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1 Introduction

The Difference-in-Differences (DiD) literature, particularly the one concerned with stag-

gered treatment adoption, has experienced significant advances in the last few years, and

papers by Roth et al. [2023] and de Chaisemartin and D’Haultfœuille [2021] have sum-

marized these developments. Within this array of advances, one area still understudied is

the one linked to spillovers—implying that the Stable Unit Treatment Value Assumption

(SUTVA) assumption does not hold. However, as Roth et al. [2023] point out, spillover

effects may be important in many economic applications, such as when a policy in one

area affects neighboring areas, or when individuals are connected in a network.1 Our

work contributes to this area and links two active DiD literature strands.

The first focuses on estimation issues under staggered adoption and heterogeneous

treatment effects across units and time. Borusyak et al. [2024], de Chaisemartin and

D’Haultfoeuille [2020], Callaway and Sant’Anna [2020], Goodman-Bacon [2021], Sun and

Abraham [2020], and Wooldridge [2022] highlight that the two-way fixed effect (TWFE)

regression estimator may be biased for the average treatment effect on the treated (ATT),

to the extreme of showing the opposite sign. The authors suggest alternative estimators

that account for the variation in treatment timing, thereby providing a consistent estima-

tor for the ATT. We contribute to this literature by extending it to the case of spillovers

in both linear and non-linear models.

The second strand studies the identification of average treatment effects in the pres-

ence of spillovers. Berg et al. [2021], Butts [2023], Clarke [2017], and Huber and Steinmayr

[2021] highlight two main challenges for identification of the ATT if the treatment also

impacts units that are not formally treated.2 First, untreated units are no longer valid

controls. So far, proposed solutions mostly centre around ruling out spillovers for a given

group of units, often based on some spatial or social network distance, allowing the re-

searcher to use this latter group as a control. This structure is sometimes defined as

partial interference. Alternatively, if sufficient information exists, one can parametrize

how units are exposed to spillovers. Second, multiple definitions of the ATT are possible

in the presence of spillovers. This is because a unit’s treatment can lead to changes to

its own outcome, but also to other units’ outcomes. In this case, the researcher might be

interested in examining the former effect, summarized by the ATT without interference

(i.e., the one identified under SUTVA), or in a broader definition of the ATT that also ac-

counts for the latter effect. Here, we contribute to this literature by providing conditions

1As another example, Minton and Mulligan [2024] use price theory to demonstrate that when treated
and control units are in the same market, control units are indirectly affected by the treatment.

2Less close, but still related, is the literature that studies the role of spillovers in randomized controlled
trials, see Sävje et al. [2021], Vazquez-Bare [2023], Han et al. [2024].
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that allow for the identification of the ATT without interference, despite the presence

of spillovers. Our setting also departs from this literature since we focus on the more

complex staggered treatment adoption, which has the potential for cumulative spillovers.

Nevertheless, our results also apply to the simpler simultaneous treatment case.

Specifically regarding contributions, we first establish the identifying assumptions for

the ATT without interference given a staggered DiD setting in the presence of spillovers.

We show that aside from the canonical i) treatment irreversibility, ii) no-anticipation, and

iii) parallel trends assumption, identification requires that once a unit receives treatment,

it is no longer influenced by spillover effects. This means the unit forfeits any spillovers

it may have previously received and remains unaffected by spillovers from subsequently

treated groups. This assumption also unifies the multiple definitions of the ATT, because

they are the same with or without spillovers, simplifying policy evaluation and joining

with the definition of ATT under SUTVA. We also assume that a set of never-treated

units is not exposed to spillovers, in line with the existing literature. The combination

of these assumptions allows for the identification of the ATT. Below, we argue that such

a scenario applies to many contexts. Differently from Butts [2023], who is closest to our

work, we directly focus on the staggered treatment scenario and, importantly, provide

assumptions for the identification of the ATT without interference.3

Our second contribution regards estimation. We show that the extended TWFEmodel

approach of Wooldridge [2022], which is numerically equivalent to the imputation-based

approach of Borusyak et al. [2024], can be used to account for spillovers. Furthermore,

we discuss identification and estimation in the non-linear case of count data, broaden-

ing the range of applications to which our approach can be applied, since the parallel

trends assumption is sensitive to the functional form (Roth and Sant’Anna [2023]). For

our empirical application, we revisit Gonzalez-Navarro [2013], who studied the effects of

installing a stolen vehicle recovery device on car theft. Since car theft is a count variable,

we implement the non-linear Poisson DiD adjusted for spillovers. Our correction leads to

a larger effect of the policy relative to the original contribution’s specification.

Finally, we perform a Monte Carlo analysis, highlighting the bias-variance trade-off

implicit in the correction for staggered treatment and spillovers. Identification of time

and group fixed effects can neither rely on the already treated units due to heterogeneous

treatment effects, nor on the untreated units potentially exposed to spillovers. However,

the benefit of excluding such units from estimation can be small if treatment effects are

relatively homogeneous and if spillovers are small, while costing the researcher precision.

We compare the traditional TWFE estimator, which ignores both staggered adoption and

spillovers, the Wooldridge [2022] estimator, which accounts for staggered adoption but

3Butts [2023] is concerned with establishing identification of the sum of direct and spillover effects.
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not for spillovers, and our estimator, which corrects for both. We do so under different

sample sizes, degrees of staggered treatment, and degrees of spillovers, showing that our

estimator performs competitively in many settings.

The remainder of the paper is organized as follows. Section 2 provides intuition along-

side two motivating examples, after which Section 3 lays out the formal DiD setup with

staggered treatment adoption. Section 4 establishes conditions for identifying the ATT,

while Section 5 discusses estimation and inference considering the formerly established

assumptions. Section 6 extends our model to the non-linear case, and Section 7 discusses

a corresponding application. Section 8 provides Monte Carlo simulations, and Section 9

concludes.

2 Intuition and Motivating Examples

To illustrate our setting, consider panel data of units divided into three groups, A, B,

and Z, observed over three periods, 1, 2, and 3. The timing of their respective treatment

distinguishes these groups. Group A is treated in periods 2 and 3, group B in period 3, and

group Z remains untreated. Each group consists of two units, denoted by a, a′, b, b′, z, z′.

We use the indices i and j to refer to any unit within these groups. Figure 1 illustrates

the potential treatment and spillover mechanisms in this setting, focusing on periods 2

and 3. Solid lines indicate treatment effects under no interference (βit), equivalent to

the conventional definition of the treatment effect under SUTVA. We call them direct

effects. Dotted lines indicate spillovers from a treated unit j to a treated unit i (γj
it),

and dashed ones represent spillovers from a treated unit j to an untreated unit i (ηjit).

The figure highlights a key challenge introduced by the presence of spillovers: there are

no valid control units. Under SUTVA, only the direct effects represented by solid lines

would exist.

We can visualize possible data patterns in this setting using a simple parametric

model. Suppose that the outcome of interest is deterministic and given by:

Yit = 1 + δt + βit ·Dit +Dit ·
∑
j ̸=i

γj
it ·Djt + (1−Dit) ·

∑
j ̸=i

ηjit ·Djt, (1)

where Dit is a binary variable equal to 1 when unit i is treated. Equation (1) illustrates a

scenario where unit i’s outcome is not only influenced by its own treatment, represented

by βit, but also by the treatments of other units, as captured by γj
it and ηjit. Assuming

that the treatment effect in the absence of interference is homogeneous across units and

time, we set βit = −0.5 for all i and t, in which case the ATT without interference equals

to −0.5. We also assume that the time effect is given by δt = 0.1 · (t− 1).
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Figure 1: Illustration of the potential treatment and spillover paths

The left panel in Figure 2 illustrates a data pattern in scenarios without a spillover

effect. Estimators that account for staggered adoption and heterogeneous treatment

effects typically utilize the observations from the never-treated group Z and the not-yet-

treated observations in group B at time 2 as the control group. These observations are

used to estimate the time trend and are contrasted with treated observations to estimate

the ATT without interference. For example, Wooldridge [2022] proposes the following

variant of the TWFE regression model. Let Gi be the group membership of unit i, with

Ga = Ga′ = A, Gb = Gb′ = B, and Gz = Gz′ = Z. The model is given by:

Yit = αi + δt + βA2 · 1(Gi = A, t = 2)

+ βA3 · 1(Gi = A, t = 3)

+ βB3 · 1(Gi = B, t = 3) + εit,

(2)

where, abusing notation, (βA2, βA3, βB3) are coefficients on group-period indicators, and

αi, δt are the unit and time fixed effects, respectively. Under suitable conditions, it can

be shown that the estimate of βgt, denoted by β̂gt, is consistent for the ATT for each
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Figure 2: Possible data patterns under Equation (1)

group g at each time t, all equal to −0.5 in our example.4

We now introduce spillovers under two alternative scenarios. We will also use these so-

called Examples 1 and 2 throughout the paper to motivate our assumptions and empirical

application. In the first scenario, the spillover is in the form of a diffusion effect, meaning

that the direct effect βit and the spillover effect (γj
it, η

j
it) have the same sign. In the second

scenario, the spillover is in the form of displacement, where βit and (γj
it, η

j
it) have opposite

signs.

