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A B S T R A C T

Progress monitoring is crucial for effective project management, particularly in construction projects. The 
adoption of computer vision with deep learning expedites automation, accuracy, and efficiency in construction 
progress monitoring by overcoming the challenges of laborious, and error prone manual methods. While there is 
growing attention on developing computer vision based deep learning models for construction progress moni
toring, deployment platforms for project managers are lacking. Using computer vision, this study develops a 
Mask Recurrent Convolutional Neural Network deep learning model. It utilizes progress images of drywall 
construction from two indoor construction sites and tests the model on a third indoor site in Sydney, Australia. 
The model is capable of automated as-built visual detection and work-in-progress measurement. The study also 
provides an understanding on the deployment process of the deep learning model on a cloud-based platform 
called Streamlit. By developing a model tailored for automatically quantifying work-in-progress of indoor con
struction elements and detailing the process of deploying that model on a cloud-based platform, this study 
significantly advances digitalization of construction project management. Project managers, stand to benefit 
from these advancements by gaining access to more accurate and automated construction progress monitoring 
for better decision-making.

1. Introduction

In project management, effective progress monitoring is crucial for 
cost-effective resource use, milestone achievement, deadline adherence, 
risk mitigation, and informed decision-making (Navon, 2007; Raymond 
and Bergeron, 2008). Progress monitoring in construction projects, in
volves collecting, analyzing, reporting, and visualizing progress infor
mation of construction elements and activities (Bohn and Teizer, 2010; 
Golparvar-Fard et al., 2015). Inefficient and inaccurate work-in-progress 
monitoring significantly contributes to delay and budget overruns in 
construction projects (Omar et al., 2018). Previous research reveals that 
more than 53% of construction projects encounter delays and more than 
66% of projects undergo budget overruns (Han et al., 2015)

Traditional progress monitoring processes are error prone, time 
consuming, and visually unfriendly (Golparvar-Fard et al., 2015; Yang 
et al., 2015). The digital transformation in project management has 
accelerated the adoption of computer vision technologies, providing 

greater accuracy and efficiency compared to traditional methods 
(Bednar and Welch, 2020; Li et al., 2021; Reja et al., 2022). Computer 
vision-based progress monitoring involves capturing site images with 
cameras and analyzing them using algorithms. Deep learning, a subset of 
machine learning, plays a crucial role in this process (Szeliski, 2010; 
Zhang et al., 2009; Moragane et al., 2024). Recent studies by Li et al. 
(2021), Wei et al. (2022), and Zhao et al. (2023) demonstrate effective 
computer vision applications with deep learning in automated con
struction progress monitoring. Despite these achievements, automated 
progress monitoring in indoor construction activities continues to pre
sent unique challenges for project managers in relation to recognizing 
the as-built state of construction elements and calculating 
work-in-progress (Wong et al., 2024). These difficulties arise from ob
structions, clutter, variable lighting conditions, and the achromatic 
appearance of indoor components (Deng et al., 2020; Ekanayake et al., 
2021a). Despite growing interest in training deep learning models for 
construction progress monitoring, there is also a notable lack of research 
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on how to deploy such advanced computer vision-based deep learning 
models cost effectively and efficiently in practice (Ekanayake et al., 
2024; Li et al., 2021). Deployment involves making such trained models 
available for real-world applications on cloud or local computer appli
cations to track progress, which is essential for project managers 
(Khorasani et al., 2022).

The current study first explores how computer vision can be lever
aged to automatically recognize and calculate work-in-progress of in
door construction elements using a deep learning model, which is built 
upon Mask Recurrent Convolutional Neural Network (Mask R-CNN) (He 
et al., 2017) and trained on Google Colaboratory platform (Google 
Colab). The model uses progress images focusing on interior drywalls 
installation from two construction sites and is tested on a third site in 
Sydney, Australia. Then this study provides an understanding on the 
deployment process of the deep learning model on a cloud-based plat
form called Streamlit (2024), to facilitate the transition from computer 
vision models to practical applications. Therefore, this study intends to 
address the research question: How can deep learning-based computer 
vision techniques be effectively leveraged to automatically quantify 
work-in-progress for indoor construction elements?

Followed by section 1 on the introduction, section 2 provides a 
literature review to the study. Section 3 presents the research methods 
and section 4 describes the development of the computer vision and 
deep learning-based model and the platform on which it is deployed. In 
section 5, a discussion is presented, followed by theoretical contribu
tions and practical implications in section 5.1. The paper ends with the 
conclusions and future directions in section 6.

2. Literature review

This section explores the challenges of traditional construction 
progress monitoring for the project managers, and how state-of-the-art 
progress monitoring approaches have increased automation, accuracy, 
and efficiency. This literature review also delves into training and 
deploying computer vision-based deep learning models.

2.1. Challenges of traditional construction progress monitoring

Traditional construction progress monitoring relies heavily on daily 
site reports and manual inspections (Wei et al., 2022), involving walk
through assessments (Ham et al., 2016). These methods depend on 
approximate visual assessments for recognizing as-built states and 
measuring work completion (Golparvar-Fard et al., 2015; Zhang et al., 
2009), leading to subjective interpretations and inaccurate reporting 
(Golparvar-Fard et al., 2015). Errors and inefficiencies in traditional 
methods contribute to schedule overruns of 20% and budget overruns of 
up to 80% (Agarwal et al., 2016). Enhancing digitalization in progress 
monitoring with automated approaches ensures accurate, timely 
decision-making and reduces errors (Zhang et al., 2009).

