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‭1.‬ ‭Background‬

‭1.1.‬ ‭Purpose and Context‬

‭1.1.1.‬‭Purpose‬

‭In the 4th Quarter of 2023, the Australian Research Data Commons (ARDC) reached out to the Australian‬
‭Cancer Data Network (ACDN), who had previously collaborated on a federated learning project with‬
‭ARDC, to jointly develop a pathfinder project.‬

‭●‬ ‭The study aims to explore the uses, needs, and challenges of federated learning in the context of‬
‭sensitive health-related data, while ensuring the maintenance of privacy and confidentiality.‬

‭●‬ ‭Identify and establish a collaborative network among similar research groups.‬
‭●‬ ‭Develop suitable demonstrator artifacts to centre the dialogues around them.‬

‭This report presents the findings of this Pathfinder Project (see Section 1.2) for the analysis of sensitive‬
‭health-related data while maintaining privacy and confidentiality. It focuses on requirements and current‬
‭experiences with federated learning (Section 1.3).‬

‭1.1.2.‬‭Context‬

‭The Australian Research Data Commons (ARDC), through the People Research Data Commons (People‬
‭RDC), is delivering national scale data infrastructure for health research and translation. In this context,‬
‭the infrastructure is defined broadly as shared resource or coordinated activity and includes both hard‬
‭and soft resources and assets such as:‬

‭●‬ ‭Underpinning hardware infrastructure:  Compute support program (Nectar, MLeRP), graphics‬
‭processing unit (GPU), storage‬

‭●‬ ‭National reference data assets: Data curation, vocabularies and analytic reference datasets,‬
‭synthetic data, Research Data Australia, Research Vocabularies Australia, FAIR model for artificial‬
‭intelligence (AI) reference data and machine learning (ML) models‬

‭●‬ ‭Tools & environment reference programs: Library of tools/collaborative and foundational‬
‭infrastructure (models, analytics tools, hubs, virtual labs) etc.‬

‭●‬ ‭National-level cultural and coordination assets: Training and capacity development, culture and‬
‭policy, communities of practice, guidelines‬

‭The People RDC engages with all parts of the health system to address four national-scale challenge‬
‭areas, as shown in Figure 1.1:‬

‭1.‬ ‭Data Strategy and Discovery‬

‭2.‬ ‭Secure Data Access‬
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‭3.‬ ‭Data Integration‬

‭4.‬ ‭Advanced Analytics‬

‭An important strategy for addressing the challenges associated with advanced analytics is the‬
‭co-development of a national framework. This framework provides the specifications and reference‬
‭architecture for future work. One of the known cardinal challenges of healthcare advanced analytics is‬
‭managing the sensitivity in the data.‬

‭Healthcare data, as a consequence of various protective regulations and concerns, is fragmented. To‬
‭understand this key issue, People RDC investigated the landscape of federated learning and sought to‬
‭develop a pathfinder to facilitate exploration of the approach.‬
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‭As a companion to framework development, the overarching goal is to create a federated learning‬
‭pathfinder for People RDC projects, which would provide insights for future ARDC partnership programs‬
‭and foster a sense of community around the feasibility of constructing a federated learning‬
‭infrastructure for healthcare data.‬

‭1.2.  Background and Introduction to Federated Learning‬
‭High quality data analysis and model development requires access to large, diverse and granular‬
‭datasets. Ideally this requires detailed (e.g. imaging and detailed treatment information) datasets to be‬
‭available for learning from different geographical locations both across Australia and internationally.‬
‭With regards to healthcare data, this is challenging due to ethics and privacy requirements that can limit‬
‭data movement and restrict storage requirements.‬

‭Federated learning (Li, Fan, Tse, & Lin, 2020) is a decentralised approach to machine learning model‬
‭training. It is gaining traction for its ability to preserve data privacy while allowing for collaborative‬
‭learning across distributed sites. Instead of centralising data on a server, federated learning enables‬
‭distributed sites to train models locally using their respective datasets and then share only model‬
‭updates or gradients with a central server, as shown in Figure 1.3. This methodology not only ensures‬
‭data privacy and security but also enables learning from diverse data sources without the need for‬
‭centralised data aggregation.‬
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‭(a) Horizontal data partitioning‬

‭(b) Vertical data partitioning‬

‭(c) Combined data partitioning‬

‭Figure 1.4. Illustration of different data partitioning used in federated learning‬

‭Various types of federated learning approaches exist to accommodate different data partitioning‬
‭scenarios (illustrated in Figure 1.4). Horizontal federated learning deals with situations where distributed‬
‭sites have access to similar features but possess different data points. In contrast, vertical federated‬
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‭learning addresses cases where distributed sites hold different sets of features for the same data points.‬
‭Further, data can be both horizontally and vertically partitioned between the sites.‬

