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Abstract

We describe the use of a kernel-based approach us-
ing the Laplacian matrix to visualize an integrated
Chronic Fatigue Syndrome dataset comprising symp-
tom and fatigue questionnaire and patient classifica-
tion data, complete blood evaluation data and pa-
tient gene expression profiles. We present visualiza-
tions of the individual and integrated datasets with
the linear and Gaussian kernel functions. An effi-
cient approach inspired by computational linguistics
for constructing a linear kernel matrix for the gene
expression data is described. Visualizations of the
questionnaire data show a cluster of non—fatigued in-
dividuals distinct from those suffering from Chronic
Fatigue Syndrome that supports the fact that diag-
nosis is generally made using this kind of data. Clus-
ters unrelated to patient classes were found in the
gene expression data. Structure from the gene expres-
sion dataset dominated visualizations of integrated
datasets that included gene expression data.
Keywords: kernel-based visualization, Laplacian ma-
trix, data integration, biomedical datasets.

1 Introduction

Chronic Fatigue Syndrome (CFS) (Afari & Buchwald
2003) is an illness with a primary symptom of de-
bilitating fatigue over a six month period. Cur-
rently diagnosis of CFS is generally made by clini-
cal assessment of symptoms using a number of ques-
tionnaires or surveys measuring functional impair-
ment, quantifiable measurements of fatigue and oc-
currence, duration and severity of the symptoms
(Reeves et al. 2005). One goal of current research is
to derive a definition of the syndrome, which goes be-
yond a clinical assessment of symptoms to an empir-
ical diagnosis founded on measurements such a gene
expression profiles. The motivation for this kind of re-
search is to gain a clearer understanding of the illness
and to find empirical guidelines for its diagnosis.

The question we examine in this paper is whether
data visualization methods, specifically a method
based on the eigenvectors of the Laplacian matrix
(Shawe-Taylor & Cristianini 2004), can be used to
discover patterns in biomedical datasets associated
with CFS patients. Also, because there are several
datasets from different sources, we are interested in
creating integrated datasets and visualizing the com-
bined data.
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In the biomedical domain it is commonplace for
data to be generated by high-throughput technol-
ogy. Ome example is microarray technology (Baldi
& Hatfield 2002) which generates gene expression
profiles that simultaneously measure the level of ex-
pression of thousands of genes in biological samples.
In general, biomedical datasets derived from high—
throughput technology are described by a small num-
ber of samples (patients) and a large number of fea-
tures or attributes (i.e. genes) per sample. This re-
sults in what is often referred to the ‘curse of di-
mensionality’ which makes building classifiers trou-
blesome. For analysis of this type of data, algorithms
are often applied to select features from the data to re-
duce its dimensionality. As a first step towards work-
ing to building classifiers for this kind of data, we
initially just visualize it and look for patterns in the
dataset.

In our case the data is represented by different
datasets and kinds of measurements including ques-
tionnaires, complete blood evaluations and gene ex-
pression data so we also create integrated datasets by
combining the individual datasets.

We apply a kernel based method to visualize
the individual and combined datasets. The method
(Shawe-Taylor & Cristianini 2004) we use is similar to
kernel PCA (kPCA). Kernel PCA is kernel-based ex-
tension of the well known Principal Component Anal-
ysis (PCA) algorithm (Haykin 1999) and is used to
reduce the dimensionality of datasets in a principled
way. PCA forms a new dataset where each attribute
is a linear combination of attributes from the original
dataset. When the dataset is reduced to two or three
dimensions it can be graphed and this allows PCA
and kPCA to be used to visualize the data. Kernel
PCA differs from PCA in that the data is transformed
using a kernel function before the new attributes are
derived. The benefit of doing this is that the at-
tributes are not limited to being linear combinations
of the original attributes and can therefore “see” non-
linear relationships in the original data. Also, using
a kernel function allows visualization of non—vectorial
data. We use a method based on kPCA but it differs
in that whilst kPCA uses eigenvectors of the kernel
matrix, the method we employ uses eigenvectors of
a slightly different matrix: the Laplacian matrix. A
similar approach to clustering of text with Laplacian
matrices in done in (Li, Ng & Lim 2004). That ap-
proach, however, did not apply kernel functions to the
data.