2.2. State-of-the-art construction progress monitoring approaches

The integration of digital technologies in construction sites has 
marked a significant shift towards more efficient and accurate progress 
monitoring methods (Kopsida et al., 2015; Wong et al., 2024). The use of 
digital cameras, initially for site security, has laid the groundwork for 
the adoption of site images based visual inspection techniques, enabling 
construction progress monitoring through computer vision (Ahmadian 
Fard Fini et al., 2022; Hamledari et al., 2017). Beyond visual data, the 
construction industry has leveraged 3D reconstructions from laser 
scanning to enhance volumetric data collection (Bosché et al., 2015). 
Additionally, construction object tracking using radio wave-based 
methods, such as Radio Frequency Identification (RFID) (Valero et al., 
2015) and geospatial technologies (El-Omari and Moselhi, 2011) to 
capture positional data are other methods of construction progress 
monitoring. The Internet of Things (IoT) technologies have also enabled 

the development of digital twins for enhanced construction progress 
monitoring (Qureshi et al., 2020; Soman et al., 2017; Sacks et al., 2020).

Recent studies in automated construction progress monitoring have 
been using building information models (BIM) to track discrepancies 
with 4D BIM focusing on time management and with 5D BIM empha
sising on cost management (Kopsida et al., 2015; Reja et al., 2022). 
Off-the-shelf products such as “Reconstruct” leverage computer vision 
integration with 4D and 5D BIM to provide real-time, actionable insights 
(Reconstruct, 2024). However, these advancements face several chal
lenges that hinder widespread adoption. For 4D BIM and 5D BIM, 
challenges include the dependency on accurate and continuous data 
input to maintain up-to-date schedules, which can be disrupted by site 
conditions and unforeseen delays (Rao et al., 2022; Sacks et al., 2020). 
Both 4D and 5D BIM integrations face limitations in data accuracy and 
the need for line-of-sight in mapping, which can be problematic in 
cluttered or indoor environments (Rao et al., 2022). Where sensors are 
used to collect data, high computational costs associated with processing 
sensory data for BIM integration further complicate real-time applica
tions of these technologies (Sacks et al., 2020). More importantly, while 
BIM excels in as-planned modelling and visualizing progress deviations, 
it often lacks comprehensive coverage of all construction stages, 
particularly indoor activities (Pal et al., 2022; Wei et al., 2022).

2.3. The use of computer vision for indoor construction progress 
monitoring

The adoption of computer vision-based technology for construction 
progress monitoring, particularly in indoor environments, represents a 
significant technological advancement, offering distinct advantages 
over traditional monitoring methods and other technologies. Leveraging 
2D images (Hamledari et al., 2017; Deng et al., 2020) and 3D point 
clouds (Armeni et al., 2016; Zhu et al., 2023), computer vision emulates 
human visual inspection but with greater accuracy and efficiency. By 
analyzing these images through sophisticated image processing algo
rithms, computer vision technologies monitor construction progress 
(Moragane et al., 2024).

Computer vision-based approach is increasingly favoured for indoor 
construction sites due to its ability to overcome the limitations posed by 
physical constraints in the cluttered and enclosed indoor environments, 
with low and variable lighting conditions that typically challenge other 
data capturing technologies such as laser scanning, radio-based and geo 
spatial-based techniques (Hamledari and McCabe, 2016). Despite these 
advantages, implementing computer vision indoors is not without its 
challenges. Technical issues such as occlusions, clutter, and the varying 
intensity of artificial lighting significantly impact the quality of visual 
input data, requiring advanced preprocessing to mitigate noise and 
ensure accurate feature extraction and object recognition (Ekanayake 
et al., 2021b). Additionally, the practical limitations concerning the use 
of unmanned aerial vehicles (UAVs) or unmanned ground vehicles 
(UGVs) in densely populated indoor spaces and uncertainties in unsu
pervised camera movements affect object recognition (Wong et al., 
2023). Ekanayake et al. (2021a) categorised all these challenges into 
technical challenges related to indoor objects, lighting conditions and 
camera positioning. When these challenges are effectively addressed, 
computer vision stands out as a superior method for indoor construction 
progress monitoring.

2.4. Deep learning algorithms for computer vision approaches

Current computer vision-based approaches, particularly using deep 
learning models such as convolutional neural networks (CNNs), excel in 
object detection, classification, localization, and segmentation from 
images (Kardovskyi and Moon, 2021; Chollet, 2017; LeCun et al., 2015). 
The recent developments in computer vision-based indoor construction 
progress monitoring have harnessed the detection and classification 
ability of Mask R-CNN for recognizing indoor elements with irregular 
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shapes using 2D images (Ying and Lee, 2019). The segmentation ability 
of Mask R-CNN has been used to quantify work completion (Wei et al., 
2022) with the use of depth images. The contributions of Armeni et al. 
(2016) and Zhu et al. (2023) play significant roles in advancing the field 
of indoor construction progress monitoring through their focus on 3D 
semantic parsing, multi-object relocalization, and reconstruction in 
changing 3D environments. Due to its high detection accuracy and 
instance segmentation performance, Mask R-CNN, proposed by He et al. 
(2017), remains a widely used algorithm (He et al., 2022; Xi et al., 
2020).

