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Abstract 
This paper describes some improvements over the original 
Space-Optimized Tree technique for the visualization and 
manipulation of very large hierarchies. The new system uses an 
improved algorithm to calculate geometrical layouts and it also 
provides better navigation capability. We introduce our new 
layout algorithm that can make more consistence of the display 
than the original layout technique made. We also combine 
DualView (a new focus+context technique) with the current 
modified semantic zooming in order to interactively navigate 
through the large and very large hierarchies. 

Keywords:  information visualization, space-optimized, 2d, 
focus+context. 

1 Introduction 

Visualizing and manipulating large hierarchies have been 
more and more important in many fields. However, the 
visualization of very big data sets at a limit small screen 
resolution is always a big challenge. Fortunately, several 
proposals and implementations have attempted to address 
and overcome the problems. Graph and/or tree drawing 
techniques for visualizing large hierarchies noticeably are 
Cone-Tree [Robertson et al. 1991], Hyperbolic-Browser 
[Lamping and Rao. 1995], Disk-Tree[Chi et al. 1998], 
Tree-Maps [Johnson and Shneiderman. 1991], Botanical 
Visualization [Kleiberg et al. 2001], and Spaced-
Optimized Tree [Nguyen and Huang. 2002]. 

Space-Optimized Tree (SOTree) is a newly simple and 
fast tree-layout technique in 2-dimensional space where 
the entirely tree-like structure is visualized efficiently at a 
limit displaying area. Similarly to tree-Maps [Johnson 
and Shneiderman. 1991], SOTree [Nguyen and Huang. 
2002] uses area division to define the layout of sub-trees. 
This property attempts to utilize the available space to 
display more information. SOTree, however, uses node 
link diagrams to show the relationships of hierarchical 
data. This property improves dramatically the clarity of 
the data structure compared to tree-maps. Thanks to its 
simple and fast algorithm, Space-Optimized Tree is 
highly applicable to visualize and manipulate large and 
very large relational hierarchies. Figure 1 shows the 
SOTree layout technique on a very large data set.  SOTree 
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is an excellent technique for visualizing entirely large 
relational hierarchies. However, its angular division 
might lead to the unbalancing where nodes far from 
centre often obtain more space compared to nodes close 
to the centre. In order words, the density of information 
near the centre area is much higher compared to border 
area (see Figure 1). 

We present new improvements in geometrical layout and 
navigation over the original Space-Optimised Tree. Our 
new layout technique improves the optimization of space 
and the balancing of the visualization while it just slightly 
increases the executing cost compared to the original 
algorithm. In order to make the navigation more 
interactive, we combine the new focus+context technique 
(DualView) with the original modified semantic zooming. 
The semantic zooming is responsible for scaling down 
size of the displaying information if the density is too 
high. We also provide DualView focus+context technique 
to interactively browse particular information when the 
density is not so high.Section 2 describes technical details 
of our improvements of layout and navigation from the 
original SOTree. Subsection 2.1 focuses on geometrical 
layout and subsection 2.2 is about our navigation. Section 
3 presents our comparison of the improved SOTree and 
original SOTree. Finial section is our conclusion. 

 

Figure 1. An example of SOTree with a very large data 
set of approximately 20 000 nodes. 



2 Technical Detail 

Similarly to the original SOTree, our new technique is 
only applicable to rooted trees T. Suppose that v is a 
vertex in T, then T(v) is the sub-tree rooted at v that is 
induced by all vertices on paths originating from v. The 
vertex v and its sub-tree T(v) are positioned inside a 
geometrical local region which is bounded by a polygon 
P(v). 

2.1 Geometrical Layout 

The geometrical layout is responsible for defining 
position of vertexes or nodes of a given tree T. Each 
vertex v is bounded by a polygon P(v) where the location 
of v is calculated from P(v). We assume that the root r of 
T is at the centre of the entirely rectangular displaying 
area, and this rectangle is also the geometrical local 
region of r. From the above property, we linearly 
calculate the all bounded polygons P(v1), P(v2), …, P(vn) 
and the locations of vertexes v1, v2, …, vn.  