Example 1 (installation of a water treatment plant). Consider a scenario where we are

interested in the effect of introducing a water treatment plant on the health outcomes of

villages situated along a river. Suppose the nearby villages a and a′, categorized as group

A, are the first to adopt the plant. This adoption not only improves water quality in

these villages but may also enhance the water quality of the not-yet-treated downstream

villages, resulting in a spillover effect.

The middle panel in Figure 2 visualizes a possible data pattern of Example 1. For

a numerical illustration, let’s build upon Equation (1) and set the spillovers to also be

homogeneous across units and time: γj
it = ηjit = γ = η = −0.05 for all i, j and t. There

are two key challenges arising from this setting. First, there is no valid control group

because both never-treated and not-yet-treated observations are negatively affected by

spillovers. To illustrate, note that the time-difference of Equation (1) for an untreated

4In fact, since the treatment is homogeneous, the standard TWFE regression would also consistently
estimate the ATT.
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unit is given by:

Yit − Yi,t−1 = δt − δt−1 +
∑
j ̸=i

(
γj
it ·Djt − γj

i,t−1 ·Dj,t−1

)
.

This equation reveals that the spillover effect introduces a bias term, disrupting the

consistent estimation of the time trend (δt − δt−1). For instance, the bias term for the

time-difference of an untreated unit z between periods 2 and 3 is calculated as γa
z3+γa′

z3+

γb
z3 + γb′

z3 − γa
z2 − γa′

z2 = −0.1. Unit z′ has the same bias term.

Second, even if we could correctly identify time and group fixed effects, it would not

be possible to separately identify the direct and spillover effects. Estimators that account

for staggered adoption and heterogeneous treatment effects, such as (2), would at best

identify the average sum of the direct and spillover effects. For example, such an approach

would estimate β̂A2 = (β + γ) = −0.55 and β̂A3 = β̂B3 = (β + 3× γ) = −0.65.

Example 2 (installation of stolen vehicle recovery devices). Gonzalez-Navarro [2013]

studied the effect of installing a stolen vehicle recovery device on car theft incidents. The

introduction of this treatment was staggered across different states within a country and

was limited to specific car models. In this scenario, car theft could potentially be displaced

to other unprotected models within treated states or to the same models in states that

had not yet adopted the device. Gonzalez-Navarro [2013] found a 52% increase in thefts

for the same models in states without the installed device.

The right panel in Figure 2 visualizes a possible data pattern of Example 2, where

we set γj
it = ηjit = 0.05 for all i, j and t. Example 2 face the same key challenges we

discussed: the absence of a valid control group and the difficulty in separately estimating

direct and spillover effects. Note that, especially in the case of displacement, spillover

effects could intensify over time as more and more treated units spill on an increasingly

narrower pool of untreated units.

While the sum of direct and spillover effects might be of interest in some cases, iden-

tifying the direct effect separately should be of prime importance in most contexts. For

example, when a unit decides whether to participate in a policy or treatment, its main

concern probably is the direct effect, because other units’ decisions are out of its con-

trol. Policymakers whose jurisdiction spans all units might also want to understand the

distinct impact of each channel. In addition, it should be noted that the sum of direct

and spillover effects might have limited external validity, as this sum is specific to the

observed treatment histories of all units, while there is a vast array of counterfactual

treatment histories that all of these units might experience.

Figure 3 visualizes our key assumptions that allow the identification of the direct

effect. They assume that units are not influenced by spillovers once treated and that
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Figure 3: DAG under the key identification assumptions

a subset of never-treated units remains unaffected by spillovers as well. Consequently,

in this figure, there are no longer lines to treated observations and no lines to unit z′,

allowing for the identification of the time trend. In what follows, we detail how these

assumptions are likely to hold in empirical applications, illustrated through Examples 1

and 2.

Example 1 [continued]. Consider villages situated at the most upstream part of a

river, none of which have water treatment plants. These upstream villages are not affected

by the installation of water treatment plants in other villages along the river since all

other villages are downstream relative to them. Therefore, in this context, these upstream

villages represent untreated units that are not subject to spillover effects.

Next, consider the village located furthest downstream, which initially does not have a

water treatment plant. When an upstream village installs a plant, the downstream village

experiences spillover effects, benefiting from improved water quality resulting from the

upstream water treatment. However, once the downstream village installs its own water

treatment plant, the treatment status of the upstream village becomes irrelevant. The

water quality in the downstream village is now only determined by its own treatment.

Consequently, in this situation, treated units do not experience spillover effects.
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Example 2 [continued]. Consider states that are distant from all states where stolen

vehicle recovery devices have been installed in specific car models. These states might be

unaffected by spillover effects because car thieves deterred from targeting models equipped

with the device are likely to limit their alternative targets to those in areas within a

manageable distance, for instance, due to their networks being more robust. Gonzalez-

Navarro [2013] shows that the data supports the notion that geographical constraints

limit displacement behavior.

Next, consider a car model without the device, located in a state adjacent to the one

where the device had been installed. This car model is subject to spillover effects because

installing the device in the neighbouring state prompts thieves to redirect their targets to

models without the device in nearby areas. However, once the device is installed in these

previously unprotected models, they no longer experience spillover effects, as thieves’

attention turns to vehicles still lacking the device.

It might be argued that as the coverage of states and car models with the protection

device expands to become almost universal, thieves could eventually revert to targeting

protected cars, violating the assumption. This scenario might not be totally implausible

unless thieves shift their focus to other, less protected assets or leave the criminal market

entirely. Nevertheless, such an almost universal adoption of the protection device would

be considered an extreme case and hard to evaluate due to a very small set of control

units.

3 Setup

We consider a DiD model with staggered treatment adoption, which involves panel data

of units observed over time periods t ∈ {1, . . . , T}. For each unit i at each time t, let Dit

be the binary treatment status indicating whether the unit is treated (1) or not treated

(0). We assume that the treatment is irreversible, meaning that once a unit undergoes

treatment, it remains treated in all subsequent periods.

Assumption 1 (irreversibility). For any s < t, Dis = 1 implies Dit = 1.

Under Assumption 1, we can categorize units into groups according to the periods

at which they receive treatment for the first time. Let Gi be the group label of unit i,

defined by

Gi ≡

{
min{t | Dit = 1} if Dit = 1 for some t,

∞ if Dit = 0 for all t.

We let G be the support of Gi. Under this group label, let Di ≡ (Di1, . . . , DiT ) be the
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entire treatment history of unit i. It follows that:

Di = (0, . . . , 0︸ ︷︷ ︸
t<g

, 1, . . . , 1︸ ︷︷ ︸
t≥g

) if Gi = g, (3)

where Di equals to a vector of zeros if Gi = ∞.

Let Yit be the observed outcome of unit i at time t. Under SUTVA, it is standard

to define the potential outcome by Yit(di), which is the outcome value when the own

treatment history Di is set to di. In the presence of spillover effects, this outcome is

affected by the treatment histories of all units. We define the potential outcome by

Yit(di,d−i)

where di is the treatment history of unit i and d−i is the treatment histories of all units

other than i in the population. In the case of finite population, d−i will be a (N − 1)×T

matrix, and in the case of infinite population, d−i will be a mapping from an index to

a T × 1 vector. This notation does not impose any restrictions on the structure of the

spillover effects.

Similarly to the case of SUTVA, we define treatment effects by comparing the ob-

served potential outcome against various counterfactual outcomes. Let 0 and 0−i be the

treatment histories where unit i and other units are untreated across all periods, respec-

tively. Abusing notation, redefine di and d−i to be the observed treatment histories in

the data. The following four types of potential outcomes are relevant to our discussion:

• Yit(di,d−i) represents the observed outcome where unit i is treated according to its

group label, and other units are treated according to their group labels.

• Yit(di,0−i) represents the counterfactual outcome where unit i is treated according

to its group label, but all the other units are untreated.

• Yit(0,d−i) represents the counterfactual outcome where unit i is untreated, but

other units are treated according to their group labels.

• Yit(0,0−i) represents the counterfactual outcome where both unit i and all the other

units are untreated.

We assume no anticipatory effect exists for these four types of potential outcomes, a

standard assumption in DiD analyses. Let Dt
i ≡ (Di1, . . . , Dit) be the current history of

Di up to time t, and define other variables with superscript t similarly.

Assumption 2 (no anticipation). Yit(d,d) = Yit(d
t,dt) for all d ∈ {di, 0} and d ∈

{d−i,0−i}.
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Next, we introduce the parallel trends assumption for a linear DiD model, following

the assumption in the absence of spillovers in Borusyak et al. [2024] and Wooldridge

[2023]. Later, we will extend our discussion to a nonlinear DiD model.

Assumption 3 (parallel trends, linear model). For every group g and time t,

E(Yit(0,0−i)− Yi1(0,0−i)|Gi = g) = E(Yit(0,0−i)− Yi1(0,0−i)|Gi = ∞).

Remark 1. Assumption 3 can be written equivalently as

Yit(0,0−i) = αi + δt + εit, (4)

where αi = Yi1(0,0−i), δt = E(Yit(0,0−i) − Yi1(0,0−i)|Gi = ∞), and E(εit|Gi = g) = 0

for all g ∈ G. We refer to δt as the common time effect.