2.5. Training and deploying of deep learning models

Training deep learning models with thousands of images necessitates 
high computational resources such as GPUs, RAM, CPU, and storage 
(O’Mahony et al., 2019; Wang et al., 2021). Advances in cloud 
computing have made virtualization platforms available to overcome 
hardware and configuration issues (Fang et al., 2018). Virtualization 
allows for creating high-performance virtual machines with dedicated 
resources borrowed from host computers or cloud providers to run deep 
learning models (Canesche et al., 2021). Google Colab (Google 
Research, 2024), a freely available virtual machine hosted by Google, 
offers a cost-effective and popular solution for deep learning model 
training, utilizing web-based Jupyter notebooks stored in Google Drive 
(Carneiro et al., 2018; Ohkawara et al., 2021). After training, deploying 
deep learning models makes them accessible to users without pro
gramming backgrounds (Li et al., 2020a,b). Deployment involves mak
ing trained models available for real-world applications (Khorasani 
et al., 2022). The freely available Streamlit open-source application 
framework allows for creating interactive applications with simple Py
thon scripts and deploying them directly to Streamlit Cloud or running 
them locally, supporting collaborative purposes (Prapas et al., 2021; Li 
et al., 2020a,b; Shukla et al., 2021). By deploying a deep learning-based 
construction progress monitoring model built upon Mask R-CNN, project 
managers without programming expertise can make informed decisions 
(Streamlit, 2024).

The adoption of such technological innovations is critical in 
advancing project management practices (Forget et al., 2022) because 
integration of advanced technologies into project management pro
cesses can significantly enhance efficiency and decision-making capa
bilities (Papadonikolaki and Galera Zarco, 2023). The use of cloud-based 
and virtualized environments, such as Google Colab, facilitates scalable 
and accessible model training, aligning with the industry’s move to
wards digital transformation (Li et al., 2020a,b). Moreover, the 
deployment of user-friendly applications like those developed with 
Streamlit makes sophisticated tools accessible to a wider range of 
non-technical stakeholders, facilitating broader adoption and utilization 
(Kebao and Jinling, 2021). Despite the advancements in computer vision 
for construction progress monitoring, no prior studies have specifically 
demonstrated how virtual environments such as Colab for training and 
Streamlit for deployment can be utilized for indoor progress monitoring. 
This study’s methodological approach, described in section 3, addresses 
the technical challenges of training and deploying complex deep 
learning models.

3. Research methodology

Design science research (DSR) framework has been selected as the 
methodological framework for this study because the study focuses on 
addressing a practical problem by developing and deploying a 
technology-based artefact (Hevner et al., 2004; Iivari and Venable, 
2009). The research process of this study adheres to the principles of 
DSR, incorporating four key cycles within the framework: i) relevance, 
ii) rigor, iii) design and iv) change and impact cycles (Drechsler and 
Hevner, 2016).

i) The relevance cycle: The relevance cycle starts with identifying the 
practical need for automated progress monitoring tools in the 
construction industry, specifically the indoor construction envi
ronment. This need is articulated through a comprehensive 
literature review (in Section 2), which reveals the inefficiencies 
and inaccuracies associated with traditional progress monitoring 
methods, the state-of-the art approaches, computer vision and 
deep learning-based solutions for indoor construction and the 
importance of training and deploying such solutions. The re
quirements for the artefact, including the ability to handle 
various lighting conditions, occlusions, and clutter in indoor en
vironments, are established based on this identified need and are 
presented in Section 3.1.

ii) The rigor cycle: The rigor cycle then ensures that the artefact’s 
design is well founded on existing knowledge bases integrating 
methodologies from established works of computer vision and 
deep learning. The research design for training and deploying the 
deep learning model is presented in Section 3.2.

iii) The design cycle: In the design cycle, the artefact of this study, i.e. 
the computer vision based indoor progress monitoring model, 
built upon Mask R-CNN deep learning model, and deployed on 
Streamlit is developed. This involves the process of designing, 
training, optimizing, and fine tuning the Mask R-CNN model on 
Colab based on the images collected from two indoor sites as 
presented in Section 4. The model is then tested on indoor images 
collected from a third project, ensuring that it meets the specified 
requirements linking back to the relevance cycle.

iv) The change and impact cycle: The change and impact cycle ac
knowledges the dynamic and evolving nature of construction 
sites. This cycle captures the broader organizational and societal 
changes triggered by the deployment of the artefact. The 
deployment process of the model proposed in this study aims to 
improve the accuracy and efficiency of progress monitoring, 
thereby enhancing overall project management practices. This 
cycle also considers the potential for broader adoption and inte
gration of the technology within the construction industry, 
contributing to digital transformation and improved project 
outcomes.

The current study primarily aligns with Level 1 of Gregor and Zwi
kael’s (2024) DSR approach for project management research, which 
outlines three levels of design knowledge: Level 1 (Artefact develop
ment), Level 2 (Nascent design principles), and Level 3 (Theory devel
opment). This alignment is due to the study’s focus on developing a deep 
learning-based computer vision model to automate the progress moni
toring of indoor construction elements. This automation addresses the 
challenges of manual progress monitoring and provides project man
agers with more accurate data, enhancing decision-making. Addition
ally, the study incorporates some elements of Level 2 for establishing 
design principles that can guide the broader application of computer 
vision models in construction project management. These principles are 
informed by the challenges of deploying deep learning-based computer 
vision models in dynamic environments such as indoor construction 
sites and are articulated in section 3.1 and 3.2.

