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Abstract
Time series analysis of real-worldmeasurements is fundamental in natural sciences and engineering,
andmachine learning has been recently of great assistance especially for classification of signals and
their understanding. Yet, the underlying system’s nonlinear response behaviour is often neglected.
Recurrence Plot (RP) based Fourier-spectra constructed through τ-Recurrence Rate (RRτ) have
shown the potential to reveal nonlinear traits otherwise hidden from conventional data processing.
We report a so far disregarded eligibility for signal classification of nonlinear time series by training
RESnet-50 on spectrogram images, which allows recurrence-spectra to outcompete conventional
Fourier analysis. To exemplify its functioning, we employ a simple nonlinear physical flowof a
continuous stirred tank reactor, able to exhibit exothermic, first order, irreversible, cubic autocatalytic
chemical reactions, and a plethora of fast-slow dynamics. For dynamics with noise being ten times
stronger than the signal, the classification accuracywas up to≈ 75%compared to≈ 17% for the
periodogram.We show that an increase in entropy only detected by theRRτ allows differentiation.
This shows that RP power spectra, combinedwith off-the-shelfmachine learning techniques, have the
potential to significantly improve the detection of nonlinear and noise contaminated signals.

1. Introduction

Dynamical systems are oftenmathematically described by nonlinear differential equations, which are difficult to
solve using analytical calculus, and commonly require simplification and approximation. Real-world problems
related to engineering [1], biology [2], chemistry [3], physics [4], medicine [5] (neuroscience) or economy [6],
regularly deal with nonlinear observations towhich the underlying formulae are unknown, revealing the
significance of nonlinear time series analysis [7, 8]. Often important signalfigures are neglected or are assumed
as noise, especially when only analyzing the Fourier transform{i} spectrum. In recent years,Machine Learning
(ML) based techniques usingConvolutional Neural Networks (CNNs){ii} and their application to classifying
acoustic or vibration data using periodogram techniques have found growing popularity [9–11].

Recurrent, dynamic behaviour of an observablemeasured as time series of arbitrary dimension can be
represented asmatrix of recurrences. This is visualized using a two dimensional Recurrence Plot (RP) and
quantified using RecurrenceQuantificationAnalysis (RQA){iii}, not limiting the data to properties such as
stationarity, linearity, or determinism [8, 12–14]. Embedding univariate time seriesmay reveal higher order and
often also higher-dimensional dynamics, both of which are often neglected in conventional signal processing
but can be incorporated in a RP-based approach. Thus, linking RQA to linear data processingmay contribute to
bridging the gap in the analysis of nonlinear deterministic systems. The Fourier spectrumof a time series can be
estimated from the RQAmeasure τ-Recurrence Rate (RRτ) and is able to identify higher periodic orbits, which a
classical spectrum estimation fails to achieve [15]. This technique has already been successfully applied to reveal
unstable and stable periodic orbits of various continuous and discrete theoretical dynamical systems [16, 17]; to
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characterize hyperspectral geological data [18], proteinsolvent interaction energy [19], and a phasor
measurement unit in electrical power systems [20].

Despite potentially higher information content on recurrences present3 in a RP-based spectrum, physical
interpretation is difficult owing to the abstractmeaning of power per frequency. Attempts have beenmade to
overcome this issue [17]. However, the application of recurrence-based power spectra in combinationwithML
has never been attempted.

The current work aims to bridge this gap by employing recurrence-based power spectra to highly nonlinear,
and strongly noise contaminated signals, to calculate spectrograms and further use this information for the
classification of dynamics via CNN.The new approach is compared to the application of conventional
periodograms using different dynamics and noise levels.

2.Materials andmethods

2.1. Power spectral density estimation
Consider the discrete time series xä RN×mwithN state vectors


xi of dimensionm= 1. By application of

Takens’ embedding theorem{iv}, the observable is expanded to a higher dimension through shifted copies of x,
recoveringmore of the dynamics [8, 13]. Embedding dimensionm and time-delay τm are estimated using both,
the global False-Nearest Neighbors{vi} [21, 22] andAverageMutual Information{v} [13, 23] algorithms. The
embedded time series xemb has state vectors

= t- - -
   { } ( )( )x x x x, ,..., . 1i i i i m tau,emb 1m m

Let the distancematrixD ä RN×N be derived from xembwith arbitrary dimensionm, holding pairwise distance
information of all data points, i.e.

