
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

BELT: Bootstrapped EEG-to-language Training by
Natural Language Supervision
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Abstract—Decoding natural language from noninvasive brain
signals has been an exciting topic with the potential to expand
the applications of brain-computer interface (BCI) systems.
However, current methods face limitations in decoding sen-
tences from electroencephalography (EEG) signals. Improving
decoding performance requires the development of a more
effective encoder for the EEG modality. Nonetheless, learning
generalizable EEG representations remains a challenge due to
the relatively small scale of existing EEG datasets. In this paper,
we propose enhancing the EEG encoder to improve subsequent
decoding performance. Specifically, we introduce the discrete
Conformer encoder (D-Conformer) to transform EEG signals
into discrete representations and bootstrap the learning process
by imposing EEG-language alignment from the early training
stage. The D-Conformer captures both local and global patterns
from EEG signals and discretizes the EEG representation,
making the representation more resilient to variations, while
early-stage EEG-language alignment mitigates the limitations of
small EEG datasets and facilitates the learning of the semantic
representations from EEG signals. These enhancements result
in improved EEG representations and decoding performance.
We conducted extensive experiments and ablation studies to
thoroughly evaluate the proposed method. Utilizing the D-
Conformer encoder and bootstrapping training strategy, our
approach demonstrates superior decoding performance across
various tasks, including word-level, sentence-level, and sentiment-
level decoding from EEG signals. Specifically, in word-level
classification, we show that our encoding method produces more
distinctive representations and higher classification performance
compared to the EEG encoders from existing methods. At the
sentence level, our model outperformed the baseline by 5.45%,
achieving a BLEU-1 score of 42.31%. Furthermore, in sentiment
classification, our model exceeded the baseline by 14%, achieving
a sentiment classification accuracy of 69.3%.

Index Terms—Brain-computer interface, Brain-to-language
translation, Sentiment classification, Large language model, Con-
trastive learning, Vector quantization

I. INTRODUCTION

The decoding of the user’s intention from the noninvasive
electroencephalography (EEG) signals has been a fascinating
topic. Unlike most existing BCI-based applications such as
motor imagery classification [1] and emotion recognition [2],
[3], the potential to decode language with a large vocabulary
size opens the door to a new paradigm for human-to-human
and human-to-machine interaction [4]–[7]. Although much
effort has been made, decoding natural language from EEG
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signals remains a formidable challenge. Exemplified by the
considerable opportunity for improvement in decoding preci-
sion, coherence, and open-vocabulary generalization [8]–[11].

Existing solutions for EEG-to-language decoding use a
generative approach that combines an EEG encoder with a
generative language model (LM) as task-specific decoder [12],
[13]. We depict such encoder-decoder structure in Figure 1. In
these methods, word-level EEG embeddings are first encoded
by an EEG encoder and then used as conditions for the decoder
to generate sentences. Although this approach has shown
promising outcomes, the limited scale of EEG datasets makes
the adoption of a simple model architecture, such as a Trans-
former, less effective. As evidenced in previous research [14],
[15], directly training a generic model on a small dataset can
result in a lack of semantics in the learned representations,
subsequently affecting generalization capacity and decoding
performance [16]. To improve language decoding performance
from EEG signals, we aim to develop a more effective encoder
to ensure that the generated sentences are conditioned on
the right EEG information. Therefore, we consider enhancing
the EEG encoder in two key aspects. Firstly, we improve
the architecture of the EEG encoder to better exploit inter-
channel dependencies within the EEG signals. Secondly, we
introduce semantic guidance during the learning process to
bootstrap more meaningful EEG representations. These areas
are currently under-explored in EEG-to-language decoding
research.

Fig. 1. Overview of the EEG-to-language decoding framework used in our
research. The framework consists of an EEG encoder that encodes EEG data
and a task-specific decoder that decodes the information from the encoded
EEG representations. Our research focuses on enhancing the encoder of this
framework. By generating superior EEG representations, we aim to improve
performance across multiple decoding tasks.

In this paper, we propose to improve EEG encoding ca-
pability for EEG-to-language decoding tasks using a novel
encoder architecture and training method. Specifically, we
introduced a novel discrete conformer (D-Conformer) as the
EEG encoder to exploit both the global context and local
brain dynamics from the EEG signals. Then, we bootstrap
the learning of semantic EEG representation by imposing
EEG-language alignment. We summarize our approach as
Bootstrapped EEG-to-Language Training (BELT). Our BELT
approach leverages pre-trained language models (BART [17])

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2024.3450795

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

to guide the training of our D-Conformer encoder. We evaluate
BELT’s effectiveness in enhancing the capacity of learned
EEG representations across several tasks, including EEG-to-
word classification, EEG-to-sentence decoding, and zero-shot
sentiment classification. Additionally, we demonstrate that our
bootstrapping scheme can be adapted to specific tasks by
selecting different sources of language guidance. To handle
various decoding tasks, we can bootstrap the training of the
D-Conformer encoder using word-level, sequence-level, or
context-level modeling strategies. Our extensive experiments
show that BELT achieves performance gains over existing
methods. The highlights of this paper can be summarized as
follows:

• We propose the D-Conformer as a novel EEG encoder
architecture that employs vector quantization and Con-
former blocks to enhance the extraction and utilization
of EEG information.