3.1. Data collection from case projects

Researchers have used case projects to demonstrate, develop, and 
test prototypes in real-life situations (Fellows and Liu, 2015; Stake, 
2013). In automated construction progress monitoring studies, the use 
of case projects for site images collection is the standard practice for 
algorithmic models training and demonstration (Kim et al., 2018; Wong 
et al., 2023).

Three indoor construction sites were selected as case projects to 
collect progress images for training and demonstrating the performance 
of the deep learning model. All sites were located in Sydney, Australia. 
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Images of the construction process of framing, insulation, and drywall 
installation of indoor walls were captured as a representative set of in
door construction progress images to train the deep learning model. 
Indoor walls are a significant part of interior construction and delays 
related to them can have costly consequences (Kropp et al., 2018). The 
progress data capturing, and information extraction related to indoor 
walls can aid many trades such as site managers, framers, insulation 
installers and drywall installers. Therefore, indoor walls are perhaps the 
most significant obstacle in automating indoor construction progress 
monitoring due to anticipated occlusions, clutter, materials diversity, 
and varying lighting during their construction process. To infer the 
as-built state and work-in-progress for an indoor wall, information 
related to installation of components such as frames, insulation blankets 
and plasterboards is required (Hamledari et al., 2017).

The Human Ethics Research Committee of the University of Tech
nology Sydney approved the ethics application (ETH20-5459) for data 
collection. Project 1 is a residential building project with 2 floor levels. A 
total of 703 images were collected for the training dataset. Project 2 is a 
commercial building project with fit-out work for office workspace, with 
3 floor levels. A total of 675 images were collected for the training 
dataset. Project 3 is alterations and additions to an existing dwelling, 
with 2 floor levels and a total of 100 images were collected. A total of 
1378 images (703 from Project 1 and 675 from Project 2) were collected 
for training. The images from Project 3 were used exclusively for testing. 
Some images captured from the indoor sites are presented in Fig. 1a, b 
and 1c respectively.

The method for selecting the case study projects in this study aligns 
with the approach adopted in Deng et al. (2020); Ying and Lee (2019)
and Wei et al. (2022). These studies on indoor construction progress 
monitoring indicate that the nature and number of case projects do not 
affect the model’s training effectiveness, provided that a sufficient 
number of images, up to 2000 are used to capture the features for object 
detection. For example, Deng et al. (2020) used an indoor tiling image 
(1000 images) set from an indoor site. In the study by Wei et al. (2022), 
Mask R-CNN deep learning model was employed for indoor construction 
progress monitoring, utilizing 500 images of indoor bricklaying, and 
plastering scenario from the same site for both training and testing the 
model. Past research works on deep learning, including Chollet (2017), 
Goodfellow et al. (2016), LeCun et al. (2015), emphasized that the 
primary goal of training a deep learning model is to capture the relevant 
features of objects. If the dataset is sufficiently large and diverse, it al
lows the model to learn a comprehensive representation of the features, 
regardless of the specific nature or number of projects (Chollet, 2017; 
Goodfellow et al., 2016; LeCun et al., 2015).

To capture image, two Brinno TLC200 Pro time-lapse cameras were 
installed at each site, positioned to account for different lighting con
ditions. Cameras were installed at the best vantage points considering 

the availability of the contractor’s resources, site facilities and sur
rounding structures. One camera was placed to monitor areas with 
artificial lighting, and the other captured images where natural sunlight 
seeped through openings. This setup ensures that the dataset includes 
variations in lighting conditions. Additionally, the cameras were stra
tegically placed at different angles to cover various perspectives of the 
construction sites, capturing a comprehensive range of visual data. This 
approach also helped in documenting the presence of occlusions, such as 
construction materials or equipment temporarily blocking parts of the 
view. These are presented in Fig. 2. To further mitigate overfitting by 
adding variations to training image set, data augmentation techniques 
were applied using the “imgaug” library (imgaug, 2022). This involved 
photometric distortions (adjusting hue, saturation, brightness, contrast, 
and noise) and geometric distortions (random cropping, flipping, 
scaling, and rotating) to create a more varied training dataset 
(Bochkovskiy et al., 2020; Shorten and Khoshgoftaar, 2019). An 
example of an augmentation is illustrated in Fig. 3. Such augmentations 
help ensure that the model can generalize well to new images by 
simulating a wide range of possible variations and conditions that might 
be encountered in real-world scenarios (Rice et al., 2020). An additional 
200 images from the image dataset were randomly augmented making 
the training dataset 1,578 images. These strategies ensured that training 
image dataset incorporate diverse features.

While deep learning algorithms are proven to be accurate and effi
cient for feature extraction compared to conventional machine learning 
algorithms (O’Mahony et al., 2019), pre-processing with a low level of 
manual intervention may be required depending on the visual quality of 
the image to address the challenges in indoor construction sites (Wei 
et al., 2022). In this study, two pre-processing algorithmic techniques, 
perspective transformation and low illumination enhancement were 
employed.

Because of the positioning of the camera, the region of interest of the 
site images are affected by distortions thus causing an inclined and 
angular view. Using the cv2.getPerspectiveTransform and then cv2.warp
Perspective functions of OpenCV (OpenCV, 2022), the original perspec
tive can be modified to obtain an accurate region of interest. The low 
illumination problem in indoor sites contributes to creating dark images 
from which the feature extraction is challenging unless the images are 
corrected with lighting enhancements. The dual channel (dark and 
bright) based method for low illumination image enhancement pro
posed by Shi et al. (2018) was used in this study. Some of the results are 
presented in Fig. 4.

