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Abstract

Time series analysis of real-world measurements is fundamental in natural sciences and engineering,
and machine learning has been recently of great assistance especially for classification of signals and
their understanding. Yet, the underlying system’s nonlinear response behaviour is often neglected.
Recurrence Plot (RP) based Fourier-spectra constructed through 7-Recurrence Rate (RR ) have
shown the potential to reveal nonlinear traits otherwise hidden from conventional data processing.
We report a so far disregarded eligibility for signal classification of nonlinear time series by training
RESnet-50 on spectrogram images, which allows recurrence-spectra to outcompete conventional
Fourier analysis. To exemplify its functioning, we employ a simple nonlinear physical flow of a
continuous stirred tank reactor, able to exhibit exothermic, first order, irreversible, cubic autocatalytic
chemical reactions, and a plethora of fast-slow dynamics. For dynamics with noise being ten times
stronger than the signal, the classification accuracy was up to ~ 75% compared to = 17% for the
periodogram. We show that an increase in entropy only detected by the RR - allows differentiation.
This shows that RP power spectra, combined with off-the-shelf machine learning techniques, have the
potential to significantly improve the detection of nonlinear and noise contaminated signals.

1. Introduction

Dynamical systems are often mathematically described by nonlinear differential equations, which are difficult to
solve using analytical calculus, and commonly require simplification and approximation. Real-world problems
related to engineering [ 1], biology [2], chemistry [3], physics [4], medicine [5] (neuroscience) or economy [6],
regularly deal with nonlinear observations to which the underlying formulae are unknown, revealing the
significance of nonlinear time series analysis [7, 8]. Often important signal figures are neglected or are assumed
as noise, especially when only analyzing the Fourier transform ‘" spectrum. In recent years, Machine Learning
(ML) based techniques using Convolutional Neural Networks (CNNs)'“! and their application to classifying
acoustic or vibration data using periodogram techniques have found growing popularity [9-11].

Recurrent, dynamic behaviour of an observable measured as time series of arbitrary dimension can be
represented as matrix of recurrences. This is visualized using a two dimensional Recurrence Plot (RP) and
quantified using Recurrence Quantification Analysis (RQA)' ) not limiting the data to properties such as
stationarity, linearity, or determinism [8, 12—14]. Embedding univariate time series may reveal higher order and
often also higher-dimensional dynamics, both of which are often neglected in conventional signal processing
but can be incorporated in a RP-based approach. Thus, linking RQA to linear data processing may contribute to
bridging the gap in the analysis of nonlinear deterministic systems. The Fourier spectrum of a time series can be
estimated from the RQA measure 7-Recurrence Rate (RR,) and is able to identify higher periodic orbits, which a
classical spectrum estimation fails to achieve [15]. This technique has already been successfully applied to reveal
unstable and stable periodic orbits of various continuous and discrete theoretical dynamical systems [16, 17]; to
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characterize hyperspectral geological data [ 18], proteinsolvent interaction energy [19], and a phasor
measurement unit in electrical power systems [20].

Despite potentially higher information content on recurrences present” in a RP-based spectrum, physical
interpretation is difficult owing to the abstract meaning of power per frequency. Attempts have been made to
overcome this issue [17]. However, the application of recurrence-based power spectra in combination with ML
has never been attempted.

The current work aims to bridge this gap by employing recurrence-based power spectra to highly nonlinear,
and strongly noise contaminated signals, to calculate spectrograms and further use this information for the
classification of dynamics via CNN. The new approach is compared to the application of conventional
periodograms using different dynamics and noise levels.

2. Materials and methods

2.1. Power spectral density estimation

Consider the discrete time series x € R with N state vectors ¥; of dimension m = 1. By application of
Takens’ embedding theorem!™, the observable is expanded to a higher dimension through shifted copies of x,
recovering more of the dynamics [8, 13]. Embedding dimension # and time-delay 7,, are estimated using both,
the global False-Nearest Neighbors'"! [21, 22] and Average Mutual Information'"? [13, 23] algorithms. The
embedded time series X.,p, has state vectors

Xiemb = {Xis Xior, seees Xie(m—1)tau, } - (D

Let the distance matrix D € RV N be derived from X, with arbitrary dimension 71, holding pairwise distance
information of all data points, i.e.

Dj;j == || Xiemb — Xjemb ||, )

The distance matrix is symmetric by definition [13], since D;; = D; ;. The recurrence matrix R is an abstraction
of D by introducing the Heaviside function ©(x)!"! [24] and a thresholding criterion ' " [12, 13]

R(e) € RV*N := (©(e — Djj))o<ij<n-1- 3

RPs represent a binary visualization of R, where R; j = 1 is coloured black, and white otherwise. For e-
neighbourhoods of constant size, which are used throughout this work, RPs are mirrored along the line of
identity (i = j)withR;; = 1.
For a univariate observable [22], the discrete Fourier transform ™! [25] of x results in a discretized frequency
spectrum
N-1
X[kl = FgisrereIx} = > % e 7K, k € {0,...,N — 1}, 4)
i=0

with i indexing over all elements of x, and k denoting the kth frequency bin, corresponding to f;, = kf,,/N, where
f, = F,/2is the Nyquist frequency'™! [26].