Suppose that a sub-tree T(vi) has k children where their 
vertexes are {vl, vl+1, …, vl+k-1}. The polygon P(vi) and 
vertex vi are also already defined. We firstly calculate 
local regions {P(νl), P(νl+1), …, P(νl+k-1)} for the children  
{νl,νl+1, …,νl+k-1} where P(νi) = P(νl) ∪ P(νl+1), …, ∪ 
P(νl+k-1). We then calculate positions of vertexes {νl,νl+1, 
…,νl+k-1} that are inside their local regions {P(νl), P(νl+1), 
…, P(νl+k-1)}. The above calculation linearly repeats to all 
sub-trees from the vertexes {νl,νl+1, …,νl+k-1} and so for 
until all leaves of the sub-tree are reached. We technically 
ignore the layout calculations for those sub-trees when 
their local regions are too small to be displayed at the 
current screen resolution.  

The polygon P(v) of a vertex v is calculated depending on 
the weight w(v) of v. The value of w(v) is calculated from 
leaves to the root (i.e. postorder traversal) using the 
following formula: 

• If v is a leaf (has no children), its weight is w(v) = 1 

• If v has k children {vl, vl+1, …, vl+k-1}, its weight is 
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Constant C is a scalar that determines the difference 
between the weight of a vertex and their children. In other 
words, the larger the C’s value is, the bigger of the 
difference of local regions between vertexes with more 
descendants and vertexes with fewer descendants is. We 
apply a constant C = 0.45 in our new prototype system. 

Let A(v) is the area of P(v) at vertex v. Suppose that v has 
k children {vl, vl+1, …, vl+k-1}. The boundaries of the 
children {P(νl), P(νl+1), …, P(νl+k-1)} are respectively  
polygons that are formed by the intersection of segments 
through v and P(v). {P(νl), P(νl+1), …, P(νl+k-1)} have 
areas respectively of {A(νl), A(νl+1), …, A(νl+k-1)}. The 
division is dependent on the magnitudes of the above 
areas. The value of A(νl+m) assigned to mth child is 
calculated by the formula: 
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Suppose that the vertex v and its local region P(v) have 
been defined. P(v) is a polygon with n vertexes {p0, p1, 
…, pn} where p0 is the location of the parent vertex of 
vertex v. The areas {A(νl), A(νl+1), …, A(νl+k-1)} of all 
local regions of the children {vl, vl+1, …, vl+k-1} of vertex v 
are calculated from the equation (2).  

From vertex v, we draw n lines to all vertexes {p0, p1, …, 
pn} of the polygon P(v). We then have n triangles 
T(v,p0,,p1), T(v,p1,p2), …, T(v,pn-1,p0). The areas of these 
triangles are computed easily and are called A(vp0p1), 
A(vp1p2), …, A(vpn-1p0)  respectively. The local region 
P(νm) of mth  child vm  of vertex v is calculated as below: 

• We reclusively compare each triangle’s area from 
A(v,p0, p1), A(v,p1, p2), …, A(v,pn-1,p0) with A(vm) that is 
calculated by formula (2). If there is one A(v,pi,pi+1) 
that equals to A(vm), then we assign the corresponding 
polygon  P(v,pi,pi+1) to vertex vm as its local region.  

• Otherwise we find one A(v,pi,pi+1) that has the value 
of area which is most close to A(vm). If A(v,pi,pi+1) > 
A(vm), then we have to find a point K on the side pjpj+1 
to reach A(v,pi,K) = A(vm), and assign the 
corresponding polygon  P(v,pi,K) to vertex vm as its 
local region. 

• If A(v,pi,pi+1) < A(vm), then we have to find a point K 
on the side pi+1,pi+2 of the next triangle T(v,pi+1,,pi+2) to 
reach A(v,pi,pi+1) + A(v,pi+1,K) = A(vm), and assign the 
corresponding polygon P(v,pi,pi+1,K) to vertex vm as its 
local region. 

A same procedure is applied to find local regions of all 
children. Figure 2 is an example of dividing vi ’s local 
region into 4 sub-regions for its children. Figure 3 shows 
an example of area division of a tree. 

Similarly to the original SOTree technique, the position 
of a vertex v is calculated from the boundary polygon 
P(v). We firstly find a point Q in the polygon P(v) that 
the straight line connecting Q and the father v’ of vertex v 
divides P(v) into two polygons of the same areas. The 
position of v is the midpoint of the segment of Q and v’. 
Figure 4 shows an example of finding a vertex from a 
given bounded polygon. 

2.2 Navigation 

We combine both DualView (a focus+context technique) 
and the semantic zooming for SOTree’s navigation. The 
semantic zooming is applied for very high density 
visualization. While, the DualView interactively helps 
users browse the interested information. 

