprised 
only from adult patients. In the paediatric population, the identifica-
tion of novel complement variants67 poses a challenge to the gener-
alization	of	our	findings.	Consequently,	there	is	a	need	for	additional	
studies to address this limitation. Lastly, our model provides high ac-
curacy and prediction rates irrespectively of traditional confounders 
and comorbidities.

6  |  CONCLUSIONS

This study shows the effectiveness of using the recently proposed 
alpha- index to rank a large number of genetic variants. This facili-
tates the use of well- established classification algorithms in the ma-
chine learning literature, which are orchestrated in a data ensemble 

Ranking Variants

DERGA Alpha- index rs Gene Position

1 1 rs551397 CFH 196,642,072

2 11 rs2230204 C3 6709,848

3 28 rs12614 CFB 31914,179

4 12 rs5860990 CFI 110,678,819

5 23 rs1629038 CFD 860,852

6 19 rs1962149 CD46 207,956,559

7 7 rs2547438 C3 6718,078

8 26 rs2285489 ADAMTS13 136,289,374

9 2 rs432823 C3 6702,246

10 24 rs28641026 ADAMTS13 136,314,952

11 9 rs438781 CFHR1 196,796,240

12 29 rs2241394 C3 6685,230

13 8 rs1065489 CFH 196,709,774

14 10 rs435628 CFH 196,705,886

15 3 rs400344 CFHR3 196,757,392

16 17 rs385791 C3 6694,399

17 5 rs11120753 CD55 207,527,285

18 16 rs399507 CFHR1 196,796,184

19 14 rs3753396 CFH 196,695,742

20 22 rs482934 CFH 196,658,497

21 4 rs112132860 C3 6710,584

22 6 rs534399 CFH 196,711,067

TA B L E  2 Ranking	of	genetic	variants	
used as input parameters in proposed 
optimal	DERGA-	Decision	Tree	algorithm.
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refinement	procedure.	The	procedure	is	used	to	quickly	and	effec-
tively determine the significance and relevance of the genetic vari-
ants	in	predicting	the	admittance	of	COVID-	19	patients	in	the	ICU,	
with a high accuracy.

Studies have indicated the existence of genetic polymorphisms, 
in genes responsible for encoding complement proteins across di-
verse populations.68 Such genetic variations have been associated 
with disparities in complement function and regulation. The impli-
cations of these genetic differences extend to influencing suscepti-
bility	to	specific	diseases	and	responses	to	infections.	Consequently,	
there is a pressing need for further research endeavours to deepen 
our understanding of this complex interplay.

Given the evolving landscape of literature on the long- term im-
plications of COVID- 19,69 in order to attain risk prediction within 
comparable	accuracy	and	sensitivity,	further	large	and	high-	quality	
studies are needed.

In	summary,	it	is	worth	noting	that	the	innovative	DERGA	algo-
rithm proposed in this study can be applied to a broad spectrum of 
classification problems. This versatility extends to various domains, 
including the medical field, where it can contribute to unveiling the 
nature of cardiovascular diseases, as well as in engineering and sci-
entific applications. Particularly in scenarios with a substantial num-
ber	of	parameters,	the	suggested	DERGA	algorithm	has	the	potential	
to prove highly effective. The demonstrated versatility positions it 
as a promising and effective tool with potential applications across 
diverse fields.
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