
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024 749

Understanding and Accelerating Neural Architecture
Search With Training-Free and

Theory-Grounded Metrics
Wuyang Chen , Xinyu Gong , Junru Wu , Yunchao Wei , Humphrey Shi , Senior Member, IEEE,

Zhicheng Yan , Yi Yang , Senior Member, IEEE, and Zhangyang Wang , Senior Member, IEEE

Abstract—This work targets designing a principled and unified
training-free framework for Neural Architecture Search (NAS),
with high performance, low cost, and in-depth interpretation.
NAS has been explosively studied to automate the discovery of
top-performer neural networks, but suffers from heavy resource
consumption and often incurs search bias due to truncated training
or approximations. Recent NAS works Mellor et al. 2021, Chen et
al. 2021, Abdelfattah et al. 2021 start to explore indicators that can
predict a network’s performance without training. However, they
either leveraged limited properties of deep networks, or the benefits
of their training-free indicators were not applied to more extensive
search methods. By rigorous correlation analysis, we present a
unified framework to understand and accelerate NAS, by disen-
tangling “TEG” characteristics of searched networks – Trainability,
Expressivity, Generalization – all assessed in a training-free manner.
The TEG indicators could be scaled up and integrated with various
NAS search methods, including both supernet and single-path NAS
approaches. Extensive studies validate the effective and efficient
guidance from our TEG-NAS framework, leading to both improved
search accuracy and over 56% reduction in search time cost.
Moreover, we visualize search trajectories on three landscapes of
“TEG” characteristics, observing that a good local minimum is
easier to find on NAS-Bench-201 given its simple topology, whereas
balancing “TEG” characteristics is much harder on the DARTS
space due to its complex landscape geometry.

Index Terms—Generalization, linear region, neural architecture
search, neural tangent kernel.

Manuscript received 29 December 2022; revised 2 September 2023; accepted
11 October 2023. Date of publication 1 December 2023; date of current version 8
January 2024. Recommended for acceptance by N. Vasconcelos. (Wuyang Chen,
Xinyu Gong, and Junru Wu contributed equally to this work.) (Corresponding
author: Zhangyang Wang.)

Wuyang Chen, Xinyu Gong, and Zhangyang Wang are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX 78712 USA (e-mail: wuyang.chen@utexas.edu; xinyu.gong@utexas.edu;
atlaswang@utexas.edu).

Junru Wu is with the Department of Computer Science and Engineering,
Texas A&M University, College Station, TX 77843 USA (e-mail: sandboxmas-
ter@tamu.edu).

Yunchao Wei is with the Institute of Information Science, Beijing Jiaotong
University, Beijing 100044, China (e-mail: yunchao.wei@bjtu.edu.cn).

Humphrey Shi is with the School of Interactive Computing, Georgia Institute
of Technology, Atlanta, GA 30332 USA (e-mail: shihonghui3@gmail.com).

Zhicheng Yan is with Meta Reality Labs, Burlingame, CA 94010 USA (e-mail:
zhicheng.yan@live.com).

Yi Yang is with Zhejiang University, Hangzhou 310027, China (e-mail:
yangyics@zju.edu.cn).

Digital Object Identifier 10.1109/TPAMI.2023.3328347

I. INTRODUCTION

THE development of deep convolutional neural networks
significantly contributes to the success of computer vi-

sion tasks [4], [5], [6], [7]. However, manually designing new
network architectures not only costs tremendous time and re-
sources, but also requires a rich network training experience that
can hardly scale up. Neural architecture search (NAS) is recently
explored to remedy the human efforts and costs, benefiting
automated discovery of architectures in a given search space [8],
[9], [10], [11], [12], [13], [14], [15], [16].

Despite the principled automation, NAS still suffers from
heavy consumption of computation time and resources. Most
NAS methods mainly leverage the validation set and conduct
accuracy-driven architecture optimization. Therefore, frequent
training and evaluation of sampled architectures become a severe
bottleneck that hinders both search efficiency and interpreta-
tion. A super-network is extremely slow to be trained until
converge [17] even with many effective heuristics for channel
approximations or architecture sampling [18], [19]. Approxi-
mated proxy inference such as truncated training/early stopping
can accelerate the search, but is observed to introduce severe
search bias [10], [20], [21].

People recently address this problem by proposing training-
free NAS. Indicators like covariance of sample-wise Jaco-
bian [1], Neural Tangent Kernel [2], and “synflow” [3] are found
to highly correlate with network’s accuracy even at initialization
(i.e., no gradient descent). This significantly reduces the search
cost. However, these works only validated a few highly cus-
tomized search approaches, and leveraged limited properties of
deep networks in an empirical or ad-hoc way. Mellor et al. [1]
only considered the “local linear map” defined by the covariance
of sample-wise Jacobian, and only studied the random search
method. Abdelfattah et al. [3] mainly leveraged “synflow” pro-
posed in previous pruning literature [22] while relying on a
warm-up stage. Chen et al. [2] considered two aspects (train-
ability and expressivity) and integrated two indicators, but still
have to leverage highly customized supernet pruning method
and cannot extend to other non-supernet NAS search methods.
Moreover, these training-free indicators still only pursue final
search performance and provide limited benefit towards the
interpretation and understanding of the search trajectory and
different search spaces.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7746-4191
https://orcid.org/0000-0002-6993-136X
https://orcid.org/0000-0003-4443-0873
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-2922-5663
https://orcid.org/0009-0005-0214-7916
https://orcid.org/0000-0002-0512-880X
https://orcid.org/0000-0002-2050-5693
mailto:wuyang.chen@utexas.edu
mailto:xinyu.gong@utexas.edu
mailto:atlaswang@utexas.edu
mailto:sandboxmaster@tamu.edu
mailto:sandboxmaster@tamu.edu
mailto:yunchao.wei@bjtu.edu.cn
mailto:shihonghui3@gmail.com
mailto:zhicheng.yan@live.com
mailto:yangyics@zju.edu.cn

750 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

In contrast, we target on designing a unified and visualizable
training-free NAS framework that is (i) “search method agnos-
tic”, i.e., can be scaled up to a broad variety of popular search
algorithms; (ii) “visualizable”, i.e., can help understand search
behaviors on different landscapes of architecture spaces. Our
core idea is to propose indicators that can rank the network’s
performance, and characterize the network’s properties, while
still incurring no training cost. More importantly, we aim to
make our training-free indicators widely applicable to multiple
popular NAS methods, and also to facilitate the understanding
of NAS search process.

Specifically, We first propose to disentangle the net-
work’s characteristics into three distinct aspects: Trainability,
Expressivity, Generalization, or “TEG” for short (defined in
Section III). All three could be assessed with training-free in-
dicators, and our studies demonstrate their strong correlations
with the network’s training or test accuracy. Further, across
various network operator types and topologies, they show com-
plementary preferences, together leading to a comprehensive
picture. Extensive studies validate the effective and efficient
guidance from our TEG-NAS framework, with both improve-
ments on search accuracy and over 56% reduction on search
time cost. More importantly, we for the first time visualize
the search trajectory on architecture landscapes from different
search spaces, thanks to our proposed TEG dimensions that
disentangle different aspects of the searched model performance
and can be efficiently quantified. For example, we find that a
good local optimum is easier to find on NAS-Bench-201 [23]
which has simpler topologies. However, it is much harder for
a search method to balance TEG properties on the DARTS
space with complex architecture landscapes. We summarize our
contributions as:
� We perform a rigorous correlation analysis of three disen-

tangled “TEG” properties against the network’s training
and test accuracy, and how changes made to an architecture
will affect these aspects. All three notions are measured
in a training-free manner. Since the three properties are
complementary, they can achieve a very high correlation
with the network’s performance if properly combined.