-   ≔ ( )x xD , 2i j i j, ,emb ,emb

The distancematrix is symmetric by definition [13], sinceDi,j=Dj,i. The recurrencematrixR is an abstraction
ofD by introducing theHeaviside functionΘ(x){vii} [24] and a thresholding criterion ε{ viii} [12, 13]

e eÎ Q -´
- ( ) ≔ ( ( )) ( )RR D . 3N N

i j i j N, 0 , 1

RPs represent a binary visualization ofR, whereRi,j= 1 is coloured black, andwhite otherwise. For ε-
neighbourhoods of constant size, which are used throughout this work, RPs aremirrored along the line of
identity (i= j)withRi,i= 1.4

For a univariate observable [22], the discrete Fourier transform{ix} [25] of x results in a discretized frequency
spectrum

å= = Î ¼ -
=

-
- p[ ] { } { } ( )X k x x e k N, 0, , 1 , 4
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j ki

discrete
0

1
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F

with i indexing over all elements of x, and k denoting the kth frequency bin, corresponding to fk= kfn/N, where
fn= Fs/2 is theNyquist frequency

{x} [26].
Due to thefinite length of x, its actual Power Spectral Density (PSD){xi} can only be estimated (superscript ˆ )

as the periodogram =ˆ [ ] ( )∣ [ ]∣S k N X k1 2. TheWiener-Khinchin theorem{xii} directly relates a signal’s true
(continuous)PSD S(Ω) and its auto-correlation function rxx(κ)

{xiii} as Fourier transformpair
kW =( ) ( ( ))S rxxF [15, 27], whereκ is the continuous time shift between the original and a copy of the signal.

For a stochastic process— e.g. discrete, finite signal x corrupted byGaussianWhiteNoise (GWN){xiv}— rxx(κ)
at discrete time shifts τ can be estimated as

åt
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with

x denoting the complex conjugate of


x [28] and the scaling factorα controlling the expected value

t{ˆ [ ]}E rxx . Forα= 1/(N− |τ|) the estimation is unbiased, i.e. the expected and true values are equal
t k t= ={ˆ [ ]} ( )E r rxx xx . Digital signals are time-discrete. Therefore, to apply theWiener-Khinchin theorem

defined for continuous time, periodogram and auto-correlation functionmust be related such that the following
condition holds

3
assuming that all functionswhith f (t) = f (t + T) are a subset f (t) ≈ f (t + T)

4
The use of certain thresholding criteria with e.g. afixed recurrence rate or fixed amount of neighbours renders the RP asymmetric, which is

not considered in the current case.
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t»ˆ [ ] (ˆ [ ]) ( )S k r . 6xxdiscreteF

This is achieved by choosingα= 1/N, resulting in a biased estimation t t k t= - ={ˆ [ ]} ( ∣ ∣ ) ( )E r N r1xx xx .5

Extracted from the RP are a range of RQAmeasures. The Recurrence Rate (RR) represents the amount of
recurrence points in a RP relative to its size, i.e.

å=
=

( )RR
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,

depending on ε [13, 18], with instances ofRR often expressed as percentages. Closely related,RRτ is the
probability of recurrence after time delay τ
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which is the ratio ofRR on a diagonal at distance τ parallel to the line of identity [13] and the expected value
RRτ= E{Ri,i+τ}. Analogously to the auto-correlation function this estimate is unbiased, since
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Applying equation (6) to tRR instead of tˆ [ ]rxx may be used as PSD estimates in nonlinear dynamical systems
[15–18].

Due to the scaling factor, unbiased auto-correlation functions are indefinite and have statistical and
numerical disadvantages for practical applications in power spectral density estimations. Theymay result in
negative values of power, contradicting physical interpretation and prohibiting a representation in
logarithmic scale [26, 28–30]. This was observed by us also for unbiasedRRτ and the usage of a biased
estimator (superscript * )

å=t
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with t t= -t t{ [ ]} ( ∣ ∣ )*E RR N RR1 is proposed in this paper for PSD estimation.6

2.2. Spectrogram
A slidingwindowof sizeNw ismoved across the time series xwith overlap of η. An individual PSD is estimated
for eachwindowplacement and thus the spectrogram [31] is constructed as a two-dimensional time-frequency
representation of x, with the first dimension denoting thewindownumber and the second dimension the
frequency bins fk.

To display the spectrogram as a digital image, the power value of each frequency bin is window-wisemapped
to an integer value in the range of [0, 1, 2,...,255], later used to represent the spectrogram as an 8-bit grey-scale{xv}

image (cf. figure 2). This process is called contrast stretching [32]. Before stretching, power is converted to
dB-scale{xvi} to increase the dynamic range.

2.3. The dynamical system: continuous stirred tank reactor
As benchmark system, a representative for chemical reactions of specimens inside an open, iso-thermal,
continuous stirred tank reactor [33], found in industrial applications, well-mixed, andwithout diffusion, is
used. The system shows exothermic, first-order, irreversible, cubic autocatalytic reactions, occurring in
parallel, and exhibiting rich dynamic behaviour, following the period-doubling route to chaos [7]. Due to the
higher complexity of two reactants involved,mixedmode oscillations (fast-slow dynamics) are present
[34–37].