‭To facilitate the implementation of federated learning, numerous open-source tools and frameworks‬
‭have emerged. These tools provide developers and researchers with the necessary infrastructure and‬
‭algorithms to experiment with federated learning setups efficiently. However, deploying federated‬
‭learning in real-world scenarios presents a set of unique challenges.‬

‭Integrating federated learning tools into existing systems can be complex, requiring compatibility with‬
‭diverse infrastructures and technologies. Participating sites may not have the required infrastructure or‬
‭skills. There may be challenges around data governance, in the context of federated learning, which is a‬
‭change from the well understood centralised data sharing approach. Ensuring the security and privacy of‬
‭sensitive data during federated learning processes must also be carefully managed, particularly in‬
‭applications where regulatory compliance is mandatory.‬

‭Achieving scalability and optimal performance while minimising communication overhead and resource‬
‭consumption poses additional hurdles in real-world deployments. Addressing these challenges demands‬
‭interdisciplinary collaboration among experts in machine learning, distributed systems, cybersecurity,‬
‭and regulatory compliance as well as discipline specific data experts. Innovative solutions and robust‬
‭methodologies are necessary to overcome the obstacles and unlock the full potential of federated‬
‭learning in real-world applications.‬

‭1.3.  Report Focus‬
‭This report provides an overview of requirements and current experiences with federated learning. It‬
‭covers the following:‬

‭1.‬ ‭A comparison of key federated learning tools available and infrastructure requirements to‬
‭support federated learning with the goal of establishing a suitable blueprint for a‬‭federated‬
‭learning‬‭architecture that can be effectively implemented.‬‭The intention of this work is to‬
‭identify and assess opportunities and requirements for these tools as part of a national‬
‭infrastructure solution. This includes:‬

‭●‬ ‭Building on work to date to review open-source software available for federated learning‬
‭(horizontal and vertical); Section 2.‬

‭●‬ ‭Providing overview of key differentiators of the different open-source software tools for‬
‭federated learning (e.g. ease of use, communication requirements, ability to adapt‬
‭software) for both horizontal and vertically distributed data; Section 2.‬
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‭●‬ ‭Comparing practical implementation of a refined number of open-source software tools‬
‭(up to 5) for federated learning in the simulation environment, considering both‬
‭horizontal and vertically distributed datasets; Section 3.‬

‭●‬ ‭Consideration of the infrastructure, particularly data storage, compute, and‬
‭communication pathways necessary to support implementation of federated learning‬
‭generally but specifically in a health care environment; Section 4.‬

‭It should be noted that data standardisation is also a key requirement for effective federated‬
‭learning. As work on data standardisation is being undertaken by the ARDC elsewhere (in the‬
‭Integration Stream 3.* People RDC Projects) it has not been covered in this report. The‬
‭Integration Stream of work covers areas such as Data Standards and Common Models.‬

‭2.‬ ‭Consideration of use cases that could become cardinal edge cases for the development of a‬
‭national infrastructure, including discussion of case study of designs, deployments, that are‬
‭available to or informing national infrastructure. The discussions include features, coordination‬
‭and resources required, successes as well as lessons learnt (or pitfalls to be avoided); Section 5.‬

‭3.‬ ‭Conclusions and Recommendations to ARDC on infrastructure and other support required to‬
‭enable and encourage use of federated learning by Australian research groups, particularly‬
‭focused on health care (ARDC people). These recommendations were developed following a‬
‭workshop on federated learning including research teams working with federated learning or‬
‭related areas; Section 6.‬
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‭2.‬ ‭Comparison of Open-Source Tools‬

‭2.1. Aim‬
‭A primary objective of this report is to provide a comprehensive comparison of open-source federated‬
‭learning tools. Specifically, the aim is to identify tools that not only incorporate the federated learning‬
‭paradigm but also exhibit robust security features while offering a flexible framework for the integration‬
‭of additional features.‬

‭2.2. Background‬
‭A similar study on the comparison of different open-source federated learning tools was done in (Riedel,‬
‭et al., 2024). Their evaluation began with a literature review, organised using a Latent Dirichlet Allocation‬
‭model to identify key concepts. The frameworks were then assessed based on criteria categorized into‬
‭Features, Interoperability, and User Friendliness, and a weighted scoring system was applied. Fifteen‬
‭open-source FL frameworks were evaluated, with Flower achieving the highest total score of 84.75%.‬
‭Other frameworks like FLARE, FederatedScope, PySyft, FedML, and OpenFL also performed well.‬
‭FederatedScope excelled in Features, while PySyft, FedML, Flower, IBM FL, and FLARE topped‬
‭Interoperability. EasyFL was the best in User Friendliness. On the other hand, FATE AI, PaddleFL, and‬
‭FedLearner scored the lowest, mainly due to poor Interoperability and User Friendliness.‬