� We design a unified training-free framework to provide ac-
curate yet extremely efficient guidance during NAS search.
Our framework is generally applicable to various existing
NAS methods, including both supernet and single-path ap-
proaches, in a plug-and-play fashion. In both NAS-Bench-
101, NAS-Bench-201, and DARTS search spaces, we trim
down the search time by over 56% while improving the
searched model’s accuracy.

� Beyond the final search performance, we for the first time
visualize the search trajectory on the architecture land-
scapes from different search spaces, on how the search
progresses along the TEG dimensions. That leads to a
novel visualization of the NAS search process, as well as
insightful comparisons among different search spaces.

Paper Organization. We first review recent advanced meth-
ods for efficient NAS and topics in Deep Learning theory in
Section II. We present our methods in two steps: 1) what are
training-free indicators for NAS (Section III); 2) how to use
training-free indicators in NAS (Section IV). In Section III

we first introduce our motivation and background in analyzing
the trainability/expressivity/generalization of deep networks.
Definitions and architecture inductive biases of three theory-
grounded indicators will be explained, and we will demonstrate
that disentangling different aspects of neural architectures leads
to a better ranking prediction of networks from a search space.
After validating different preferences of our three training-free
indicators on network architectures, in Section IV we propose a
unified and interpretable NAS framework that does not require
any gradient descent training. Our NAS framework can not only
be easily integrated into recent popular NAS methods (rein-
forcement learning, evolution, supernet), but also reflect a novel
visualization of architecture landscapes. This contributes to both
accelerated high-performance NAS methods and interpretable
tools for analyzing NAS search space. We show our final results
in Section V, where we studied the search accuracy and time
cost on NAS-Bench-101 [24], NAS-Bench-201 [23] and DARTS
space.

The preliminary version of this work has been published in [2],
and we have made significant improvements over it. First, in the
main method section, we will introduce a missing part in our
ICLR version – a training-free indicator for the generalization
(Section III-C). As generalization is a different property of deep
networks besides trainability and expressivity, we will demon-
strate its strong indication of network performance, its distinct
architecture preference (Section IV-A), and its contribution to
the final search results. Second, this version of training-free NAS
is no longer a highly customized algorithm, but a unified and
generally adaptable framework, which will be verified in three
popular NAS search methods in our experiments (Section V).
All three NAS methods will benefit from strong search guidance
and significant time cost reduction after being integrated with our
general framework. Finally, our new work will facilitate search
space visualization and contribute to a novel visualization of
the NAS search process. By tracking and projecting the search
trajectory along the three proposed TEG dimensions, we can
observe distinct landscape patterns from simple to complex
search spaces, which will provide insights for understanding
and designing NAS search spaces.

II. RELATED WORKS

A. Neural Architecture Search

Most NAS works suffer from heavy search costs. Sampling-
based methods [10], [25], [26], [27], [28] achieve accurate
network evaluations, but the truncated training imposes bias on
the architecture rankings. The one-shot super network [17], [19],
[29], [30], [31] can share parameters to sub-networks and greatly
accelerate the evaluations, but it is hard to optimize [32] and
suffers from poor correlation between supernet accuracy and its
sub-networks’ [33]. In all, there is no clear one-winner method
across the variety.

B. Efficient and Training-Free NAS

Recent NAS works start focusing on reduced training or even
training-free search. EcoNAS [34] investigated different ad-hoc
proxies (input size, model size, training samples, epochs, etc.)

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 751

to reduce the training cost. Mellor et al. [1] for the first time
proposed a training-free NAS framework, which empirically
leverages the correlation between sample-wise Jacobian to rank
architectures. However, why did the Jacobian work was not
clearly explained and demonstrated. Abdelfattah et al. [3] stud-
ied different training-free indicators, and leveraged “synflow”
from pruning [22] as the main ranking indicator. Park et al. [35]
ranked the network’s performance with NTK and NNGP. Chen et
al. [2] studied two theory-inspired indicators and combined with
supernet pruning for further efficiency. However, these methods
either leveraged ad-hoc or limited theory-driven properties of
deep networks, or the benefits of their training-free strategies
are tied to some specific search methods. In contrast, we hope
to explore a comprehensive set of deep network properties, and
further propose a unified training-free framework for various
existing NAS methods.

C. Trainability, Expressivity, and Generalization

Numerous indicators in the deep learning theory field have
been proposed to study various aspects of deep networks. Neural
tangent kernel (NTK) is proposed to characterize the gradient
descent training dynamics of wide networks [36], [37]. It was
also proved that wide networks evolve as linear models under
gradient descent [38]. Xiao et al. [39] further propose to decou-
ple the network’s trainability and generalization. Meanwhile, a
network’s expressivity can be measured as the number of linear
regions separated in the input space [40], [41], [42], [43]. Many
works also try to directly probe the network’s generalization
from various training statistics or network parameters [44], [45],
[46].

III. DISENTANGLING TRAINABILITY, EXPRESSIVITY, AND

GENERALIZATION OF DEEP NETWORKS

Trainability, expressivity, and generalization are three im-
portant, distinct, and complementary properties to characterize
and understand neural networks [39], [42], [44]. Specifically,
the trainability is related to the convergence speed during opti-
mization; the expressivity is related to the network’s functional
complexity; and the generalization indicates a model’s error on
unseen data. Typically, a deep network achieves high perfor-
mance when: 1) it can produce a loss landscape that is easily
trainable with gradient descent, 2) it can represent sufficiently
complex functions, 3) it can learn representation transferable
to unseen examples, instead of just memorizing training data.
In this section, we will introduce what are these training-free
indicators, and in Section IV we will introduce how to use them
in NAS.

A. Trainability

Training deep networks requires optimizing high-
dimensional non-convex loss functions. In practice, gradient
descent often finds the global or good local minimum.
However, many expressible networks are not easily learnable.
For example, a deep stack of convolutional layers (e.g., Vgg [4])
is much harder to train than networks with skip connections

(ResNet [6], DenseNet [47], etc.), even the former could equip
a larger number of parameters. The trainability of a neural
network studies how effective it can be optimized by gradient
descent [48], [49], [50].

Architecture Bias on Trainability: A network’s architec-
ture can control how effectively the gradient information can
flow through it. These topological properties might control the
amount of information that can be learned by networks. Pre-
serving the gradient flow is found to be essential during network
pruning, even at initialization [22], [51]. Skip connections also
have a significant impact on the sharpness/flatness of the loss
landscapes [52]. Therefore, we hypothesize that certain aspects
of trainability can be characterized just by the architecture at its
initialization.

Conditioning of NTK: To characterize the training dynamics
of wide networks, Neural tangent kernel (NTK) is proposed [38],
[53], [54], defined as:

Θ̂(x,x′) = J(x)J(x′)T , (1)

whereJ(x) is the Jacobian evaluated at a pointx. Xiao et al. [39]
measures the trainability of networks by studying the spectrum
and conditioning of Θ̂:

μt(xtrain) = (I− e−ηΘ̂(xtrain,xtrain)t)ytrain (2)

μt(xtrain)i = (I− e−ηλit)ytrain,i. (3)

μt(x) is the expected outputs of a wide network, λi are the
eigenvalues of Θ̂(xtrain,xtrain), xtrain and ytrain are drawn from
the training set Dtrain. (3) indicates that different time is needed
to learn the ith eigenmode, and thus we can conclude that the
more diverse the learning speeds of different eigenmodes are, the
more difficult the network can be optimized. We are therefore
motivated to use the empirical condition number of NTK to
represent trainability:

κ̂ = IE
xtrain∼Dtrain

θ∼N (0, 2
Nl

)

λmax(Θ̂(xtrain,xtrain))

λmin(Θ̂(xtrain,xtrain))
, (4)

where network parameters θ are drawn from Kaiming normal
initialization N (0, 2

Nl
) (Nl is the width at layer l) [55], and thus

κ̂ is calculated at network’s initialization. As shown in Fig. 1, κ̂
is negatively correlated with both the network’s training and test
accuracy, with the Kendall-tau correlation as −0.59. Therefore,
minimizing the κ̂ during the search will encourage the discovery
of architectures with high performance.