The system is explicitly described by three differential equations

= - - g + ( )dY

dt
Y YDa e a1 , 111

T
T11

5
As a property of the discrete Fourier transform [26], the equality in equation (6) is attained from the auto-correlation function using the

cyclic continuation of the underlying signal x. However, the potential numerical error is assumed to be negligible.
6
The positive definiteness of t

 *RR has not been proven andwhere negative values of power (generally close to zero)were encountered, their
absolute values were used.
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= - - g + ( )dZ

dt
Z ZDa e b1 , 112

T
T2 1

a b b= + -g g+ +( ) ( )dT

dt
YDa e ZDa e T c, 111 1 2 2

T
T

T
T11 2 1

thefirst two representing the dimensionless concentrationsY andZ of reactantsA andB (and their conversions
into their products). The third equation represents the reactor temperatureT. The time series of the latter are
used in this analysis, in reference to the accessibility ofmeasurements in real autocatalytic reactors [33, 38]. For
arbitrary values ofβ2 andDa1, withα= 250,β1= 0.04, γ1= γ2= 25 andDa2= 2.75, the differential equations
provide one unique solution to the system’s steady-state [39]. A number of parameter configurations resulting in
different limit cycles on the attractor or chaotic behaviour are considered in table 1. Period doubling bifurcations
occur betweenA→ B→ C→D. Infigure 1, phase portraits of all configurationswith their embedding are given
and the thresholds ε satisfyingRR= 30% in the respective RPs are provided, which are applied throughout here.
This was used tomaximize the information content, contrary to application domains where a lowerRR of e.g.
1% is recommended [40]. However, a state in phase spacemay be characterized by the trapping time andwith an
appropriately high threshold, this is encrypted in the RP as vertical structures [13].

One dimensionless time unit of the differential equations is hereafter assumed to be equal to 1 s. Time series
of dimensionlessT oscillations were computed using the function ode45 ofMatlab® (ver. R2023a) at a sampling
frequency of Fs= 1 kHz and initial state equal to zero. The sampling timewas 40 s and only the steady-state
responsewas extracted by discarding the first 20 s of the time series. Fswas chosenwith respect to the slow
dynamics of the system and validated by comparison to the time series sampled at Fs,high= 100 kHz. Periods
were alignedwith regards to different convergence times to the steady-state solution. The TheRootMean Square
Error (RMSE){xvii} of temperature was less than 0.65% relative to the temperature range for all periodic
configurations.

To simulate ambient conditions, computer generated signals are contaminated by additiveWGN
= +x̃ x n. Signal toNoise Ratio (SNR) is defined as the ratio of RootMean Square (RMS){xviii} of signal and

noise, respectively

=
( )
( )

( )x

n
SNR

RMS

RMS
. 12

2.4. RESnet-50 asmachine learning architecture
Within the domain ofML, CNNs have emerged as themost effective image recognition algorithms [41]. They
are successfully used in signal detectionwhen trainedwith spectrogram images [42, 43]. In this work, the pre-
trained networkRESnet-50 [44] is incorporated in a transfer learning approach using theDeepNetworkDesigner
forMatlab.Overall accuracy of a network is evaluated as the percentage of correctly classified validation images,
which are not part of the training set. The input image size for theCNN is 224× 224 pixels. The network is
altered, such that the last fully connected layer and classification layer have an output size of six, i.e. one
probability for each signal class. The learning rate of themodified layers was increased tenfold tomitigate the
disadvantage compared to pre-trained layersmore quickly within the training process. As a solver stochastic
gradient descent withmomentumof 0.9 is used.During training, iterative optimization of classifiers is achieved
throughminimization of the cross-entropy loss function{xix} [45]

åå= -
= =

( )loss
L

t y
1

ln , 13
l

L

k

K

lk lk
1 1

Table 1.Parameter configurations to simulate the dynamical
system inside a nonlinear chemical reactor [33]. A-D are limit
cycles on the attractor; E and F are chaotic steady-state solutions.
nsub is the number of subharmonics in one period andTavg the
average subharmonic duration, averaged over 24 localmaxima
ofT.

Configuration β2 Da1 nsub Tavg

A 0.0155 11 1 0.0861 s

B 0.0157 11 2 0.0864 s

C 0.0159 11 4 0.0864 s

D 0.01595 11 8 0.0865 s

E 0.0161 11 ∞ 0.0866 s

F 0.0163 11 ∞ 0.0847 s
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where L is the number of elements (training images),K is the number of classes and ylk the probability output
from the network, that element l belongs to class k. The binary value tlk is one, if element l is of class k and zero
otherwise.