Due to the finite length of x, its actual Power Spectral Density (PSD)"*"! can only be estimated (superscript ~ )
as the periodogram S[k] = (1/N)|X [k]|*. The Wiener-Khinchin theorem ! directly relates a signal’s true
(continuous) PSD S(€2) and its auto-correlation function r,.(x) ") as Fourier transform pair
S(2) = F (1 (k) [15,27], where k is the continuous time shift between the original and a copy of the signal.

For a stochastic process — e.g. discrete, finite signal x corrupted by Gaussian White Noise (GWNYP ¢ (k)
at discrete time shifts 7 can be estimated as
N—1—|7| _
N Q@ XX+ 7], 17l S (N = 1),
ulrl = | & In < 5)

0, otherwise,

with X denoting the complex conjugate of ¥ [28]and the scaling factor « controlling the expected value

E {7 [7]}. For a = 1/(N — |7|) the estimation is unbiased, i.e. the expected and true values are equal

E {7 [T]} = rw(k = 7). Digital signals are time-discrete. Therefore, to apply the Wiener-Khinchin theorem
defined for continuous time, periodogram and auto-correlation function must be related such that the following
condition holds

3 assuming that all functions whith f(t) = f(t + T) areasubset f(¢) ~ f(t + T)

The use of certain thresholding criteria with e.g. a fixed recurrence rate or fixed amount of neighbours renders the RP asymmetric, which is
not considered in the current case.
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§ [k] ~ egffdiscrete(?’xx [T]) (6)
This is achieved by choosing o« = 1/N, resulting in a biased estimation E {7 [7]} = (1 — |7|/N) 1 (k = 7).
Extracted from the RP are a range of RQA measures. The Recurrence Rate (RR) represents the amount of
recurrence points in a RP relative to its size, i.e.

1 N
RR = F Z Ri,j: (7)
ij=1

depending on € [13, 18], with instances of RR often expressed as percentages. Closely related, RR is the
probability of recurrence after time delay 7
_ 1 N—1-|7]|
RR, = ——— Riiir (8
T N — |T| 1:20 1L,1+T
which is the ratio of RR on a diagonal at distance 7 parallel to the line of identity [ 13] and the expected value
RR, = E{R;;,}. Analogously to the auto-correlation function this estimate is unbiased, since

— 1 N*i”'
E{RR;}=Ey—— Riitr
N-—I1 &

1 N—-1-|7]|

=— E{R;ii-} = RR-. )
N X

Applying equation (6) to RR, instead of 7, [7] may be used as PSD estimates in nonlinear dynamical systems
[15-18].

Due to the scaling factor, unbiased auto-correlation functions are indefinite and have statistical and
numerical disadvantages for practical applications in power spectral density estimations. They may result in
negative values of power, contradicting physical interpretation and prohibiting a representation in
logarithmic scale [26, 28—30]. This was observed by us also for unbiased RR, and the usage of a biased
estimator (superscript )

1 N—1—|7|

RR, = — Z Ri,i+7’7 (10)
N i=0

with E {ﬁj[T] }=Qa - |T|/N)RR7- is proposed in this paper for PSD estimation.”

2.2.Spectrogram

A sliding window of size N,, is moved across the time series x with overlap of ). An individual PSD is estimated
for each window placement and thus the spectrogram [31] is constructed as a two-dimensional time-frequency
representation of x, with the first dimension denoting the window number and the second dimension the
frequency bins f;.

To display the spectrogram as a digital image, the power value of each frequency bin is window-wise mapped
to an integer value in the range of [0, 1, 2,...,255], later used to represent the spectrogram as an 8-bit grey-scale{x"}
image (cf. figure 2). This process is called contrast stretching [32]. Before stretching, power is converted to
dB-scale'™" to increase the dynamic range.

2.3. The dynamical system: continuous stirred tank reactor
Asbenchmark system, a representative for chemical reactions of specimens inside an open, iso-thermal,
continuous stirred tank reactor [33], found in industrial applications, well-mixed, and without diffusion, is
used. The system shows exothermic, first-order, irreversible, cubic autocatalytic reactions, occurring in
parallel, and exhibiting rich dynamic behaviour, following the period-doubling route to chaos [7]. Due to the
higher complexity of two reactants involved, mixed mode oscillations (fast-slow dynamics) are present
[34-37].