In section 2 we describe the datasets used for this
study and the preprocessing steps applied to the data.
Next, in section 3 we describe in detail the data min-
ing and visualization approach used to identify po-
tential patterns in the CFS datasets. In section 4 we
present and results of applying the kernel based vi-
sualization method to the datasets. In section 5 we
discuss these results and describe future directions for
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the research. Finally, in section 6 we summarize the
paper.

2 Data

In this section we describe in detail the datasets used
and the preprocessing steps applied.

We used publicly available data generated as the
2006 Critical Assessment of Microarray Data Anal-
ysis (CAMDA 2006) competition datasets (CDC
Chronic Fatigue Syndrome Research Group 2005).
The data consists of separate datasets for patients
linked by a patient identifier (“ABTID”). There were
datasets with (i) survey results from fatigue and
symptom questionnaires; (ii) complete blood evalu-
ations; (iii) gene expression profiles; (iv) single nu-
cleotide polymorphism (SNP) data; and (v) pro-
teomics data.

The sources of data used in this study are sig-
nificant because they cover the full biological spec-
trum from genotype through to phenotype. That is,
ranging from data concerning genes through to data
about their expression in the body in the form of pro-
teins. The researchers who generated the data for the
CAMDA competition hypothesize that the gene ex-
pression profile data will allow identification of “prog-
nostic indicators” or biomarkers for diagnosis of CFS
(National Center for Infectious Diseases 2005). As
mentioned above, CFS is currently diagnosed using
symptom questionnaires, so identification of biomark-
ers is potentially very significant. The analysis in this
paper explores this hypothesis.

The SNP and proteomics datasets were not ana-
lyzed in this study. Analysis of the SNP and pro-
teomics data is straightforward with our methods but
will be analyzed in future studies. The SNP and pro-
teomics data will not be mentioned further in this
paper.

Data was integrated between the three datasets
used in the study simply by linking of records us-
ing the patient identifier i.e. ABTID. Not all patients
have data in each of these datasets. In cases where
data was not available across the integrated dataset
(e.g. when linking the gene expression and blood work
datasets) we omitted the patients affected. This was
acceptable in our situation because, as individuals in
the gene expression data are a subset of patients in
the clinical datasets, there was considerable overlap
between the datasets and not many patients were lost.

Patients were classified into a number of cate-
gories which we grouped into three different classes:
(i) those classified by physicians as suffering from
Chronic Fatigue Syndrome (CFS); (ii) those classi-
fied as suffering from symptoms associated with CFS
but with insufficient severity to be classified as CFS
(IFS); and (iii) non fatigued individuals (NF).

In the following subsections we describe each
dataset in more detail.

2.0.1 Clinical Datasets: Illness Classification
and Complete Blood Work

The clinical data comprised two datasets: (i) an Ill-
ness Classification and Symptoms dataset consist-
ing of information about patient symptoms and fa-
tigue and (ii) evaluation of blood samples taken from
patients. Each individual indicated with a patient
identifier (“ABTID”) has a record in both of these
datasets. There were 139 CFS/ISF patients and 73
NF individuals.

The “Illness Classification SF36 MFI and Symp-
toms” (illness) dataset is generated based on sur-
vey results for the above mentioned patients (CDC
Chronic Fatigue Syndrome Research Group 2005).