Other training settings of the network are (i) afixed learning rate of 0.001; (ii) themini batch size of 12; (iii)
the training duration of 10 epochs; (iv) a validation frequency of 30; (v) shuffling of training data after every
epoch; (vi) all other settings according to the default. To reduce over-fitting issues, basic image augmentation

Figure 1. Left: phase space trajectories of nonlinear attractor configurations in table 1. Right: delay embedded phase space from the
single variableT (N = 3000), with each dimension normalized to standard distributionσ = ± 1. Embedding parametersm and τm, as
well as the neighbourhood ε to satisfyRR = 30% in the RP are given for each configuration.
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was used, namely x-translation up to±24 pixels. Other common augmentations (e.g. stretching, rotation) alter
the information content of a spectrogram andwere therefore not considered.

2.5. Power spectral entropy
Shannon entropy [46]measures the randomness of a probability distribution. In information theory, a discrete
sequence of quantized values comprises a signal, which carries a certain amount of informationmeasured by its
entropy [47]. The entropy of a system’s observation indicates howwell it was captured and characterized [8]. By
interpretation of a signal’s PSD representation as a probability distribution of power per frequency, the power
spectral entropy [48, 49] is obtained as

å= -
=

( ˆ) ˆ [ ] (ˆ [ ]) ( )H S s k s kln , 14
k

N

0

where ŝ denotes the PSD estimation normalized to total power. The logarithmic base of equation (14) can be
changed to b=N by

=˜ ( ˆ) ( ˆ)
( )

( )H S
H S

bln
, 15

which gives a normalized value in the range [0, 1].

3. Results

3.1. Spectrogram classification usingCNN

The t
 *RR -spectrum is beneficial for capturing higher-dimensional temporal dynamics of nonlinear time series.

This shall be exploited by visualization of signal evolution as a spectrogram [31], then used to classify the
observable. Training data is generated from steady-state time series x of system configurations A-F. Segments of
t= 16.36 s are extracted, with a random shift between 0 to 1s, imitating a random time ofmeasurement, as
would be encountered in real-world data acquisitions.

The signals are corrupted by additiveWGN n to test the robustness of PSD estimation in challenging SNR
scenarios. Signals A-F do not have equal power, hence the power ofn isfixed relative to power of signal A
equaling SNR= {∞ , 1, 0.5, 0.33, 0.2, 0.1}. This is applied to all signals rather than choosing power relative to
each signal, to prevent theCNN from learning the different power in noise as a classifier. This is also in
agreementwith the assumption that the ambient noise is constant and independent of the signal.

Noisy time series x̃ are normalized to standard distributionσ=± 1. For recurrence-based signal processing

with t
 *RR , the parameters given infigure 1 are used to delay-embed the respective signals and construct their

RPs. Additionally, the analysis is repeated usingfixed embedding parametersm= 3 and τm= 9 for all

configurations, denoted as t
 *RR ,fe, with unchanged thresholds.

For window sizeNw= 692 and overlap η= 622≈ 0.9×Nw, spectrogram images are computed for each of
the three techniques (periodogram, individual andfixed recurrence spectrum). Thewindowwas chosen to have
theminimal size covering at least one period of steady-state signals A-D and the overlap facilitating 224window
shifts. The highestmeasurable frequency bin is Fs/2= 500 hz, however, throughout all considered signals,more
than 90% (>99% for periodogram) of total power is distributedwithin frequencies f= (0, 120] hz, which is
hence used to capture only themost important dynamics. The discrete Fourier transform resolutionwas

interpolated to =f 120 hz 224res by zero-padding [25] of rxx, t
 *RR and t

 *RR ,fe, respectively, to utilize all
available 224 rows and columns of pixels in the image.

For every SNR scenario and signal configuration, 1000 random realizations ofWGNwere generated. Each of
them is added to the respective signal and spectrogram images are computed for all techniques as previously
described. Thus, for every SNR scenario, a set of 6000 images per processingmethod is obtained. Of each data
set, 30%of images were separated for validation, leaving 4200 training images. Example spectrograms of the
system in configurationC,without additive noise, are given infigure 2 and thefinal CNNaccuracy is given in
figure 3(a).

For signals without noise, 100%accuracy is achieved by allmethods. Classification accuracy for the
periodogram is directly related to SNR, as it decreasesmonotonically with increasing noise level. Up to
SNR� 0.5, the accuracy is above 90%but then drops significantly, until eventually reaching an accuracy of
16.89% for SNR= 0.1, which is nearly identical to classification by chance (100%/6 = 16.67%). In contrast,
the performancewhen recurrence-based training data is used ismore consistent. Although the accuracy at

SNR� 0.5 for t
 *RR is not able tomatch that of the periodogram, the validation accuracy is only slowly

decreasing and remains above 75% throughout all considered noise levels. For a fixed embedding t
 *RR ,fe, the

6

Phys. Scr. 99 (2024) 035223 THertrampf and SOberst



accuracy at SNR= 1 is significantly improved compared to t
 *RR andmatches that of the periodogram.