• We propose bootstrapping the training of the EEG en-
coder by aligning its representations with pre-trained lan-
guage models (LMs). Our bootstrapping method adapts to
various decoding tasks by leveraging different sources of
language guidance, including word-level, sequence-level,
and context-level modeling strategies.

• Extensive experiments and ablations were conducted
on decoding tasks including EEG-to-word classification,
EEG-to-sentence decoding, and zero-shot sentiment clas-
sification to evaluate the effectiveness of the proposed
methods. Internal comparison between ablated models
and external comparison with existing methods show
that our proposed approach improves performance across
these EEG decoding tasks.

II. RELATED WORK

A. Decoding language from human brain signals

Existing research on brain-to-language decoding includes
both invasive [18], [19] as well as noninvasive approaches [6],
[20], [21]. Compared to an invasive approach that requires
sensor array implantation, non-invasive methods are less risky
and more accessible. Among non-invasive techniques, EEG
offers higher temporal resolution than magnetoencephalogra-
phy (MEG) [6] and functional magnetic resonance imaging
(fMRI) [21], making it particularly suitable for linguistic
applications. Consequently, our research focuses on language
decoding from EEG. Due to the underlying neural processes
involved in speech production, pioneers mainly focus on
decoding subword units [22]–[24]. For instance, [25] pro-
posed to extract auto-regressive coefficients as features for
imagined syllable classification with a k-nearest neighbor
(KNN) classifier. [26] leverages the Hilbert transform to
extract features and classify the syllables using a Bayesian
classifier. To decode higher-level semantics, numerous studies
have dedicated efforts to word-level classification using EEG
signals [27]–[31]. For instance, [32] have evaluated various
convolutional neural network (CNN) architectures for decod-
ing imagined speech from EEG, showcasing the potential of
deep learning approaches in improving classification accuracy.
However, most of these studies have trained and evaluated

their models on a dataset comprising a vocabulary of only 4
to 10 words, which can be insufficient for conveying daily
communication [33]. To decode EEG into sentences with
a larger vocabulary size, [34] proposes a novel Adaptive
Graph Attention Convolutional Network (AGACN) to decode
sentences or phrases from EEG signals, achieving high classi-
fication accuracy and demonstrating the feasibility of decoding
silent reading with complex semantics from EEG signals.
More recently, EEG decoding methods have predominantly
employed end-to-end generative approaches leveraging large
language models as decoders. For instance, EEG-to-Text [13]
pioneered open-vocabulary decoding of EEG signals into sen-
tences, establishing an initial performance benchmark while
DeWave [35] advanced decoding performance by performing
raw wave decoding. Different from their works, we focus
on improving the EEG encoder architecture and leveraging
various language supervision strategies, including word-level,
sentence-level, and context-level strategy, to guide the training
of the EEG encoder to achieve better performance in various
language decoding tasks.

B. Learning representations by natural language supervision

Training effective representations for EEG signals is crit-
ical to achieving high decoding performance. Recent deep
learning methods have shown that language modalities can
guide the training of semantically aligned multimodal rep-
resentations, as demonstrated in visual-language [15], [36],
video-language [37], and audio-language [38]–[40]. Unlike
conventional end-to-end supervised learning, the use of natural
language supervision introduces additional semantic informa-
tion and zero-shot generalization capacity to the representa-
tion space of non-language modalities. Current methods for
leveraging natural language supervision often involve jointly
training both the non-text encoder and the text encoder [15],
[37], [41]. For instance, CLIP [15] jointly trains a text encoder
and an image encoder using contrastive learning between im-
ages and captions. Similarly, VideoCLIP [42] trains encoders
for video and text modalities using a contrastive objective
between video frames and their descriptions. However, these
methods require large-scale multimodal data pairs to train
both encoders from scratch, leading to high training costs.
To address this, another branch of research leverages frozen
pretrained unimodal models and performs cross-modal align-
ment instead of training both encoders from scratch [36].
In the field of EEG-to-language decoding, the incorporation
of language guidance at the beginning of training an EEG
encoder remains unexplored. The absence of a pretrained EEG
encoder on a large dataset also hinders the adoption of this ap-
proach. Furthermore, the most effective modeling strategies for
aligning EEG and language modalities are unclear. To address
this research gap, we propose training an EEG encoder using
guidance from a pretrained text encoder. To determine the
optimal modeling methods, we design and compare sentence-
level and context-level modeling strategies with word-level
strategies, investigating their impact on subsequent decoding
tasks.
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Fig. 2. The overall framework of the proposed approach. After segmenting and applying frequency-domain transform in the preprocessing step, we obtain
a sequence of frequency-domain word-level EEG embedding e for each word. Then, we use a D-Conformer to encode e into discrete EEG representations
b. These discrete EEG representations will be used as inputs to a subsequent decoder model as conditions for language decoding. To learn semantic EEG
representation, we bootstrap the learning of language-aligned EEG representations by training the model using a contrastive objective between b and the
language representation w. A pre-trained LM is used to generate these language representations. A total of three strategies are designed to bootstrap the learning
of language-aligned EEG representations for different tasks. Including the (a) word-level strategy where we sample positive and negative word representations
for each word-level EEG representation to provide dense supervision information, (b) sentence-level strategy where we only provide sentence-level supervision
to the whole EEG sequence, and (c) context-level strategy where we provide word-level as well as context information supervision for each EEG representation.