The system is explicitly described by three differential equations

dy

= =1-—Y— YDagenrir, (11a)
dt

Asaproperty of the discrete Fourier transform [26], the equality in equation (6) is attained from the auto-correlation function using the
cyclic continuation of the underlying signal x. However, the potential numerical error is assumed to be negligible.

6 s . 55 * . .
The positive definiteness of RR.. has not been proven and where negative values of power (generally close to zero) were encountered, their
absolute values were used.
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Table 1. Parameter configurations to simulate the dynamical
system inside a nonlinear chemical reactor [33]. A-D are limit
cycles on the attractor; E and F are chaotic steady-state solutions.
fgup is the number of subharmonics in one period and T, the
average subharmonic duration, averaged over 24 local maxima

of T.
Configuration 05> Da, Ngub Tovg
A 0.0155 11 1 0.0861 s
B 0.0157 11 2 0.0864 s
C 0.0159 11 4 0.0864 s
D 0.01595 11 8 0.0865 s
E 0.0161 11 00 0.0866 s
F 0.0163 11 00 0.0847 s
az
= =1 - Z — ZDayei+r, (11b)
dt
daT T T
= = a(6,YDayeNist 4+ B,ZDayeivt — T), (11¢)
t

the first two representing the dimensionless concentrations Yand Z of reactants A and B (and their conversions
into their products). The third equation represents the reactor temperature T. The time series of the latter are
used in this analysis, in reference to the accessibility of measurements in real autocatalytic reactors [33, 38]. For
arbitrary values of 3, and Da,, with o = 250, 3, = 0.04, 7, = 7, = 25 and Da, = 2.75, the differential equations
provide one unique solution to the system’s steady-state [39]. A number of parameter configurations resulting in
different limit cycles on the attractor or chaotic behaviour are considered in table 1. Period doubling bifurcations
occur between A — B — C — D. In figure 1, phase portraits of all configurations with their embedding are given
and the thresholds € satisfying RR = 30% in the respective RPs are provided, which are applied throughout here.
This was used to maximize the information content, contrary to application domains where alower RR of e.g.
1% is recommended [40]. However, a state in phase space may be characterized by the trapping time and with an
appropriately high threshold, this is encrypted in the RP as vertical structures [13].

One dimensionless time unit of the differential equations is hereafter assumed to be equal to 1 s. Time series
of dimensionless T oscillations were computed using the function ode45 of Matlab” (ver. R2023a) at a sampling
frequency of F; = 1 kHz and initial state equal to zero. The sampling time was 40 s and only the steady-state
response was extracted by discarding the first 20 s of the time series. F; was chosen with respect to the slow
dynamics of the system and validated by comparison to the time series sampled at F; i, = 100 kHz. Periods
were aligned with regards to different convergence times to the steady-state solution. The The Root Mean Square
Error (RMSE)™* of temperature was less than 0.65% relative to the temperature range for all periodic
configurations.

To simulate ambient conditions, computer generated signals are contaminated by additive WGN
X = x + n. Signal to Noise Ratio (SNR) is defined as the ratio of Root Mean Square (RMS) ™} of signal and
noise, respectively

R RMS@)

RMS(n) (12)

2.4.RESnet-50 as machine learning architecture

Within the domain of ML, CNNs have emerged as the most effective image recognition algorithms [41]. They
are successfully used in signal detection when trained with spectrogram images [42, 43]. In this work, the pre-
trained network RESnet-50 [44] is incorporated in a transfer learning approach using the Deep Network Designer
for Matlab. Overall accuracy of a network is evaluated as the percentage of correctly classified validation images,
which are not part of the training set. The input image size for the CNN is 224 x 224 pixels. The network is
altered, such that the last fully connected layer and classification layer have an output size of six, i.e. one
probability for each signal class. The learning rate of the modified layers was increased tenfold to mitigate the
disadvantage compared to pre-trained layers more quickly within the training process. As a solver stochastic
gradient descent with momentum of 0.9 is used. During training, iterative optimization of classifiers is achieved
through minimization of the cross-entropy loss function ™ [45]

L K
loss = ,lzz tye Inyy, (13)
LiTi=
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(b) Configuration B: m =3, 7, =9, € = 0.971.

0.09 0.03
0.02
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(f) Configuration F: m =3, 7, =9, € = 0.794.

Figure 1. Left: phase space trajectories of nonlinear attractor configurations in table 1. Right: delay embedded phase space from the
single variable T'(N = 3000), with each dimension normalized to standard distribution o = + 1. Embedding parameters m and 7,,,, as
well as the neighbourhood ¢ to satisfy RR = 30% in the RP are given for each configuration.

where L is the number of elements (training images), K is the number of classes and yy, the probability output
from the network, that element / belongs to class k. The binary value ty is one, if element [ is of class k and zero
otherwise.