However, for SNR� 0.5 the accuracy is consistently≈5 to 10% lower than for t
 *RR , suggesting that different

embedding is beneficial but not solely responsible for classification.

Figure 2. Spectrograms for system configurationCwithn = 0; Nshort = 692; η = 622. Power in dB is scaled to 8-bit values and
mapped to grey-scale.

Figure 3.CNNvalidation accuracywith 700 training and 300 validation spectrogram images per system configuration, based on the

periodogram, individual and fixed embedding t
 *RR and t

 *RR ,fe recurrence spectra, respectively.
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Figure 3(b) gives the classification accuracy per signal for SNR= 0.1. From a dynamical point of view,
dynamic regimes A-D are periodic and thus all of themdonot generate any new information. Therefore an
evenly distributed validation accuracy could be expected. Table 2 gives theKullback-Leibler divergence{xx}

[50, 51] for all combinations of configurations. TheKullback-Leibler is used here as ameasure of howwell one
configuration is separable from the rest. A low divergence therefore is an indicator for a high probability of
confusion duringCNNclassification. For each configuration, the average divergence among the set of signals is
provided. In each case, the average divergence is strongly influenced by a relatively high divergence to the chaotic
regime F. Therefore, to accentuate the low divergences in between limit cycle solutions, themedian is expected
to depict the probability of confusion better.

Across all 15CNN training processes on noisy time series, B performsworst six times, C five times (once
shared last with B), D four times and E once. This relates statistically with the configurations having the lowest
medianKullback-Leibler divergence towards all other regimes, although the distribution is distorted, e.g.
configuration B performs overall theworst but has highermedian divergence thanC andD. The reason for this
distortionmay lie in the relatively lownumber of only 15 training sets. Also, the estimation of the confusion
probability is not complete and takes into account only the globalmedian divergence rather than a local
confusion probability to the least separable regimes.

In addition, the training behaviour of CNNsmust also be considered, which aims at theminimization of a
loss function. If no global solution, i.e. successful classification of all variables, is found, convergence to a local
minimumwill occur, favouring the validation accuracy of one or a few classes over other classes [52].Which
class this bias will fall onmay differ with each training iteration, as it also depends on the exact images being
considered at certain times during trainingwhile shuffled randomly. This is a widely studied problemwithin the
ML research community, yetfinding a solution here is beyond the scope of this study and requires optimising
the training behaviour to becomemore evenly distributed.

For SNR= 0.1 and periodogram training, it appears that the CNNhas converged to a solution-favouring
configurationD,whichwas therefore accurately classified in 38.67%of cases, whereas the other signals where

classified correctly only 20%of times, or less. For t
 *RR it stands out, that configurations A,D and Fwere

correctly identified inmore than 85%of cases. Signal A has a unique embedding delay compared to the other
signals, which could be a reason for the accurate discrimination.However, for configurationsD and F, the delay
parameters are shared respectively by E, as well as B andC. This again confirms that the embedding alone is not
responsible for successful classification.

Furthermore, although configurationsD andE have not only common embeddings but also similar
thresholds, with deviation of less than 3%, the chaotic behaviour of signal Ewas successfully discriminated even
for high noise. For periodic signals B andCwith neither unique embedding, nor unique threshold, the
classification accuracy is significantly lower. In the classification, B andCwere always correctly separated from
the other signals but not from each other, i.e. false classification of B exclusively predicted a signal of class C and
vice versa. The same is true for signal pairs D-E andA-F. This also occurred in the fixed embedding analysis,
indicating that the classification is grouped into three separate problems, according to the similarity of threshold
values. The overall validation accuracy of above 50%proves that within these groups successful discrimination is
however possible.

3.2. Complexity analysis
Evaluating the complexity of a classification problem is useful in predicting the performance of aMLmodel [53].
Similarly, it can contribute to choice and validation of data pre-processing. Three categories are identified as

Table 2.Kullback-Leibler divergence between pairs of reactor temperature
time series of dynamic regimes given in table 1. For each column the average
(Avg) andmedian (Med) divergence is given. This is used here as an
estimation for each configuration, implying howwell the time series is
separable globally (within the set of configurations).