The dataset includes (i) attributes that describe the
general information of the patient like sex, date of
birth, race, and ethnicity; (ii) the Medical Outcomes
Survey Short Form-36 (SF-36) (Ware & Sherbourne
1992), as a measurement criteria for functional im-
pairment, such as physical function, role emotional,
and mental health; (iii) Multidimensional Fatigue In-
ventory (MFI) (Smets, Garssen, Bonke & DeHaes
1995), to obtain reproducible quantifiable measures
of fatigue including “General Fatigue”, “Physical Fa-
tigue”, “Active Reduction” and “Mental Fatigue”;
and (iv) the CDC Symptom Inventory (Wagner,
Nisenbaum, Heim, Jones, Unger & Reeves 2005) to
document the occurrence, duration and severity of the
symptom complex including attributes such as “Sore
Throat”, “Tender Nodes”, “Muscle Pain, and De-
pression”. The “Complete Blood Evaluation” dataset
(blood) contained measurements of components of in-
dividual’s blood as well as flags for when these mea-
sures were out of normal range.

2.0.2 Gene Expression Datasets

Microarray technology allows the high throughput
analysis of global gene expression within a biolog-
ical specimen. Gene expression measurements are
made simultaneously for many thousands of genes.
The gene expression profile of diseased cells may re-
flect the unique genetic alterations present and has
been shown to be predictive of clinical and biologi-
cal characteristics of illness for many diseases (Baldi
& Hatfield 2002). A major issue in these data is
the unreliable variance estimation, complicated by
the intensity—dependent technology—specific variance
(Weng, Dai, Zhan, He, Stepaniants & Bassett 2006).
Below we describe our approach to normalizing this
data. The gene expression profiles used in this study
measured the level of expression of genes in blood
samples from patients.

Data collected was for a subset of individuals: 118
CFS/ISF patients and 53 NF individuals. Generally
there is one gene expression profile for each of these
patients. A few individuals had more than one sam-
ple. The gene expression profile for a sample contains
data for around ten thousand genes and data for each
gene comprised around 15 attributes.

2.0.3 Preprocessing of the Clinical datasets

Most of the attributes in the questionnaire and blood
evaluation datasets were used without much prepro-
cessing.

Some attributes of the “illness” dataset, the clin-
ical dataset containing the patient’s answers to the
illness questionnaires, are omitted because they are
(i) skewed with almost all individuals having the same
attribute value, (ii) not deemed useful for the data
mining effort, or (iii) are calculated by the original re-
searchers and would bias our efforts. The attributes
concerned are “DOB”, “intake classific”, “cluster”,
“onset”, “yrs ill”, “race” and “ethnic”. The depen-
dent variable “Empiric” is used as the patient class
and patient subtypes are combined to make three
classes CFS, ISF and NF.

In the blood evaluation dataset, we add a copy of
the “Empiric” attribute so that the dataset has the
patient class.

All attributes of the clinical datasets apart from
the patient class “Empiric” were converted to numeric
values as the kernel visualisation method employed re-
quires strictly numeric data. Binary attributes were
converted to -1 and +1 for “false” and “true” respec-
tively. Similarly, in the questionnaire dataset, cate-
gorical data values such as “mild”, “moderate” and
“severe” were coded to 1, 2 and 3 respectively.



Missing values were universally converted to 0.
This is consistent with the coding scheme used for
binary and categorical attributes. Coding of missing
values to 0 is appropriate for kernel based schemes
because the value 0 does not adversely effect the dot
products used to build kernels. Missing values were
very infrequent in the dataset and we believe that this
simple approach to dealing with them is effective.

Data items in both clinical datasets were centred
by subtracting the mean and attributes were normal-
ized.

2.0.4 Preprocessing of the Gene Expression
data

Data for each gene comprised a spot label (the name
of the gene) and several measurements describing the
level of expression of the gene as well as quality con-
trol indications of the expression measurement. We
extracted the “Spot labels”, “ARM Dens — Levels”,
“MAD — Levels” and “SD — Levels” fields. We dis-
carded the other fields. The three statistical mea-
sures of gene expression are normalized over all arrays
(samples) and patients by multiplying values with the
average value of every gene over all arrays divided by
the average value of every gene over the individual
array.