‭Our work differs from this study by focusing on additional criteria specific to practical and technical‬
‭aspects relevant to the implementation and usability of federated learning frameworks, as described in‬
‭the next section.‬

‭2.3. Selection Criteria‬
‭The federated learning tool assessment criteria is aimed to streamline the evaluation process for‬
‭federated learning (Li, Fan, Tse, & Lin, 2020) tools. This criterion was determined in discussion with‬
‭experts in the field, with seven criteria determined as described below:‬

‭2.3.1. Authentication and Security‬

‭Authentication is the process of verifying the identity of users or systems to ensure that only authorized‬
‭entities can access sensitive information or perform specific actions. In the context of federated learning,‬
‭authentication is crucial for securing communication between different nodes or devices participating in‬
‭the learning process. A robust authentication system safeguards against unauthorized access and‬
‭ensures the integrity of the federated learning environment. Security features encompass encryption‬
‭and other measures to protect data during transmission, safeguarding against potential threats or‬
‭breaches.‬
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‭2.3.2 Node Setup and Ease of Use‬

‭Node setup refers to the process of configuring and connecting individual nodes or devices within a‬
‭federated learning system. Ease of use evaluates how straightforward it is for users to set up and initiate‬
‭the federated learning process. A tool with user-friendly node setup and interfaces streamlines the‬
‭implementation process, reducing the complexity of integrating federated learning into existing systems.‬
‭Tools that are easy to use are more likely to be adopted widely, especially by users with varying levels of‬
‭technical expertise.‬

‭2.3.3 Programming Language Support‬

‭Programming language support assesses the ability of federated learning tools to work seamlessly with‬
‭different programming languages. A tool that supports multiple languages provides users with flexibility,‬
‭allowing them to integrate federated learning into projects developed in diverse programming‬
‭environments. This criterion is essential for ensuring that the tool can be easily adapted to existing‬
‭software ecosystems, promoting interoperability and versatility in application.‬

‭2.3.4. Learning Capabilities‬

‭Learning capabilities refer to a federated learning tool's capacity to perform different types of learning‬
‭tasks. Horizontal learning involves collaborative learning on similar data across different nodes, while‬
‭vertical learning entails learning from different but complementary data items across distributed‬
‭datasets. Robust learning capabilities are essential for addressing a variety of scenarios and data‬
‭distributions, ensuring the tool's applicability to a wide range of use cases.‬

‭2.3.5 Technical Expertise and Debugging‬

‭Technical expertise measures the level of proficiency required by users to implement and operate a‬
‭federated learning tool. A tool that demands minimal technical expertise facilitates wider adoption and‬
‭usability. Additionally, debugging tools are crucial for identifying and resolving issues during the‬
‭development and deployment phases. Adequate debugging support simplifies troubleshooting, enabling‬
‭users to address potential challenges efficiently.‬

‭2.3.6. Documentation and Testing‬

‭Documentation quality evaluates the clarity, completeness, and accessibility of instructional materials‬
‭provided by a federated learning tool. High-quality documentation is vital for guiding users through the‬
‭installation, configuration, and utilization processes. Testing suites refer to sets of pre-defined tests that‬
‭verify the functionality and reliability of the tool. Well-documented tools with comprehensive testing‬
‭suites enhance user confidence and contribute to the overall reliability and stability of the federated‬
‭learning environment.‬
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‭2.3.7. Cloud Native‬

‭People RDC is aiming to provide national research infrastructure at scale and in this setting ‘cloud native’‬
‭is a desirable criterion. The cloud native approach is about building applications which are scalable and‬
‭can run in public or private cloud or hybrid cloud infrastructure (Amazon, 2024). The cloud native‬
‭approach is being led by a global body called The Cloud Native Computing Foundation (CNCF). CNCF is‬
‭described as “the open source, vendor-neutral hub of cloud native computing, hosting projects like‬
‭Kubernetes and Kubeflow to make cloud native universal and sustainable”.  The driving factors behind‬
‭the adoption of Kubernetes are hinged on technical advantages elaborated below:‬

‭●‬ ‭Microservices approach: Adopts the microservices based approach in building modular‬
‭applications which are easy to manage. Each microservice can be realised in the form of a‬
‭container (CNCF, 2024).‬

‭●‬ ‭Container orchestration: Kubernetes as a container orchestrator allows building an application‬
‭with many containers working together. Allowing numerous features such as scalability,‬
‭networking, storage and so on (CNCF, 2024).‬