Remark 2. When t = 1 is the only pre-treatment period, Assumption 3 is necessary for

the identification of the ATT. When there are multiple pre-treatment periods, Assump-

tion 3 can be relaxed to:

E(Yit(0,0−i)− Yi,q−1(0,0−i)|Gi = g) = E(Yit(0,0−i)− Yi,q−1(0,0−i)|Gi = ∞),

where q ≡ min{t | t ∈ G} is the first period in which any treated unit exists, meaning

that q − 1 is the last period in which all units are untreated. Note that, in the absence

of spillovers, it is sufficient to assume

E(Yit(0,0−i)− Yi,g−1(0,0−i)|Gi = g) = E(Yit(0,0−i)− Yi,g−1(0,0−i)|Gi = ∞),

implying that the parallel trend only needs to hold up to the group’s last pre-treatment

period (g − 1), rather than the last universal pre-treatment period (q − 1).

In the presence of spillover effects, multiple definitions of the ATT arise. We first

introduce the ATT without interference:

ATT0(g, t) ≡ E(Yit(di,0−i)− Yit(0,0−i)|Gi = g).

This definition of ATT0(g, t) captures the expected treatment effect at time t when unit

i is the only treated unit in the population, thereby excluding any spillover effects from

the other units. In other words, ATT0(g, t) captures the direct effect from the treatment,

illustrated by the solid edges in Figure 1. This aligns with the conventional definition of

the ATT under SUTVA and is the estimand of interest in our paper. We can then define
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an aggregate ATT by ATT0 =
∑

g,twgtATT0(g, t), where wgt is a weight chosen by the

econometrician (see, e.g., Callaway and Sant’Anna [2020]).5

We can also consider an alternative definition of the ATT:

ATTS(g, t) ≡ E(Yit(di,d−i)− Yit(0,0−i)|Gi = g).

This definition differs from ATT0(g, t) in that it incorporates the spillover effects from

other treated units, namely the units with group labels g ≤ t.

We refer to the difference ATTS(g, t) − ATT0(g, t) as the average spillover effect on

the treated:

AST (g, t) ≡ E(Yit(di,d−i)− Yit(di,0−i)|Gi = g).

Lastly, it is useful to define another estimand, which we refer to as the average spillover

effect on the untreated:

ASUT (g, t) ≡ E(Yit(0,d−i)− Yit(0,0−i)|Gi = g).

4 Identification

The discussion on the identification of ATT0(g, t) is structured into two steps. We first

show that identifying ATT0(g, t) is equivalent to identifying the sum of the time effect

and the spillover effect on the treated. The second step then introduces conditions that

allow the identification of this sum. An implication of our assumptions is that it unifies

the definitions of the ATT by implying that ATT0(g, t) = ATTS(g, t).

We first present the necessary and sufficient condition for identifying ATT0(g, t) when

spillovers are present.

Theorem 1. Suppose that Assumptions 1 to 3 hold, and that all units are untreated at

t = 1. Then, for every group g ∈ G such that 2 ≤ g < ∞ and time t ≥ g, the parameter

ATT0(g, t) is identified if and only if δt + AST (g, t) is identified.

Proof. Refer to the Appendix for the proof of this theorem and others that follow.

The proof of Theorem 1 shows that, for every (g, t) satisfying t ≥ g:

E(Yit) = E(αi) + δt + ATT0(g, t) + AST (g, t).

5Note that ATT0(g, t) is typically defined only for pairs (g, t) satisfying t ≥ g. In this paper, we
extend its definition to also include pairs satisfying t < g with a trivial definition of ATT0(g, t) = 0. We
adopt this extension as it simplifies the notation in the proofs of our results.

12



The intuition for Theorem 1 is that since E(αi) is identified from the data for group g at

t = 1, it follows that identification of ATT0(g, t) requires knowledge of δt (the time effect)

and AST (g, t) (the average spillover effect on the treated). In general, Assumptions 1 to 3

are not sufficient for the identification of these two parameters. Note that AST (g, t) = 0

in the absence of spillover effects, in which case the identification of the ATT0(g, t) only

requires knowledge of the time effect.

In what follows, we propose two additional assumptions that enable identification of

ATT0(g, t). We state the first assumption below.

Assumption 4 (no spillover effects on treated units). For every (g, t) such that t ≥ g,

E(Yit(di,d−i)|Gi = g) = E(Yit(di,0−i)|Gi = g).

This assumption holds if Yit(di,d−i) = Yit(di,0−i), implying that once a unit receives

treatment, it is no longer influenced by spillover effects. This means the unit forfeits

any spillovers it may have previously received and remains unaffected by spillovers from

subsequently treated groups. Recall that we have previously discussed the plausibility of

this assumption in Section 2, illustrated through Examples 1 and 2. Note that Assump-

tion 4 is equivalent to AST (g, t) = 0, in which case ATT0(g, t) = ATTS(g, t), unifying

the definition of ATT (g, t).

Next, we state the second assumption.

Assumption 5 (existence of never-treated units unaffected by spillovers). There exists

a positive mass of units within group Gi = ∞, denoted by Hi = 1 for these units and

Hi = 0 for all other units including those with Gi ̸= ∞, such that:

E(Yit(0,d−i)|Gi = ∞, Hi = 1) = E(Yit(0,0−i)|Gi = ∞, Hi = 1),

E(Yit(0,0−i)− Yi1(0,0−i)|Gi = ∞, Hi = 1) = E(Yit(0,0−i)− Yi1(0,0−i)|Gi = ∞).
(5)

Equation (5) has two components. The first equality states that there exists a sub-

group of never-treated units that are not affected by spillovers. The second equality

states that Assumption 3 (parallel trends) extends to said subgroup, allowing for the

identification of the time effect δt.

Remark 3. In practice, the researcher may take a conservative approach by setting

Hi = 1 only for units strongly believed to satisfy Equation (5), and Hi = 0 otherwise.

Remark 4. The researcher may also have knowledge of units believed to be unaffected
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by spillovers for Gi ̸= ∞. In this case, we could modify Assumption 5 such that:

E(Yit(0,d−i)|Gi = g,Hi = 1) = E(Yit(0,0−i)|Gi = g,Hi = 1),

E(Yit(0,0−i)− Yi1(0,0−i)|Gi = g,Hi = 1) = E(Yit(0,0−i)− Yi1(0,0−i)|Gi = ∞).

for all g ∈ G.

For instance, in the study by Gonzalez-Navarro [2013] described in Example 2, the

author takes a conservative approach using only the never-treated states that are farthest

from the treated ones as controls (Remark 3). Alternatively, in a scenario where spillover

effects occur only among adjacent states, we could set Hi = 1 for all states not adjacent

to any treated one until they become treated (Remark 4). In this case, the control group

is not fixed but shrinks over t as more states adopt treatment.

We conclude this section by showing that ATT0(g, t) is identified under these two

additional assumptions, which is a direct consequence of Theorem 1.

Theorem 2. Suppose that Assumptions 1 to 5 hold, and that all units are untreated at

t = 1. Then, ATT0(g, t) is identified for every group g ∈ G such that 2 ≤ g < ∞ and

time t ≥ g. In particular,

ATT0(g, t) = E(Yit − Yi1|Gi = g)− E(Yit − Yi1|Gi = ∞, Hi = 1).

5 Estimation and Inference

In this section, we discuss estimation and inference of ATT0(g, t) under Assumptions 1

to 5. Consider a balanced panel of T periods, where all units are untreated at t = 1.

For estimation, it is useful to introduce a binary variable Sit that indicates whether an

observation (i, t) could be subject to spillover effects. To define this variable, recall that

an observation is potentially influenced by spillovers under the following conditions:

• There exists a treated unit (i.e., t ≥ q, where q is the first period that any unit

enters treatment).

• The observation is not treated (i.e., Dit = 0), as otherwise treated observations are

not influenced by spillover effects by Assumption 4.

• The observation hasHi = 0, as otherwise untreated units withHi = 1 are considered

unaffected by spillover effects by Assumption 5.

We define Sit as

Sit =

{
1 if t ≥ q and Dit = 0 and Hi = 0

0 otherwise
.
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We first discuss the estimation of ATT0(g, t) in the case where units with Hi = 1

exist only within group Gi = ∞. It is useful to introduce an extended group label

that partitions Gi = ∞ into (Gi = ∞, Hi = 1) and (Gi = ∞, Hi = 0). Define G̃ as

the support of (Gi, Hi) ∈ G × {0, 1}. For example, if G = {q, q + 1, . . . , T,∞}, then
G̃ = {(q, 0), (q + 1, 0), . . . , (T, 0), (∞, 0), (∞, 1)}. We propose the following extension of

Wooldridge [2022] as the estimation procedure. We estimate a linear regression model

where Yit is the outcome variable, and the regressors are:

• indicators of (Gi, Hi) (the “extended group fixed effects”),

• indicators of t (the “time fixed effects”),

• interactions between Dit and indicators of (Gi, Hi, t), and

• interactions between Sit and indicators of (Gi, Hi, t).

In other words, we estimate the linear regression model:

Yit = αGiHi
+ δt +

∑
(g′,h′)∈G̃

∑
t′

βg′h′t′ · 1((Gi, Hi, t) = (g′, h′, t′)) ·Dit

+
∑

(g′,h′)∈G̃

∑
t′

γg′h′t′ · 1((Gi, Hi, t) = (g′, h′, t′)) · Sit + εit.
(6)

Since this equation contains multicollinear terms, it can also be written as

Yit = αGiHi
+ δt +

∑
g′∈G\{∞}

T∑
t′=g′

βg′t′ · 1((Gi, t) = (g′, t′)) ·Dit

+
∑

(g′,h′)∈G̃\{(∞,1)}

min{g′−1,T}∑
t′=q

γg′h′t′ · 1((Gi, Hi, t) = (g′, h′, t′)) · Sit + εit.