Data for each sample was in a separate text file
with filename indicative of the identifier of the patient
sampled. The data for all samples was concatenated
into a single gene expression file and with the patient
identifier as the initial field. Additionally, the patient
class “Empiric” was associated with the gene expres-
sion data through linking with the patient identifier
although it was not added as an attribute to the large
concatenated file.

3 Approach

The approach we have used is to visualize patients in
the datasets with a kernel-based visualization method
and to look for interesting features in the visualiza-
tion. As shown in Fig. 1, we visualize each of the
datasets (i.e. illness, blood and gene expression) in
isolation, in integrated pairs (i.e. illness and blood,
illness and gene, and blood and gene) and finally the
integrated triplet.

As we mentioned above, the integration between
datasets is done using the patient identifier. The pa-
tient class (CFS, ISF or NF) is excluded from the at-
tributes used in the visualization because this is what
we want to see in the visualization. However, each pa-
tient class is plotted with a different symbol and color
in the visualization. If patients of the same class are
grouped together in a visualization, this lends sup-
port to the claim that there is a relationship in the
dataset. This potential relationship can be investi-
gated in future work.

3.1 Kernel-based Visualization Approach

The approach we use is related to the kernel-based
extension to Principal Component Analysis (PCA)
(Haykin 1999). Principal Component Analysis is a
well established method that transforms a dataset
into a different coordinate system. The transforma-
tion is essentially a rotation of the dataset. The co-
ordinates of the transformed dataset (called princi-
pal components) are orthogonal linear combinations
of the original coordinates. The principal components
are ordered in descending order by the amount of vari-
ance they explain in the data. Often much of the vari-
ance in the dataset can be explained by many fewer
coordinates than in the original dataset (e.g. less than
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Figure 1: Approach used to visualize the individual
and integrated CFS datasets.

ten). This fact means that PCA is often used for com-
pression of data or feature selection. It also facilitates
visualization of datasets by plotting the first two or
three principal components of the dataset. However,
as principal components are linear combinations of
the original dataset, PCA has the limitation that it
can only model linear relationships in the data.

There have been several approaches to extending
PCA to handle nonlinear relationships. One approach
is kernel PCA (kPCA) ((Miiller, Mika, Rétsch, Tsuda
& Scholkopf 2001), (Haykin 1999) or (Shawe-Taylor
& Cristianini 2004)) which transforms the dataset X
into a feature space using a kernel function x before
the PCA is done. Kernel PCA returns the princi-
pal components of data items in the feature space. It
takes as input a Gram kernel matrix K which is a rep-
resentation of the original dataset transformed with
the kernel function. Each element K;; of the kernel
matrix is defined as

Kij = ki, 25) = ((xi), () (1)

where z; and x; are the data items, ¢(z;) is the trans-
formation of x; into the “feature” space and (-,-) is
the dot product operator. Generally it is not neces-
sary to compute ¢(z;) explicitly. Instead, K is com-
puted directly from the dataset. This is called the
“kernel trick” and it means that the feature space
can be very large without making generation of K in-
efficient. It also means that non—vectorial data types
can be handled using special kernels such as string
kernels (e.g. (Leslie, Kuang & Eskin 2004)).

Two commonly used kernel functions are the linear
kernel and the Gaussian kernel. The linear kernel is

defined as
(T, 25) = (24, 25) (2)

and is simply the dot product of the two data items.
The Gaussian kernel explicitly considers the distance
between data items and is defined as

K(xi, ;) = exp (—M> (3)

202

where o is a control parameter.
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Finding the principal components in kPCA
amounts to deriving the eigenvalues and eigenvectors
of the kernel matrix K. Shawe—Taylor and Cristian-
ini describe another technique in (2004) that they say
more explicitly controls the correlation between the
points in the original and feature spaces. The tech-
nique is essentially the same as kPCA except that
it uses (non-zero) eigenvalues and matching eigen-
vectors of the Laplacian matrix L(K) of the kernel
matrix instead of the kernel matrix. The Laplacian
matrix is defined as

L(K)=D-K (4)

where D is the diagonal matrix with entries

l
D; =) Kj (5)
j=1

where [ is the size of the kernel matrix.