‭●‬ ‭Scalability: Allows applications to scale up and down based on usage.‬

‭●‬ ‭Simplify infrastructure requirements: Ability to run Kubernetes on varied hardware and‬
‭underlying software including cloud.‬

‭●‬ ‭Better resource utilisation, faster development, simplified cloud migration (Amazon, 2024).‬

‭●‬ ‭Off the shelf containerised software: Ever increasing number of containerised applications‬
‭(Veritis, 2024), including machine learning platforms such as Kubeflow.‬

‭Given these advantages of cloud native approach, the general recommendation for selecting a FL‬
‭framework would be to verify if the framework provides any of the following. Firstly, if the framework‬
‭has a containerised implementation. Second, if the framework has an implementation ready to be‬
‭deployed on Kubernetes in the form of a helm chart, Kubernetes operator or simply has a Kubernetes‬
‭implementation.‬

‭2.4. Chosen Tools and Analyses‬
‭The federated learning tools to be further investigated were selected by initially looking for tools that‬
‭had the presence of the term "federated learning" in the GitHub name or description. Final tools‬
‭selected were then required to have an open-source codebase, support for encrypted communication‬
‭through Secure Socket Layers, and the availability of actively maintained software documentation on‬
‭GitHub.‬

‭The tools selected include‬‭FEDn, IBMFL, OpenFL, PySyft,‬‭Flower, AusCAT, Vantage6‬‭, and‬‭Flare‬‭. Each tool's‬
‭strengths and weaknesses were examined across the criteria described above, offering insights into their‬
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‭suitability for diverse applications and providing potential users with a thorough understanding of the‬
‭comparative advantages and limitations of each tool. For each criteria tools were categorised into one of‬
‭three levels:‬‭Satisfactory, Requires improvement‬‭,‬‭or‬‭Unsatisfactory‬‭. Following are the analyses for‬‭each‬
‭tool, which are summarised in Figure 2.1:‬

‭2.4.1. FEDn‬

‭FEDn (Ekmefjord, et al., 2022) exhibits a satisfactory level of node setup, allowing users to configure and‬
‭connect nodes efficiently. QuickStart simplicity is another strength. However, challenges arise in‬
‭authentication, implying potential vulnerabilities in securing communication between nodes. The tool‬
‭demonstrates commendable capabilities in horizontal learning; however, it falls short in vertical learning,‬
‭constraining its applicability to specific data partitioned scenarios. FEDn's technical expertise‬
‭requirements need improvement, although its built-in debugging tools and software testing suites are‬
‭satisfactory. While QuickStart simplicity meets the required standard, a more robust framework for‬
‭advanced features and improved security would enhance its versatility. In terms of cloud native FEDn is‬
‭containerised with a plan to move to Kubernetes.‬

‭2.4.2. IBMFL‬

‭IBMFL (Ludwig, et al., 2020) excels in node setup, providing users with a streamlined process for‬
‭integration. Built-in debugging tools stand out as a strength, facilitating efficient issue resolution.‬
‭However, language support limitations hinder its adaptability to diverse programming environments.‬
‭Authentication and technical expertise require improvement, suggesting potential vulnerabilities and a‬
‭steeper learning curve. While horizontal learning capabilities are satisfactory, vertical learning and‬
‭software testing suites fall short. IBMFL does not meet any of the cloud native requirements. IBMFL's‬
‭strengths lie in scenarios where seamless integration and efficient debugging are prioritized over certain‬
‭advanced features.‬

‭2.4.3. OpenFL‬

‭OpenFL (Reina, et al., 2021) demonstrates satisfactory performance in node setup and horizontal‬
‭learning. However, challenges in language support and vertical learning limit its adaptability to diverse‬
‭scenarios. QuickStart simplicity, built-in debugging tools, and software testing suites require‬
‭improvement, impacting user-friendliness and overall reliability. OpenFL is containerised but does not‬
‭use kubernetes. Authentication and technical expertise also need enhancements. OpenFL's strengths lie‬
‭in projects where a simplified federated learning setup is acceptable, and users prioritise basic‬
‭functionalities over advanced features.‬

‭2.4.4. PySyft‬

‭PySyft (Ziller, et al., 2021) supports both horizontal and vertical learning capabilities, making it‬
‭well-suited for different data partitioned scenarios. Technical expertise is a strength, offering users a‬
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‭sophisticated framework for complex machine learning models. However, language support, manual‬
‭node setup, built-in debugging tools, and documentation quality require improvement. Software testing‬
‭suites fall short, potentially impacting the overall reliability of the tool. PySyft meets all of the cloud‬
‭native requirements. PySyft's emphasis on advanced learning capabilities positions it as a powerful‬
‭choice for projects where users are willing to invest in technical expertise and complex machine learning‬
‭models.‬