(7)

Note that Equation (7) involves the group-level coefficients (αgh, βgt), as opposed to

the unit-level coefficients (αi, βit).
6 The following result shows that, despite this simpli-

fication, the population regression of Equation (7) correctly identifies ATT0(g, t).

Theorem 3. Suppose that the assumptions of Theorem 2 hold. Consider the population

regression of Equation (7). Then, βgt = ATT0(g, t).

This result yields a simple and straightforward procedure for estimation and inference

of ATT0(g, t). The estimate β̂gt and its standard error can be easily obtained by imple-

menting Equation (7) using any standard statistical software package. Estimation and

6This will become important when comparing our estimation procedure with imputation-based pro-
cedures later in this section, and when discussing estimation in the non-linear case in Section 6.
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inference of an aggregate ATT is also straightforward, because the estimate is given by∑
g,twgtβ̂gt, and its standard error is given by

Var

(∑
g,t

wgtβ̂gt

)
=
∑
g,t

∑
g′,t′

wgtwg′t′Cov(β̂gt, β̂g′t′),

where Cov(β̂gt, β̂g′t′) is available in any statistical software package, e.g., via e(V) in Stata.

It is worth noting that Equation (7) is numerically equivalent to the following exten-

sion of the imputation-based procedure of Borusyak et al. [2024]:

1. Estimate the linear model

Yit = αi + δt + εit,

using observations (i, t) such that Dit = 0 and Sit = 0.

2. Let α̂i and δ̂t be the estimates of αi and δt. Impute the baseline outcome for unit i

at time t as

Ŷit(0,0−i) = α̂i + δ̂t.

3. For each unit i treated at time t, compute

β̂imp
it ≡ Yit − Ŷit(0,0−i),

which can be interpreted as the imputed treatment effect for unit i at time t.

4. For a treated group g at time t ≥ g, estimate ATT0(g, t) by

β̂imp
gt ≡ 1

Ng

Ng∑
i=1

β̂imp
it ,

where Ng =
∑N

i=1 1(Gi = g).

While it can be shown that β̂imp
gt equals to β̂gt in Equation (7), the use of group-level

coefficients in Equation (7) eases the calculation of standard errors through the use of

standard statistical software packages. Along these lines, Borusyak et al. [2024] highlight

the challenge in estimating the standard error of the imputation estimate, which arises

from computing β̂imp
it for each i and t.

Next, we consider the case where there are also units with Hi = 1 in groups other

than ∞. Recall that the extended group label (Gi, Hi) partitions each group Gi = g into

subgroups (Gi = g,Hi = 1) and (Gi = g,Hi = 0). We define ATT0 for these subgroups

as follows:

ATT0(g, h, t) = E(Yit(di,0−i)− Yit(0,0−i)|Gi = g,Hi = h).
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We introduce this new definition because the ATTs for the subgroups (Gi = g,Hi = 0)

and (Gi = g,Hi = 1) may differ.7 The aggregate ATT can then be defined as ATT0 =∑
g,h,twghtATT0(g, h, t), where wght is a weight chosen by the econometrician. The same

estimation procedure described earlier applies to this case as well, where we run the

full regression as described in Equation (6), and the coefficient βght equals to βght =

ATT0(g, h, t).

Lastly, if the data is an unbalanced panel, the regression in Equation (7) is no longer

consistent for the ATT0. The imputation-based estimation procedure discussed above is

still consistent, but the standard error will be asymptotically conservative in general (see

Borusyak et al., 2024, Section 4.3). In contrast, for a balanced panel, the standard error

computed from Equation (7) is asymptotically exact.

6 Extension to Nonlinear DiD Models

In this section, we extend our previous findings to the case where Yit is a count variable, for

which the linear parallel trends condition (Assumption 3) does not hold. This extension

contributes to the literature on nonlinear DiD models [Wooldridge, 2023], expanding the

applicability of our results to a wider array of empirical applications.

We introduce the following assumption regarding parallel trends in the context of

count data, following Wooldridge [2023].

Assumption 3’ (parallel trends, Poisson model). For every group g at time t,

lnE(Yit(0,0−i)|Gi = g)− lnE(Yi1(0,0−i)|Gi = g)

= lnE(Yit(0,0−i)|Gi = ∞)− lnE(Yi1(0,0−i)|Gi = ∞)
. (8)

Remark 5. Assumption 3’ can be written equivalently as, conditional on Gi = g,

Yit(0,0−i) = exp{αg + δt}εit, (9)

where αg = lnE(Yi1(0,0−i)|Gi = g), δt = lnE(Yit(0,0−i)|Gi = ∞)− lnE(Yi1(0,0−i)|Gi =

∞), and E(εit|Gi = g) = 1 for all g ∈ G.

Remark 6. More generally, for any strictly increasing function F , we could consider the

parallel trend of the form

F (E(Yit(0,0−i)|Gi = g))− F (E(Yi1(0,0−i)|Gi = g))

= F (E(Yit(0,0−i)|Gi = ∞))− F (E(Yi1(0,0−i)|Gi = ∞))
.

7In the previous case, where units with Hi = 1 existed only within group Gi = ∞, there were no
units with (Gi = g,Hi = 1) when g ̸= ∞, so ATT (g, t) = ATT (g, 0, t).
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For example, for binary data, F can be set to be the inverse of the Gaussian CDF

(probit) or the inverse of the Logistic function (logit). Our results in this section extends

straightforwardly to these other choices of F .

By replicating the arguments in Theorems 1 and 2, the following corollaries show that

ATT0(g, t) is identified under assumptions similar to those in Theorem 2. In doing so,

we adapt Assumption 5 to the case of count data.

Assumption 5’ (existence of never-treated units unaffected by spillovers). There exists

a positive mass of units within group Gi = ∞, denoted by Hi = 1 for these units and

Hi = 0 for all other units including those with Gi ̸= ∞, such that:

E(Yit(0,d−i)|Gi = ∞, Hi = 1) = E(Yit(0,0−i)|Gi = ∞, Hi = 1)

and
lnE(Yit(0,0−i)||Gi = ∞, Hi = 1)− lnE(Yi1(0,0−i)|Gi = ∞, Hi = 1)

= lnE(Yit(0,0−i)|Gi = ∞)− lnE(Yi1(0,0−i)|Gi = ∞).
. (10)

Corollary 1. Suppose that Assumptions 1 and 2 and assumption 3’ hold, and that all

units are untreated at t = 1. Then, for every group g ∈ G such that 2 ≤ g < ∞ and time

t ≥ g, the ATT0(g, t) is identified if and only if exp{αg + δt}+ AST (g, t) is identified.

Corollary 2. Suppose that Assumptions 1, 2 and 4 and assumptions 3’ and 5’ hold, and

that all units are untreated at t = 1. Then, ATT0(g, t) is identified for every group g ∈ G
such that 2 ≤ g < ∞ and time t ≥ g. In particular,

ATT0(g, t) = E(Yit|Gi = g)− E(Yit|Gi = ∞, Hi = 1)

E(Yi1|Gi = ∞, Hi = 1)
E(Yi1|Gi = g).

In terms of estimation, let Sit be defined as in the previous section, and consider a

balanced panel of T periods where all units are untreated at t = 1. In the case of count

data, the average treatment effect in terms of percentage changes is also often reported:

ATTP0(g, t) =
ATT0(g, t)

E(Yit(0,0−i)|Gi = g)
,

which can be aggregated to define an ATTP0 ≡
∑

g,twgtATTP0(g, t).

The estimation and inference procedure discussed in Section 5 can be straightfor-

wardly extended to the count data. For example, in the case where units with Hi = 1 are

all within group Gi = ∞, we use the following simple estimation procedure that involves

a parsimonious generalized linear model.
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1. Estimate the Poisson regression model where Yit is the outcome variable, and the

regressors are:

• indicators of (Gi, Hi) (the “extended group fixed effects”),

• indicators of t (the “time fixed effects”),

• interactions between Dit and indicators of (Gi, Hi, t), and

• interactions between Sit and indicators of (Gi, Hi, t).

In other words, we estimate the Poisson regression model:

lnE(Yit|Xit) =αGiHi
+ δt +

∑
g′∈G\{∞}

T∑
t′=g′

βg′t′ · 1((Gi, t) = (g′, t′)) ·Dit

+
∑

(g′,h′)∈G̃\{(∞,0)}

min{g′−1,T}∑
t′=q

γg′h′t′ · 1((Gi, Hi, t) = (g′, h′, t′)) · Sit,

(11)

where Xit represents the vector of regressors. Let α̂gh, δ̂t, and β̂gt be the estimates

of αgh, δt, and βgt from this model, respectively.

2. Estimate ATT0(g, t) by

ÂTT 0(g, t) = exp{α̂g0 + δ̂t + β̂gt} − exp{α̂g0 + δ̂t},

or estimate ATTP0(g, t) by ÂTTP 0(g, t) = exp{β̂gt} − 1.

The validity of the population regression of Equation (11) can be shown by replicating

the arguments in Theorem 3, and we omit the proof here. The estimation and inference

of ÂTT 0(g, t) can then be carried out by implementing Equation (11) using any standard

statistical software package that runs Poisson regressions.

