
Improvements of Space-Optimized Tree for Visualizing and
Manipulating Very Large Hierarchies

Quang Vinh Nguyen and Mao Lin Huang
Faculty of Information Technology

University of Technology, Sydney, Australia
1 Broadway, NSW 2007, Australia

{quvnguye, maolin}@it.uts.edu.au

Abstract
This paper describes some improvements over the original
Space-Optimized Tree technique for the visualization and
manipulation of very large hierarchies. The new system uses an
improved algorithm to calculate geometrical layouts and it also
provides better navigation capability. We introduce our new
layout algorithm that can make more consistence of the display
than the original layout technique made. We also combine
DualView (a new focus+context technique) with the current
modified semantic zooming in order to interactively navigate
through the large and very large hierarchies.

Keywords: information visualization, space-optimized, 2d,
focus+context.

1 Introduction

Visualizing and manipulating large hierarchies have been
more and more important in many fields. However, the
visualization of very big data sets at a limit small screen
resolution is always a big challenge. Fortunately, several
proposals and implementations have attempted to address
and overcome the problems. Graph and/or tree drawing
techniques for visualizing large hierarchies noticeably are
Cone-Tree [Robertson et al. 1991], Hyperbolic-Browser
[Lamping and Rao. 1995], Disk-Tree[Chi et al. 1998],
Tree-Maps [Johnson and Shneiderman. 1991], Botanical
Visualization [Kleiberg et al. 2001], and Spaced-
Optimized Tree [Nguyen and Huang. 2002].

Space-Optimized Tree (SOTree) is a newly simple and
fast tree-layout technique in 2-dimensional space where
the entirely tree-like structure is visualized efficiently at a
limit displaying area. Similarly to tree-Maps [Johnson
and Shneiderman. 1991], SOTree [Nguyen and Huang.
2002] uses area division to define the layout of sub-trees.
This property attempts to utilize the available space to
display more information. SOTree, however, uses node
link diagrams to show the relationships of hierarchical
data. This property improves dramatically the clarity of
the data structure compared to tree-maps. Thanks to its
simple and fast algorithm, Space-Optimized Tree is
highly applicable to visualize and manipulate large and
very large relational hierarchies. Figure 1 shows the
SOTree layout technique on a very large data set. SOTree

 Copyright © 2003, Australian Computer Society, Inc. This paper
appeared at the Pan-Sydney Area Workshop on Visual Information
Processing (VIP2002), Sydney, Australia. Conferences in Research and
Practice in Information Technology, Vol. 22. J. S. Jin, P. Eades, D. D.
Feng, H. Yan, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

is an excellent technique for visualizing entirely large
relational hierarchies. However, its angular division
might lead to the unbalancing where nodes far from
centre often obtain more space compared to nodes close
to the centre. In order words, the density of information
near the centre area is much higher compared to border
area (see Figure 1).

We present new improvements in geometrical layout and
navigation over the original Space-Optimised Tree. Our
new layout technique improves the optimization of space
and the balancing of the visualization while it just slightly
increases the executing cost compared to the original
algorithm. In order to make the navigation more
interactive, we combine the new focus+context technique
(DualView) with the original modified semantic zooming.
The semantic zooming is responsible for scaling down
size of the displaying information if the density is too
high. We also provide DualView focus+context technique
to interactively browse particular information when the
density is not so high.Section 2 describes technical details
of our improvements of layout and navigation from the
original SOTree. Subsection 2.1 focuses on geometrical
layout and subsection 2.2 is about our navigation. Section
3 presents our comparison of the improved SOTree and
original SOTree. Finial section is our conclusion.

Figure 1. An example of SOTree with a very large data
set of approximately 20 000 nodes.

2 Technical Detail

Similarly to the original SOTree, our new technique is
only applicable to rooted trees T. Suppose that v is a
vertex in T, then T(v) is the sub-tree rooted at v that is
induced by all vertices on paths originating from v. The
vertex v and its sub-tree T(v) are positioned inside a
geometrical local region which is bounded by a polygon
P(v).

2.1 Geometrical Layout

The geometrical layout is responsible for defining
position of vertexes or nodes of a given tree T. Each
vertex v is bounded by a polygon P(v) where the location
of v is calculated from P(v). We assume that the root r of
T is at the centre of the entirely rectangular displaying
area, and this rectangle is also the geometrical local
region of r. From the above property, we linearly
calculate the all bounded polygons P(v1), P(v2), …, P(vn)
and the locations of vertexes v1, v2, …, vn.