Other training settings of the network are (i) a fixed learning rate of 0.001; (ii) the mini batch size of 12; (iii)
the training duration of 10 epochs; (iv) a validation frequency of 30; (v) shuffling of training data after every
epoch; (vi) all other settings according to the default. To reduce over-fitting issues, basic image augmentation
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was used, namely x-translation up to +24 pixels. Other common augmentations (e.g. stretching, rotation) alter
the information content of a spectrogram and were therefore not considered.

2.5.Power spectral entropy

Shannon entropy [46] measures the randomness of a probability distribution. In information theory, a discrete
sequence of quantized values comprises a signal, which carries a certain amount of information measured by its
entropy [47]. The entropy of a system’s observation indicates how well it was captured and characterized [8]. By
interpretation of a signal’s PSD representation as a probability distribution of power per frequency, the power
spectral entropy [48, 49] is obtained as

N

H(S) = = S[klInG [k, (14)

k=0

where § denotes the PSD estimation normalized to total power. The logarithmic base of equation (14) can be
changed tob = Nby

AE = 28
In(b)

15)

which gives a normalized value in the range [0, 1].

3. Results

3.1. Spectrogram classification using CNN

The ﬁl\ij -spectrum is beneficial for capturing higher-dimensional temporal dynamics of nonlinear time series.
This shall be exploited by visualization of signal evolution as a spectrogram [31], then used to classify the
observable. Training data is generated from steady-state time series x of system configurations A-F. Segments of
t = 16.36 s are extracted, with a random shift between 0 to 1s, imitating a random time of measurement, as
would be encountered in real-world data acquisitions.

The signals are corrupted by additive WGN n to test the robustness of PSD estimation in challenging SNR
scenarios. Signals A-F do not have equal power, hence the power of n is fixed relative to power of signal A
equaling SNR = { o0, 1, 0.5, 0.33, 0.2, 0.1}. Thisis applied to all signals rather than choosing power relative to
each signal, to prevent the CNN from learning the different power in noise as a classifier. This is also in
agreement with the assumption that the ambient noise is constant and independent of the signal.

Noisy time series X are normalized to standard distribution o = =+ 1. For recurrence-based signal processing
with RR T* , the parameters given in figure 1 are used to delay-embed the respective signals and construct their
RPs. Additionally, the analysis is repeated using fixed embedding parameters m = 3 and 7,,, = 9 for all
configurations, denoted as RR T* fe» with unchanged thresholds.

For window size N,, = 692 and overlap n = 622 = 0.9 x N,,, spectrogram images are computed for each of
the three techniques (periodogram, individual and fixed recurrence spectrum). The window was chosen to have
the minimal size covering at least one period of steady-state signals A-D and the overlap facilitating 224 window
shifts. The highest measurable frequency bin is F,;/2 = 500 hz, however, throughout all considered signals, more
than 90% (>99% for periodogram) of total power is distributed within frequencies f = (0, 120] hz, which is
hence used to capture only the most important dynamics. The discrete Fourier transform resolution was
interpolated to f,,, = 120 hz/224 by zero-padding [25] of .., 1/2}\27* and ﬁl\ij o> Tespectively, to utilize all
available 224 rows and columns of pixels in the image.

For every SNR scenario and signal configuration, 1000 random realizations of WGN were generated. Each of
them is added to the respective signal and spectrogram images are computed for all techniques as previously
described. Thus, for every SNR scenario, a set of 6000 images per processing method is obtained. Of each data
set, 30% of images were separated for validation, leaving 4200 training images. Example spectrograms of the
system in configuration C, without additive noise, are given in figure 2 and the final CNN accuracy is given in
figure 3(a).

For signals without noise, 100% accuracy is achieved by all methods. Classification accuracy for the
periodogram is directly related to SNR, as it decreases monotonically with increasing noise level. Up to
SNR > 0.5, the accuracy is above 90% but then drops significantly, until eventually reaching an accuracy of
16.89% for SNR = 0.1, which is nearly identical to classification by chance (100%/6 = 16.67%). In contrast,
the performance when recurrence-based training data is used is more consistent. Although the accuracy at

SNR > 0.5 for ﬁI\QT* is not able to match that of the periodogram, the validation accuracy is only slowly
*k
T,fe>

decreasing and remains above 75% throughout all considered noise levels. For a fixed embedding RR  ,, the

6
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Figure 2. Spectrograms for system configuration C withn = 0; Ngyore = 692; 1) = 622. Power in dB is scaled to 8-bit values and
mapped to grey-scale.
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(b) Accuracy per class for SNR = 0.1.

Figure 3. CNN validation accuracy with 700 training and 300 validation spectrogram images per system configuration, based on the
periodogram, individual and fixed embedding R/l\ij< and I/QI\Qj f recurrence spectra, respectively.

accuracy at SNR = 1 is significantly improved compared to @T* and matches that of the periodogram.