III. METHOD

The proposed BELT method comprises the D-Conformer for
EEG encoding and a bootstrapping scheme for training the
D-Conformer. The overall framework of BELT is illustrated
in Fig. 2. After preprocessing, the D-Conformer encodes the
EEG signals into discrete representations, each corresponding
to the brain dynamics for a word. To bootstrap the training of
semantic EEG representations, we use a pretrained language
model to provide supervision through a contrastive learning
objective. To optimize performance across different decoding
tasks, we designed various bootstrapping strategies leveraging
word-level, sequence-level, and context-level supervision.

The remainder of this section is organized as follows:
Section III-A introduces the preprocessing steps crucial for
converting raw EEG signals into the proper input format for
the D-Conformer. Section III-B provides a detailed description
of the D-Conformer encoder, including its Conformer building
blocks and the vector quantizer used to discretize the EEG
representation. Section III-C presents our bootstrapped training
scheme. Lastly, Section III-D explains how we applied the D-
Conformer model to various decoding tasks and details the
final training objectives.

A. EEG signal preprocessing

In the preprocessing step, the EEG signals are transformed
into word-level embeddings using frequency-domain transfor-
mation. First, the EEG recordings are segmented according to
the eye-tracking fixation on each word. Following the prepro-
cessing pipeline in previous works [13], [43], the segmented
EEG signals are band-pass filtered into eight frequency bands:
theta1 (4-6Hz), theta2 (6.5-8Hz), alpha1 (8.5-10Hz), alpha2
(10.5-13Hz), beta1 (13.5-18Hz), beta2 (18.5-30Hz), gamma1
(30.5-40Hz), and gamma2 (40-49.5Hz). The Hilbert transform
is then applied to each channel. Finally, word-level EEG
embeddings are obtained by averaging the frequency band

power within each frequency band. In the remainder of this
paper, we denote the word-level EEG embedding as e and the
corresponding word as w.

B. Discrete conformer for EEG encoding

After preprocessing the EEG data into word-level embed-
dings, we introduce the D-Conformer EEG encoder to extract
discrete representations. The proposed D-Conformer consists
of a number of Conformer blocks and a vector quantizer. They
are explained in Sections III-B1 and III-B2 respectively.

1) Conformer block: A critical step in EEG encoding is
handling the input signal’s multi-channel characteristics and
temporal dynamics. Thus, exploiting the local patterns within
channels or the change of patterns when reading through a
sentence is crucial for effective pattern extraction in linguistic
tasks [44], [45]. However, traditional transformer models lack
the mechanisms to effectively capture the local patterns [46].
To overcome this limitation, we proposed to utilize a Con-
former block in our encoder to extract local patterns within
each EEG embedding as well as the contextual information
among the EEG embeddings in a sentence simultaneously.

As depicted in Fig. 3, our D-Conformer is comprised of
six conformer blocks. Each conformer block contains four
modules including a feed-forward layer, a convolution module,
a multi-head self-attention layer, and another feed-forward
layer. The convolution module is depicted in Fig. 4, which
is in turn comprised of two pointwise convolution layers and
a depthwise convolution layer. Detailed configuration of the
convolution module is listed in Table I. The first pointwise
convolution layer of the convolution module uses the gated
linear unit (GLU) as the activation function. A batch normal-
ization layer and a swish activation function were also used
after the depthwise convolution layer. Overall, the Comformer
blocks take the EEG embeddings e as input and output the
continuous EEG representation h.
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Fig. 3. The detailed structure of the proposed D-Conformer architecture for
EEG encoding. The D-Conformer encoder uses EEG embeddings e as input
and outputs discrete EEG representations b. Our D-Conformer is comprised of
6 Conformer blocks and a vector quantizer. Each Conformer block contains a
convolution module for exploiting local patterns within the EEG embeddings
and a multi-head attention layer for exploiting global information from all
input EEG embeddings. The outputs of the Conformer model are fed to a
vector quantizer where each continuous EEG representation h is replaced by
a discrete codebook code from the discrete codebook V . Finally, we obtain
the discrete EEG representation b for each word from the D-Conformer.

Fig. 4. The detailed structure of the convolution module used in the
Conformer blocks.

2) Vector quantizer: To achieve representations that bet-
ter conserve the important features of the word-level EEG
segmentations, we further quantize the EEG representations
into discrete codes using a vector quantizer. After word-level
segmentation, each EEG embedding has been associated with
a unique language symbol (e.g., a word). Hence, it can be a
more natural fit to represent these EEG symbols in discrete
representations [47]. Specifically, a vector quantizer ze(h) is
added after the conformer blocks to map each word-level EEG
representation h into a discrete code b by finding the nearest
discrete element v from a codebook V ∈ RK×D. The code-
book V contains K discrete embeddings {v1, · · · ,vK}, with
each embedding being a vector of size D. A fully connected
layer is used to adjust the size of h to D for calculating and
comparing the distances between vi and h. The codebook of

TABLE I
DETAILED CONFIGURATION OF THE CONVOLUTION MODULE

Layer Kerrnel Stride In Channel Out Channel
Layer Norm - - 840 840
Pointwise Conv. 1 1 840 2× 840
Depthwise Conv. 31 1 840 840
Batch Norm - - 840 840
Pointwise Conv. 1 1 840 840
Dropout - - - -

the vector quantizer is randomly initialized when building the
D-Conformer. Mathematically, the vector quantizer finds the
nearest discrete code for each EEG representation by applying
the following nearest neighbor lookup algorithm:

b = ze(h) = vk, k = argmin
j

∥h− vj∥22 (1)

, where ∥hj − vj∥22 denotes the Euclid distance between h
and a codebook embedding vj . We use Lvq (Equation 2) to
train the discrete codebook V. The Lvq comprises two terms.
The first term is the codebook loss for updating the codebook
V and the second term is the commitment loss to keep the
output ze(h) close to input h.