In this study, we employ this last method using the
Laplacian matrix to identify the first three principal
components of datasets for visualization. We examine
the data using both the linear kernel in (2) and the
Gaussian kernel in (3).

3.2 Applying Kernel-based Visualization to
the CFS data

Application of the kernel-based visualization scheme
to our datasets was, in general, fairly straightforward.
As described above, the method requires a kernel ma-
trix representing the dataset to be visualized.

We used the linear kernel and the Gaussian ker-
nel to make kernel matrices for the clinical datasets
(illness and blood) both individually and in the inte-
grated pair. Due to its large size, application of a ker-
nel function to the gene expression dataset required
a special approach similar to that used in computa-
tional linguistics.

Each row of the gene expression dataset represents
an individual gene measurement for a particular mi-
croarray (for each patient). The straightforward ap-
proach of calculating the linear kernel matrix is to
concatenate the rows of the gene expression dataset
into a matrix consisting of one row for each array with
a set of attribute values for each spot label (“ARM
Dens - Levels”, “MAD - Levels” and “SD - Levels”)
then to calculate the linear kernel by multiplying the
matrix with its transpose.

Clearly this approach is impractical in our situ-
ation because of the large number of genes on each
of the arrays. A more efficient approach, motivated
by computational linguistics (see, for example, the
description of generating the vector—space kernel in
(Shawe-Taylor & Cristianini 2004)), for direct com-
putation of the linear kernel matrix from the gene
expression data is more appropriate.

The kernel value for two samples (i.e. microarrays
is calculated from sorted lists of genes (spot labels
associated with each array. The kernel value is calcu-
lated as the sum of the product of the attribute values
for genes matching in both lists.

Computation of the linear kernel for the integrated
datasets (of gene expression combined with illness
and/or blood) is trivial. The linear kernel for the in-
tegrated dataset is simply the sum of the linear kernel
matrices for the individual datasets.

Unfortunately this simple method of computing
the linear kernel for the integrated datasets does not
apply for the Gaussian kernel. In this case it is nec-
essary to have the entire data vector. Since we never
compute the data vector for the gene expression data

(it is too large), we are unable to easily use the Gaus-
sian kernel for the gene expression dataset or any inte-
grated dataset containing the gene expression dataset.

4 Results

4.1 Visualization of individual datasets

We visualise each dataset individually. Figure 2 shows
visualizations of the illness dataset. That is, the
dataset containing patient’s answers to the fatigue
and symptom questionnaires. Figure 2a shows a vi-
sualization of the dataset with the linear kernel and
Fig. 2b shows a visualization with the Gaussian ker-
nel. The o parameter of the Gaussian kernel was set
to 100 in this case. We examined other settings for
this parameter, but the value 100 gave the clearest
images. As can be seen clearly in both figures, the
NF individuals cluster together on the left hand side,
with the ISF in the middle and the CFS patients on
the right. These pleasing results are expected, as the
data in this dataset is used to make the patient classi-
fications. For the illness dataset, there is not a great
deal of difference between the visualization with the
linear kernel and with the Gaussian kernel.

We investigated some of the patients marked as
ISF that clustered with the NF individuals on the
left. Patients in the dataset are actually classified
with two different schemes. When we examine some
of the patients that appeared to cluster incorrectly,
they are classified correctly using the other scheme.