In addition to the strategies to ensure that the training image dataset 
is diverse, implementing algorithmic techniques to pre-process the im
ages from the indoor construction sites contributes to robust feature 
extraction. The methodological choice of optimized Mask R-CNN model 
trained on data collected from two indoor sites and tested on a third site 

Fig. 1. Case projects: a) Project 1; b) Project 2; c) Project 3.
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Fig. 2. Indoor location with a) Natural lighting; b) Artificial lighting c) Construction personnel and material creating occlusions.

Fig. 3. a) Original image; b) Image flipped vertically and contrast enhanced.

Fig. 4. Perspective transformation: a) Original image; b) Corrected image and Low illumination enhancement: c) Original image; d) Enhanced image.
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ensures that the model’s performance is tested in a completely new 
environment. Thereby, this serves as a form of validation. Validation in 
this context refers to testing the model’s performance on an unseen 
dataset to ensure it can accurately recognize and segment objects that it 
has not encountered during training. Generalizability refers to the 
model’s ability to perform well across a wide range of diverse scenarios 
and conditions beyond the specific datasets it was trained and tested on. 
In the current study, data augmentation techniques and dataset with 
diverse lighting conditions, occlusions, and various angles were incor
porated to expose the model to a broad spectrum of variations, thereby 
enhancing its ability to generalize to new and different indoor con
struction scenarios. While testing the model on a third site and the 
strategies mentioned above indicate model’s effectiveness on unseen 
data, it does not conclusively prove its generalizability across all 
possible indoor construction environments.

3.2. Research design for training and deploying the deep learning model

The deep learning-based approach presented in this study was built 
on a Mask R-CNN model. Mask R-CNN predicts segmentation masks in 
addition to the existing branches to predict object classification and 
bounding box generation-based detection (He et al., 2017). The network 
architecture of Mask R-CNN, with the key elements is illustrated in 
Fig. 5.

The Mask R-CNN model is built upon the ResNet architecture, spe
cifically utilizing the ResNet-FPN backbone for feature extraction. The 
ResNet-FPN backbone’s top-down architecture with lateral connections 
creates a feature pyramid from a single-scale input, enhancing its ability 
to recognize partially obscured objects (He et al., 2017). This ResNet 
architecture, known for its robustness in object detection and 
instance-based segmentation tasks, effectively manages occlusions 
(Chilukuri et al., 2022).

The neural network of the Mask R-CNN model is built with different 
hyperparameters. These hyperparameters can be fine-tuned depending 
on the requirement of training efficiency and model accuracy for opti
mization (Goodfellow et al., 2016). Programmers generally conduct 
many experiments to determine the optimum set of hyperparameters 
that improve the accuracy of the model (Smith, 2018). In this study, the 
hyperparameters that were experimented to optimize the Mask R-CNN 
base model are the learning rate (LR), learning rate scheduler and 
optimizer because they are responsible for the “learning process” of the 
deep learning model. The learning rate of the base Mask R-CNN model is 
0.02 and the default optimizer is stochastic gradient descent (SGD) (He 

et al., 2017). The learning rate scheduler, Multiple steps learning rate 
(MultiStepLR) has been used in the Mask R-CNN optimization. The 
cosine annealing learning rate scheduler (CosineLR) (Loshchilov and 
Hutter, 2016) was experimented for the current study. The Adam opti
mizer (Kingma and Ba, 2014) is an extension to SGD that has recently 
been adopted in deep learning models to improve optimization.

After devising the method to build the deep learning model, the 
training of the deep learning model is a crucial step. As discussed in 
Section 2.5, Colab was used as the training platform. To train deep 
learning models on Colab, initially, the annotated training images with 
the annotation files are uploaded to Google Drive. Then, Google Drive is 
connected to the Colab notebook. In the next step, the training command 
is executed. Because of the fast GPU and RAM performance in Colab, the 
training process is not as time consuming as a deep learning model 
trained on a local computer. Test images are uploaded to Google Drive 
for inferring detection, classification, and segmentation results.

After the deep learning model is trained, certain metrices are used to 
evaluate the performance of the model. The current study used the mean 
average precision (mAP) to evaluate the detection accuracy of deep 
learning model (Chollet, 2017). In addition to mAP, when training deep 
learning models, loss value indicates how well a certain model behaves 
after each iteration. The reduction of loss after each or several iterations 
is an indication of the higher accuracy of the deep learning model 
(Goodfellow et al., 2016).

To deploy the developed deep learning model, Streamlit framework 
can be used either to run the deep learning model on the local machine 
or on the Stremlit cloud (Khorasani et al., 2022). With Streamlit cloud, 
programmers can simply connect their GitHub repository and then click 
deploy because Streamlit operates by reading code directly from a 
GitHub repository, that is made available to the public (Khorasani et al., 
2022). The GitHub repository containing the construction site images 
and the code related to the deep learning model was not made available 
to the public because the UTS ethics application approval for this project 
ensures the confidentiality of the data collected. However, the web 
application can be built on a local Streamlit server for prototyping and 
testing through a Python runtime environment with all the de
pendencies. The research process described in Sections 3.1 and 3.2. from 
site image capture to the generation of useful outputs for project man
agers is displayed as a graphical summary in Fig. 6.