A B C D E F

A 0 .0024 .009 .0108 .0192 .0468

B .0024 0 .0021 .0030 .0079 .0278

C .0091 .0021 0 .0001 .0018 .0145

D .0108 .0030 .0001 0 .0012 .0125

E .0192 .0079 .0018 .0012 0 .0060

F .0468 .0278 .0145 .0125 .0060 0

Avg .0147 .0072 .0046 .0046 .0060 .0179

Med .0099 .0027 .0020 .0021 .0039 .0135
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fundamental requirements to the underlying problem, namely existence of informative class features, i.e.
maximization of information as input to the classification problem; homogeneity of topology and the
distribution ofmanifolds of the input; and class linearity, i.e. the grade of separability of inputs belonging to
different classes [53, 54]. In the following, complexitymeasures are used to validate theCNNclassification
results.

3.2.1. Information content
PSDs are calculated for signal segments with a size ofNw= 8TavgFs at randomposition. The factor of eight
ensures that at least one period of all limit cycle solutions is included, while thewindows across all signals have
similar number of samples. The power spectral entropy, as ameasure of information content, for the bandwidth
f= (0, 120]Hz is shown infigure 4. Recurrence-based spectra consistently generate significantlymore
information about the underling system than the periodogram throughout all configurations.

3.2.2. Consistency of PSD estimation
One period of a linear, periodic, stationary signal includes all information about the continuation of the signal.
Hence, the same spectral density can bemeasured in a signal segment of length equal to the period, independent
of time [25], which is not necessarily true for nonlinear signals. To test the robustness of PSD estimation against a
delay in the time ofmeasurement, signals A-F are segmented again by the rectangular windowof sizeNw, which
is shifted in time incrementally for a total ofNw steps. For each realization the individual PSD is estimated using

both, periodogram and t
 *RR . As in the spectrogram, power is then converted to dB for better dynamic range and

re-scaled to [0, 100], allowing comparison between periodogram and recurrence-based spectra, which have
different total power. For a statistical analysis of the homogeneity of PSD estimation, the average spectral density
across all realizations is considered as control. RMSE between each realization and the control acts as an
indicator of similarity [55]. The standard distribution of RMSE for all signals is presented in table 3(a).

There is no clear indication that one technique is advantageous in this respect as each of them shows lower
average RMSE in three of the signals. The high variation of± 3.08 for periodograms of signal F stands out being
twice as high as for the others and could be related to the chaotic nature of the signal. Due to the complex
periodic behaviour and qualitative differences between the signals, differences in RMSEbetween signals would
be expected and exist for both techniques. Table 3(b) gives the results, when the experiment is repeated for noisy
signals with SNR= 0.5. The distribution of RMSE in the periodogram is higher and now consistent at≈10± 1.5

across all configurations, likely due to the noise substantially contributing to the PSD. In contrast, for t
 *RR the

average RMSE increasedmoderately compared to the signals without noise and nowwith the exception of A is
always≈12 to 30% lower than for the periodogram. Further, distinctions between signals are persistent and the
variance in RMSE is high, indicating that the impact of noise varies with signal evolution and therefore features
may not suppressed equally strong.Overall, this indicates a better resilience against noise, which is in good
agreementwith the improved classification accuracy of noisy signals, cf. [16, 18].

3.2.3. Uniqueness analysis
For classification, the representation of information has to be unique. Thus, Spearman’s rank correlation rrs(x, y)
[55] acts as ametric for the similarity of two signals’PSD. It returns a value in the range [−1, 1], where rrs= 1

Figure 4.Normalized power spectral entropy of PSD estimationwith bandwidth f = (0, 120] Hz for each configuration of the system,

calculated using periodogram and biased t
 *RR .
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means identity, rrs=− 1 indicates that x and y are opposites, and rrs= 0 denotesmaximumdisparity.7 Figure 5
shows the correlation of control spectra (see above) between configurations A-F as a percentage.

Figure 5(a) displays the correlation of PSDs computed using the periodogram. The lowest correlation of
rrs= 76.24%occurs betweenA andD. The spectra of pairs B-C; C-D;D-E; andE-F correlate significantly, each
with 96.51%; 99.15%; 93.43%; and 98.98%,which translates to a lowdiscriminative power between them.

Table 3.Distribution of RMSE between PSD estimation andmean PSD, as
the windowof lengthNw = 8TavgFs of the respective configuration is
incrementally shiftedNw times. Comparison of signals with andwithout
noise.

(a) SNR = ∞

Configuration Periodogram t
 *RR

A 5.73± 1.64 5.47± 1.56

B 6.10± 1.57 5.74± 1.58

C 5.95± 1.45 6.17± 1.29

D 5.61± 1.17 6.68± 1.32

E 7.11± 1.59 7.74± 1.33

F 8.68± 3.08 7.85± 1.51

(b) SNR = 0.5

Configuration Periodogram t
 *RR

A 10.13± 1.51 10.39± 5.40

B 10.00± 1.40 7.09± 2.63

C 10.01± 1.33 8.81± 4.83

D 10.69± 1.54 7.36± 1.81

E 10.08± 1.46 7.32± 1.81

F 10.15± 1.53 8.00± 3.54

Figure 5. Similarity of PSD estimation for all pairs of system configurations as Spearman’s rank correlation rrs.