Lvq = ∥sg [ze(h)]− v∥22 + β ∥ze(h)− sg[v]∥22 (2)

, where sg [·] denotes the stop-gradient operation for the
straight-through gradient estimation process [48]. During the
forward pass, sg [·] is equivalent to an identical function and
passes zero partial gradients, constraining its operand to be
a non-updated constant. Coefficient β is a coefficient that
controls the impact of the commitment term, we set β to
0.3 in our experiments. This commitment term helps constrain
the EEG representations h from the Conformer model to be
compatible with the discrete codes from the codebook. Due
to the non-stationarity nature of EEG signals, quantizing the
EEG representation could reduce the variations by replacing
the EEG representation h with its discrete counterpart b and
consequently increase the EEG encoder’s robustness against
subject-specific noise and perturbations while conserving key
information from the EEG embeddings.

C. Bootstrapped EEG-to-language training for D-Conformer

Nonetheless, the D-Conformer alone cannot guarantee the
extraction of semantic EEG representations without an appro-
priate learning method. To address this, we employ EEG-
language alignment to bootstrap the learning of the D-
Conformer. Considering that different decoding tasks may em-
phasize different types of information, we designed strategies
to use word-level, sequence-level, and context-level language
representations to adapt our method to various tasks. Specif-
ically, we utilize a pretrained Bart model [17] to provide
these language representations for corresponding sentences,
which are then aligned with the D-Conformer’s outputs. This
alignment process allows the D-Conformer to extract semantic
information from EEG signals.

1) Word-level bootstrapping strategy: For tasks that focus
on decoding precision, we consider providing dense language
guidance on the word level. In this strategy, we align the
discrete EEG representations b to the word embedding w. The
sampling method between the word embeddings and the EEG
representations is illustrated in Fig.2.(a), where we sample
the corresponding word as positives and others as negatives.
Let M = {w1, · · · ,wn;b1, · · · ,bn} represent a mini-batch
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containing n EEG-word representation pairs, we will use the
following contrastive term Lw

cl during training:

Lw
cl = E

i≤n

−log
f(bi,wi)

f(bi,wi) +
∑
i ̸=j

f(bi,wj)


f(bi,wj) = exp(fe(bi)

T fw(wj))/τ

(3)

, where fe and fw are linear layers that align the input
dimensions for the discrete EEG representation and the word
embedding, respectively. τ is a temperature hyperparameter.
We apply masking to words outside the the vocabulary set
of the language model, as well as for padded elements in the
input sequences so that they do not affect the training process.

2) Sentence-level bootstrapping strategy: Unlike the word-
level strategy, which enhances precision in decoding tasks by
focusing on individual words, sentence-level representations
from an LM emphasize the topical information of the entire
sentence. This approach is particularly beneficial for tasks
such as sentiment classification from EEG signals. To generate
sentence-level EEG representations, we add a global pooling
layer to the outputs of both the D-Conformer and the word
embeddings, thereby obtaining sequence-level representations
from both EEG and text modalities, as demonstrated in pre-
vious works [37], [41], [49], [50]. We denote the sentence-
level EEG representation and the sentence representation after
pooling the word-level representations as b̄ and w̄. As depicted
in Fig. 2.(b), we treat all sentences other than the ground truth
as negative samples. Thus, the contrastive term for sentence-
level bootstrapping Ls

cl can be expressed as follows:

Ls
cl = E

i≤n

−log
f(b̄i, w̄i)

f(b̄i, w̄i) +
∑
i ̸=j

f(b̄i, w̄j)

 (4)

, where i, and j are indexes sampled from a mini-batch
containing n pairs of EEG sequences and sentences.

3) Context-level bootstrapping strategy: The context-level
strategy is designed to introduce guidance from the deeper
representation of a pretrained LM, mirroring how humans
gradually grasp sentence meaning by assimilating semantic
cues from multiple words. Illustrated in Fig.2.(c), the context-
level modeling strategy aligns the EEG encoder’s represen-
tation space with a specific transformer block from the LM
encoder. We denote the context-level word representation as
c = LM(w) which is output by the Transformer layer of a
LM. We use the same sampling strategy between the EEG
and words in the word-level modeling strategy to obtain the
following contrastive term:

Lc
cl = E

i≤n

−log
f(bi, ci)

f(bi, ci) +
∑
i ̸=j

f(bi, cj)

 (5)

D. Decoding tasks and training objectives

When combined with different decoders or classifiers, dis-
crete representations from our D-Conformer can be utilized
for multiple tasks, including EEG-to-sentence decoding, zero-
shot sentiment classification, and EEG-to-word classification.

The overall model structure for each task is depicted in Figure
5.

Fig. 5. Various decoding tasks from EEG signals using the proposed D-
Conformer.