Figure 3 shows a visualization with the linear ker-
nel of the complete blood evaluation dataset. In
Fig. 4 we present visualizations of the same dataset
using the Gaussian kernel. As with the illness dataset
above, we tried different values for the o parameter
of the Gaussian kernel but found that the value of
100 produced the best images. Fig. 4a plots the first
two principal components of the projection of the
data in feature space and Fig. 4b shows the three—
dimensional view. In both the linear and Gaussian vi-
sualizations of the complete blood evaluation dataset
there are no clear groupings of patient classes into dis-
tinct or separable regions. This suggests to us that
there are no simple “biomarkers” in the blood eval-
uation dataset associated with CFS. In Fig. 4a there
are some small groupings of CF patients particularly
five clustered in the center of the diagram that may
warrant further investigation.

Finally, in Fig. 5 we present visualizations using
the linear kernel for the gene expression dataset. Fig-
ure 5a shows the two—dimensional plot with the first
two principal components and Fig. 5b gives the three—
dimensional view. Three fairly distinct clusters of
patients can be seen. However, these are not natu-
rally associated with the classes of patient, although
the top right grouping in Fig. 5a contains the least
number of CF patients compared the NF individuals.
The same clusters are visible in the three-dimensional
plot. Although not clearly shown in the diagram
(Fig. 5b), these clusters are mostly embedded in a
plane with only a few data points extending further
along the pc3 axis. Although the clusters do not
seem to be associated with the classes of patient, it
would be interesting to further investigate relation-
ships within the clusters.

4.2 Visualization of Integrated datasets

In this section we investigate patterns in the in-
tegrated datasets. First we look at the pairs of
datasets. Then we examine the combination of all
three datasets. We visualise the integrated datasets
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ISF patients and B = CF patients.
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Figure 3: Kernel visualization of the complete blood
evaluation dataset using the linear kernel. Axes are
the first three principal components. + = NF indi-
viduals, [0 = ISF patients and l = CF patients.

with only the linear kernel rather than both the lin-
ear and Gaussian kernel functions because (i) the use
of the Gaussian kernel function did not add much to
the visualizations in the previous section and (ii) be-
cause the Gaussian kernel was not applied to the gene
expression dataset for the reasons described above.
Figure 6 shows visualizations of the integrated ill-
ness and blood evaluation datasets. As before, the
visualization on the left (Fig. 6a) shows the two—
dimensional view and on the right (Fig. 6b) the
three dimensional view. It is interesting to compare
these images with the visualizations for the individ-
ual datasets to see the effect of integrating the data
(i.e. with Fig. 2a and Fig. 3). Recall that the NF
individuals were tightly clustered in the visualization

of the illness dataset but not in the blood evaluation
dataset. In the integrated dataset the visualization
shows the NF patients again clustered. However, in-
stead of the compact clustering of the illness dataset,
the NF individuals are now clustered in a line. In
the three—dimensional visualization most of the data
points are on the surface of a sphere and the NF in-
dividuals appear as line of “longitude”.

Next we integrate the blood and gene expression
datasets and visualise with the linear kernel function
in Fig. 7. Comparing with the graphs of the individ-
ual datasets in Figures 3 and 5 it can be seen that
the structure of the gene expression dataset domi-
nates. The diagram of Fig. 7a seems to be the re-
flection across the horizontal of Fig. ba. Similarly,
the visualization of the integrated illness and gene
expression datasets in Fig. 8 are essentially the same
with the structure completely controlled by the gene
expression dataset. We speculate that the reason that
the gene expression dataset dominates the structure
is that it contains many more attributes than either
the illness or blood evaluation datasets.

Finally, in Fig. 9 we present the linear kernel visu-
alization of the integrated triplet of datasets. Again,
the situation is the same as above and the gene ex-
pression dataset dominates the visualization. There
are again three fairly distinct clusters that are not
naturally associated with the patient classes.