Suppose that a sub-tree T(vi) has k children where their
vertexes are {vl, vl+1, …, vl+k-1}. The polygon P(vi) and
vertex vi are also already defined. We firstly calculate
local regions {P(νl), P(νl+1), …, P(νl+k-1)} for the children
{νl,νl+1, …,νl+k-1} where P(νi) = P(νl) ∪ P(νl+1), …, ∪
P(νl+k-1). We then calculate positions of vertexes {νl,νl+1,
…,νl+k-1} that are inside their local regions {P(νl), P(νl+1),
…, P(νl+k-1)}. The above calculation linearly repeats to all
sub-trees from the vertexes {νl,νl+1, …,νl+k-1} and so for
until all leaves of the sub-tree are reached. We technically
ignore the layout calculations for those sub-trees when
their local regions are too small to be displayed at the
current screen resolution.

The polygon P(v) of a vertex v is calculated depending on
the weight w(v) of v. The value of w(v) is calculated from
leaves to the root (i.e. postorder traversal) using the
following formula:

• If v is a leaf (has no children), its weight is w(v) = 1

• If v has k children {vl, vl+1, …, vl+k-1}, its weight is

 w(v) = 1 + ∑−
=

+

1

0

)(
k

j
jlvwC (1)

Constant C is a scalar that determines the difference
between the weight of a vertex and their children. In other
words, the larger the C’s value is, the bigger of the
difference of local regions between vertexes with more
descendants and vertexes with fewer descendants is. We
apply a constant C = 0.45 in our new prototype system.

Let A(v) is the area of P(v) at vertex v. Suppose that v has
k children {vl, vl+1, …, vl+k-1}. The boundaries of the
children {P(νl), P(νl+1), …, P(νl+k-1)} are respectively
polygons that are formed by the intersection of segments
through v and P(v). {P(νl), P(νl+1), …, P(νl+k-1)} have
areas respectively of {A(νl), A(νl+1), …, A(νl+k-1)}. The
division is dependent on the magnitudes of the above
areas. The value of A(νl+m) assigned to mth child is
calculated by the formula:

 A(νl+m) = ∑
=

+

+
k

j
jl

ml

vw

vw
vA

0

)(

)(
)(

 (2)

Suppose that the vertex v and its local region P(v) have
been defined. P(v) is a polygon with n vertexes {p0, p1,
…, pn} where p0 is the location of the parent vertex of
vertex v. The areas {A(νl), A(νl+1), …, A(νl+k-1)} of all
local regions of the children {vl, vl+1, …, vl+k-1} of vertex v
are calculated from the equation (2).

From vertex v, we draw n lines to all vertexes {p0, p1, …,
pn} of the polygon P(v). We then have n triangles
T(v,p0,,p1), T(v,p1,p2), …, T(v,pn-1,p0). The areas of these
triangles are computed easily and are called A(vp0p1),
A(vp1p2), …, A(vpn-1p0) respectively. The local region
P(νm) of mth child vm of vertex v is calculated as below:

• We reclusively compare each triangle’s area from
A(v,p0, p1), A(v,p1, p2), …, A(v,pn-1,p0) with A(vm) that is
calculated by formula (2). If there is one A(v,pi,pi+1)
that equals to A(vm), then we assign the corresponding
polygon P(v,pi,pi+1) to vertex vm as its local region.

• Otherwise we find one A(v,pi,pi+1) that has the value
of area which is most close to A(vm). If A(v,pi,pi+1) >
A(vm), then we have to find a point K on the side pjpj+1
to reach A(v,pi,K) = A(vm), and assign the
corresponding polygon P(v,pi,K) to vertex vm as its
local region.

• If A(v,pi,pi+1) < A(vm), then we have to find a point K
on the side pi+1,pi+2 of the next triangle T(v,pi+1,,pi+2) to
reach A(v,pi,pi+1) + A(v,pi+1,K) = A(vm), and assign the
corresponding polygon P(v,pi,pi+1,K) to vertex vm as its
local region.

A same procedure is applied to find local regions of all
children. Figure 2 is an example of dividing vi ’s local
region into 4 sub-regions for its children. Figure 3 shows
an example of area division of a tree.

Similarly to the original SOTree technique, the position
of a vertex v is calculated from the boundary polygon
P(v). We firstly find a point Q in the polygon P(v) that
the straight line connecting Q and the father v’ of vertex v
divides P(v) into two polygons of the same areas. The
position of v is the midpoint of the segment of Q and v’.
Figure 4 shows an example of finding a vertex from a
given bounded polygon.