‭2.4.5. Flower‬

‭Flower ( Beutel, et al., 2020) demonstrates proficiency in horizontal learning, establishing a robust‬
‭foundation for collaborative learning across nodes. Documentation quality is a strength, ensuring users‬
‭have comprehensive guidance. However, challenges in authentication, language support, vertical‬
‭learning, and built-in debugging tools impact its overall usability. Manual node setup and software‬
‭testing suites also require improvement. Flower is containerised with Kubernetes implementation‬
‭planned. Flower's strengths lie in scenarios where a simplified federated learning setup is acceptable,‬
‭and users prioritise a tool with comprehensive documentation and a straightforward learning curve.‬

‭2.4.6. AusCAT‬

‭Locally developed, AusCAT (Field , et al., 2022), is not currently a true open-source platform but‬
‭components of AusCAT are open source with the goal for the platform to be more broadly open source.‬
‭AusCAT demonstrates satisfactory performance in node setup and language support, providing users‬
‭with a foundation for integration. However, challenges in authentication, vertical learning, technical‬
‭expertise, QuickStart simplicity, and software testing suites impact its overall suitability for more‬
‭complex projects. Satisfactory documentation provides users with guidance, but improvements in‬
‭security features and advanced capabilities are crucial for broader applicability. AusCAT is containerised‬
‭but does not use kubernetes. AusCAT's strengths lie in projects where simplicity and ease of‬
‭understanding take precedence over advanced functionalities.‬

‭2.4.7. Vantage6‬

‭Vantage6 (Moncada-Torres , Martin, Sieswerda, Soest, & Geleijnse, 2021) showcases strengths in‬
‭authentication, ensuring secure communication between nodes. Node setup, language support,‬
‭horizontal learning, and documentation quality are also well implemented. It demonstrates a particularly‬
‭strong performance in vertical learning. However, challenges in technical expertise, QuickStart simplicity,‬
‭and software testing suites highlight areas for improvement. Vantage6 meets all the cloud native‬
‭requirements. Vantage6's emphasis on security features and satisfactory documentation positions it as a‬
‭potential choice for projects where robust security is paramount, and users prioritise comprehensive‬
‭documentation for implementation.‬
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‭Figure 2.1 Comparison of FL frameworks against different criteria‬

‭2.4.8. Flare‬

‭Flare (Roth, et al., 2022) demonstrates satisfactory performance in authentication, node setup,‬
‭horizontal learning, and documentation quality. However, language support, vertical learning, technical‬
‭expertise, QuickStart simplicity, and software testing suites fall short. Despite these limitations, Flare's‬
‭strengths in certain usability aspects make it suitable for projects where simplicity and horizontal‬
‭learning are prioritized over advanced capabilities. Flare is containerised but does not use kubernetes.‬
‭Users valuing a tool with a straightforward learning curve may find Flare to be a viable option, provided‬
‭they can accommodate its limitations in other areas.‬
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‭3. Open-Source Tool Deployment‬

‭Based on the initial overview presented in Section 2, three of these available tools were deployed to‬
‭review the practicalities of deploying these tools using NECTAR. A summary of these deployment‬
‭experiences is presented here.‬

‭3.1. Nvidia Flare‬

‭3.1.1. Quick start development‬

‭Flare is a tool backed by Nvidia with lots of effort poured into its development and maintenance.‬

‭With this, the QuickStart‬‭documentation‬‭is straight‬‭forward to follow, as a researcher or developer may‬
‭setup a simulated federated learning environment very easily using Flare’s Proof-of-concept (POC)‬
‭command line interface. A dummy “‬‭workspace‬‭”, Flare’s‬‭concept of a directory for managing an entire‬
‭federated learning, is setup and ready to perform an example task using a public dataset. This is both‬
‭advantageous to federated learning researchers who wish to quickly experiment with ideas rapidly using‬
‭the Flare tool without the need to create dummy virtual machines or perform tedious tasks for‬
‭simulating a virtual federated learning network as are required with Flower’s virtualised tooling for‬
‭dummy federated learning networks. Additionally, POC environment allows developers to test new‬
‭features that can be added to the Flare toolkit and streamline new features into the tool easily.‬

‭3.1.2. Real world deployment‬

‭As mentioned, this tool is backed by Nvidia and as such, a huge effort has gone into making the‬
‭documentation clear for the tool for many things, including real world implementation of federated‬
‭learning using Flare. A section dedicated to this can be found on their‬‭website‬‭.‬