However, for SNR < 0.5 the accuracy is consistently 25 to 10% lower than for @j , suggesting that different
embedding is beneficial but not solely responsible for classification.
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Table 2. Kullback-Leibler divergence between pairs of reactor temperature
time series of dynamic regimes given in table 1. For each column the average
(Avg) and median (Med) divergence is given. This is used here asan
estimation for each configuration, implying how well the time series is
separable globally (within the set of configurations).

A B C D E F
A 0 .0024 .009 .0108 .0192 .0468
B .0024 0 .0021 .0030 .0079 .0278
C .0091 .0021 0 .0001 .0018 .0145
D .0108 .0030 .0001 0 .0012 .0125
E .0192 .0079 .0018 .0012 0 .0060
F .0468 .0278 .0145 .0125 .0060 0
Avg .0147 .0072 .0046 .0046 .0060 .0179
Med .0099 .0027 .0020 .0021 .0039 .0135

Figure 3(b) gives the classification accuracy per signal for SNR = 0.1. From a dynamical point of view,
dynamic regimes A-D are periodic and thus all of them do not generate any new information. Therefore an
evenly distributed validation accuracy could be expected. Table 2 gives the Kullback-Leibler divergence™!

[50, 51] for all combinations of configurations. The Kullback-Leibler is used here as a measure of how well one
configuration is separable from the rest. A low divergence therefore is an indicator for a high probability of
confusion during CNN classification. For each configuration, the average divergence among the set of signals is
provided. In each case, the average divergence is strongly influenced by a relatively high divergence to the chaotic
regime F. Therefore, to accentuate the low divergences in between limit cycle solutions, the median is expected
to depict the probability of confusion better.

Across all 15 CNN training processes on noisy time series, B performs worst six times, C five times (once
shared last with B), D four times and E once. This relates statistically with the configurations having the lowest
median Kullback-Leibler divergence towards all other regimes, although the distribution is distorted, e.g.
configuration B performs overall the worst but has higher median divergence than Cand D. The reason for this
distortion may lie in the relatively low number of only 15 training sets. Also, the estimation of the confusion
probability is not complete and takes into account only the global median divergence rather than alocal
confusion probability to the least separable regimes.

In addition, the training behaviour of CNNs must also be considered, which aims at the minimization of a
loss function. If no global solution, i.e. successful classification of all variables, is found, convergence to a local
minimum will occur, favouring the validation accuracy of one or a few classes over other classes [52]. Which
class this bias will fall on may differ with each training iteration, as it also depends on the exact images being
considered at certain times during training while shuffled randomly. This is a widely studied problem within the
ML research community, yet finding a solution here is beyond the scope of this study and requires optimising
the training behaviour to become more evenly distributed.

For SNR = 0.1 and periodogram training, it appears that the CNN has converged to a solution-favouring
configuration D, which was therefore accurately classified in 38.67% of cases, whereas the other signals where

classified correctly only 20% of times, or less. For @T* it stands out, that configurations A, D and F were
correctly identified in more than 85% of cases. Signal A has a unique embedding delay compared to the other
signals, which could be a reason for the accurate discrimination. However, for configurations D and F, the delay
parameters are shared respectively by E, as well as B and C. This again confirms that the embedding alone is not
responsible for successful classification.

Furthermore, although configurations D and E have not only common embeddings but also similar
thresholds, with deviation of less than 3%, the chaotic behaviour of signal E was successfully discriminated even
for high noise. For periodic signals B and C with neither unique embedding, nor unique threshold, the
classification accuracy is significantly lower. In the classification, B and C were always correctly separated from
the other signals but not from each other, i.e. false classification of B exclusively predicted a signal of class C and
vice versa. The same is true for signal pairs D-E and A-F. This also occurred in the fixed embedding analysis,
indicating that the classification is grouped into three separate problems, according to the similarity of threshold
values. The overall validation accuracy of above 50% proves that within these groups successful discrimination is
however possible.

3.2. Complexity analysis
Evaluating the complexity of a classification problem is useful in predicting the performance of a ML model [53].
Similarly, it can contribute to choice and validation of data pre-processing. Three categories are identified as

8
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Figure 4. Normalized power spectral entropy of PSD estimation with bandwidth f = (0, 120] Hz for each configuration of the system,
calculated using periodogram and biased RR T* .

fundamental requirements to the underlying problem, namely existence of informative class features, i.e.
maximization of information as input to the classification problem; homogeneity of topology and the
distribution of manifolds of the input; and class linearity, i.e. the grade of separability of inputs belonging to

different classes [53, 54]. In the following, complexity measures are used to validate the CNN classification
results.