4. Results and findings

This section explains how the optimized Mask R-CNN model was 

Fig. 5. Mask R-CNN network architecture.
Adapted from: He et al. (2017).
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developed for automated visual recognition of as-built elements and 
their work completion percentage calculation for indoor progress 
monitoring. Deploying this Mask R-CNN model on the Streamlit plat
form is also presented.

4.1. The workflow of optimizing mask R-CNN and training on Colab

The Mask R-CNN model was optimized in terms of the detection, 
classification and segmentation accuracy for the custom dataset 
comprised of framing, insulation, and drywall installation images of 
indoor walls. This optimized model was trained on Google Colab to 
reduce the high computational resource requirements associated with 
deep learning models. The hyperparameters that were changed to 
optimize the Mask R-CNN model are the learning rate, learning rate 
scheduler and optimizer. Many experiments were conducted to deter
mine which learning rate provides the best performance with the Adam 
optimizer, compared to the learning rate of the base model with the SGD 
optimizer. The learning rate scheduler was also changed from Multi
StepLR to cosine annealing (CosineLR). In addition to the learning rate, 
learning rate scheduler and optimizer, which are directly associated 
with the optimization of the deep learning model, other hyper
parameters that affect the efficiency of training of the model were also 
changed as below.

• Number of images per batch based on the GPU = 2
• Size or the pixel resolution of the images = 800x800
• Iterations = 2000
• Batch size per image = 128
• Number of classes to be detected (framed, insulated, drywall_in

stalled) = 3

The Mask R-CNN model was trained using the “Detectron2” library 
with the “PyTorch” framework. The technical algorithm representing 
the workflow of optimizing the Mask R-CNN model is shown in Fig. 7.

During the training process of this deep learning model, for training 

and validation, choosing a 90%–10% split in the dataset was a strategic 
decision informed by the common practices in this field of research 
which is predominantly based on the complexity of the image dataset. 
On one hand, the 90% training set aligns with established practices in 
machine learning, where maximizing the amount of training data can 
improve model performance. By using a larger training set, the model is 
exposed to a more comprehensive range of scenarios, which enhances its 
ability to learn robust representations of the input space (Goodfellow 
et al., 2016). This comprehensive exposure is particularly crucial for 
complex datasets, as it helps the model to generalize better to unseen 
data (Bishop, 2006). Additionally, a larger training set helps to mitigate 
the risk of overfitting, especially when combined with regularization 
techniques (Srivastava et al., 2014). On the other hand, the 10% vali
dation set is commonly used as it provides a sufficient, yet reliable es
timate of the model’s performance. It allows for effective 
hyperparameter tuning and model selection by providing a separate 
dataset to evaluate the model’s ability to generalize (Chollet, 2017). The 
validation set thus serves as a crucial component in ensuring that the 
model’s performance is robust. Therefore, the decision to use a 90%– 
10% split is supported by theoretical foundations in machine learning 
literature, highlighting the benefits of larger training sets for complex 
datasets and the importance of a validation set for reliable model eval
uation (Bishop, 2006; Goodfellow et al., 2016; Srivastava et al., 2014).

Once the optimized Mask R-CNN model was trained, the progress 
images from the third construction site were used to test whether this 
deep learning model is capable of automatically recognizing the as-built 
states of framed, insulated and drywall installed. The testing of indoor 
images using the optimized Mask R-CNN model is demonstrated in 
Fig. 8.

Mask R-CNN is capable of extracting the as-built area of the walls in 
pixel level masks in the indoor site images as red for framing, green for 
insulation and blue for the drywall. The optimized Mask R-CNN model 
was post-processed to calculate the area of the pixel masks corre
sponding to each as-built state detected. The work-in-progress comple
tion of an indoor wall can be calculated using the ratio between the as- 

Fig. 6. Summary of the research process.
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built area of the state detected (framing, insulation, and drywall 
installation) on a given day with the physical wall area obtained from 3D 
construction models. Extraction of the area of the pixel masks is essential 
to map the relationship between the pixel areas of the detected ele
ments’ as-built state and the as-built area of the wall completed on a 
given date. The underlying idea is to present the indoor site images with 
their detected as-built state and their estimated work completion ratio. 
This relationship is mapped as shown in Equation (1) and Equation (2). 

Pd
Pw

=
Sd
Sw

Equation 1 

Sd=
Pd
Pw

∗ Sw Equation 2 

Where,

Pd = pixel mask area of the detected as-built state on a given date di 
(in pixels)
Pw = pixel mask area of the entire wall detected on a given date di (in 
pixels)
Sd = as-built area of the wall completed on a given date di (in m2)
Sw = physical wall area obtained from the construction models (in 
m2)

It can be discerned from Equation (1) that the pixel ratio (Pd
Pw) equals 

the work-in-progress completion ratio 
(

Sd
S w). To calculate the as-built 

area completion of drywall installed (Pd) in pixels, the area of the 
segmented mask of the drywall (D) is obtained in pixels. Hence, Pd = D. 
To calculate the pixel mask area of the entire wall, the area of the 
segmented mask of the drywall (D) and the area of the segmented mask 
of the insulation (I) are calculated. Therefore, Pw = D + I. This 

Fig. 7. The technical algorithm.
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relationship can be expressed in Equation (3) for further clarification. 

Area of the as − built region (drywall)
Area of the entire wall

=
Pd
Pw

=
D

D + I
Equation 3 

As per Equation (2) and Equation (3), the actual as-built area of the 
wall (Sd) on a given date can be calculated by multiplying the pixel ratio 
by the as-planned physical wall area (Sw). This data can be captured 
from the 3D construction drawings and models obtained from the 
building contractor. Equation (4) can be used for the physical area 
calculation. 