B. Expressivity

Recent works try to explain the success of deep networks by
their ability to approximate complex functions, quantified by
various complexity measures [56], [57]. The more expressible
the network is, the more efficient it can fit the training data. In the
case of ReLU networks that compute piecewise linear functions,
the number of distinct linear regions is a natural measure of such
expressivity. The composition of ReLU leads the input space
partitioned into distinct pieces (i.e., linear regions). Therefore,
the density of linear regions serves as a convenient proxy for the
complexity of the network [40], [42], [43], [58].

752 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

Fig. 1. From left to right: correlation of trainability, expressivity, generalization, and sum of rankings against accuracies on NAS-Bench-201 [23], all revealing
strong correlations. Meanwhile, expressivity has a stronger correlation against training accuracy, and generalization has stronger correlation against test accuracy,
which is aligned with their definitions.

Architecture Bias on Expressivity: It was proved that networks
with random Gaussian initialization can embed the training data
in a distance-preserving manner [59]. Hanin et al. [58] show that
the number of activation patterns for ReLU networks is tightly
bounded by the total number of neurons both at initialization
and during training, and empirically showed that the number of
regions stays roughly constant during training [42]. Therefore,
network architecture itself has a strong inductive bias on its
expressivity.

Complexity of Linear Regions: We first introduce the defini-
tion of activation patterns and see how it is connected to the
number of linear regions in input space.

Definition 1 of [43] (Activation Patterns as the Linear Re-
gions) Let N be a ReLU CNN. An activation pattern of N is
a function P from the set of neurons to {1,−1}, i.e., for each
neuron z in N , we have P (z) ∈ {1,−1}. Let θ be a fixed set of
parameters (weights and biases) in N , and P be an activation
pattern. The region corresponding to P and θ is

R(P ; θ) := {x0 ∈ RC×H×W : z(x0; θ) · P (z) > 0,

∀z ∈ N}, (5)

where z(x0; θ) is the pre-activation of a neuron z. Let RN ,θ

denote the number of linear regions of N at θ, i.e., RN ,θ :=
#{R(P ; θ) : R(P ; θ) �= ∅˜ for some activation pattern P }.

(5) tells us that a linear region in the input space is a set of input
data x0 that satisfies a certain fixed activation pattern P (z), and
therefore the number of linear regionsRN ,θ measures how many
unique activation patterns that can be divided by the network.

Since the input space is recursively partitioned by ReLU as
the layers go deeper, and the composition of piecewise linear
functions is still piecewise linear, each linear region in the input
space can be uniquely represented with a set of affine parameters
based on a combination of ReLU activation patterns. This means
that, with given training examples and parameters, the number of
linear regionsR(xtrain, θ) can be approximated by the number of
unique activation patterns combined from all ReLU layers in the
whole network. We are therefore motivated to use the empirical
number of linear regions to represent expressivity:

R̂ = IE
xtrain∼Dtrain

θ∼N (0, 2
Nl

)

R(xtrain, θ). (6)

As shown in Fig. 1, R̂ is positively correlated with both the
network’s training and test accuracy. Moreover, we observe that
R̂ has a stronger correlation with training over test accuracy,
which validates that R̂ indicates how well a network fits the
training data, but not its generalizability.

C. Generalization

Typically, the generalization error1 is defined as the risk of the
model over the underlying data distribution D. A model chosen
from a very complex family of functions can essentially fit all the
training data, but memorization cannot guarantee the accurate

1Here we quantify the absolute generalization error, instead of the general-
ization gap.

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 753

association of unseen examples with seen ones. That makes gen-
eralization a distinct notion from trainability (“optimization”)
and expressivity (“memorization”), since generalization focuses
on how well a model can transfer the information from seen to
unseen data.

Architecture Bias on Generalization: With even random ini-
tialization, network architecture alone could have a strong in-
ductive bias to its generalization error. Network architectures
of different complexity or sparsity, without learning any weight
parameters, are found to be able to encode solutions for a given
task [60], [61]. Bhardwaj et al. [62] formally established a link
between the structure of CNN architectures (depths, widths,
number of skip connections, etc.) and their generalization er-
rors. More importantly, inductive bias from certain architecture
patterns (e.g., graph-based representation [63]) can even transfer
across different types of networks (MLPs, CNNs, ResNets, etc.)
and different tasks (CIFAR-10, ImageNet, etc.). Same in our
work, we decouple the architecture from the network weights,
and focus only on the aspect of “weight-agnostic” generaliza-
tion, which is impacted by just the network architecture.

NTK Kernel Regression: Previous works [38], [39] showed
that at time t during gradient descent training with an MSE loss,
the expected outputs of an infinite wide network evolve as:

μt(xtest) = Θ̂(xtest,xtrain)(Θ̂(xtrain,xtrain))
−1(I

− e−ηΘ̂(xtrain,xtrain)t)ytrain. (7)

Studying the evolution of μt(xtest) in (7) along the training iter-
ation t can characterize the generalization performance of deep
networks. However, the infinite width is not directly applicable
in real-life scenarios, and we want to estimate the generalization
at a network’s initialization. Therefore in our work, we choose
to empirically estimate the generalization by calculating the test
MSE error of a network’s NTK kernel regression:

ŷtest = Θ̂L(xtest,xtrain)(Θ̂
L(xtrain,xtrain))

−1ytrain, (8)

MSE = IE
xtrain,ytrain∼Dtrain
xtest,ytest∼Dtest

||ŷtest − ytest||2. (9)

Θ̂L indicates the NTK evaluated only for the last layer of the
deep network. Eq 8 tries to associate xtest with xtrain via NTK
kernel regression, and transfer the given training labels ytrain to
the test data. A deep neural network will fail to generalize if its
prediction ŷtest becomes data-independent, and the MSE in (9)
will become large.

Note that we are not directly predicting a network’s converged
generalization at its initialization. Instead, we use MSE to com-
pare different networks and study how it would be affected by
different architectures. Adopting MSE also follows the conven-
tion that NTK is also derived under the squared loss [36], [64].

As further demonstrated in Fig. 1, MSE shows a strong
negative correlation with both the network’s training accuracy
and test accuracy. We also observe that both training and testing
accuracy drop with the increase of MSE. This is because on
the observation from NAS-Bench-201, all models’ training and
testing accuracies are positively correlated. More importantly,
MSE has a stronger correlation with the test than the training

accuracy. This precisely validates that MSE represents how well
a network generalizes, but not memorization of the training data.

D. Comparison With Other Zero-Cost Proxies

We further compare our training-free indicators with other
publicly available zero-cost proxies [65]. We follow code at
https://github.com/automl/naslib/tree/zerocost and provide our
results of Spearman correlations of our training-free indicators.
From Fig. 2 we can see that our three training-free indicators
show strong correlations across diverse benchmarks, compared
with other proxies.

At this moment we disentangled the network’s performance
into three distinct properties. In the next section, we present our
unified and interpretable TEG-NAS strategy.

IV. TEG-NAS: A UNIFIED AND INTERPRETABLE NAS
FRAMEWORK

In this section we will demonstrate how to use our three
training-free indicators in NAS. Our core motivation is to pro-
vide a unified training-free framework for NAS of both high
performance and low cost. We also enable the visualization of
NAS search trajectory on the architecture landscapes.

A. How Architecture Affects κ̂, R̂, and MSE

Despite the strong correlations and different preferences over
training or testing accuracy we observe in Fig. 1, it is still
unknown whether each individual aspect of three – trainability,
expressivity, generalization – is necessary for a deep network to
be of high performance. This analysis is also missing in previous
works [2], [39]. Before we directly adopt our disentangled TEG
properties to NAS search, we must study how changes of κ̂,
R̂, MSE could be reflected on network architectures, and how
network’s operator types or topology will affect its trainability,
expressivity, and generalization. Otherwise, if they share the
same preference on selecting architectures, picking any one of
them will guide the search towards similar results.