EEG-to-sentence decoding:As depicted in Figure 5(a), we
aim to generate the target sentence S using a sequence of
word-level EEG representations E = {e1, · · · , eL}, with L
being the maximum length of the input EEG sequence. These
EEG inputs will be first encoded into discrete representations
by the D-Conformer model and the discrete EEG representa-
tions will in turn used as input to a LM decoder. Following
the settings proposed in [13], [35], we use a pretrained BART
model [17] as decoder in this task. For training our model,
we train the model for end-to-end EEG-to-sentence generation
using the machine translation loss Ltr = −

∑
log p(S|E). Ad-

ditionally, we employ Lvq for training the discrete codebook
and Lcl to bootstrap the learning of the semantic representation
space. The final loss function can be written as folows:

L = Ltr + αLr
cl + λLvq (6)

, where α and λ are coefficients used to control the weighting
of the bootstrapping term and the codebook training term.
The bootstrapping strategy is determined by r ∈ {w, s, c},
corresponding to word-level, sentence-level, and context-level
strategies, respectively.

The performance of the translation task is measured using
the bilingual evaluation understudy (BLEU) score [51] and
the recall-oriented understudy for gisting evaluation (ROUGE)
score [52]. The ROUGE scores are a set of metrics (precision,
recall, and F1-score) used to evaluate the unigram perfor-
mance between the target and generated sentences. On the
other hand, the BLEU scores assess the quality of generated
text by comparing n-gram matches between the target and
the generated sentence. The BLEU-N score is calculated as
BLEU−N = bp × exp(

∑N
n=1 ςn log pn), bp = exp(1 − lt

lg
),

where bp = exp(1 − lt
lg
) is the brevity penalty term, lt and

lg are the lengths of the generated translation and the closest
target translation, respectively, and ςn = 1/N is the weight
assigned to each n-gram precision score. We evaluate BLEU-
1,2,3,4 scores in this paper.

Zero-shot sentiment classification: Building on the pre-
vious EEG-to-sentence decoding model, we can perform
zero-shot sentiment analysis using a sentiment classifier that
has not been trained on the same dataset as the EEG-to-
sentence decoding model, as exemplified in [13]. The zero-
shot sentiment classification pipeline is depicted in Figure
5(b), where the EEG-to-sentence decoding model and the
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sentiment classifier are trained individually using different
datasets. For the EEG-to-sentence decoding model, we use
Equation 6 for training as described in the previous section.
For the sentiment classifier, we experiment with pretrained
BART [17] and XLNet [53], fine-tuning them using the Stan-
ford Sentiment Treebank (SSTB) dataset [54]. The objective
function for training the sentiment classifier is defined as
Lss = −

∑
y log(p(ŷ|S)), where ŷ denotes the sentiment

prediction for an input text sample from the SSTB sentence-
sentiment pairs ⟨S, y⟩, and y is the target sentiment label. This
sentiment classifier is then used to classify the generated sen-
tences from the EEG-to-sentence decoding model and output
a sentiment prediction. To evaluate the model’s performance
on sentiment classification, we calculate both micro and macro
metrics, including accuracy, precision, recall, and F1 scores.

EEG-to-word classification: Unlike the sentence decoding
task, where we leverage the power of a pretrained language
model as the decoder, we also evaluate the encoder model at
the word level to determine whether the proposed encoding
architecture can encode more precise information from EEG
compared to previous methods. To do this, we select the
500 most frequently occurring words from the sentences in
the training, evaluation, and testing splits for training and
evaluating word-level classification performance. As depicted
in Figure5.(c), we use a multi-layer perceptron (MLP) clas-
sifier to output the probability distribution over the selected
vocabulary set using the discrete EEG representations from
the D-Conformer encoder. Given the challenging nature of
this task, we use top-10 accuracy as our evaluation metric,
following [6]. To train our model for classification, we employ
a cross-entropy loss, denoted as Lce = −

∑
z log p(ẑ|e),

where z and ẑ denote the ground truth word and the word
prediction, respectively. When incorporating the Lvq and Lcl

terms, the full training loss is written as follows:

L = Lce + αLr
cl + λLvq (7)

IV. EXPERIMENT

A. Dataset

We use the ZuCo dataset [43], [55] to conduct our exper-
iments and evaluate our proposed model. The ZuCo dataset
comprises EEG data recorded during a natural reading task,
supplemented by eye-tracking data for word-level segmenta-
tion. It includes 105 EEG channels, with EEG waves denoised
and filtered into eight frequency bands after segmentation.
A more complete preprocessing details can be found in the
dataset paper [43]. The dataset features two reading tasks:
normal reading (NR) and task-specific reading (TSR). In
the NR task, text passages are sourced from online movie
reviews and Wikipedia. The TSR task provides ground-truth
sentiment labels in three categories: positive, neutral, and
negative. For fair comparison with existing methods, we follow
the data division approach outlined in [13], splitting the data
into training, validation, and testing sets with proportions of
approximately 80%, 10%, and 10%, respectively. The distri-
bution of training samples for each tasks is detailed in Table

TABLE II
DATASET STATISTICS FOR EACH DECODING TASK

Decoding Training Validation Testing
Task Samples Samples Samples

EEG-to-sentence decoding 10710 1332 1407
Sentiment classification 3609 467 456

EEG-to-word classification 84815 9732 10432

II. In particular, for word-level classification tasks, we select
the 500 most frequently occurring words from the sentences.
These sentences are obtained from sentence decoding task
across each dataset split.