Physical area of the as − built region of the wall=
Pd
Pw

∗ Sw
(
m2)

Equation 4 

Based on the equations and the explanations above, the wall 
completion percentage as a ratio of the area of drywall installed to the 

area of the entire wall is shown in Fig. 9.
As per the image, the wall completion percentage as a ratio of the 

area of drywall installed to the area of the entire wall is 73.87% on April 
26, 2022. When deployed on Streamlit, project managers see a similar 
output image like the one in Fig. 9.

4.2. Performance evaluation of the proposed model

The base model (SGD + MultiStepLR + 0.02) achieved a mean 
average precision (mAP) of 86.72%. Further optimization with a 
learning rate of 0.00025 and the Adam optimizer (Adam + CosineLR +
0.00025) improved the mAP to 88.02%. This indicates that the opti
mized Mask R-CNN model effectively learns and recognizes features 
despite occlusions.

The training and validation losses were evaluated to determine the 
model’s object recognition accuracy. The base model (SGD + Multi
StepLR + 0.02) showed training and validation losses of 0.21. The model 
with SGD + CosineLR +0.00025 had a training loss of 0.21 and a vali
dation loss of 0.22. The best results were achieved with Adam + Cosi
neLR +0.00025, showing a training loss of 0.19 and a validation loss of 
0.20, along with the highest mAP, indicating it as the optimum Mask R- 
CNN model for the dataset. The comparison of these learning rates on 
mAP and loss are demonstrated in Fig. 10.

4.3. Deploying details of the mask R-CNN model

To deploy the deep learning model, initially the corresponding 
GitHub repository was created uploading the site images and the un
derlying Python code. Currently, this GitHub repository is not publicly 
available to be deployed to the Streamlit cloud. Therefore, the user 
interface of the deployed deep learning model was set up on the local 
machine. In terms of the user interface, the initial user interface, when 
someone opens the application for the first time is shown in Fig. 11a.

Fig. 8. Examples of indoor as-built state recognition using Mask R-CNN.

Fig. 9. Work completion percentage.
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The final user interface after the uploading of a site image and seg
mentation is completed is shown in Fig. 11b. The results are generated 
with the as-built state of the construction element and the work 
completion percentage. The application can upload the test image by the 
front-end code. The image is sent back to the server, and the model can 
make an inference and send back the inferred result to the front-end. 
Both the input and the output are in image format. For this model, 
JPEG images are preferred.

5. Discussion

The study presents an optimized Mask R-CNN deep learning model 
for recognizing the as-built states and calculating the work-in-progress 
of indoor construction elements. For the proof-of-concept purposes, 
the current study focuses on the progress monitoring scenario of 

Fig. 10. Comparison of mAP and loss with different learning rates.

Fig. 11. a) Initial interface; b) Final interface.
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framing, insulation, and installation of drywalls of indoor walls to train 
the Mask R-CNN model. This study also provides an understanding on 
the deployment process of a trained deep learning model, such as Mask 
R-CNN, on the Streamlit platform.

The proposed method for indoor construction progress monitoring 
leverages computer vision and deep learning to address the specific 
challenges identified in traditional and state-of-the-art monitoring ap
proaches. Traditional progress monitoring relies heavily on manual data 
collection, which is prone to subjectivity and errors (Wei et al., 2022; 
Golparvar-Fard et al., 2015). The proposed method automates the data 
collection process using time-lapse cameras to capture a comprehensive 
set of images, significantly reducing human intervention and the asso
ciated biases. Indoor environments pose specific challenges for com
puter vision, including occlusions, variable lighting, and clutter 
(Ekanayake et al., 2021b; Hamledari et al., 2017). The proposed method 
employs advanced preprocessing techniques such as perspective trans
formation, low illumination enhancement and photometric and geo
metric data augmentation, to enhance the robustness of the deep 
learning model against these issues. By using multiple cameras posi
tioned to capture different lighting conditions and angles, a compre
hensive coverage and accurate feature extraction was ensured.

On the training image dataset, the Mask R-CNN model (He et al., 
2017) was optimized to a mAP of 88.02%. through hyperparameters 
such as learning rate (0.00025) and CosineLR scheduler with Adam 
optimizer. This indicates that the optimized Mask R-CNN model effec
tively learns and recognizes features despite occlusions. In a previous 
indoor construction progress monitoring study, Wei et al. (2022)
explored the segmentation capabilities of deep learning for indoor 
work-in-progress calculation. However, they did not extend their 
methodology to demonstrate the calculation of the area of the 
segmented masks derived from the model. The present study addresses 
this gap. Wei et al. (2022), concentrated on brick laying and plastering 
with a model trained on a limited dataset of 500 images captured from 
the same site for both training and testing the model. Their approach 
increases susceptibility to overfitting. Comparatively, the present study 
has used a different progress monitoring scenario, which is the framing, 
insulation and drywall installation captured from two different case 
projects to train the Mask R-CNN model, which is then to be tested on a 
third case project. Training deep learning models requires significant 
computational resources (O’Mahony et al., 2019; Wang et al., 2021). For 
example, Wei et al. (2022) trained their Mask R-CNN model on a 
physical computer. The current study leverages the freely available 
Google Colab platform to provide the necessary computational power 
for model training, eliminating the need for extensive on-site hardware. 
This approach offers a cost-effective and efficient solution for virtuali
zation and model training (Carneiro et al., 2018; Ohkawara et al., 2021). 
While such a deep learning model can be easily executed on Google 
Colab by someone with a programming background, without the 
deployment, project managers, with non-programming background 
cannot access and employ such models (Khorasani et al., 2022). Based 
on the previous successful deployment of deep learning models on freely 
available Streamlit platform (Prapas et al., 2021; Shukla et al., 2021), 
the current study presents how the Mask R-CNN based progress moni
toring model could be deployed to the cloud or the local machine when 
the code and the dataset is uploaded to a GitHub Repository.