7
Equivalently, themutual information [56] could be used and could bemore suitable in case the rrs does notwork.
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Figure 5(b) for t
 *RR spectra showsmuch lower overall correlation between configurations. Signal A has a

correlation of rrs� 72.31%with all other signals and as low as rrs= 58.62% for the pair A-F. This is in good
agreementwith the accurate classification of this signal by theCNN. Further, the correlation of all neighbouring

pairs is below 90%,which is a significant improvement, compared to the periodogram, and shows that the t
 *RR

spectrum ismore sensitive toweak characteristics of the signals.

4.Discussion

Classification of noisy, nonlinear data is a recurring and practically relevant, widespread issuewhichwe address
here using nonlinear time series analysis, especially RQA. A recurrence-based power spectrum, even though
rarely studied, has been useful in a range of applications [15–18].We therefore extended the PSD estimate to
form the recurrence-based spectrogramusing recurrence-based power spectra.We systematically estimated the

PSDof periodogram and t
 *RR using the time series of amodel of a continuous stirred tank reactor [33]. The

signal’s complexity as well as its signal to noise level have been altered by considering higher order dynamics and
adding noise to the signal. Different dynamic regimes following the period-doubling route to chaos, ranging
fromperiodic to aperiodic/chaoticmotionwere classified using the deepCNNRESnet-50. For increasingly

noisy conditions down to a SNR= 0.1, we showed that for the t
 *RR method, bothwith signal dependent as well

asfixed embedding, compared to the classical periodogrammethod a higher classification accuracy can be
achieved.

Themain improvement in validation accuracy for noisy time series achieved through the introduction and
use of recurrence-based spectrograms is considered to result partly from the thresholding practice in recurrence
plots, which offers a natural resilience against noise [13], and partly from the incorporation of higher order
dynamics through attractor reconstruction, which addsmore information to the PSD and therefore to the
training images for theCNN to learn and classify.

By employing the power spectral entropy, we demonstrate that the recurrence-based power spectra contain
more information; they aremore homogeneouswhenmeasured at different times of the noisy signal, and they
show stronger uniqueness, when compared to similar signals of the same attractor.Homogeneity is important
because it increasesML trainability and efficiency and allows task specific network designs [57, 58]. Uniqueness
is significant because it leads to higher discriminative power of features and fewer class overlaps reduce false
predictions [53]. The information content in recurrence plots, underlying theRRτ is dependent on a-priori
information about the system and its embedding. The embedding delay τm has shown to have a strong influence
on the information of the spectrogram and thus the classification accuracy. Determining optimal embedding in
noisy signals is however a complex process andmore research needs to be conducted to better understand
optimality in light of different scenarios. The efficacy of equal embedding on all signals was demonstrated here
though, again achieving excellent results, with a reduction in overall classification accuracy of only≈10%. The
threshold ε applied to RPs for the creation of recurrence-based spectrograms additionally supports the
classification but is difficult to obtain from the noisy signal.While research on the effects of noise on theRP is
ongoing [59], it was here shown, that a CNN trained on signals with optimal thresholding is capable of
distinguishing between noisy signals processedwith near identical threshold values, without any de-noising
attempts on the RP.

While validation of the proposed technique on real-life data featuring various types of noise is yet
outstanding andmay further reveal themethod’s high potential in the future, the here considered scenario
suggests already good applicability to numerous problems.Having extended the classification capability to very
low SNRmakes it suitable to the detection of weak signals. It is therefore expected to bewell suited for e.g.
classification of acoustic emissions [60] or vibratory insect signals [61], often being nonlinear due to thewave
carriermaterial.

Oberst et al [18]filteredmultiplicative noise with theGHKSSmethod [8] and then applied the recurrence-
based power spectrum.However, it is yet unclear howphase noise andmulti-operational couplingmodels of
noise can be studiedwith the recurrence-based spectrograms. Also, further improvementsmay be achieved in
low SNR scenarios combining feature extractionwith usingwavelet decomposition, either on the signal itself
[62], or two-dimensional on the RP [63] before processing.

The best improvements over conventional signal processingwere achievedwhen the optimal embedding
and thresholdswere known.Hence, application is highly recommended to problemswhere the observable of
interestmay bemeasured under laboratory conditions and later also classified during exposition to noise in its
designatedworking environment. One area of such could be healthmonitoring ofmachine parts. Signature
signals of e.g. faulty roll bearings [10] or friction parts [64]may be characterized in a test setup and then detected
during activemachine operation. Another applicable research field is acoustic source localization in anisotropic
materials, which often faces the challenge of time difference of arrivalmeasurements at nearby sensors.More
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reliable classification and therefore timing of the nonlinear vibration response signals could lead to better
approximation of the excitation’s origin.