‭We were successful in re-creating a federated learning system on the NECTAR cloud platform using Flare,‬
‭by following their documentation step by step. They provide many tools to easily facilitate “production‬
‭grade” setups that would otherwise require developer knowledge of handling this from an end-user‬
‭point of view. These include Flare’s‬‭provisioning‬‭module that handles the authentication and‬
‭authorisation steps that are required to ensure that the identity of those contributing to the federated‬
‭learning network is clear and transparent to the central server. Roles and different/custom levels of‬
‭authorisation can be created using Flare directly allowing for a fine-grained control of participation.‬
‭There is a technical overhead with understanding how to maintain these different options and interface‬
‭with it, but it is appropriate for those with sufficient software engineering skills to understand and‬
‭maintain.‬
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‭As this is an open source product with the backing of a large company, this tool is very promising as‬
‭many‬‭publications and events‬‭have been conducted on‬‭using Flare and its integration into the ecosystem‬
‭of other AI tools such as Clara.‬

‭3.1.3. Unique features‬

‭●‬ ‭Dashboard for provisioning‬

‭●‬ ‭POC command line interface‬

‭●‬ ‭Backing and maintenance from Nvidia‬

‭3.2. Vantage 6‬

‭3.2.1. Quick start development‬

‭Vantage6 is a tool developed by The Netherlands Comprehensive Cancer Organisation (IKNL), who are‬

‭interested in using federated learning to solve problems and conduct research questions into‬
‭radiotherapy problems and challenges.‬

‭Comprehensive documentation exists for this tool, providing information on setting up the server and‬
‭clients. This can be done using command line interface tools to setup a simulated server and clients to‬
‭perform an example task. Similar to Flare, a POC tool can be used to quickly create a federated learning‬
‭network. Docker is required to obtain base code for a deployable server and client (termed as “node” in‬
‭Vantage6), unlike Flower and Flare where Docker images are not necessarily required for deployment.‬

‭This is advantageous to federated learning researchers who wish to experiment with ideas rapidly using‬
‭the Vantage6 tool without the need to create dummy virtual machines or perform tedious tasks for‬
‭simulating a virtual federated learning network. Additionally, this POC environment allows developers to‬
‭test new features that can be added to the Vantage6 toolkit and streamline new features into the tool‬
‭easily.‬

‭3.2.2. Real world deployment‬

‭Real world development of this tool is not as straight forward as Flare’s dedicated real-world deployment‬
‭sections but can be achieved using the documentation throughout the tool’s website.‬

‭We were successful in re-creating a federated learning system on the NECTAR cloud platform using‬
‭Vantage6. Tools are provided to easily facilitate “production grade” setups that would otherwise require‬
‭developer knowledge of handling this from an end-user point of view. These include a dashboard for‬
‭handling the setup of different components in their federated learning architecture which runs a docker‬
‭container and can interface with the central server through its API, such as managing federated learning‬
‭user authorisation, interfacing with encryption and API keys to easily manage this on a client level and‬
‭monitoring learning tasks in the wider network. There is a technical overhead with understanding how to‬
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‭maintain these different options and interface with it, but this is at an appropriate level for those with‬
‭software engineering skills to understand and maintain.‬

‭3.2.3. Unique features‬

‭●‬ ‭Dashboard for handling authorisation/authentication and monitoring the federated learning‬
‭network.‬

‭●‬ ‭API endpoints that can be called using HTTP requests, not just Python clients.‬

‭3.3. Flower‬

‭3.3.1. Quick start development‬

‭Flower is a federated learning framework that supports large-cohort training and evaluation, both on‬
‭real edge devices and on single-node or multi-node compute clusters. The quick start‬‭documentation‬‭is‬
‭very easy to follow. It is designed with simplicity in mind, offering an intuitive and user-friendly interface‬
‭for setting up and managing federated learning experiments. Its lightweight coordination server and‬
‭straightforward API make it easy for developers to integrate Flower into their existing machine learning‬
‭pipelines with minimal effort. It can be simulated on a single machine using Python files, without the‬
‭need of any containerisation tool as mentioned at their website. Further, it abstracts away much of the‬
‭complexity involved in building and deploying federated learning systems, allowing developers to focus‬
‭on model design and optimisation rather than low-level implementation details. By providing high-level‬
‭abstractions for tasks such as model aggregation, communication, and synchronisation, Flower simplifies‬
‭the development process and accelerates the iteration cycle for federated learning experiments.‬

‭3.3.2 Real world deployment‬

‭We have successfully re-created a simulation environment on a single machine and on the NECTAR cloud‬
‭platform as well. It offers built-in datasets for simulation purposes, alongside the flexibility to use custom‬
‭datasets. Users can define various machine learning models such as logistic regression and neural‬
‭networks for training, employing a client class to train the model on the training dataset and evaluate it‬
‭on the testing dataset. For the server-side, users can choose the specific averaging techniques for the‬
‭aggregation. Flower enables‬‭SSL‬‭for establishing secure‬‭connections between servers and clients, with‬
‭comprehensive guidance on starting an SSL-enabled secure Flower server and connecting Flower clients‬
‭securely, alongside a complete code example, although users are advised to consult the guide for‬
‭in-depth SSL setup instructions. For Docker‬‭containerisation‬‭,‬‭it offers two images – a base image‬
‭containing essential dependencies shared by both server and client, and a server image built upon the‬
‭base image, which installs the Flower server via pip.‬
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‭3.3.3. Unique features‬