3.2.1. Information content

PSDs are calculated for signal segments with a size of N, = 8 T, F; at random position. The factor of eight
ensures that at least one period of all limit cycle solutions is included, while the windows across all signals have
similar number of samples. The power spectral entropy, as a measure of information content, for the bandwidth
f=(0,120] Hzis shown in figure 4. Recurrence-based spectra consistently generate significantly more
information about the underling system than the periodogram throughout all configurations.

3.2.2. Consistency of PSD estimation

One period of a linear, periodic, stationary signal includes all information about the continuation of the signal.
Hence, the same spectral density can be measured in a signal segment of length equal to the period, independent
of time [25], which is not necessarily true for nonlinear signals. To test the robustness of PSD estimation against a
delay in the time of measurement, signals A-F are segmented again by the rectangular window of size N,,, which
is shifted in time incrementally for a total of N,,, steps. For each realization the individual PSD is estimated using
both, periodogram and ﬁl\lr* . Asin the spectrogram, power is then converted to dB for better dynamic range and
re-scaled to [0, 100], allowing comparison between periodogram and recurrence-based spectra, which have
different total power. For a statistical analysis of the homogeneity of PSD estimation, the average spectral density
across all realizations is considered as control. RMSE between each realization and the control acts as an
indicator of similarity [55]. The standard distribution of RMSE for all signals is presented in table 3(a).

There is no clear indication that one technique is advantageous in this respect as each of them shows lower
average RMSE in three of the signals. The high variation of £ 3.08 for periodograms of signal F stands out being
twice as high as for the others and could be related to the chaotic nature of the signal. Due to the complex
periodic behaviour and qualitative differences between the signals, differences in RMSE between signals would
be expected and exist for both techniques. Table 3(b) gives the results, when the experiment is repeated for noisy
signals with SNR = 0.5. The distribution of RMSE in the periodogram is higher and now consistentat ~10 £ 1.5
across all configurations, likely due to the noise substantially contributing to the PSD. In contrast, for RR T* the
average RMSE increased moderately compared to the signals without noise and now with the exception of A is
always ~12 to 30% lower than for the periodogram. Further, distinctions between signals are persistent and the
variance in RMSE is high, indicating that the impact of noise varies with signal evolution and therefore features
may not suppressed equally strong. Overall, this indicates a better resilience against noise, which is in good
agreement with the improved classification accuracy of noisy signals, cf. [16, 18].

3.2.3. Uniqueness analysis
For classification, the representation of information has to be unique. Thus, Spearman’s rank correlation r,4(x, )
[55] acts as a metric for the similarity of two signals’ PSD. It returns a value in the range [—1, 1], where r,s = 1
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Table 3. Distribution of RMSE between PSD estimation and mean PSD, as
the window of length N,, = 8T,,F; of the respective configuration is
incrementally shifted N,, times. Comparison of signals with and without
noise.

(@) SNR = o0
Configuration Periodogram RR T*
A 573+ 1.64 5.47 £ 1.56
B 6.10£1.57 5.74+1.58
C 5.95+1.45 6.17£1.29
D 5.61+1.17 6.68 £1.32
E 7.11+1.59 7.74+1.33
F 8.68 £3.08 7.85+1.51
(b)SNR = 0.5
Configuration Periodogram TQRT*
A 10.13£1.51 10.39 £ 5.40
B 10.00 £ 1.40 7.09+2.63
C 10.01+1.33 8.811+4.83
D 10.69 £1.54 7.36 £1.81
E 10.08 £ 1.46 7.32+1.81
F 10.15+1.53 8.00 +3.54

B| 84.72 100 96.51 | 94.27 | 90.32 | 89.77 20

A| 100 84.72 | 77.21 | 76.24 | 81.15 | 80.96

100,\7>

F| 80.96 | 89.77 | 92.03 | 93.31 | 98.98 | 100 =
~

E| 81.15 | 90.32 | 9255 | 93.43 | 100 | 98.98 80 £
<

o)

D| 76.24 | 9427 | 99.15 | 100 | 93.43 | 93.31 60§
4

c| 7721 | 9651 | 100 | 99.15 | 92.55 | 92.03 40 5:%
=

E

o

(95}

A B C D E F

(a) Periodogram

100
F- 73.4 773 | 77.18 | 88.62 100

E| 64.92 | 75.39 | 79.07 81 100 | 88.62 80
D| 61.77 | 75.2 | 85.03 100 81 77.18 60
C| 6463 | 87.45 | 100 | 85.03 | 79.07 | 77.3 40

B| 7231 100 8745 | 752 | 7539 | 73.4 20

A| 100 7231 | 64.63 | 61.77 | 64.92 -
0

A B C D E F
%
(b) RR;

Spearman’s Rank Correlation 7,4(%)]

Figure 5. Similarity of PSD estimation for all pairs of system configurations as Spearman’s rank correlation r,.

means identity, r,, = — 1 indicates that x and y are opposites, and ., = 0 denotes maximum disparity.” Figure 5
shows the correlation of control spectra (see above) between configurations A-F as a percentage.