B. Implementation details

We use a D-Conformer encoder with 6 Conformer blocks in
our experiments, each comprising 8 attention heads. The size
of the output EEG representations is set to 840. For the vector
quantizer, we set the number of discrete codebook embeddings
K to 1024 with the codebook embedding size D to be 1024.
All models are trained on Nvidia A40 GPUs. During training,
we use a learning rate of 5e-6 and a batch size of 64. For
the loss function, we set α to 0.9 and λ to 1.0. We train our
model for a total of 60 epochs, with the best model selected
based on validation set performance before evaluation on the
test set. We use the SGD optimizer [56] for all training.

C. EEG-to-sentence decoding performance

The performance for the EEG-to-sentence decoding task
is presented in Table III. We primarily report results us-
ing word-level bootstrapping, as it achieves the best perfor-
mance for this task. A comparison of different bootstrapping
strategies will be presented and discussed in Section IV-F2.
Overall, our model achieves state-of-the-art BLEU scores of
(42.31, 25.26, 14.81, 8.73) and ROUGE-1 precision, recall,
and F1-scores of (36.06, 29.86, 32.57). External comparisons
show that our model outperforms EEG-to-Text [13] and De-
wave [35] on both metrics. Notably, the main differences
between these models lie in the design of the EEG encoder.
Compared to the EEG-to-Text method, both our method and
the Dewave method encode EEG into discrete representations,
indicating that encoding EEG signals into discrete codes is
more robust to noise than continuous encoding. Additionally,
compared to the Dewave method, our Conformer-based en-
coder further exploits spatial dependencies within EEG inputs,
contributing to improved sentence decoding performance.

In Table IV, we present examples of sentence decoding
results using the proposed method for qualitative evaluation.
The examples illustrate semantic similarity by comparing Lev-
enshtein distances between phrases of the target and decoded
sentences. Despite the inherent challenges of EEG decoding,
our model significantly improves both single-word decoding
precision and the semantic similarity of the decoded phrases.

From on the decoded results, we observe that our method
is capable of decoding the verbs and nouns that contain the
critical information of a sentence. For instance, in sentence (3)
“was born in” vs. “was born in” and in sentence (4)“moved
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TABLE III
BRAIN-TO-SENTENCE DECODING RESULT

BLEU-N(%) ROUGE-1(%)

Model N=1 N=2 N=3 N=4 Precision Recall F1-Score

EEG-To-Text [13] 40.12 23.18 12.61 6.80 31.70 28.80 30.18
DeWave [35] 41.35 24.15 13.92 8.22 33.71 28.82 30.69

D-Conformer (ours) 42.31 25.26 14.81 8.73 36.06 29.86 32.57
w/o word-level bootstrapping 41.57 24.70 14.54 8.51 35.69 29.40 32.14
w/o vector quantier 41.34 24.14 13.90 8.20 33.71 28.80 30.06

TABLE IV
EEG-TO-SENTENCE DECODING EXAMPLES

(1) target string: Everything its title implies, a standard-issue crime drama
spat out from the Tinseltown assembly line.

predicted string: about a implies is and movie forissue, story.
between of the depthsseltown set line.

(2) target string: The Kid Stays in the Picture” is a great story, terrifically told
by the man who wrote it but this Cliff Notes edition is a cheat.

predicted string: The movie”ays in the House” is a filmld:40 film about andally funny
by a man who wrote itld:91. also is Richard version is a cheatld:83.

(3) target string: Jeb Bush was born in Midland, Texas, where
his father was running an oil drilling company.

predicted string: Bush was born in Newway, Texas, and
he father wasld:89 a a insurance company company.

(4) target string: When Bush was six years old,
the family moved to Houston, Texas.

predicted string: he was elected years old,
he family moved told:97 New, Texas.

(5) target string:
Bush attended the University of Texas at Austin, where he graduated Phi Beta Kappa
with a Bachelor’s degree in Latin American Studies in 1973,
taking only two and a half years to complete his work, and obtaining generally excellent grades.

predicted string:
was the University of Chicago at Austin, where he was in Beta Kappald:78
in a degree of degree in History American Studies. 1968∗.
and a one years a half yearsld:73. complete. degree. and was a mediocre gradesld:44.

(6) target string: At the urging of his wife, Columba, a devout Mexican Catholic,
the Protestant Bush became a Roman Catholic.

predicted string: the time of his wife, hea, he former Catholic Catholic,
he actor ministerman a Catholic Catholic.

(7) target string: He is a prominent member of the Bush family, the younger brother of President George W. Bush
and the second son of former President George H. W. Bush and Barbara Bush.

predicted string: was a former member of the American familyld:78. and son brother of President George W. Bushld:88.
the younger son of President President George W. W. Bush. former Bushld:72.

(8) target string:
After World War II, Kennedy entered politics (partly to fill the void of his popular brother,
Joseph P. Kennedy, Jr., on whom his family had pinned many of their hopes
but who was killed in the war).

predicted string:
the War IIld:64, he was politics asasly as serve the gap∗ left the father father,
John Kennedy. Kennedy, who.) who the he father had been their hopes the hopes).
who had assassinated in theld:60 Korean).