‭●‬ ‭Ease of Use and Deployment‬

‭●‬ ‭Reduced Complexity in Development‬

‭3.4. PySyft‬

‭3.4.1. Quick start development‬

‭PySyft is an open-source federated learning library developed by‬‭OpenMined‬‭. It aims to make private‬
‭machine learning accessible by enabling secure and privacy-preserving data analysis. PySyft extends‬
‭popular machine learning frameworks such as PyTorch and TensorFlow. The‬‭documentation‬‭is‬
‭comprehensive and user-friendly providing clear guidance on setting up and managing federated‬
‭learning experiments.‬

‭PySyft facilitates secure multi-party computation (SMPC) and differential privacy ensuring an extra layer‬
‭of privacy is maintained throughout the learning process. It provides high-level abstractions for tasks‬
‭such as secure aggregation, encrypted communication, and differential privacy, simplifying the‬
‭development process and allowing researchers to focus on model design and optimization.‬

‭3.4.2. Unique features‬

‭●‬ ‭Ease of Use and Deployment‬

‭●‬ ‭Support for Vertical data partitioning as well as horizontal‬
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‭4. Data storage and communication‬

‭4.1. Data Storage and Computational Requirements‬
‭A diagram for a typical federated learning use case is provided in Figure 4.1. This highlights the resource‬
‭components that are required for federated learning.‬

‭The key resource requirements for federated learning are data storage and computational capacity at‬
‭each of the nodes, a server system with computational capacity and the ability to communicate between‬
‭these components. Given the reason for using federated learning is often to ensure security and privacy‬
‭of data, these requirements are also likely to impact resource requirements.‬

‭The magnitude of data storage requirements and computational capacity will vary from project to‬
‭project depending on the algorithms and data that are being used and the models being developed.‬
‭Different scenarios for the node/data storage situations are considered here:‬

‭4.1.1.  Node/s positioned within an organisational IT environment‬

‭A common situation is that the data at each node would remain behind an organisational firewall (e.g. a‬
‭hospital). In this situation the data storage and computational capacity must be provided as part of, or at‬
‭least linked to, the infrastructure of the organisation. The requirements for the data storage and‬
‭computational capacity must also meet the local organisational requirements as well as those for‬
‭federated learning. This may make it challenging or impossible to be able to utilise broadly available‬
‭research data infrastructure (e.g. nectar and MLeRP in its current form). To enable communication in this‬
‭situation the ability to communicate outside the organisation through the firewall must be addressed.‬
‭This would commonly require ‘white-listing’ of relevant sites.‬

‭4.1.2.  Node/s positioned within a Trusted Research Environment (TRE)‬

‭In some instances, for example where registry linked data is involved, data is stored in a trusted research‬
‭environment (TRE). A TRE can also be known as a secure research environment (SRE), data safe haven or‬
‭secure data environment.‬

‭A TRE is controlled computing infrastructure designed to facilitate secure research practices while‬
‭safeguarding sensitive data. It serves as a centralised platform where researchers can access and analyse‬
‭sensitive information without compromising privacy or security. Key characteristics of TREs include‬
‭robust data encryption, stringent access controls, comprehensive logging and monitoring systems to‬
‭track user activities and detect any unauthorised access and curated gateways. These environments‬
‭often comply with relevant regulations and standards, such as GDPR (Goddard, 2017) in the European‬
‭Union or HIPAA (Chen & Benusa, 2017) in the United States, to ensure data protection and privacy‬
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‭compliance. Examples of TREs implemented in various countries include the UK Secure Research Service‬
‭(SRS) (ONS, 2024), Secure eResearch Platform (‬‭SeRP‬‭).‬‭In Australia, TREs include Secure Unified Research‬
‭Environment (SURE) (Moore, Guiver , Woollacott, Klerk, & Gidding, 2016), E-Research Institutional Cloud‬
‭Architecture (ERICA) (ARDC, 2024),‬‭KeyPoint‬‭, or‬‭Monash‬‭SeRP‬‭. A common requirement for these secure‬
‭environments is that there is manual inspection of data ingress and egress. This is a particular challenge‬
‭if data must be stored in a TRE in a federated learning network.‬