Architecture Exclusively Selected by κ̂, R̂, MSE: Trainability,
expressivity, and generalization may have different preferences
over the network’s operator types and topology. This motivates
us to summarize architectures that are exclusively selected by
κ̂, R̂, MSE. We first measure the thresholds Tκ, TR, TMSE that
filter top 10% architectures out of the search space A, ranked
by κ̂, R̂, and MSE, respectively. We define the following three
subsets of architectures, with any two out of three having an
empty intersection:

Aκ = {a|a ∈ A, κ̂a ≤ Tκ, R̂a < TR,MSEa > TMSE},
(10)

AR = {a|a ∈ A, κ̂a > Tκ, R̂a ≥ TR,MSEa > TMSE},
(11)

AMSE = {a|a ∈ A, κ̂a > Tκ, R̂a < TR,MSEa ≤ TMSE}.
(12)

We study three subsets of architectures in terms of both operator
and topology, shown in Fig. 3. For operator types, the ratio of

https://github.com/automl/naslib/tree/zerocost

754 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

Fig. 2. Spearman rank correlation coefficients between our three training-free metrics (ntk_cond in Section III-A, linear_region in Section III-B,
ntk_regression in Section III-C) and validation accuracies across different benchmarks, comparing with correlations of all other metrics included in Fig. 2
of [65]. The rows and columns are ordered based on the mean scores across columns and rows, respectively.

Fig. 3. Impact of network operators and topologies on κ̂, R̂, and MSE on
NAS-Bench-201.

convolution (1× 1 and 3× 3) operators in Aκ is lower than
those of AR and AMSE, indicating operators with a heavy
number of parameters may not friendly for optimization. In
contrast, AR and AMSE favor more convolution layers, bene-
fiting to data fitting. For network topology, the averaged depth2

of architectures in Aκ is much lower than those in AR, since
shallow networks are easier to train [39]. Depth from AMSE is
also low, contributing to better test accuracy.

Case Study: One failure reason for a bad architecture is the
existence of “none” (or “zero”) operator, which completely
breaks the feed-forward and gradient flow. Xie et al. studied the
role of the “None” operator in differentiable architecture search,
highlighting the importance of the appearance and disappear-
ance of the “None” operation during the evolution of the supernet
topology [67]. In our work, we use “None” to demonstrate that
our training-free metrics are sensitive to changes in a single-path
subnetwork’ topology.

2Depth of a cell is defined as the number of connections on the longest path
from input to the output [66]

Fig. 4. “None” operator jeopardizes the architecture’s trainability, expressiv-
ity, and generalization. By replacing “none” with “skip_connect” or “conv1×
1”, the bad trainability or expressivity can be addressed, leading to better test
accuracy.

We show one case in Fig. 4. When there is a “none” exist,
both trainability and expressivity are bad, leading to poor test
accuracy. By switching into “skip_connect” or “conv1× 1”, the
bad trainability or expressivity is addressed, leading to better
test accuracy.

B. A Unified Training-Free NAS Framework

Different preferences of κ̂, R̂, and MSE on network’s op-
erators and topology validate their potential of guiding the
NAS search. We now propose our unified training-free NAS
framework (Algorithm 1). Existing NAS methods evaluate the
accuracy or loss value of every single architecture via truncated
training or shared supernet weights. The evaluated accuracy or

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 755

TABLE I
COMPARISON OF DIFFERENT NAS SEARCH METHODS STUDIED IN OUR EXPERIMENTS

Algorithm 1: Our unified training-free framework for dif-
ferent NAS methods.

1: Input: architecture search space A, NAS search method
M, step t = 0.

2: while not Search Stopping Criterion of M satisfied do
3: Sample architecture: at = M.sample(A)
4: Calculate κ̂t, R̂t, MSEt for at
5: Update NAS method: M.update(at, κ̂t, R̂t, MSEt)
6: t = t+ 1

7: end while
8: Return Searched architecture M.derive().

loss is also leveraged as feedback to update the NAS method
itself. Instead, we leverage the disentangled trainability, expres-
sivity, and generalization during the search. For each architecture
sampled by the NAS search method, we average three repeated
calculations of κ̂t / R̂t / MSEt, by using three independent
mini-batches of training data. They will be leveraged as feedback
to guide the update of the search method. For different search
stopping criteria and update manners of different NAS methods,
please refer to Section V-A and Table I.

Comparison With Prior Works
� Mellor et al. [1] only leveraged sample-wise correlation

of Jacobian, with no detailed explanation of which aspect
(trainability/expressivity/generalization) this indicator rep-
resents. Moreover, they only leveraged Random Search
on NAS-Bench-201, without studying more NAS methods
and search spaces.

� Abdelfattah et al. [3] mainly leveraged “synflow” indica-
tor equipped with “warm-up” or “move proposal” search
strategy, which is related to trainability. However, they still
have to use trained models for proxy inference during the
search.

� Chen et al. [2] built their framework on top of a super-net
based approach, and strongly rely on a highly customized
super-net pruning strategy. We evaluate their method with-
out pruning (shown in Table III) and observed inferior
performance.

C. Visualizing Search Process on Different Architecture
Landscapes

It has been a missing part in the NAS community to visual-
ize the search process on architecture landscapes from differ-
ent search spaces. Several bottlenecks hinder this analysis: 1)
evaluation via truncated training still suffers from heavy com-
putation cost, making the architecture landscape intractable to

characterize; 2) the truncated accuracy or loss value is noisy,
making the trade-off of exploration-exploitation of the search
process hard to observe.

We leverage Reinforcement Learning (RL) as the example,
and take pioneering steps to conduct such analysis:
� To explore the global and local geometry of the architecture

landscapes, at search step t we spawn a parent architecture
into two children, and proceed the search of these two
children with different randomness.

� We collect the trajectory of architectures from two chil-
dren, and project the high-dimensional architecture space
(represented by the categorical policy distribution of the
RL agent) into a 2D plane via PCA.

We perform these analyses at early and late search steps on
both NAS-Bench-201 space [23] and DARTS search space [17]
(see search space details in Section V), shown in Fig. 5. Our
observations are summarized as follows:
� On NAS-Bench-201, the search can land in areas where
κ̂t, R̂t, and MSEt are all good. Although some areas (e.g.,
area “A” in early NAS-Bench-201) enjoy local minima on
one of the three aspects, the search will proceed beyond it
due to its inferiority on the other two properties.

� Spawning at both early and late search stages, two children
from NAS-Bench-201 land in the same area in the end.
This is probably because of the simple operator types and
topology from the design of NAS-Bench-201 (see details
in Section V-D and original paper [23]).

� DARTS space is associated with much more complex
architecture landscapes. Children spawned from both early
and late stages may land in different areas, with a barrier
(or a valley) on their interpolation (orange dashed line).
This complex landscape introduces a significant challenge
to balance and trade-off κ̂t, R̂t, and MSEt for NAS search,
with even noisy signals.

In general, our landscape analysis on the architecture space
can be analogized to the counterpart on the parameter space [52].
The architectural landscape can influence the behavior of the
architecture search. Our visualizations help explore the sharp-
ness/flatness of architectural minimizers found by different
search methods, in different architecture spaces, and the choices
of different architectural compositions (skip connections, chan-
nel numbers, network depths, etc.). Specifically, the usage and
impact of our landscape analysis are explained below:

1) Compare different search spaces: given the same search
method, the search trajectory on different search spaces
will lead to different behaviors. If a search space incurs
plenty of barriers or valleys on the trajectory, that means
it poses challenges for the search method to converge.