Note that most statistical software packages that run Poisson regressions calculate

the standard errors of (α̂gh, δ̂t, β̂gt) using the maximum likelihood. This assumes that

the distribution of Yit(0,0−i) follows a Poisson distribution (as opposed to only spec-

ifying its mean as in Assumption 3’), ruling out heteroskedasticity. To accommodate

heteroskedasticity, standard errors can instead be derived using the quasi-maximum like-

lihood estimation (QMLE) method. Specifically, let θ be the vector of all coefficients in

the Poisson regression (i.e., all of αgh, δt, βgt, and γght), θ̂ be their maximum likelihood

estimates (i.e., all of α̂gh, δ̂t, β̂gt, and γ̂ght), and Xit be the vector of all regressors. Let
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{Λc}Cc=1 be the partition of units according to which the units are clustered. Define

S =
C∑
c=1

[∑
i∈Λc

T∑
t=1

Xit(Yit − Ŷit)

][∑
i∈Λc

T∑
t=1

Xit(Yit − Ŷit)

]′

as the clustered outer product of the score function, where Ŷit = exp{X ′
itθ̂} is the fitted

value of Yit in the Poisson regression.8 In addition, define

H =
C∑
c=1

∑
i∈Λc

T∑
t=1

XitX
′
itŶit

as the negative Hessian function. Then, the variance-covariance matrix of θ̂ is given by

V̂ar(θ̂) = H−1SH−1.

This variance-covariance matrix can then be used to compute the standard errors of the

ATT0 and ATTP0 estimates via the delta method.

7 Application to Auto Theft Prevention Policy

In this section, we apply our method to revisit the findings of Gonzalez-Navarro [2013],

who studied the effects of installing an auto theft prevention device known as Lojack.

This was a compact device installed in vehicles, allowing for tracking of the vehicle.

The policy was implemented in Mexico through an exclusive agreement between the

Ford Motor Company and the Lojack company. Initially, the technology was introduced

for a particular Ford car model (Ford Windstar) in a specific state (Jalisco) among the

2001 car models. Subsequently, the installation of Lojack expanded to include other

model × state combinations, eventually encompassing 32 model × state combinations

by 2004. The dataset of Gonzalez-Navarro [2013] provides comprehensive information on

car theft for each model × state × vintage (the car model’s year) combination, for each

calendar year. For our analysis, we use the indices m, s, v, and t to represent car model,

state, vintage, and the calendar year of the auto theft, respectively.

Gonzalez-Navarro [2013] points out two possible sources of spillover effects following

the introduction of Lojack. The first potential source is within-state spillover to car mod-

els not equipped with Lojack. Given the public knowledge about specific car models and

states where Lojack was installed, criminals may alter their target preferences, focusing

on car models without Lojack within the same state. The second source is geographical

8We abuse notation and let Ŷit represent a different object from the linear case.
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spillovers, where installing Lojack in certain models may prompt thieves, particularly

those specializing in those models, to shift their operations to other states where these

specific models remain unprotected by Lojack.

Because of the potential for such spillovers, Gonzalez-Navarro [2013] relies only on

time-series variation for identification, illustrating the challenge in extending the DiD

framework to spillovers:

“In the presence of spatial externalities, DiD estimation using observations

from different geographical locations produces biased estimates of policy im-

pact. The basic challenge is that whenever treatment in one geographical loca-

tion also has effects in control locations, these are no longer valid counterfac-

tual observations. Furthermore, DiD estimation precludes actual estimation

of externalities unless there is a set of observations subject to externalities

and a set of observations that is not, so that the latter can play the role of

counterfactual. For these reasons I do not use DiD estimation. Instead, I

use an interrupted time series strategy in which the counterfactual is given by

observations occurring before the intervention.”

Nevertheless, as a robustness check, Gonzalez-Navarro [2013] also estimates a DiD

model while attempting to control for spillover effects, but without accounting for the

staggered adoption design. In this section, we apply our method to revisit this study and

estimate the treatment effect across various combinations of groups and time periods,

thereby revealing the heterogeneous effects of Lojack installation.

Once Lojack was installed in a particular combination of car model, state, and vintage,

it continued to be installed in all subsequent vintages of that model in the same state.

This setup allows us to treat the situation as a staggered adoption design, where the unit

of analysis is defined as the combination of model (m) × state (s) × age (a). age refers

to the number of years elapsed since the car’s model year, calculated as the difference

between the calendar year (t) and the vintage year (v), such that a = t− v. Under this

framework, our analysis is based on a balanced panel subset derived from the original

dataset, consisting of 1152 units observed over 6 years from 1999 to 2004.

We define the binary treatment indicator for a unit (m, s, a) at time t as Dmsat.

To illustrate, consider the Ford Windstar model in Jalisco. For this unit, Lojack has

been installed in all newly released (age = 0) vehicles starting in 2001. Thus, for a

Ford Windstar model in Jalisco with age = 0, we have DWindstar,Jalisco,0,t = 1 for every

t ≥ 2001.

Our method relies on Assumptions 4 and 5. Assumption 4 requires that once a model

× state × age unit has Lojack installed, it is not influenced by spillover effects. Generally,
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when Lojack is installed in certain units, we can expect that thieves targeting those models

will shift their focus towards vehicles without Lojack protection, rather than those already

with Lojack. Thus, it is reasonable to assume that units already fitted with Lojack

will not be subject to displacement effects from other units, satisfying Assumption 4.

Assumption 5 requires that there exist units which are not affected by spillover effects, and

Gonzalez-Navarro [2013] provides empirical support for this assumption, demonstrating

that car models in states geographically distant from those where the treatment was

applied do not experience spillover effects.9

Let Ymsat be the number of auto thefts for a model × state × age unit that occurred

in a given calendar year t. We consider two kinds of empirical models for this outcome.

First, we consider linear parallel trends:

E(Ymsat(0,0−(msa,t))|αmsa, Gmsa = g) = αmsa + δt.

This is equivalent to Assumption 3, where the combination (m, s, a) plays the role of i.

Second, we consider Poisson parallel trends:

lnE(Ymsat(0,0−(msa,t))|αmsa, Gmsa = g) = αmsa + δt,

which is equivalent to Assumption 3’. The second model is particularly suitable when

Ymsat is a count variable with a high frequency of zeros, in which case a Poisson regression

model is more appropriate.

We define Hmsa as a binary variable that is equal to 1 if unit (m, s, a) is such that s is a

state that is not adjacent to any state with treated units throughout the rollout of Lojack.

We then define Smsat as a binary indicator that is equal to 1 if t ≥ 2001, Dmsat = 0 and

Hmsa = 0. In addition, define G = {2001, 2002, 2003, 2004} as the set of group labels

for treated units, which are the periods when units enter treatment. Let Ng be the

number of units in group g ∈ G within the dataset, and let N ≡
∑2004

g=2001

∑2004
t=g Ng =∑2004

g=2001(2005 − g)Ng be the total number of treated observations in the dataset. We

9The results of Gonzalez-Navarro [2013] using only time series variation vs. the DID approach are
similar, suggesting that the units in states distant from the treated areas are unaffected by the installation
of Lojack.
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Linear Poisson
Estimate Std Error Reduction Estimate Std Error Reduction

ATT0 -6.1017 2.8893 -60% -5.6349 2.5086 -66%
ATT 0

0 -3.9455 2.9166 -38% -3.8738 2.4503 -50%
ATT 1

0 -6.7536 2.9801 -77% -6.2742 2.5453 -77%
ATT 2

0 -16.9622 2.9691 -79% -13.4790 4.2276 -85%

Table 1: Estimates of the aggregate ATT0s. The standard errors are clustered at the
model (m) × state (s) × age (a) level. The “Reduction” column stands for the reduction
rate, which is calculated using the formula for computing ATTP0.

estimate the following aggregate ATT0s:

ATT0 =
2004∑

g=2001

2004∑
t=g

Ng

N
ATT0(g, t),

ATT 0
0 =

2004∑
g=2001

Ng

N2001 + · · ·+N2004

ATT0(g, g),

ATT 1
0 =

2003∑
g=2001

Ng

N2001 + · · ·+N2003

ATT0(g, g + 1),

ATT 2
0 =

2002∑
g=2001

Ng

N2001 +N2002

ATT0(g, g + 2).

In the above definitions, ATT0 measures the overall effect of Lojack installation, com-

puted as the weighted average of all ATT0(g, t) values across g and t. The ATT k
0 values,

on the other hand, represent the weighted average of ATT0 for the k-th year after in-

stallation of Lojack, measuring the temporal effects. For example, ATT 0
0 represents the

immediate effect in the same year as the Lojack installation, ATT 1
0 represents the effect

one year post-installation, and so forth.

Table 1 presents the estimated ATT0 values obtained from both linear and Poisson

model specifications, with standard errors clustered at the unit level. The analysis reveals

a notable average reduction in thefts of 60% for the linear model and 64% for the Poisson

model, highlighting Lojack’s substantial deterrent effect. Moreover, the results from both

models indicate that the rate of theft reduction becomes more pronounced over time,

where the effect becomes statistically significant starting one year after installation. This

highlights the increasing effectiveness of Lojack in preventing auto thefts over time.

For comparison, we also report the estimated ATT0s from two misspecified models.