Using recurrence-based spectrograms in combinationwithmore elaborate embedding algorithms and
thresholding criteria could also lead to fully automatic classification capabilities without a-priori knowledge of
the system for unsupervisedML in those applications.
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APPENDIX

In the previoussections, references to the APPENDIX, explaining theorems and concepts used here, aremarked
by the superscript {*}.

Description of theorems andConcepts

(i) Fourier transform: Any signal in time may be equivalently represented as a function of the frequencies
present within, i.e. its frequency spectrum. The conversion is known as Fourier transform [28].

(ii) Convolutional neural network: Artificial neural networks perform machine learning tasks through
imitation of theway the human brain processes information. A subset of these are convolutional neural
networks, which are specializedmostly for pattern recognition in images [65].

(iii) Recurrence quantification analysis: The analysis of nonlinear data is difficult as many linear signal
processingmethods are not applicable. Thus, looking at recurring states in time series gives insight into the
underlying dynamics. This is the foundation of RecurrenceQuantificationAnalysis [13].

(iv) Takenʼs embedding theorem: Given a univariate measurement of a deterministic system which is more
than one dimensional, the theorem states, that the higher order dynamics of the attractormay be
qualitatively reconstructed through delay embedding. In doing so, the invariants, being the signature of the
dynamics, are preserved [66].

(v) Averagemutual information algorithm: This algorithm is used to find the optimal delay τm for time series
embedding [23]. The functionsminimumoccurs at the delay for which a time series and its copy are as
independent from each other as possible.
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(vi) Global false-nearest neighbours algorithm: Using an already determined time delay τm, a time series is
embedded. The algorithm tests if neighbours of the time series remain neighbours after embedding. If not,
the embedding dimensionm is increased tominimize the false neighbours [21, 23].

(vii) Heaviside function:The function, defined as

Q =
<
{( )x

x
x

0, 0,
1, 0,

maps negative inputs to zero and all other inputs to unity [24].

(viii) Thresholding criterion:The thresholding criterion is responsible for the appearance of a recurrence plot. It
defines for each element of the distancematrix a threshold value,marking the state as recurrent or not [13].
Whilemany criteria exist, in this work the threshold isfixed and thus equal for every element of thematrix.

(ix) Discrete fourier transform: For digital signals, the discrete Fourier transform is defined and can be
efficiently computed using the fast Fourier transform algorithm [26, 67].

(x) Nyquist frequency: The Nyquist frequency is half of the sampling frequency and denotes the highest
frequency that is observable in a discrete time series. If higher frequencies are present in the original
signal [26].

(xi) Power spectral density: The power of each frequency component present in a signal is given as a function
called the power spectral density. The function is independent of the frequencies phase, whichmakes it well
suited for detecting certain signatures within the signal contents [28].

(xii) Wiener-khinchin theorem: TheWiener-Khinchin theorem states, that for stationary, statistical processes,
the power spectral densitymay equivalently be derived from either the signals frequency representation or
the Fourier transformof its auto-correlation function [15, 28].

(xiii) Auto-correlation function: The auto-correlation function may be regarded as the linear correlation
measure of a signal with a shifted version of itself, i.e. howwell they align. This is especially useful for the
analysis of periodicities in a signal [28].

(xiv) Gaussian white noise: The noise signal has a Gaussian distribution in the time domain around its mean
value of zero, while featuring a uniformpower spectral density across its bandwidth [68].

(xv) 8-bit grey-scale: In digital imaging, when the grey-scale colour of a pixel is given by a number in
{0,...,28− 1}, itmay be represented by one Byte of storage. Each number has assigned a shade in between
zero beingwhite and 28− 1= 255 displayed as black.

(xvi) Decibel scale: To emphasize differences and relations between frequencies, their power is often expressed
logarithmically as decibel (dB) [28], with the conversion as follows

=ˆ [ ] ( ˆ [ ])S f S f10 log dB.k k10

(xvii) Root mean square error: The error or deviation between two sets of numbers is measured as the square
root of the arithmeticmean of the squared difference between the sets.

(xviii) Rootmean square: For a set of numbers, the rootmean square is defined as the square root of the arithmetic
mean of the square of all values in the set.

(xix) Loss function:During the training of a neural network, the weights of all functional layers that the input is
propagates through are iteratively adjusted. The loss functionmeasures the performance of theseweights
and is zero onlywhen the network’s classification is optimal.Minimization of the loss function drives the
training process [45].

(xx) Kullback-leibler divergence: Also known as relative entropy, it measures the difference of two probability
distributions, i.e. the information of discrimination [50, 51]. A divergence of zeromeans equality of the
distributions.
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