Figure 5(a) displays the correlation of PSDs computed using the periodogram. The lowest correlation of
1rs = 76.24% occurs between A and D. The spectra of pairs B-C; C-D; D-E; and E-F correlate significantly, each
with 96.51%; 99.15%; 93.43%; and 98.98%, which translates to a low discriminative power between them.

7 Equivalently, the mutual information [56] could be used and could be more suitable in case the r,; does not work.
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Figure 5(b) for ﬁI\QT* spectra shows much lower overall correlation between configurations. Signal A hasa
correlation of 1, < 72.31% with all other signals and as low as 7, = 58.62% for the pair A-F. This is in good
agreement with the accurate classification of this signal by the CNN. Further, the correlation of all neighbouring
pairs is below 90%, which is a significant improvement, compared to the periodogram, and shows that the RR T*
spectrum is more sensitive to weak characteristics of the signals.

4. Discussion

Classification of noisy, nonlinear data is a recurring and practically relevant, widespread issue which we address
here using nonlinear time series analysis, especially RQA. A recurrence-based power spectrum, even though
rarely studied, has been useful in a range of applications [15-18]. We therefore extended the PSD estimate to
form the recurrence-based spectrogram using recurrence-based power spectra. We systematically estimated the
PSD of periodogram and l/@j using the time series of a model of a continuous stirred tank reactor [33]. The
signal’s complexity as well as its signal to noise level have been altered by considering higher order dynamics and
adding noise to the signal. Different dynamic regimes following the period-doubling route to chaos, ranging
from periodic to aperiodic/chaotic motion were classified using the deep CNN RESnet-50. For increasingly
noisy conditions down to a SNR = 0.1, we showed that for the I/U\QT* method, both with signal dependent as well
as fixed embedding, compared to the classical periodogram method a higher classification accuracy can be
achieved.

The main improvement in validation accuracy for noisy time series achieved through the introduction and
use of recurrence-based spectrograms is considered to result partly from the thresholding practice in recurrence
plots, which offers a natural resilience against noise [13], and partly from the incorporation of higher order
dynamics through attractor reconstruction, which adds more information to the PSD and therefore to the
training images for the CNN to learn and classify.

By employing the power spectral entropy, we demonstrate that the recurrence-based power spectra contain
more information; they are more homogeneous when measured at different times of the noisy signal, and they
show stronger uniqueness, when compared to similar signals of the same attractor. Homogeneity is important
because it increases ML trainability and efficiency and allows task specific network designs [57, 58]. Uniqueness
is significant because it leads to higher discriminative power of features and fewer class overlaps reduce false
predictions [53]. The information content in recurrence plots, underlying the RR . is dependent on a-priori
information about the system and its embedding. The embedding delay 7,,, has shown to have a strong influence
on the information of the spectrogram and thus the classification accuracy. Determining optimal embedding in
noisy signals is however a complex process and more research needs to be conducted to better understand
optimality in light of different scenarios. The efficacy of equal embedding on all signals was demonstrated here
though, again achieving excellent results, with a reduction in overall classification accuracy of only ~210%. The
threshold € applied to RPs for the creation of recurrence-based spectrograms additionally supports the
classification but is difficult to obtain from the noisy signal. While research on the effects of noise on the RP is
ongoing [59], it was here shown, that a CNN trained on signals with optimal thresholding is capable of
distinguishing between noisy signals processed with near identical threshold values, without any de-noising
attempts on the RP.

While validation of the proposed technique on real-life data featuring various types of noise is yet
outstanding and may further reveal the method’s high potential in the future, the here considered scenario
suggests already good applicability to numerous problems. Having extended the classification capability to very
low SNR makes it suitable to the detection of weak signals. It is therefore expected to be well suited for e.g.
classification of acoustic emissions [60] or vibratory insect signals [61], often being nonlinear due to the wave
carrier material.

Oberst et al [18] filtered multiplicative noise with the GHKSS method [8] and then applied the recurrence-
based power spectrum. However, it is yet unclear how phase noise and multi-operational coupling models of
noise can be studied with the recurrence-based spectrograms. Also, further improvements may be achieved in
low SNR scenarios combining feature extraction with using wavelet decomposition, either on the signal itself
[62], or two-dimensional on the RP [63] before processing.

The best improvements over conventional signal processing were achieved when the optimal embedding
and thresholds were known. Hence, application is highly recommended to problems where the observable of
interest may be measured under laboratory conditions and later also classified during exposition to noise in its
designated working environment. One area of such could be health monitoring of machine parts. Signature
signals of e.g. faulty roll bearings [ 10] or friction parts [64] may be characterized in a test setup and then detected
during active machine operation. Another applicable research field is acoustic source localization in anisotropic
materials, which often faces the challenge of time difference of arrival measurements at nearby sensors. More
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reliable classification and therefore timing of the nonlinear vibration response signals could lead to better
approximation of the excitation’s origin.