The deployment process of the model on the Streamlit platform of
fers an approach to a reliable and stable environment for executing and 
interacting with the deep learning or machine learning models as 
highlighted by Kreuzberger et al. (2023). Their study on machine 
learning operations provides a detailed framework that includes 
continuous integration, continuous deployment, and model monitoring 
for successful deployment of machine learning or deep learning models. 
It must be noted that the successful deployment of machine learning or 
deep learning models in construction project management significantly 
depends on user acceptance. Several factors influence this acceptance, 
including perceived usefulness, ease of use, and trust in the technology 

(Venkatesh et al., 2003). The Technology Acceptance Model suggests 
that for project managers to adopt these tools, they must perceive them 
as enhancing their efficiency and effectiveness without requiring 
extensive technical expertise (Venkatesh and Bala, 2008). Integrating 
machine learning or deep learning models with existing project man
agement workflows can be challenging, especially in industries like 
construction that have long relied on traditional methods (Hartmann 
et al., 2012). Ensuring compatibility and offering customizable solutions 
that can be tailored to specific project requirements can also enhance 
integration (Chauhan et al., 2020).

5.1. Theoretical contributions and practical implications

The research presented in this study makes several theoretical con
tributions to the field of project management and construction progress 
monitoring. By integrating an optimized Mask R-CNN model deployed 
on the Streamlit platform, this study advances the theoretical under
standing of digital tools, specifically deep learning and computer vision 
and how such advanced algorithms can be translated into practical ap
plications for the benefit of project management. The use of advanced 
deep learning techniques such as Mask R-CNN for recognizing as-built 
states and calculating work-in-progress in indoor construction envi
ronments extends and advances existing literature on computer vision 
applications in indoor construction (Hamledari et al., 2017; Kropp et al., 
2018; Deng et al., 2020; Wei et al., 2022; Wong et al., 2024). The 
methodology adopted in this study demonstrates how the principles of 
the DSR framework are applied throughout the study. By iterating 
through the relevance, rigor, design, and change and impact cycles 
(Drechsler and Hevner, 2016), the research contributes to the theoret
ical discourse on developing a technology-based artefact for addressing 
a construction project management related problem.

This study also provides an understanding on the deployment pro
cess of a deep learning model for the construction project managers 
aiming to improve efficiency and accuracy in progress monitoring. By 
demonstrating the automation potential of the indoor construction 
progress monitoring process with the Mask R-CNN model, that can be 
deployed on the Streamlit platform, this study offers a promising tool 
that can significantly reduce the reliance on manual data collection and 
subjective assessments. This type of automation underscores the 
importance of real-time data, enabling project managers to make 
informed decisions and minimize human error in progress assessments, 
which are vital for identifying and mitigating delays and cost overruns 
(Golparvar-Fard et al., 2015; Zhang et al., 2009). However, it is worth 
noting that this study does not claim to address all practical challenges 
in construction project progress monitoring comprehensively.

6. Conclusions and future directions

This study applied computer vision and deep learning for automated 
visual recognition and work-in-progress calculation of as-built con
struction elements, utilizing an optimized Mask R-CNN model with a 
deployment process on the Streamlit platform for indoor construction 
progress monitoring. The research presented makes significant contri
butions to both the theoretical framework and practical applications 
within project management, particularly through the lens of digital 
innovation in construction progress monitoring. With digital tools like 
the one proposed in this study, project managers can shift focus to 
leadership and strategic responsibilities rather than labour-intensive 
tasks. While transitioning tasks such as progress monitoring to digital 
platforms offers long-term cost and time savings, it involves an initial 
learning curve and upfront investment. The societal and leadership 
challenges introduced as a result of digital transition must also be 
addressed. From a societal perspective, upskilling the digital literacy of 
the workforce is crucial. Protecting sensitive information of the project 
with the increased use of digital cameras for data collection, algorithms 
for data analysis, and cloud platforms for data storage is also of 
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paramount importance. From a leadership perspective, project man
agers must be adaptive to change, ensure ethical use of digital tools, and 
facilitate fair access to these tools through a culture of innovation and 
collaboration.

Despite the contributions of this study, certain limitations need to be 
acknowledged for improvements in the future studies. The Mask R-CNN 
model was trained on data collected from two indoor sites and tested on 
a third site. This methodological choice ensures that the model’s per
formance is tested in a completely new environment. However, the 
generalizability could be improved by testing on more indoor sites and 
different progress monitoring scenarios in future studies. For the 
continuous improvement of the Mask R-CNN model and the Streamlit- 
based platform, future studies should incorporate qualitative research 
that gathers project managers’ feedback on the usability of this 
approach. Understanding the factors that influence successful useability 
through qualitative feedback can provide valuable insights for 
enhancing the model and platform to better meet the needs of end users 
such as construction project managers.
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