756 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

Fig. 5. Architecture landscape with respect to trainability (left), expressivity (middle), and generalization (right) on a 2D plane projected via PCA from the search
space. The red star indicates the parent of a search by Reinforcement Learning, and two crosses represent two children spawned from the same parent (at “Early”
or “Late” search stage), but searched with different randomness. The simple geometry of NAS-Bench-201 is easier to search, whereas the DARTS space is much
more complex and hard to explore.

2) Compare different search algorithms: given the same
search space, besides the final search performance, a good
search algorithm should be able to explore a vast amount
of areas in a search space, instead of being trapped in local
regions.

3) Design search space: [68], [69], visualizing the archi-
tecture landscapes can help study the complexity and
geometry of the search space and avoid rough architecture
landscapes. Specifically, we can evaluate compositions in
a search space, by comparing the change in the landscape
when we add different operators or connections.

4) Design search algorithm: visualizing the search process
can reveal the quality and stability of the search via dif-
ferent spawning and randomness.

V. EXPERIMENTS

Following the experimental setting in [1], [2], [3], [79], [80],
[81], [82], [83], in this section, we evaluate our TEG-NAS
framework on three commonly used search spaces: NAS-Bench-
101 [24], NAS-Bench-201 [23], and DARTS [17]. For DARTS

space, we conduct experiments on both CIFAR-10 and ImageNet
(Section V-E). For NAS-Bench-201, we test all three supported
datasets (CIFAR-10, CIFAR-100, ImageNet-16-120 [85]) in
Section V-D.

A. Studied Search Methods

Reinforce [10], [76]: Reinforcement learning (RL) treats the
NAS search process as a sequential decision-making process.
The policy agent formulates a single-path architecture by choos-
ing a sequence of operators as actions, and uses the accuracy,
loss value, or our training-free indicators of sampled architecture
as the reward to update its internal policy distribution.

Evolution [25]: Starting from a randomly initialized pool
of architectures, the evolution keeps updating the population
by mutating the high-ranked architectures. The ranking criteria
could be the accuracy, loss value, or our training-free indicators
of sampled architectures.

Fast Probabilistic NAS: FP-NAS views search evaluations
from an underlying distribution over architectures [77].
It constructs a supernet and corresponding architecture

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 757

parameters. Leveraging Importance Weighted Monte-Carlo
EB algorithm [86], architecture parameters are optimized to
maximize the model likelihoods of sampled architectures,
which are weighted by a proxy architecture performance
indicator, like accuracy, loss value, or training-free indicators.

B. Implementation Details

In this section, we include more details regarding Algorithm 1
in terms of different search methods.

1) Reinforcement Learning: The policy agent maintains an
internal state to represent the architecture search space, denoted
as θA. This internal state can be converted to a categorical
distribution of the architectures (A) via softmax: A = σ(θA).

Stopping Criterion: We stop the RL search when the entropy
of A stops decreasing (total iterations T = 500 in our work).
We train the RL agent with a learning rate as η = 0.04 on NAS-
Bench-201 and η = 0.07 on DARTS space.

Architecture Sampling: In each iteration, the agent samples
one architecture at from A.

Update: We update the RL agent via policy gradients.

θA
t+1 = θA

t − η · ∇θAf(θA
t) t = 1, . . . , T (13)

f(θA
t) = − log(σ(θA)) · (rt − bt) (14)

bt = γbt−1 + (1− γ)rt (b0 = 0, γ = 0.9) (15)

r stands for reward, and b for an exponential moving average of
reward for the purpose of variance reduction. For the baseline
method, the reward is taken from the proxy inference, i.e., the
test accuracy by 1-epoch truncated training. For our TEG-NAS,
the reward is composited of three parts: r = rκ + rR + rMSE,
and we show the justification for how we combine our indicators
in Table VI. Taking rκ (reward from trainability) as the example:

rκt =
κ̂t − κ̂t−1

κ̂max,t − κ̂min,t
(16)

κ̂max,t = max(κ̂1, κ̂2, . . . , κ̂t) (17)

κ̂min,t = min(κ̂1, κ̂2, . . . , κ̂t) (18)

where κ̂t is the evaluated trainability of the architecture sampled
at step t. We calculate rR (expressivity) and rMSE (generaliza-
tion) in the same way.

Architecture Deriving: To derive the final searched network,
the agent chooses the architecture that has the highest probabil-
ity, i.e., a∗ = argmaxaσ(θ

A)(a).
2) Evolution: The evolution search is first initialized with a

population of 256 architectures by random sampling. We choose
this size of the population based on Fig. A-1(a) from [25].

Stopping Criterion: We stop the Evolution search when the
population diversity stops decreasing (1000 iterations in our
work). Population diversity is calculated as the averaged pair-
wise architecture difference in their operator types.

Architecture Sampling: Following Real et al. [25], in each
iteration, the evolution search first randomly samples a subset of
64 architectures out of the population. We choose this sampling
size based on Fig. A-1(a) from [25]. Next, the best architecture
(at) from this subset is selected. For the baseline method, the best

architecture is the top1 ranked by the proxy inference, i.e., the
test accuracy by 1-epoch truncated training. For our TEG-NAS,
the best architecture is the top1 by the sum of three rankings by
trainability, expressivity, and generalization: rankκ + rankR +
rankMSE.

Update: Following Real et al. [25], in each iteration the
population is updated by adding a new architecture and popping
out the oldest architecture (the one that stays in the population for
the longest time). The new architecture is generated by mutating
the sampled one mentioned above. We follow the same mutation
strategy from Real et al. [25].

Architecture Deriving: To derive the final searched network,
the best architecture from the population is selected, where the
criterion is the same as we choose at (see above “Architecture
Sampling”).

3) Fast Probabilistic NAS: The Fast Probabilistic NAS (FP-
NAS) formulates the search space as a supernet and shares its
parameters to its sub-networks. The original FP-NAS search per-
forms alternative optimization between network parameters and
the architecture parameters (denoted as θA). This architecture
parameter can be converted to a categorical distribution of the
architectures (A) via softmax: A = σ(θA).

Stopping Criterion: We stop the FP-NAS search when the
entropy of A stops decreasing (total epochs T = 100 in our
work). We update the architecture parameters with a learning
rate as η = 0.1.

Architecture Sampling: In each step, the FP-NAS samples a
subset At of λH(Prob(ai|A)) architectures from A. Here H
denotes the distribution entropy and λ is a pre-defined scaling
factor where we set it to 0.25.

Update: We update the architecture parameters by stochastic
gradient descent.

θA
t+1 = θA

t − η · ∇θAf(θA
t) t = 1, . . . , T (19)

f(θA
t) = −

|At|∑

i=1

log(Prob(ai|A)) · eri
∑|At|

j=1 e
rj

(20)

r stands for reward, calculated in the same way as we did for
Reinforcement Learning (Section V-B1).

Architecture Deriving: To derive the final searched network,
the FP-NAS chooses the architecture that has the highest prob-
ability, i.e., a∗ = argmaxaσ(θ

A)(a).

C. Results on NAS-Bench-101

NAS-Bench-101 [24] contains 423,624 unique neural ar-
chitectures exhaustively generated and evaluated from a fixed
graph-based search space. The search space is extremely diverse
yet expressive, due to its general encoding scheme, consisting
of an adjacency matrix and its corresponding operations at each
vertex. Specifically, the adjacency matrix is represented by a
7× 7 upper-triangular binary matrix, while the operation at
each vertex could be any of three operator types: conv1× 1,
conv3× 3 convolution, and average pooling 3× 3. Each net-
work is trained for 108 epochs and the network’s accuracy at
intermediate epoch(s) is also provided. For the baseline methods,

758 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

TABLE II
SEARCH PERFORMANCE ON NAS-BENCH-101

TABLE III
SEARCH PERFORMANCE FROM NAS-BENCH-201

the RL agent and Evolution use the validation accuracy after
2-epoch training as the reward or ranking criteria. For all results
on NAS-Bench-101, we run for 10 independent times with
different random seeds and the mean and standard deviation
of test accuracy are reported. Due to the slight difference in
test accuracies of architectures, we also include test regret (the
absolute accuracy gap to global optimal) and average rank (the
ranking distance to global optimal) for a clearer comparison
across different search methods.