Using recurrence-based spectrograms in combination with more elaborate embedding algorithms and
thresholding criteria could also lead to fully automatic classification capabilities without a-priori knowledge of
the system for unsupervised ML in those applications.
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APPENDIX

In the previoussections, references to the APPENDIX, explaining theorems and concepts used here, are marked
by the superscript *.

Description of theorems and Concepts

(i) Fourier transform: Any signal in time may be equivalently represented as a function of the frequencies
present within, i.e. its frequency spectrum. The conversion is known as Fourier transform [28].

(ii) Convolutional neural network: Artificial neural networks perform machine learning tasks through
imitation of the way the human brain processes information. A subset of these are convolutional neural
networks, which are specialized mostly for pattern recognition in images [65].

(iii) Recurrence quantification analysis: The analysis of nonlinear data is difficult as many linear signal
processing methods are not applicable. Thus, looking at recurring states in time series gives insight into the
underlying dynamics. This is the foundation of Recurrence Quantification Analysis [13].

(iv) Taken’s embedding theorem: Given a univariate measurement of a deterministic system which is more
than one dimensional, the theorem states, that the higher order dynamics of the attractor may be
qualitatively reconstructed through delay embedding. In doing so, the invariants, being the signature of the
dynamics, are preserved [66].

(v) Average mutual information algorithm: This algorithm is used to find the optimal delay 7, for time series
embedding [23]. The functions minimum occurs at the delay for which a time series and its copy are as
independent from each other as possible.
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(vi) Global false-nearest neighbours algorithm: Using an already determined time delay 7,,, a time series is
embedded. The algorithm tests if neighbours of the time series remain neighbours after embedding. If not,
the embedding dimension m is increased to minimize the false neighbours [21, 23].

(vii) Heaviside function: The function, defined as

O(x) = {o, x <0,

1, x>0,
maps negative inputs to zero and all other inputs to unity [24].

(viii) Thresholding criterion: The thresholding criterion is responsible for the appearance of a recurrence plot. It
defines for each element of the distance matrix a threshold value, marking the state as recurrent or not [13].
While many criteria exist, in this work the threshold is fixed and thus equal for every element of the matrix.

(ix) Discrete fourier transform: For digital signals, the discrete Fourier transform is defined and can be
efficiently computed using the fast Fourier transform algorithm [26, 67].

(x) Nyquist frequency: The Nyquist frequency is half of the sampling frequency and denotes the highest
frequency that is observable in a discrete time series. If higher frequencies are present in the original
signal [26].

(xi) Power spectral density: The power of each frequency component present in a signal is given as a function
called the power spectral density. The function is independent of the frequencies phase, which makes it well
suited for detecting certain signatures within the signal contents [28].

(xii) Wiener-khinchin theorem: The Wiener-Khinchin theorem states, that for stationary, statistical processes,
the power spectral density may equivalently be derived from either the signals frequency representation or
the Fourier transform of its auto-correlation function [15, 28].

(xiii) Auto-correlation function: The auto-correlation function may be regarded as the linear correlation
measure of a signal with a shifted version of itself, i.e. how well they align. This is especially useful for the
analysis of periodicities in a signal [28].

(xiv) Gaussian white noise: The noise signal has a Gaussian distribution in the time domain around its mean
value of zero, while featuring a uniform power spectral density across its bandwidth [68].

(xv) 8-bit grey-scale: In digital imaging, when the grey-scale colour of a pixel is given by a number in
{0,...,2® — 1}, it may be represented by one Byte of storage. Each number has assigned a shade in between
zero being white and 2% — 1 = 255 displayed as black.

(xvi) Decibel scale: To emphasize differences and relations between frequencies, their power is often expressed
logarithmically as decibel (dB) [28], with the conversion as follows

S[f,] = 10log,,(S[ f1)dB.

(xvii) Root mean square error: The error or deviation between two sets of numbers is measured as the square
root of the arithmetic mean of the squared difference between the sets.

(xviii) Root mean square: For a set of numbers, the root mean square is defined as the square root of the arithmetic
mean of the square of all values in the set.

(xix) Loss function: During the training of a neural network, the weights of all functional layers that the input is
propagates through are iteratively adjusted. The loss function measures the performance of these weights
and is zero only when the network’s classification is optimal. Minimization of the loss function drives the
training process [45].

(xx) Kullback-leibler divergence: Also known as relative entropy, it measures the difference of two probability
distributions, i.e. the information of discrimination [50, 51]. A divergence of zero means equality of the
distributions.
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