2.2 Navigation

We combine both DualView (a focus+context technique)
and the semantic zooming for SOTree’s navigation. The
semantic zooming is applied for very high density
visualization. While, the DualView interactively helps
users browse the interested information.

We reuse the modified sematic zooming technique from
Nguyen and Huang [2002] to enlarge the focused sub-
tree. This interaction response to mouse-click event and
the selected node moves toward the centre of displaying
area. All ancestors and siblings are ignored at this

navigation. We, however, display directed ancestors at
the history path for keeping track the hierarchy. Then, the
sub-tree is expanded to entirely displaying area. In other
words, the sub-tree layout is recalculated based on its new
geometrical region (see figure 5).

Semantic zooming is an excellent technique for
navigating very large hierarchies. However, the lack of
context of the data structures might prevent users from
viewing the other parts of the hierarchy within the global
context. In order to overcome this problem, we combine
the semantic zooming with DualView, a fast
focus+context technique.

The DualView technique includes two transformations
including Browsing and Distortion. We use Browsing
transformation to bring interested information into the
focus region while the fisheye-like Distortion is applied
to increase the magnification of information at the focus
area. The two transformations are applied independently
onto both horizontal and vertical directions. In short, the
functions of Browsing and Distortion Transformation are
respectively:

 TBrowsing(xb) = Tangent(xb) (3)

 TDistortion = for xd ≥ 0

 (4)

 TDistortion = for xd < 0

Where a, b, c are constants.

During the focus+context navigation, the size of nodes
moving outward the focus region, are decreasing
gradually while nodes moving toward are increasing their
size and displaying more information. Figure 6 shows the
navigation for a very large tree in four steps: original tree
layout, the layout after applying semantic zooming, the
layout after applying Browsing Transformation and the
layout after applying Distortion Transformation.

3 Statistical Comparison

Figure 7-11 are 4 typical experiments of our new
improvement and the original SOTree layout techniques.
The experiments use JavaApplet 1.4 and running on
Pentium III 800 MHz.

4 Conclusion

We have presented our improvements over the original
SOTree for visualizing large relational hierarchies. The
comparison shows that our new layout technique is just
slightly slower, but it improves a lot in geometrical layout
of the tree hierarchies. In our new algorithm, the division
of areas is much consistence and the display of nodes is
more balanced (the display area is divided more equally
to every node). In other words, the new layout reaches a
better space-optimization. Furthermore, the viewing
technique has been improved by the use of our new
combination of DualView and semantic zooming
techniques. We believe that we have added some values
into the enhancement of the original SOTree technique.

Figure 2. An example of dividing vi ’s local region into 4
sub-regions for its children.

Figure 3. An example of area division of a small tree

Figure 4. An example of finding a vertex from a given
boundary polygon.

2)(axcb d +−−−

2)(axcb d −−+

Figure 5. An example when a node is selected (Semantic Zooming) [Nguyen and Huang, 2002]

 6(a) 6(b)

 6(c) 6(d)

Figure 6. An example of our navigation technique on a very large tree. Figure (a) shows the entirely tree layout which
is too dense for the DualView focus+context technique. Figure (b) shows the sub-tree layout when we apply semantic
zooming to reduce amount of displaying information. Figure (c) shows the layout when we apply Browsing
Transformation to bring interested information into the focus region. Figure (d) shows the layout when we apply
Distortion Transformation to magnify information at the focus region (i.e. around the centre). This transformation is
applied when the information at the focus area is still dense.

 7(a) 7(b)

Figure 7. An example of a medium large data set of approximately 170 nodes. Figure (a) shows the layout of the
original SOTree, which running time is 1 seconds. Figure (b) shows the layout the improved SOTree, which running
time is 1 seconds.

 8(a) 8(b)

Figure 8. An example of a large data set of approximately 750 nodes. Figure (a) shows the layout of the original
SOTree, which running time is 2 seconds. Figure (b) shows the layout the improved SOTree, which running time is 2
seconds.

 9(a) 9(b)

Figure 9. An example of a very large uniform data set of approximately 22 000 nodes. Figure (a) shows the layout of
the original SOTree, which running time is 4 minutes 50 seconds. Figure (b) shows the layout the improved SOTree,
which running time is 5 minutes 10 seconds.