First, we consider the TWFE specification that incorporates spillover effects but overlooks

the staggered adoption nature of the treatment. Second, we consider the specification of
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Wooldridge [2022] and Borusyak et al. [2024] that accounts for staggered adoption but

does not include spillover effects. The results from these models are presented in Table 2.

We find that the TWFE regression estimate closely aligns with the estimates presented

in Table 1. However, the estimates that neglect spillover effects exhibit an upward bias

relative to the correctly specified estimates in Table 1. This is what we would expect in

the presence of displacement effects, where installing Lojack in a treated unit increases

theft for units without Lojack.

TWFE-Linear WB-Linear
Estimate Reduction Estimate Reduction

ATT0 -7.8595 -69% -7.8335 -72%
ATT 0

0 N/A -5.6375 -58%
ATT 1

0 N/A -8.4526 -82%
ATT 2

0 N/A -19.1385 -88%

TWFE-Poisson WB-Poisson
Estimate Reduction Estimate Reduction

ATT0 -5.4990 -61% -5.8514 -62%
ATT 0

0 N/A -3.9569 -43%
ATT 1

0 N/A -6.4894 -73%
ATT 2

0 N/A -14.5736 -94%

Table 2: Estimates of the aggregate ATT0s using the TWFE specification (the “TWFE”
columns), and the specification of Wooldridge [2022] and Borusyak et al. [2024] (the
“WB” columns), for each of linear and Poisson specifications. The “Reduction” columns
stand for the reduction rate, which is calculated using the formula for computing ATTP0.

8 Monte Carlo Simulation

In this section, we study the finite sample properties of our estimator in a simulated

dataset, highlighting the bias-variance trade-off of our approach. We consider a balanced

panel dataset over T periods, with either a simultaneous or staggered adoption design,

starting with a pre-treatment period of t = 1. We consider M units in each group

g ∈ G ≡ {2, . . . , T, (∞, 0), (∞, 1)}, meaning that we have a total of N = (T + 1)M

units in the dataset. In the absence of spillover effects, our estimator is less efficient

than conventional estimators that rule out spillover effects. However, in the presence of

spillovers, the conventional estimators become biased. Given this bias-variance trade-off,

when the sample size is small, the improvement in bias may not sufficiently offset the loss

in precision.

Specifically, we consider the following data generating process (DGP) that embeds

Assumptions 1 to 5. Depending on the specification of the outcome model—linear or
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Poisson—we adapt the relevant assumption, replacing Assumption 3 with 3’ as necessary.

The DGP is given by:

E(Yit|αi, Gi = g) = F

αi + δt + βitDit + (1−Dit) ·
∑

h∈G\{g}

M∑
j=1

γj
it ·Djt

 ,

where the function F is F (x) = x for the linear model or F (x) = exp(x) for the Poisson

model, and γj
it represents the spillover effect from unit j to unit i. We parametrize the

DGP as follows.

• TheM units in each group g ∈ {2, . . . , T, (∞, 0), (∞, 1)} are homogeneous, implying

that αi = αGi
, βit = βGit and γj

it = γ
Gj

Git
.

• Unit fixed effects are set to αg = 26 − g + 1 for all groups except for (∞, 0) and

(∞, 1), where α(∞,0) = α(∞,1) = 26 − T + 1. This reflects selection into treatment

because the units with earlier treatment have larger unit fixed effects. In the case

of the Poisson model, we instead set αg = log(26− g + 1).

• Common time effects are set to δt = ᾱ × 0.1 × ((t− 1) + sin(t)), where ᾱ is the

average of the unit fixed effects across all groups. This specification involves a linear

upward trend (t− 1) and a period-specific fluctuation modeled through sin(·).

• The treatment effect is set to βgt = 0.5αg/t. This effect is heterogeneous across

groups and time periods, but homogeneous within a group. The effect gradually

diminishes over time, with βgt decreasing in t for each group g. The immediate

effect βgg is largest for group g = 2 with the highest αg. This parametrizes sorting

on gain since αg also correlates with treatment timing.

• Spillover effects are set to ηhgt = −ρ·βgt/Ut, representing displacement effects, where

Ut is the number of untreated units at time t except for those in (∞, 0). That is, for

each treated unit i, we consider a total spillover effect of −ρ · βGit, where ρ ∈ [0, 1]

denotes the spillover intensity. This total effect is then evenly spread among all

untreated units excluding those in (∞, 0). As a result, each untreated unit receives

a spillover effect of −ρ · βGit/Ut from the treated unit i.

With this parametrization, Yit is generated with an independent additive error term

ϵit ∼ N(0,max(αGi
)/10) for the linear model, and according to Poisson distribution

for the Poisson model. We then estimate the aggregate ATT0 defined as in Section 7,

namely ATT0 = (1/G)
∑T

g=2

∑T
t=g ATT0(g, t), where G ≡ T (T −1)/2 is the total number
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of treated group-time pairs in the dataset. We compare the mean Absolute Bias and the

Mean Squared Error (MSE) across the following estimators:

(β̂1) The TWFE estimator, which neither accounts for staggered treatment adoption nor

for spillovers.

(β̂2) The extended TWFE estimator by Wooldridge [2022], which accounts for stag-

gered treatment adoption but does not account for spillovers. This estimator is

numerically equivalent to the imputation estimator by Borusyak et al. [2024].

(β̂3) Our estimator, which accounts for both staggered treatment adoption and spillovers.

Figure 4a and Table 3 present results from the linear DGP. The Figure visually con-

trasts the MSE across the three estimators to illustrate their relative performance under

different scenarios, while the Table details their MSE and Absolute Bias values. Note

that, when T = 2, the TWFE and the Wooldridge [2022] estimators are equivalent since

treatment is not staggered. Overall, the relative performances of the estimators depend

on the degree of spillovers, staggered treatment, and the number of units in each group.

Intuitively, due to its efficiency, the TWFE has the lowest MSE in scenarios with no or

little spillovers and with very few observations. As the number of observations increases

and spillovers remain small, the Wooldridge [2022] estimator becomes the best-performing

one, adjusting for staggered treatment without substantial bias. However, in scenarios

where spillovers are not negligible and the number of units is large, our estimator achieves

the lowest MSE, often by a large margin. Our estimator also performs better as treat-

ment becomes more staggered (T = 8), highlighting our estimator’s ability to accurately

account for cumulative spillovers affecting the untreated units’ outcomes. Furthermore,

Figure 4b and Table 4 present results from the Poisson DGP, where our estimator per-

forms even better relative to the TWFE and the Wooldridge [2022] ones.
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(a) Linear

(b) Poisson

Figure 4: Comparison of the MSEs. Cell background color indicates the best-performing
estimator. The numbers in cells represent the MSE ratios MSE1

MSE3
and MSE2

MSE3
respectively.

The subscripts refer to: (1) TWFE estimator, (2) Wooldridge [2022] estimator, and (3)
our estimator.
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Table 3: MSE and Absolute Bias values - Linear

ρ T M ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -6.500 3.589 3.589 4.235 19.642 19.642 27.519

3 -6.500 2.060 2.060 2.374 6.613 6.613 8.957

5 -6.500 1.615 1.615 1.873 3.991 3.991 5.335

2

10 -6.500 1.159 1.159 1.313 2.134 2.134 2.745

1 -2.297 0.898 1.038 2.336 1.244 1.693 8.651

3 -2.297 0.554 0.606 1.463 0.477 0.569 3.336

5 -2.297 0.463 0.473 1.051 0.334 0.350 1.789

0.00

8

10 -2.297 0.384 0.334 0.782 0.217 0.172 0.954

1 -6.500 3.807 3.807 4.321 22.129 22.129 28.292

3 -6.500 2.153 2.153 2.391 7.274 7.274 8.856

5 -6.500 1.715 1.715 1.824 4.584 4.584 5.280

2

10 -6.500 1.316 1.316 1.342 2.642 2.642 2.805

1 -2.297 1.403 1.335 2.456 2.776 2.717 9.587

3 -2.297 1.396 1.186 1.509 2.314 1.876 3.561

5 -2.297 1.355 1.116 1.114 2.054 1.559 1.917

0.25

8

10 -2.297 1.342 1.069 0.783 1.928 1.324 0.999

1 -6.500 3.870 3.870 4.012 23.616 23.616 25.838

3 -6.500 2.565 2.565 2.395 10.048 10.048 9.274

5 -6.500 2.139 2.139 1.877 6.991 6.991 5.448

2

10 -6.500 1.796 1.796 1.338 4.700 4.700 2.787

1 -2.297 2.403 2.284 2.465 6.923 6.688 9.499

3 -2.297 2.367 2.184 1.440 5.985 5.317 3.220

5 -2.297 2.374 2.178 1.087 5.858 5.073 1.847

0.50

8

10 -2.297 2.404 2.212 0.782 5.900 5.070 0.970

1 -6.500 4.138 4.138 4.162 26.753 26.753 28.210

3 -6.500 2.905 2.905 2.386 12.336 12.336 9.081

5 -6.500 2.652 2.652 1.869 9.928 9.928 5.476

2

10 -6.500 2.405 2.405 1.330 7.524 7.524 2.768

1 -2.297 3.448 3.346 2.581 13.089 12.935 10.172

3 -2.297 3.452 3.352 1.371 12.300 11.811 2.899

5 -2.297 3.417 3.290 1.099 11.884 11.162 1.912

0.75

8

10 -2.297 3.424 3.308 0.766 11.839 11.106 0.915

1 -6.500 4.373 4.373 4.148 29.442 29.442 26.621

3 -6.500 3.568 3.568 2.355 17.556 17.556 8.570

5 -6.500 3.370 3.370 1.906 15.018 15.018 5.723

2

10 -6.500 3.305 3.305 1.270 12.749 12.749 2.555

1 -2.297 4.473 4.419 2.453 21.073 21.098 9.491

3 -2.297 4.445 4.399 1.394 20.124 19.900 3.076

5 -2.297 4.446 4.389 1.134 19.983 19.587 2.051

1.00

8

10 -2.297 4.486 4.426 0.802 20.246 19.771 1.020

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE estimator, (2) Wooldridge

[2022] estimator, and (3) our estimator. The lowest value across estimators is in bold.
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Table 4: MSE and Absolute Bias values - Poisson