5 Discussion and Future Work

The kernel-based visualization approach allows us to
integrate datasets in a straightforward way, particu-
larly if we are content to limit ourselves to the linear
kernel. This limitation, at least in the context of our
study, does not seem to be onerous because the differ-
ences between visualizations of the individual blood
and illness datasets with the linear and Gaussian ker-
nel functions seemed to be relatively unimportant.
Being able to visualise integrated datasets in this
way supports a “constructionist” approach to data
analysis where we look for “global” patterns in the
integrated dataset. The opposite method, a “reduc-
tionist” approach, looks for “local” patterns over sub-
sets of attributes in individual datasets. An example
of the latter approach in the context of this paper is
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Figure 4: Kernel visualizations of complete blood evaluation dataset using the Gaussian kernel with o = 100.
a) Axes are the first two principal components. b) Three—dimensional visualization. + = NF individuals, O =

ISF patients and B = CF patients.

the search for small sets of genes indicative of CFS.
We do not necessarily advocate a “constructionist”
approach over “reductionist” ones. Rather, it is bet-
ter to apply both approaches which look at different
ends of the problem. A combined approach would
identify global patterns, which can be used to focus
the search effort for local patterns.

It was heartening that the kernel-based visualiza-
tion was able to distinguish patterns in the illness
data as this data was used to make the CFS diagno-
sis. Visualizations of the other datasets did not show
such clear patterns. However, the three clusters in
the datasets containing gene expression data warrant
further scrutiny.

The kernel-based visualization technique is a gen-
eral purpose approach and can be applied to other
biomedical datasets. Indeed we intend to examine
the domain of acute lymphoblastic leukaemia next.
Previous work exists linking the cancer to genes so
we expect to see clear clusters in this domain.

Use of specialized kernels with the technique allows
visualization of non—vectorial data. We essentially
used this kind of approach to efficiently build a linear
kernel for the gene expression data in Section 3.2.

We are also interested in the issue of the structure
from the gene expression dataset dominating over the
other datasets. It is important to understand why
this is the case: is it the result of the structure of the
integrated dataset or is it due to the relative num-
bers of attributes in the individual datasets? This
question must be addressed before there can be more
widespread use of the technique for visualization of
integrated datasets. We think that the issue here is
indeed the large discrepancy between the numbers of
gene expression attributes compared to the number of
clinical attributes. Any method, such as the one we
use, that treats attributes as equally important, will
be dominated by the dataset with the larger number
of attributes. One approach we plan to use to over-
come this problem is to apply feature selection on the
datasets before the data integration and visualisation.
This feature selection will even up the relative num-
bers of attributes in the different datasets.

The linear kernel used in this study is able only to
identify linear relationships in the data. Use of other
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kernels (such as the polynomial or Gaussian kernels)
allows visualization of nonlinear relationships. In this
work we were restricted to use of the linear kernel be-
cause of the size of the gene expression data. Efficient
calculation of other kernels for the gene expression
data is another area of future investigation.

6 Conclusion

This study describes the use of a kernel-based ap-
proach using the Laplacian matrix to visualise an
integrated Chronic Fatigue Syndrome dataset with
symptom and fatigue questionnaire and patient clas-
sification data, complete blood evaluation data and
patient gene expression profiles. Visualizations were
produced for individual and integrated datasets with
linear and Gaussian kernel functions. We described
an efficient approach to constructing a linear kernel
matrix for the gene expression data. The visualiza-
tions of the questionnaire data showed a cluster of
non—fatigued individuals distinct from those suffering
from Chronic Fatigue Syndrome. This observation
supports the fact that diagnosis is generally made us-
ing this kind of data. The method was unable to find
clusters in the other datasets that related to patient
classes, although three distinct clusters were found in
the gene expression data. Structure from the gene
expression dataset dominated visualizations of inte-
grated datasets that included gene expression data.
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Figure 9: Kernel visualization of integrated blood, illness and gene expression datasets with the linear kernel.
a) Two dimensional visualization with axes being the first two principal components. b) Three-dimensional
visualization. + = NF individuals, O = ISF patients and B = CF patients.
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