1 Bold words indicates excat match and Underline denotes fuzzy match.
2 Italics words indicates match but out of correct grammar order.
3 We hightlight fuzzy match results based on two criterias: 1) by the levenshtein distance [57] (annotated by the subscript ld) between

two text sequences, or 2) by semantic similarity (annotated by the subscript ∗).

to” vs. “move to”, our model correctly decoded the action
to be taken in a sequence of EEG signals. This characteristic
could be critical in some tele-control applications. In addition,
our model also decodes critical concepts such as “Catholic”,
“family”, “president”, and “politics”. This suggests that in the
future if more training data is available, our proposed model
could help convey sophisticated or even philosophical ideas
using EEG signals.

When it comes to short phrases, the proposed method
tends to decode semantically similar translations. Such
as in sentence (7) the second son of former President
vs. the younger son of President and in the sentence (8)
fill the void vs. serve the gap. We hypothesize this issue
is due to two reasons. The first and major reason is that
the EEG representation extracted by our model still lacks
discriminative power for the subsequent language model to
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recognize when the EEG signal is collected from a new
person or from a different session. Secondly, we hyporheic
another reason could be that when reading a sentence, the
words instead provoke the reader to paraphrase the words into
some meanings or inner sentence that the person is familiar
with or can relate to. This process could potentially help the
reader understand unfamiliar or complex ideas in the sentence
better and quickly. Therefore our model decodes a similar
meaning or situation that the reader is actually related to or
thinking of instead of the words displayed on the screen.

TABLE V
ZERO-SHOT SENTIMENT CLASSIFICATION RESULT ON ZUCO DATASET.

Micro Marco

Model Classifier Acc.(%) P.(%) R.(%) F1(%)

Transformer [13] Bartlarge 55.3 62.4 56.5 55.6

D-Conformers Bartlarge 60.5 57.8 58.3 56.9
D-Conformers XLNetlarge 69.3 68.8 68.3 68.0
D-Conformerw Bartlarge 60.0 59.9 57.9 56.5
D-Conformerw XLNetlarge 67.3 66.5 65.7 65.0
D-Conformerc Bartlarge 60.1 62.0 57.9 56.8
D-Conformerc XLNetlarge 63.1 61.4 61.4 60.8
1 The under script s, w, and x denote the use of the word-level, sentence-

level, and context-level bootstrapping strategy during training.
2 Acc. denotes the accuracy, P. denotes the precision and R. denotes the

recall.

D. Zero-shot sentiment classification performance

In addition to the EEG-to-sentence decoding task, we also
evaluate the performance of zero-shot sentiment classification.
Here, we use the sentence-level bootstrapping strategy for
training the D-Conformer model. As can be observed from
the quantitative results displayed in Table V, our method
substantially outperforms the baseline method. We could also
observe that finetuning a larger sentiment classifier (XLNet)
has a positive impact on all classification metrics. Overall, we
observe that when using the same BART classifier, our method
gains a 5.2% improvement in accuracy. When replacing the
zero-shot sentiment classifier with the XLNet model, we
additionally achieve an +8.8% improvement in classification
performance.

E. EEG-to-word classification performance

The sentence and sentiment tasks assess the encoder’s
ability to capture high-level information, with the powerful
language decoder compensating for any missing details to
generate coherent sentences. To more accurately evaluate the
encoder’s capability to capture word-specific patterns, we use
a simpler MLP classifier for the EEG-to-word task, avoiding
the influence of a powerful language model decoder. This
approach allows us to directly compare the encoder’s ability in
learning word-specific features. Since no existing studies have
tackled word-level classification using the Zuco dataset, we
implemented the encoders from the EEG-to-Text model [13]
and the Dewave model [35] for external comparison with
our method. Given the lack of contextual information in

TABLE VI
TOP-10 ACCURACY (%) FOR WORD-LEVEL CLASSIFICATION

Encoder Top-10 Accuracy (%)

EEG-to-Text [13] 20.92
DeWave [35] 24.64

D-Conformer (Ours) 31.04
w/o word-level bootstrapping 25.26
w/o vector quantizer 23.82

the word-level task, we exclusively use the word-level strat-
egy for training the D-Conformer model. Evaluation results,
presented in Table VI, indicate that our model predicts the
correct word with a top-10 accuracy of 31.04%, outperforming
other methods. Fig.6 shows decoding results from the test
set using linear probing, demonstrating that our word-level
bootstrapping training enhances the semantic richness of EEG
representations. For instance, when predicting “intelligence”,
our model also identifies “school”, “university”, and “college”
as highly probable candidates.

F. Ablations studies

Fig. 6. Visualization of top-10 word level prediction results.

1) Abltaion on encoder’s design componments: We evalu-
ate the impact of the proposed encoder improvements on EEG
decoding tasks using translation and word-level prediction, as
shown in Tables III and VI. In both tasks, we compare the
performance of our model and its ablated versions. Notably,
in Table VI, we observe that word-level classification perfor-
mance decreases when either language guidance or the vector
quantizer is removed during training, indicating that these
design choices positively impact classification performance.
Additionally, the word-level bootstrapping strategy contributes
more to prediction accuracy (+5.78%) compared to the use of
the vector quantizer (+1.44%). This highlights the importance
of learning a semantic representation space in linguistic EEG
decoding tasks. For the sentence decoding task, Table III
shows a similar trend, but both the vector quantizer and
bootstrapping learning contributes to a smaller increase in the
BLEU-1 score compared to the improvement seen in the word-
level task.