As shown in Table II, combing our TEG-NAS with RE-
INFORCE or Evolution, we achieve better performance over
the baseline. We significantly boost the searched test accuracy
(over 0.3%+) while reducing more than 64% search time cost.
Note that we did not evaluate supernet-based NAS methods (FP-
NAS, TE-NAS, gradient-based NAS) on NAS-Bench-101, since
the general graph-based encoding scheme in NAS-Bench-101
makes it incompatible with weight-sharing supernet, which is
required in gradient-based NAS.

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 759

TABLE IV
SEARCH PERFORMANCE FROM DARTS SPACE ON CIFAR-10

D. Results on NAS-Bench-201

NAS-Bench-201 [23] provides a cell-based search space and
the performance of all 15,625 networks it contains using a
unified protocol. The network’s accuracy is directly available
by querying the database, benefiting the study of NAS methods
without network evaluation. It contains five operator types: none
(zero), skip connection, conv1× 1, conv3× 3 convolution, and
average pooling 3× 3. We refer to their paper for details of the
space. For the baseline methods, the RL agent and Evolution
use the test accuracy after 1-epoch training as the reward or
ranking criteria. The FP-NAS uses alternative training between
architecture parameters and supernet parameters with stochastic
gradient descent. For all results we report, we run for four
independent times with different random seeds, and report the
mean and standard deviation in Table III.

We can see that for all three NAS methods (REINFORCE,
Evolution, FP-NAS), our TEG-NAS framework boosts the
search performance while significantly reducing the search time

cost. Moreover, by adopting our unified framework, the accuracy
of TE-NAS can be further improved.

E. Results on DARTS Search Space

Architecture Space: The DARTS space contains eight op-
erator types: none (zero), skip connection, separable convolu-
tion 3× 3 and 5× 5, dilated separable convolution 3× 3 and
5× 5, max pooling 3× 3, average pooling 3× 3. We stack
20 cells to compose the network and set the initial channel
number as 36 [17], [18], [92]. We place the reduction cells
at the 1/3 and 2/3 of the network. Each cell contains six
nodes.

The architecture for ImageNet is slightly different: the net-
work is stacked with 14 cells with the initial channel number
set to 48 [18], [92]. The spatial resolution is downscaled from
224× 224 to 28× 28 with the first three convolution layers of
stride 2.

760 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

TABLE V
SEARCH PERFORMANCE FROM DARTS SPACE ON IMAGENET

TABLE VI
ABLATION STUDY OF DIFFERENT COMBINATIONS OF TRAINING-FREE

INDICATORS FOR REINFORCE NAS METHOD ON NAS-BENCH-201
CIFAR-100

Evaluation Protocols: We follow previous NAS works [18],
[92], [94] to evaluate architectures after search. On CIFAR-10,
we train the searched network with cutout regularization of
length 16, drop-path [87] with probability as 0.3, and an auxiliary
tower of weight 0.4. On ImageNet, we also use label smoothing
during training. On both CIFAR-10 and ImageNet, the network

is optimized by an SGD optimizer with cosine annealing, with
a learning rate initialized as 0.025 and 0.5, respectively.

Results: For example, on ImageNet, our TEG brings im-
provements for: REINFORCE +3.1% top-1, -86.4% time cost;
Evolution +2.8% top-1, -84.6% time cost; FP-NAS +7.5% top-1,
-56.7% time cost. All training-free versions of three NAS meth-
ods can now complete the search with less than a half GPU day.
These search improvements on the large-scale DARTS space and
datasets validate the effectiveness and efficiency of our unified
TEG-NAS framework.

We also notice that FP-NAS benefits the most by equipping
our TEG method (+1.87% on CIFAR-10 and +7.5% on Im-
ageNet). The underlying problem of ProbNAS is similar to
DARTS. As a weight-sharing NAS method, skip-connection
favors the gradient flow during search, which introduces a
strong bias in the supernet parameters. At the end of search
the supernet’s accuracy can not faithfully represent the ranking
of single-path networks. This problem is pointed out in recent
NAS works [32], [94]. In contrast, our training-free method can
address this problem: we avoid any gradient descent, and the
shared weight (at its initialization) will not be affected by any
inductive bias during training, thus unleashing more power of
weight-sharing NAS methods.

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 761

Fig. 6. Normal and reduction cells discovered by RL + TEG-NAS on DARTS
space on CIFAR-10.

Fig. 7. Normal and reduction cells discovered by evolution + TEG-NAS on
DARTS space on CIFAR-10.

Fig. 8. Normal and reduction cells discovered by FP-NAS + TEG-NAS on
DARTS space on CIFAR-10.

F. Searched Architecture on DARTS Search Space

We visualize the searched normal and reduction cells on
DARTS space, by Reinforcement Learning (Fig. 6), Evolution
(Fig. 7), and FP-NAS (Fig. 8)).

G. Ablation Study on κ̂, R̂, and MSE

To validate the necessity of considering all of the trainability,
expressivity, and generalization, we conduct an ablation study
in Table VI using Reinforcement Learning on Cifar100 on
NAS-Bench-201. This ablation study is conducted under the
same settings as in Section V-D. As the baseline method, the
RL agent uses the test accuracy after 1-epoch training as the
reward. We can see that the guidance from every single indicator
outperforms the truncated training, with much less search time
cost. Finally, we achieve the best search performance once
equipped with all κ̂, R̂, and MSE.

VI. CONCLUSION

We proposed a unified and visualizable NAS framework
that benefits both various popular search methods and search
interpretation. We successfully disentangle the network’s char-
acteristics into three distinct aspects: Trainability, Expressivity,
Generalization, or “TEG” for short, and leverage all of them
to provide effective and efficient guidance for NAS search.
Extensive studies on different NAS search methods validate
the superior performance of our TEG-NAS framework. More
importantly, we for the first time visualize the search trajec-
tory on architecture landscapes from different search spaces,
contributing to a better understanding of both the search and
geometry of architecture space. We hope our work encourages

the community to further explore NAS methods that benefit
from extremely low cost, and provide a better understand-
ing of the architectures and complexity of different search
spaces.

REFERENCES

[1] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architec-
ture search without training,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 7588–7598.

[2] W. Chen, X. Gong, and Z. Wang, “Neural architecture search on imagenet
in four GPU hours: A theoretically inspired perspective,” in Proc. Int. Conf.
Learn. Representations, 2021. [Online]. Available: https://arxiv.org/pdf/
2102.11535.pdf

[3] M. Abdelfattah, A. Mehrotra, L. Dudziak, and D. N. Lane, “Zero-cost
proxies for lightweight NAS,” in Proc. Int. Conf. Learn. Representations,
2021. [Online]. Available: https://arxiv.org/pdf/2101.08134.pdf

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[5] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[7] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1492–1500.

[8] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[9] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH: One-shot model
architecture search through hypernetworks,” 2017, arXiv: 1708.05344.

[10] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” 2018, arXiv: 1802.03268.

[11] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19–34.

[12] L.-C. Chen et al., “Searching for efficient multi-scale architectures for
dense image prediction,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 8699–8710.

[13] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 549–558.

[14] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “AutoGAN: Neural architecture
search for generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 3223–3233.

[15] Y. Fu, W. Chen, H. Wang, H. Li, Y. Lin, and Z. Wang, “AutoGAN-distiller:
Searching to compress generative adversarial networks,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 3292–3303.