We reuse the modified sematic zooming technique from 
Nguyen and Huang [2002] to enlarge the focused sub-
tree. This interaction response to mouse-click event and 
the selected node moves toward the centre of displaying 
area. All ancestors and siblings are ignored at this 



navigation. We, however, display directed ancestors at 
the history path for keeping track the hierarchy. Then, the 
sub-tree is expanded to entirely displaying area. In other 
words, the sub-tree layout is recalculated based on its new 
geometrical region (see figure 5). 

Semantic zooming is an excellent technique for 
navigating very large hierarchies. However, the lack of 
context of the data structures might prevent users from 
viewing the other parts of the hierarchy within the global 
context. In order to overcome this problem, we combine 
the semantic zooming with DualView, a fast 
focus+context technique. 

The DualView technique includes two transformations 
including Browsing and Distortion. We use Browsing 
transformation to bring interested information into the 
focus region while the fisheye-like Distortion is applied 
to increase the magnification of information at the focus 
area. The two transformations are applied independently 
onto both horizontal and vertical directions. In short, the 
functions of Browsing and Distortion Transformation are 
respectively: 

               TBrowsing(xb) = Tangent(xb)                (3) 

  TDistortion =                                        for xd ≥ 0 

                                                                         (4) 

  TDistortion =                                        for xd < 0 

Where a, b, c are constants. 

During the focus+context navigation, the size of nodes 
moving outward the focus region, are decreasing 
gradually while nodes moving toward are increasing their 
size and displaying more information. Figure 6 shows the 
navigation for a very large tree in four steps: original tree 
layout, the layout after applying semantic zooming, the 
layout after applying Browsing Transformation and the 
layout after applying Distortion Transformation.  

3 Statistical Comparison 

Figure 7-11 are 4 typical experiments of our new 
improvement and the original SOTree layout techniques. 
The experiments use JavaApplet 1.4 and running on 
Pentium III 800 MHz. 

4 Conclusion 

We have presented our improvements over the original 
SOTree for visualizing large relational hierarchies. The 
comparison shows that our new layout technique is just 
slightly slower, but it improves a lot in geometrical layout 
of the tree hierarchies. In our new algorithm, the division 
of areas is much consistence and the display of nodes is 
more balanced (the display area is divided more equally 
to every node). In other words, the new layout reaches a 
better space-optimization. Furthermore, the viewing 
technique has been improved by the use of our new 
combination of DualView and semantic zooming 
techniques. We believe that we have added some values 
into the enhancement of the original SOTree technique. 

 

 

Figure 2. An example of dividing vi ’s local region into 4 
sub-regions for its children. 

 

 

Figure 3. An example of area division of a small tree 

 

 

Figure 4. An example of finding a vertex from a given 
boundary polygon. 
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Figure 5. An example when a node is selected (Semantic Zooming) [Nguyen and Huang, 2002] 
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Figure 6. An example of our navigation technique on a very large tree. Figure (a) shows the entirely tree layout which 
is too dense for the DualView focus+context technique. Figure (b) shows the sub-tree layout when we apply semantic 
zooming to reduce amount of displaying information. Figure (c) shows the layout when we apply Browsing 
Transformation to bring interested information into the focus region. Figure (d) shows the layout when we apply 
Distortion Transformation to magnify information at the focus region (i.e. around the centre). This transformation is 
applied when the information at the focus area is still dense. 

 

 

                                    7(a)                                                                             7(b) 

Figure 7. An example of a medium large data set of approximately 170 nodes. Figure (a) shows the layout of the 
original SOTree, which running time is 1 seconds. Figure (b) shows the layout the improved SOTree, which running 
time is 1 seconds. 

 

    

                                    8(a)                                                                              8(b) 

Figure 8. An example of a large data set of approximately 750 nodes. Figure (a) shows the layout of the original 
SOTree, which running time is 2 seconds. Figure (b) shows the layout the improved SOTree, which running time is 2 
seconds. 



  

                                     9(a)                                                                              9(b) 

 

Figure 9. An example of a very large uniform data set of approximately 22 000 nodes. Figure (a) shows the layout of 
the original SOTree, which running time is 4 minutes 50 seconds. Figure (b) shows the layout the improved SOTree, 
which running time is 5 minutes 10 seconds. 

 

   

                                     10(a)                                                                              10(b) 

Figure 10. An example of a huge data set of approximately 50 000 nodes. Figure (a) shows the layout of the original 
SOTree, which running time is 22 minutes 45 seconds. Figure (b) shows the layout the improved SOTree, which 
running time is 25 minutes 30 seconds. 
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