 10(a) 10(b)

Figure 10. An example of a huge data set of approximately 50 000 nodes. Figure (a) shows the layout of the original
SOTree, which running time is 22 minutes 45 seconds. Figure (b) shows the layout the improved SOTree, which
running time is 25 minutes 30 seconds.

5 References

NGUYEN, Q. V., HUANG, M. L. (2002): A space-
optimized tree visualization. To Appear at IEEE
Symposium on Information Visualization 2002
(InfoVis’02), Boston, USA.

NGUYEN, Q. V., HUANG, M. L. (2002): Using space-
optimized tree visualization for web site-mapping. Proc.
International Conference on Internet Computing (IC’02),
Las Vegas, Nevada, USA, 3:622-628.

HERMAN, I., MELANCON, G., MARSHALL, M.S.
(2000): Graph visualization in information visualization:
a survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24-44.

CARD, S. K., MACKINLAY, J. D., SHNEIDERMAN,
B. (1999): Readings in information visualization – using
vision to think. San Francisco, California, Morgan
Kaufmann Publishers.

Spence, R. (2001): Information visualization. ACM Press,
Addison-Wesley.

JOHNSON, B., SHNEIDERMAN, B. (1991): Tree-maps:
a space-filling approach to the visualization of
hierarchical information structures. Proc. the 1991 IEEE
Visualization, IEEE, Piscataway, NJ, 284-291.

QUINGWEN F. (1997): Algorithms for drawing
clustered graphs. Ph.D. thesis. The Department of
Computer Science and Software Engineering, The
University of Newcastle, Australia.

KOIKE, H., YOSHIHARA, H. (1993): Fractal
approaches for visualizing huge hierarchies. Proc. the
1993 IEEE Symposium on Visual Languages, IEEE/CS,
55-60.

REINGOLD E. M., TILFORD, J. S. (1981): Tidier
drawing of trees. IEEE Transactions on Software
Engineering, SE-7(2):223-228.

SHILOACH, Y. (1976): Arrangements of planar graphs
on the planar lattices. Ph.D. thesis. Weizmann Institute of
Science, Rehovot, Israel.

EADES, P. (1992): Drawing free trees. Bulleting of the
Institute fro Combinatorics and its Applications. 10-36.

JEONG, C. S., PANG, A. (1998): Reconfigurable disc
trees for visualizing large hierarchical information space.
Proc. IEEE Symposium on Information Visualization
(InfoVis ’98). 19-25.

LAMPING, J., RAO, R. (1995): The hyperbolic browser:
a focus+context technique for visualizing large
hierarchies. Journal of Visual Languages and Computing.
7(1):33-55.

BATTISTA, G. D., EADES, P., TAMASSIA, R.,
TOLLIS, I. G. (1995): Graph drawing. IEEE
Transactions on Visualization and Computer Graphics.
1(1) 16-28.

WILLS, J. G. (-): NichesWorks – Interactive visualization
of very large graphs. Lucent Technologies (Bell
Laboratories), USA. http://www.bell-
labs.com/user/gwills/NICHEguide/nichepaper.html.

ROBERTSON, G. G., MACKINLAY, J. D., CARD, S.
K. (1991): Cone trees: animated 3D visualizations of
hierarchical information. Human Factors in Computing
Systems, CHI ’91 Conference Proceedings, ACM Press.
189-194.

CHUAH, M. C., ROTH, S. F., (1998): Dynamic
aggregation with circular visual designs. Proc. IEEE
Symposium on Information Visualization. North Carolina.
35-43.

HERMAN, I., MELANÇON, G., RUITER, M. M.,
DELEST, M. (1999): Latour - a tree visualization system.
Graph Drawing. 392-399.

MELANÇON G., HERMAN, I. (1998): Circular
drawings of rooted trees. Reports of the Centre for
Mathematics and Computer Sciences. INS-9817, ISSN
1386-3681.

HERMAN, M. D., MELANCON, G. (1998): Tree
visualization and navigation clues for information
visualization. In: Computer Graphics Forum 17. 153-165.

CHI, H., PITKOW, J., MACKINLAY, J., PIROLLI, O.,
GOSSWEILER, R., CARD, S. K. (1998): Visualizing the
evolution of web ecologies. Proc. ACM CHI 98 Conference on
Human Factors in Computing Systems, ACM Press, Los
Angeles, California. 400-407, 644-645.

Kleiberg, E., Wetering, H. V., Wijk, J. J. (2001):
Botanical visualization of huge hierarchies. Proc. The
Symposium on Information Visualization (InfoVis’01),
87-94.