[16] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “FasterSeg:
Searching for faster real-time semantic segmentation,” in Proc. Int. Conf.
Learn. Representations, 2019. [Online]. Available: https://arxiv.org/pdf/
1912.10917.pdf

[17] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2018, arXiv:1806.09055.

[18] Y. Xu et al., “Pc-darts: Partial channel connections for memory-efficient
architecture search,” in Proc. Int. Conf. Learn. Representations, 2019.
[Online]. Available: https://arxiv.org/pdf/1907.05737.pdf

[19] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
GPU hours,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 1761–1770.

[20] H. Liang et al., “DARTS: Improved differentiable architecture search with
early stopping,” 2019, arXiv: 1909.06035.

[21] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 10778–10787.

[22] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neu-
ral networks without any data by iteratively conserving synaptic flow,”
2020, arXiv: 2006.05467.

[23] X. Dong and Y. Yang, “NAS-bench-102: Extending the scope of repro-
ducible neural architecture search,” 2020, arXiv: 2001.00326.

[24] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-bench-101: Towards reproducible neural architecture search,” in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 7105–7114. [Online].
Available: http://proceedings.mlr.press/v97/ying19a.html

[25] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 4780–4789.

https://arxiv.org/pdf/2102.11535.pdf
https://arxiv.org/pdf/2102.11535.pdf
https://arxiv.org/pdf/2101.08134.pdf
https://arxiv.org/pdf/1912.10917.pdf
https://arxiv.org/pdf/1912.10917.pdf
https://arxiv.org/pdf/1907.05737.pdf
http://proceedings.mlr.press/v97/ying19a.html

762 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 2, FEBRUARY 2024

[26] Z. Li, T. Xi, J. Deng, G. Zhang, S. Wen, and R. He, “GP-NAS: Gaus-
sian process based neural architecture search,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 11933–11942.

[27] Z. Yang et al., “HourNAS: Extremely fast neural architecture search
through an hourglass lens,” 2020, arXiv: 2005.14446.

[28] J. Xu, L. Zhao, J. Lin, R. Gao, X. Sun, and H. Yang, “KNAS: Green
neural architecture search,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 11613–11625.

[29] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing,
“Neural architecture search with Bayesian optimisation and optimal trans-
port,” in Proc. Adv. Neural Inf. Process. Syst., 2018. [Online]. Available:
https://arxiv.org/pdf/1802.07191.pdf

[30] J. Yu et al., “BigNAS: Scaling up neural architecture search with big single-
stage models,” 2020, arXiv: 2003.11142.

[31] G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, and B. Ghanem,
“SGAS: Sequential greedy architecture search,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 1620–1630.

[32] K. Yu, R. Ranftl, and M. Salzmann, “How to train your super-net: An
analysis of training heuristics in weight-sharing NAS,” 2020, arXiv:
2003.04276.

[33] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the
search phase of neural architecture search,” in Proc. Int. Conf. Learn. Rep-
resentations, 2020. [Online]. Available: https://arxiv.org/pdf/1902.08142.
pdf

[34] D. Zhou et al., “EcoNAS: Finding proxies for economical neural archi-
tecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 11393–11401.

[35] D. S. Park, J. Lee, D. Peng, Y. Cao, and J. Sohl-Dickstein, “Towards
NNGP-guided neural architecture search,” 2020, arXiv: 2011.06006.

[36] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 8571–8580.

[37] B. Hanin and M. Nica, “Finite depth and width corrections to the neural
tangent kernel,” 2019, arXiv: 1909.05989.

[38] J. Lee et al., “Wide neural networks of any depth evolve as linear models
under gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8572–8583.

[39] L. Xiao, J. Pennington, and S. S. Schoenholz, “Disentangling trainability
and generalization in deep learning,” 2019, arXiv: 1912.13053.

[40] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On
the expressive power of deep neural networks,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 2847–2854.

[41] T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding and counting
linear regions of deep neural networks,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4558–4566.

[42] B. Hanin and D. Rolnick, “Complexity of linear regions in deep networks,”
2019, arXiv: 1901.09021.

[43] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao, “On the number of
linear regions of convolutional neural networks,” 2020, arXiv: 2006.00978.

[44] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fan-
tastic generalization measures and where to find them,” 2019, arXiv:
1912.02178, 2019.

[45] Y. Lee, J. Lee, S. J. Hwang, E. Yang, and S. Choi, “Neural complexity
measures,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 9713–9724, 2020.

[46] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. Tolstikhin, “Pre-
dicting neural network accuracy from weights,” 2020, arXiv: 2002.11448.

[47] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261–2269.

[48] R. Burkholz and A. Dubatovka, “Initialization of relus for dynamical
isometry,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 2385–2395.

[49] S. Hayou, A. Doucet, and J. Rousseau, “On the impact of the activation
function on deep neural networks training,” 2019, arXiv: 1902.06853.

[50] Y. Shin and G. E. Karniadakis, “Trainability of relu networks and data-
dependent initialization,” J. Mach. Learn. Model. Comput., vol. 1, no. 1,
pp. 39–74, 2020.

[51] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” 2020, arXiv: 2002.07376.

[52] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” 2017, arXiv: 1712.09913.

[53] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2018. [Online]. Available: https://arxiv.org/pdf/1806.07572.pdf

[54] L. Chizat, E. Oyallon, and F. Bach, “On lazy training in differentiable
programming,” Adv. Neural inf. Process. Syst., vol. 32, 2019.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[56] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of
deep learning: A tensor analysis,” in Proc. Conf. Learn. Theory, 2016,
pp. 698–728.

[57] F. Croce, M. Andriushchenko, and M. Hein, “Provable robustness of relu
networks via maximization of linear regions,” in Proc. 22nd Int. Conf.
Artif. Intell. Statist., 2019, pp. 2057–2066.

[58] B. Hanin and D. Rolnick, “Deep relu networks have surprisingly few
activation patterns,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 361–370.

[59] R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks with
random Gaussian weights: A universal classification strategy?,” IEEE
Trans. Signal Process., vol. 64, no. 13, pp. 3444–3457, Jul. 2016.

[60] A. Gaier and D. Ha, “Weight agnostic neural networks,” 2019, arXiv:
1906.04358.

[61] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Raste-
gari, “What’s hidden in a randomly weighted neural network?,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 11893–11902.

[62] K. Bhardwaj and R. Marculescu, “Towards unifying neural architecture
space exploration and generalization,” 2019.

[63] J. You, J. Leskovec, K. He, and S. Xie, “Graph structure of neural
networks,” 2020, arXiv: 2007.06559.

[64] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang, “On exact
computation with an infinitely wide neural net,” 2019, arXiv: 1904.11955.

[65] A. Krishnakumar, C. White, A. Zela, R. Tu, M. Safari, and F. Hutter,
“Nas-bench-suite-zero: Accelerating research on zero cost proxies,” in
Proc. Adv. Neural Inf. Process. Syst., 2022, pp. 28037–28051.

[66] Y. Shu, W. Wang, and S. Cai, “Understanding architectures learnt by
cell-based neural architecture search,” in Proc. Int. Conf. Learn. Represen-
tations, 2019. [Online]. Available: https://arxiv.org/pdf/1909.09569.pdf

[67] S. Xie et al., “Understanding the wiring evolution in differentiable neu-
ral architecture search,” in Proc. Int. Conf. Artif. Intell. Statist., 2021,
pp. 874–882.

[68] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, “On network
design spaces for visual recognition,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 1882–1890.

[69] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “De-
signing network design spaces,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 10428–10436.

[70] L. Wang, S. Xie, T. Li, R. Fonseca, and Y. Tian, “Sample-efficient neural
architecture search by learning actions for Monte Carlo tree search,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5503–5515,
Sep. 2022.