ρ T M ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -26.780 9.701 9.701 11.905 153.431 153.431 239.845

3 -26.780 5.540 5.540 6.740 47.762 47.762 73.687

5 -26.780 4.245 4.245 5.032 29.219 29.219 40.018

2

10 -26.780 3.071 3.071 3.689 14.968 14.968 21.449

1 -30.865 9.057 8.085 27.674 121.582 105.769 1347.861

3 -30.865 8.280 4.863 15.381 85.855 36.796 404.870

5 -30.865 8.044 3.526 11.869 75.668 19.522 224.123

0.00

8

10 -30.865 8.125 2.536 7.890 71.494 9.967 98.496

1 -26.780 12.067 12.067 12.275 248.172 248.172 272.296

3 -26.780 7.698 7.698 6.889 93.040 93.040 75.998

5 -26.780 6.601 6.601 5.072 66.846 66.846 39.553

2

10 -26.780 5.781 5.781 3.857 47.955 47.955 22.876

1 -30.865 34.556 30.313 28.662 1266.576 1058.689 1518.343

3 -30.865 33.742 28.917 14.216 1161.546 882.219 341.538

5 -30.865 33.993 28.983 11.307 1169.549 866.469 204.729

0.25

8

10 -30.865 33.858 28.888 8.140 1153.220 847.927 106.282

1 -26.780 15.622 15.622 11.861 390.349 390.349 231.468

3 -26.780 12.878 12.878 6.984 231.040 231.040 78.199

5 -26.780 11.946 11.946 5.106 184.497 184.497 42.616

2

10 -26.780 12.066 12.066 3.646 167.718 167.718 20.788

1 -30.865 67.194 67.826 27.440 4603.887 4782.310 1398.162

3 -30.865 66.939 67.699 15.029 4508.284 4638.895 387.225

5 -30.865 66.675 67.477 11.203 4462.200 4587.222 199.809

0.50

8

10 -30.865 66.688 67.328 8.195 4456.398 4551.466 106.420

1 -26.780 22.597 22.597 12.162 762.129 762.129 244.327

3 -26.780 20.320 20.320 6.716 503.553 503.553 72.748

5 -26.780 19.418 19.418 5.204 430.610 430.610 43.640

2

10 -26.780 20.115 20.115 3.599 430.218 430.218 20.391

1 -30.865 108.579 118.317 26.869 11902.528 14259.553 1344.294

3 -30.865 108.185 117.445 15.289 11742.232 13877.573 375.027

5 -30.865 108.328 117.403 11.473 11757.889 13835.222 214.460

0.75

8

10 -30.865 108.571 118.043 7.979 11799.580 13960.016 102.759

1 -26.780 31.420 31.420 11.927 1297.693 1297.693 249.215

3 -26.780 30.005 30.005 6.688 1008.487 1008.487 71.590

5 -26.780 30.104 30.104 5.017 972.364 972.364 39.530

2

10 -26.780 29.547 29.547 3.566 906.943 906.943 19.970

1 -30.865 164.055 187.416 27.132 27086.351 35529.966 1257.582

3 -30.865 163.392 186.002 15.000 26748.599 34712.731 364.521

5 -30.865 163.930 186.676 11.684 26902.365 34921.680 215.341

1.00

8

10 -30.865 163.562 186.035 8.031 26768.157 34646.567 106.997

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE estimator, (2) Wooldridge [2022]

estimator, and (3) our estimator. The lowest value across estimators is in bold.
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9 Conclusion

We establish identifying assumptions and estimation procedures for the ATT without

interference in a DiD setting with staggered treatment adoption and spillovers. Aside

from the canonical DiD assumptions, identification requires that once a unit receives

treatment, it is no longer influenced by the spillover effect. This means the unit forfeits

any spillovers it may have previously received and remains unaffected by spillovers from

subsequently treated groups. This assumption, which is likely to hold in many contexts,

unifies the multiple definitions of the ATT, simplifying policy evaluation and aligning

with the definition of ATT under SUTVA.

To estimate the ATT, we extend the TWFE model approach of Wooldridge [2022] to

account for spillovers in linear and non-linear settings. In the case of a balanced panel,

our approach can be used to easily calculate the ATT’s standard error. We then revisit

Gonzalez-Navarro [2013], who studied the effects of installing an auto theft prevention

device known as Lojack. Our correction leads to a slightly larger effect of the policy

relative to the original contribution’s specification.

Finally, our Monte Carlo analysis brings attention to the inherent bias-variance trade-

off involved in addressing staggered treatment and especially spillovers. We compare three

different estimators: the traditional TWFE estimator, which overlooks both staggered

adoption and spillovers; the estimator of Wooldridge [2022], which considers staggered

adoption but not spillovers; and our proposed estimator, which addresses both factors.

Our estimator proves to be competitive in various scenarios.
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A Proofs

A.1 Proof of Theorem 1

Under Assumptions 2 and 3, for each group g at time t, we can express Yit as

Yit = Yit(di,d−i)

= Yit(0,0−i) + [Yit(di,0−i)− Yit(0,0−i)] + [Yit(di,d−i)− Yit(di,0−i)]

= αi + δt + [Yit(di,0−i)− Yit(0,0−i)] + [Yit(di,d−i)− Yit(di,0−i)] + εit,

where the last equality follows from Remark 1, in which E(εit|Gi = g) = 0 for every group

g at time t. Define

βit = Yit(di,0−i)− Yit(0,0−i),

γit = Yit(di,d−i)− Yit(di,0−i).

We can then simplify the expression for Yit as

Yit = αi + δt + βit + γit + εit.

In this expression, the parameter of interest ATT0(g, t) for t ≥ g is given by

ATT0(g, t) = E(βit|Gi = g),

and AST (g, t) for t ≥ g is given by

AST (g, t) = E(γit|Gi = g).

Using these expressions, for every group g ∈ G such that 2 ≤ g < ∞ and time t ≥ g, we

can write the expectation of Yit as

E(Yit|Gi = g) = E(αi|Gi = g) + δt + ATT0(g, t) + AST (g, t), (12)

where we used E(εit|Gi = g) = 0.

Now we show that ATT0(g, t) is identified if and only if δt+AST (g, t) is identified, for

every group g ∈ G such that 2 ≤ g < ∞ and time t ≥ g. First, suppose that δt+AST (g, t)
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is identified. Let d0 be the identified value. Then we can rewrite Equation (12) as

E(Yit|Gi = g) = E(αi|Gi = g) + d0 + ATT0(g, t). (13)

Now we show that E(αi|Gi = g) is identified from the data at t = 1. Note first that,

under the assumptions of Theorem 1, all units are untreated at t = 1. This implies that

Yi1 = Yi1(di,d−i) = Yi1(0,0−i) = αi + δ1 + εit,

where the last equality follows from Assumption 3. Then it follows that

E(Yi1|Gi = g) = E(αi + δ1 + εit|Gi = g) = E(αi|Gi = g), (14)

where δ1 = 0 and E(εit|Gi = g) = 0 by Assumption 3. We can then rewrite Equation

(13) as

ATT0(g, t) = E(Yit|Gi = g)− d0 − E(Yi1|Gi = g),

which shows that ATT0(g, t) is identified because E(Yit) and E(Yi1) are identifiable when-

ever g ∈ G, i.e., whenever the group appears in the data.

Conversely, suppose that ATT0(g, t) is identified. Let b0 be the identified value. Then

we can rewrite Equation (12) as

E(Yit|Gi = g) = E(αi|Gi = g) + δt + b0 + AST (g, t).

Using Equation (14), we can write

δt + AST (g, t) = E(Yit|Gi = g)− b0 − E(Yi1|Gi = g),

which shows that δt + AST (g, t) is identified. ■

A.2 Proof of Theorem 2

By Theorem 1, it suffices to show that δt + AST (g, t) is identified for every t ≥ 2 under

the assumptions of Theorem 2. Note first that Assumption 4 implies AST (g, t) = 0. In

addition, Assumption 5 implies that the following quantity is identifiable for every t ≥ 2:

E(Yit − Yi1|Gi = ∞, Hi = 1) = E(Yit(0,d−i)− Yi1(0,0−i)|Gi = ∞, Hi = 1) = δt,

where the last equality follows by Equation (5). This implies that δt is identified, which

implies that δt+AST (g, t) is identified because δt+AST (g, t) = δt+0 = δt. In particular,
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it follows that

ATT0(g, t) = E(Yit|Gi = g)− E(Yi1|Gi = g)− E(Yit − Yi1|Gi = ∞, Hi = 1)

by the proof of Theorem 1. ■

A.3 Proof of Theorem 3

As in the proof of Theorem 1, under Assumptions 2 and 3, for each group g at time t,

we can express Yit as

Yit = Yit(di,d−i)

= Yit(0,0−i) + [Yit(di,0−i)− Yit(0,0−i)] + [Yit(di,d−i)− Yit(di,0−i)]

= αi + δt + [Yit(di,0−i)− Yit(0,0−i)] + [Yit(di,d−i)− Yit(di,0−i)] + εit,

where the last equality follows from Remark 1, in which E(εit|Gi = g) = 0 for every g

and t. Define
βit = Yit(di,0−i)− Yit(0,0−i),

γit = Yit(di,d−i)− Yit(di,0−i).