2) Ablation on bootstrapping strategies: The impact of
different bootstrapping strategies is illustrated in Table VII
for the sentence decoding task and Table V for the senti-
ment classification task. For sentence decoding, the word-level
strategy achieves the highest BLEU scores, likely because it
provides more fine-grained and precise information for the
EEG encoder. In contrast, context-level word embeddings,
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TABLE VII
IMPACT OF DIFFERENT BOOTSTRAPPING STRATEGIES

BLEU-N (%) ROUGE-1 (%)

Model N=1 N=2 N=3 N=4 P. R. F1

D-Conformerw 42.31 25.26 14.81 8.73 36.06 29.86 32.57
D-Conformers 42.23 24.95 14.29 8.14 36.06 29.82 32.54
D-Conformerc 42.20 24.94 14.46 8.37 36.12 29.80 32.56

1 The under script s, w, and x denote the use of the word-level,
sentence-level, and context-level bootstrapping strategy during
training.

which contain both word-level and sequence-level context
information, perform worse than the word-level and sequence-
level strategies. This may be due to the general context infor-
mation introducing additional noise to the already noisy EEG
signals, making it more challenging to train an effective EEG
encoder. For the sentiment classification task, sequence-level
strategies yield the best results across all sentiment classifiers.
Since sentiment classification considers the entire sentence
rather than individual words, the sequence-level supervision
enables our model to better capture the overall context and
sentiment inclination of the entire sequence.

3) Ablation on bootstrapping coefficients: We also investi-
gate the impact of a range of bootstrapping coefficients α rang-
ing from 0.05 to 0.9 by the word-level strategy with different
EEG encoders. In Figure 8, we present the BLEU-1 scores for
a bootstrapped D-Conformer with or without the use of vector
quantization (red and blue curves), as well as a comparison
between the Conformer encoder and the Transformer encoder.
It is noteworthy that the performance curve of the Transformer
encoder (green curve) corresponds to the baseline EEG-to-
Text model, as they both use the Transformer architecture
for their EEG encoder. We could observe that the increase in
bootstrapping coefficient comes with an increase in translation
performance from a broad perspective. With the introduction
of the conformer block in the D-Conformer (the blue curve)
to replace the transformer encoder used in the baseline EEG-
to-Text model (the green curve), our method could reach
better performance under higher bootstrapping coefficients
(0.8 and 0.9). However, we could also observe that the further
introduction of the vector quantization method (the red curve)
could bring greater sensitivity to the final performance relative
to the change of the bootstrapping coefficients.

4) Ablation on Cross-Subject Performance: In this section,
we evaluate the performance in the cross-subject setting,
which is a vital indicator for application on unseen subjects
during training. Unlike the cross-sentence setting as evaluated
in Section IV-C, this section evaluates the performance of
unseen subjects. Figure 7 shows the cross-subject translation
performance for a total of 8 subjects compared to the cross-
sentence result we achieved in the cross-sentence setting. The
radar charts in Figure 7 denote the performance is stable across
different subjects with subjects achieving BLEU-1 scores
ranging from 42.25 to 46.90. However, the variant in longer-
gram BLEU-4 score is larger among subjects ranging from
9.34 to 12.11. This difference is mainly due to the word-level
strategy we used in the enhancement of single-word decoding

precision.

Fig. 7. The cross-subjects performance for translation tasks. Cross Sent.
denotes the performance of the cross-sentence setting on each evaluated
metric.

Fig. 8. Comparison of BLEU-1 scores for sentence decoding across varying
contrastive coefficients.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present BELT, which consists of an
innovative D-Conformer architecture for encoding EEG into
discrete representations and a bootstrapping training method
for learning language-aligned EEG representations. Our exper-
iments show that leveraging supervision from natural language
is an effective way to facilitate the learning of semantic EEG
representations. This is supported by substantial improvements
in various EEG decoding tasks, including EEG-to-word clas-
sification, EEG-to-sentence decoding, and sentiment classifi-
cation. The proposed method also encourages more in-depth
exploration and discussion of the pivotal topic of decoding
thoughts into text, which could potentially lead to numerous
new BCI applications. Despite the progress achieved, there
is still room for future improvement in terms of translation
precision and fluency without the implicit use of teacher-
forcing evaluation. In the future, we plan to collect more
language-related EEG data to train a more general EEG
encoder and tackle the fundamental problem of data scarcity
in this research area.
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[48] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arXiv
preprint arXiv:1308.3432, 2013.

[49] X. Hu, Z. Gan, J. Wang, Z. Yang, Z. Liu, Y. Lu, and L. Wang, “Scaling
up vision-language pre-training for image captioning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 17 980–17 989.

[50] K. Zhou, B. Zhang, W. X. Zhao, and J.-R. Wen, “Debiased contrastive
learning of unsupervised sentence representations,” arXiv preprint
arXiv:2205.00656, 2022.

[51] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[52] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[53] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems,
vol. 32, 2019.

[54] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[55] N. Hollenstein, M. Troendle, C. Zhang, and N. Langer, “Zuco 2.0: A
dataset of physiological recordings during natural reading and annota-
tion,” arXiv preprint arXiv:1912.00903, 2019.

[56] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning. PMLR, 2013, pp. 1139–1147.

[57] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2024.3450795

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