[71] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang, “Bridging the
gap between sample-based and one-shot neural architecture search with
bonas,” in Proc. Adv. Neural Inf. Process. Syst., 2020. [Online]. Available:
https://arxiv.org/pdf/1911.09336.pdf

[72] B. Ru, X. Wan, X. Dong, and M. Osborne, “Interpretable neural architec-
ture search via Bayesian optimisation with Weisfeiler-Lehman kernels,”
in Proc. Int. Conf. Learn. Representations, 2021. [Online]. Available:
https://arxiv.org/pdf/2006.07556.pdf

[73] S. Yan, K. Song, F. Liu, and M. Zhang, “CATE: Computation-aware neural
architecture encoding with transformers,” 2021, arXiv:2102.07108.

[74] J. Wu et al., “Stronger NAS with weaker predictors,” in Proc. Adv. Neural
Inf. Process. Syst., 2021, pp. 28904–28918.

[75] Y. Li, C. Hao, P. Li, J. Xiong, and D. Chen, “Generic neural architecture
search via regression,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 20476–20490.

[76] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3/4,
pp. 229–256, 1992.

[77] Z. Yan, X. Dai, P. Zhang, Y. Tian, B. Wu, and M. Feiszli, “FP-NAS:
Fast probabilistic neural architecture search,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 15134–15143.

[78] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Proc. Uncertainty Artif. Intell., 2020, pp. 367–377.

[79] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, “DrNAS: Dirichlet
neural architecture search,” 2020, arXiv: 2006.10355.

[80] X. Zhang, P. Hou, X. Zhang, and J. Sun, “Neural architecture search with
random labels,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 10902–10911.

[81] V. Lopes, M. Santos, B. Degardin, and L. A. Alexandre, “Guided evolution
for neural architecture search,” 2021, arXiv:2110.15232.

https://arxiv.org/pdf/1802.07191.pdf
https://arxiv.org/pdf/1902.08142.pdf
https://arxiv.org/pdf/1902.08142.pdf
https://arxiv.org/pdf/1806.07572.pdf
https://arxiv.org/pdf/1909.09569.pdf
https://arxiv.org/pdf/1911.09336.pdf
https://arxiv.org/pdf/2006. ignorespaces 07556.pdf

CHEN et al.: UNDERSTANDING AND ACCELERATING NEURAL ARCHITECTURE SEARCH WITH TRAINING-FREE 763

[82] P. Ye, B. Li, Y. Li, T. Chen, J. Fan, and W. Ouyang, “β-
darts: Beta-decay regularization for differentiable architecture search,”
2022, arXiv:2203.01665.

[83] P. Hou, Y. Jin, and Y. Chen, “Single-DARTS: Towards stable architecture
search,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 373–382.

[84] S. Hu, R. Wang, L. Hong, Z. Li, C.-J. Hsieh, and J. Feng, “Generalizing
few-shot NAS with gradient matching,” 2022, arXiv:2203.15207.

[85] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of im-
agenet as an alternative to the CIFAR datasets,” 2017, arXiv:1707.08819.

[86] B. P. Carlin and T. A. Louis, “Empirical bayes: Past, present and future,”
J. Amer. Stat. Assoc., vol. 95, no. 452, pp. 1286–1289, 2000.

[87] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 8697–8710.

[88] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic neural architecture
search,” 2018, arXiv: 1812.09926.

[89] H. Zhou, M. Yang, J. Wang, and W. Pan, “BayesNAS: A Bayesian approach
for neural architecture search,” 2019, arXiv: 1905.04919.

[90] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” 2018, arXiv: 1812.00332.

[91] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu, “Efficient neural architecture
search via proximal iterations,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 6664–6671.

[92] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,” in
Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 1294–1303.

[93] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter, “Under-
standing and robustifying differentiable architecture search,” 2019, arXiv:
1909.09656.

[94] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search
via perturbation-based regularization,” 2020, arXiv: 2002.05283.

[95] Y. Zhao, L. Wang, Y. Tian, R. Fonseca, and T. Guo, “Few-shot
neural architecture search,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 12707–12718.

[96] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5927–5935.

[97] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2815–2823.

[98] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” 2019, arXiv:
1908.09791.

Wuyang Chen received received BS degree from
the University of Science and Technology of China,
in 2014, the MS degree in computer science from
Rice University, in 2016, and the PhD degree in
electrical and computer engineering with the Uni-
versity of Texas at Austin. His research focuses on
addressing domain adaptation/generalization, self-
supervised learning, and AutoML.

Xinyu Gong received the bachelor’s degree in com-
puter science from the University of Electronic Sci-
ence and Technology of China, in 2018 and the PhD
degree in electrical and computer engineering with
the University of Texas at Austin. His research in-
terests are broadly in computer vision and machine
learning, with a recent focus on neural architecture
search.

Junru Wu received the BS degree from Tongji Uni-
versity and the PhD degree from the Department of
Computer Science and Engineering at Texas, A&M
University. He’s interned at industry research labs in-
cluding Google Research, Microsoft Research, NEC
Labs America, and ByteDance AI Lab. His research
interests lie in the intersection of computer vision and
machine learning. In particular, he is interested in
enabling efficient machine learning in a broad spec-
trum of computer vision problems, which includes
Low-level Vision, Neural Architecture Search, and

Multimodal Understanding.

Yunchao Wei received the PhD degree from Beijing
Jiaotong University, Beijing, China, in 2016. He is
currently a professor with the Center of Digital Media
Information Processing, Institute of Information Sci-
ence, Beijing Jiaotong University. He was a Postdoc-
toral Researcher at Beckman Institute, UIUC, from
2017 to 2019. He is ARC Discovery Early Career
Researcher Award Fellow from 2019 to 2021. His
current research interests include computer vision and
machine learning.

Humphrey Shi (Senior Member, IEEE) is currently
an associate professor of interactive computing with
Georgia Institute of Technology. He is also a graduate
faculty member of computer science with the Uni-
versity of Oregon and the Department of Electrical
and Computer Engineering, University of Illinois at
Urbana-Champaign. Outside of academia, he is the
chief scientist of Picsart AI Research (PAIR). His
research interests include computer vision, machine
learning, AI systems and applications, and creative,
efficient, and responsible multimodal AI.

Zhicheng Yan received the PhD from the Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, in 2016. He is a senior staff re-
search scientist with Meta Reality Labs. He has been
building and delivering cutting-edge on-device solu-
tions to power the perception stack for Meta MR/VR
products. Before, Zhicheng was a Senior Manager
supporting an applied research team to develop a
deep and personalized understanding of the objects
and scenes in the egocentric data for next-generation
Meta AR products. In the early stage of his career at

Facebook, he worked on large-scale image and video understanding platform.

Yi Yang (Senior Member, IEEE) received the PhD
degree from Zhejiang University, Hangzhou, China,
in 2010. He is currently a professor with the Zhejiang
University. He was a post-doctoral researcher with the
School of Computer Science, Carnegie Mellon Uni-
versity. His current research interests include machine
learning and its applications to multimedia content
analysis and computer vision, such as multimedia
retrieval and video content understanding.

Zhangyang Wang (Senior Member, IEEE)is a
tenured associate professor and holds the Temple
Foundation Endowed Faculty Fellowship, in the
Chandra Family Department of Electrical and Com-
puter Engineering, The University of Texas at Austin.
He has broad research interests spanning from the
theory to the application aspects of machine learning.
He has received many research awards, including an
NSF CAREER Award, an ARO Young Investigator
Award, an IEEE AI’s 10 To Watch Award, an INNS
Aharon Katzir Young Investigator Award, a Google

Research Scholar award, an IBM Faculty Research Award, a J. P. Morgan Faculty
Research Award, an Amazon Research Award, an Adobe Data Science Research
Award, a Meta Reality Labs Research Award, and two Google TensorFlow
Model Garden Awards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