We can then simplify the expression for Yit as

Yit = αi + δt + βit + γit + εit.

For the group Gi = ∞, this expression simplifies to

Yit = αi + δt + γit + εit, (15)

because βit = 0. Now, by Assumption 5:

E(Yit|Gi = ∞, Hi = 1) = E(Yit(0,d−i)|Gi = ∞, Hi = 1)

= E(Yit(0,0−i)|Gi = ∞, Hi = 1)

= E(Yi1(0,0−i)|Gi = ∞, Hi = 1) + δt.

(16)

The first equality of Equation (16) and the definition of γit implies that

E(γit|Gi = ∞, Hi = 1) = E(Yit(0,d−i)− Yit(0,0−i)|Gi = ∞, Hi = 1) = 0.
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Building on this finding, Equation (15) and the second equality of Equation (16) implies

that
E(εit|Gi = ∞, Hi = 1)

= E(Yit − αi − δt|Gi = ∞, Hi = 1)

= E(Yit − αi|Gi = ∞, Hi = 1)− δt

= E(Yit(0,d−i)− Yi1(0,0−i)|Gi = ∞, Hi = 1)− δt = 0.

Therefore, it follows that E(γit|Gi = ∞, Hi = 1) = E(εit|Gi = ∞, Hi = 1) = 0. In

addition, since E(εit|Gi = ∞) = 0, it follows that

E(εit|Gi = ∞, Hi = 0) = 0,

which then implies that E(εit|Gi = g,Hi = h) = 0 for every (g, h) in the extended group

label set G̃. Consequently, we can express Yit for any extended group (Gi, Hi) = (g, h) at

time t as

Yit = αi + δt + βit + γit + εit,

where E(εit|Gi = g,Hi = h) = 0 for every (g, h) ∈ G̃ and E(γit) = 0 if (g, h) = (∞, 0).

Now, for every unit satisfying (Gi, Hi) ∈ G̃, we can write

Yit = αi + δt + εit for 1 ≤ t < q,

Yit = αi + δt + γit + εit for q ≤ t < g,

Yit = αi + δt + βit + εit for g ≤ t ≤ T.

These expressions are obtained by the following arguments:

• The first expression is obtained by recognizing that, when all units are untreated,

neither the treatment effect nor the spillover effects are present, represented by

βit = 0 and γit = 0.

• The second expression is obtained by recognizing that, in the periods where some

units are treated but units in group g are not yet treated, there is no treatment

effect (βit = 0), while spillover effects may occur, represented by γit.

• The third expression is obtained by recognizing that, in the periods where units in

group g have been treated, the treatment effect may present, represented by βit, but

units are not subject to spillover effects by Assumption 4, represented by γit = 0.

We can combine these three expressions into one unified expression, encompassing every
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group (Gi, Hi) ∈ G̃ at every period 1 ≤ t ≤ T , as follows:

Yit = αi + δt +
T∑

t′=Gi

βit′1(t = t′) +

min{Gi−1,T}∑
t′=q

γit′1(t = t′) + εit,

where
∑T

t′=Gi
is considered a null summation if Gi = ∞. We can write this further as

Yit = αi + δt +
T∑

t′=Gi

βit′1(t = t′)Dit +

min{Gi−1,T}∑
t′=q

γit′1(t = t′)Sit + εit,

since Dit = 1 for t ≥ Gi and Sit = 1 for q ≤ t < Gi according to their definitions. We

can equivalently write this last expression as

Yit =
∑

(g,h)∈G̃

1(Gi = g,Hi = h)

αi + δt +
T∑

t′=g

βit′1(t = t′)Dit +

min{g−1,T}∑
t′=q

γit′1(t = t′)Sit + εit


= αi + δt +

∑
(g,h)∈G̃

T∑
t′=g

βit′1(Gi = g,Hi = h)1(t = t′)Dit

+
∑

(g,h)∈G̃

min{g−1,T}∑
t′=q

γit′1(Gi = g,Hi = h)1(t = t′)Sit + εit.

(17)

Now we proceed to prove the theorem. Note that Equation (7) is a pooled regression

of the variables that encompass all groups (g, h) ∈ G̃. Let Xit be the vector of regressors

in Equation (7), namely indicators of (g, h), indicators of t, interactions between Dit and

indicators of (g, h, t), and interactions between Sit and indicators of (g, h, t). Note that the

regressors (Xi1, . . . ,XiT ) identify the extended group label (g, h) and vice versa, because

the interactions of Dit identifies the original group label g ∈ G and the interactions of Sit

distinguishes (∞, 0) and (∞, 1). This implies that

E(Yit|Xi1, . . . ,XiT ) = E(Yit|Gi = g(Xi1, . . . ,XiT ), Hi = h(Xi1, . . . ,XiT ))

where g(Xi1, . . . ,XiT ) and h(Xi1, . . . ,XiT ) are the extended group label identified by
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(Xi1, . . . ,XiT ). Then, by Equation (17):

E(Yit|Xi1, . . . ,XiT ) = E(Yit|Gi = g(Xi1, . . . ,XiT ), Hi = h(Xi1, . . . ,XiT ))

= E(αi|Gi = g,Hi = h) + δt +
T∑

t′=g

E(βit′ |Gi = g,Hi = h)1(t = t′)Dit

+

min{g−1,T}∑
t′=q

E(γit′|Gi = g,Hi = h)1(t = t′)Sit.

In the case where units with Hi = 1 exist only within group Gi = ∞, Hi is degenerate

with Hi = 0 for units with Gi ̸= ∞. Therefore, for units with Gi ̸= ∞, the above equation

simplifies to:

E(Yit|Xi1, . . . ,XiT ) = E(αi|Gi = g) + δt +
T∑

t′=g

E(βit′ |Gi = g)1(t = t′)Dit

+

min{g−1,T}∑
t′=q

E(γit′ |Gi = g)1(t = t′)Sit.

This shows that, for units with Gi ̸= ∞, the coefficient associated with 1(Gi = g)1(t =

t′)Dit equals to E(βit|Gi = g). Then, by the definition of βit:

E(βit|Gi = g) = E(Yit(di,0−i)− Yit(0,0−i)|Gi = g),

where the right-hand side is the definition of ATT0(g, t). ■

A.4 Proof of Corollary 1

Similarly to the proof of Theorem 1, for each group g at time t, we can express Yit as

Yit = Yit(di,d−i)

= Yit(0,0−i) + [Yit(di,0−i)− Yit(0,0−i)] + [Yit(di,d−i)− Yit(di,0−i)] .

Then, under Equation (9), we can write the expectation of Yit as

E(Yit|Gi = g) = exp{αg + δt}+ ATT0(g, t) + AST (g, t),

where

ATT0(g, t) = E(Yit(di,0−i)− Yit(0,0−i)|Gi = g),
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and

AST (g, t) = E(Yit(di,d−i)− Yit(di,0−i)|Gi = g).

Then, by replicating the arguments in Theorem 1 that starts from Equation (12), it is

straightforward to show that ATT0(g, t) is identified if and only if exp{αg+δt}+AST (g, t)

is identified. ■

A.5 Proof of Corollary 2

By Corollary 1, it suffices to show that exp{αg+δt}+AST (g, t) is identified. We proceed

by separately identifying the three objects: αg, δt, and AST (g, t). First, Assumption 4

implies that AST (g, t) = 0, identifying AST (g, t). Second, for units such that Gi = ∞
and Hi = 1, Equations (9) and (10) imply that

lnE(Yit|Gi = ∞, Hi = 1)− lnE(Yi1|Gi = ∞, Hi = 1)

= lnE(Yit(0,0−i)|Gi = ∞, Hi = 1)− lnE(Yi1(0,0−i)|Gi = ∞, Hi = 1)

= δt,

which identifies exp{δt}. In addition, because all units are untreated at t = 1 by the

assumption, it follows that

E(Yi1|Gi = g) = E(Yi1(0,0−i)|Gi = g) = exp{αg}.

This implies that αg is identified for every g ∈ G, because Yi1 is identifiable whenever

g ∈ G, i.e., whenever the group is present in the data. Therefore, ATT0(g, t) is identified

by Corollary 1. In particular,

ATT0(g, t) = E(Yit|Gi = g)− E(Yit|Gi = ∞, Hi = 1)

E(Yi1|Gi = ∞, Hi = 1)
E(Yi1|Gi = g).

■

38


	Introduction
	Intuition and Motivating Examples
	Setup
	Identification
	Estimation and Inference
	Extension to Nonlinear DiD Models
	Application to Auto Theft Prevention Policy
	Monte Carlo Simulation
	Conclusion
	APPENDICES
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Corollary 2