‭There isn't a one-size-fits-all definition for what constitutes a TRE; rather, design decisions are tailored to‬
‭meet the specific needs of each organisation. The Five Safes Framework has emerged as a cornerstone‬
‭guiding principle within this realm. Ensuring safe projects underscores the ethical utilisation of data,‬
‭necessitating projects with clearly defined purposes. Access to data is restricted to authorised and‬
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‭reliable individuals (safe people), who undergo rigorous checks, and receive training in data privacy. Data‬
‭must be adequately safeguarded, including measures such as de-identification to prevent privacy‬
‭breaches (safe data). Safe settings govern the data environment, demanding secure IT infrastructures‬
‭and protocols (safe settings). Meanwhile, safe outputs guarantee that sensitive information remains‬
‭undisclosed, aligning with standards set forth by regulatory bodies like the Australian Bureau of Statistics‬
‭regarding data publication.‬

‭The Five Safes approach offers flexibility, empowering data custodians to evaluate the risks and‬
‭potentials associated with data sharing and release. Typically, TRE administrators oversee safe settings,‬
‭while stakeholders collectively share responsibility for ensuring the other four aspects (safe projects, safe‬
‭people, etc.). However, governance within the medical domain poses unique challenges, particularly‬
‭concerning the integration of health data. The intended flexibility of the Five Safes framework‬
‭encounters constraints due to the stringent security protocols imposed by data providers. Consequently,‬
‭many custodians err on the side of caution, implementing top-tier security measures across all‬
‭dimensions, which may prove excessive for certain specific purposes.‬

‭There are requirements for particular datasets to be stored within a TRE. Utilisation of federated learning‬
‭can provide an opportunity to learn from the datasets that must be stored in a TRE without requiring‬
‭combining of the entire dataset which may not be possible. Using horizontal, vertical or a combination of‬
‭horizontal and vertical (as described in Section 1) federated learning different datasets can be utilised.‬
‭For instance, in healthcare research, a TRE/SRE might contain patient records from one geographical‬
‭region, while other nodes hold data from other regions, ensuring data diversity without sharing sensitive‬
‭patient information across nodes. in genomic research, a TRE/SRE might hold genetic sequences, while‬
‭other nodes hold phenotypic data or clinical outcomes. In financial research, a TRE/SRE might contain‬
‭transactional data while other nodes hold demographic or socio-economic information. This partitioning‬
‭strategy allows for collaborative analysis without exposing individual-level data across nodes, thus‬
‭maintaining privacy and security.‬

‭4.2. Integrating Federated Learning within TREs/SREs‬
‭The integration of federated learning within TREs or SREs poses a significant challenge due to the‬
‭common requirement for manual inspection of data ingress and egress within these secure‬
‭environments. Federated learning, being an iterative process that often spans multiple rounds of sharing‬
‭the model parameters, necessitates seamless data flow between the participating devices or servers.‬
‭However, the stringent security protocols of TREs/SREs mandate manual inspection of data ingress and‬
‭egress for each round, which may not be feasible in certain applications of federated learning.‬
‭Importantly this manual inspection process is set-up for reviewing data.  In federated learning it is‬
‭models and not data which are being transferred into and from TREs and the manual inspection process‬
‭is rarely appropriate for assessing risks of model transfer. This manual inspection also introduces‬
‭potential bottlenecks and delays, hindering the efficiency and scalability of the federated learning‬
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‭process within these secure environments. Moreover, the repetitive nature of manual inspection‬
‭increases the risk of human error and may compromise the timeliness and accuracy of research‬
‭outcomes. Therefore, there is a pressing need to explore alternative solutions or enhancements to‬
‭streamline the integration of federated learning within TREs/SREs, ensuring both data security and‬
‭research efficiency are effectively balanced.‬

‭4.3. Automatic Inspection of Data for TREs‬
‭The primary solution to address the challenge of manual inspection of data ingress and egress for‬
‭federated learning within TREs/SREs is the implementation of automatic inspection systems. Automatic‬
‭inspection refers to the process of using advanced technological systems and algorithms to monitor,‬
‭analyse, and detect patterns or anomalies in data flows without the need for manual intervention.‬
‭Automated approaches can also be more appropriate for review than manual review processes set-up‬
‭for reviewing data and non-ideal for reviewing models. Within the context of TREs/SREs, automatic‬
‭inspection systems could play a crucial role in ensuring the security, privacy, and compliance of research‬
‭activities, particularly in scenarios such as federated learning where data ingress and egress occur‬
‭iteratively over multiple rounds. By employing automated tools, organisations can streamline the‬
‭inspection process, reduce the risk of human error, and enhance the efficiency of data monitoring and‬
‭analysis. Moreover, automatic inspection systems enable real-time detection of suspicious activities or‬
‭deviations from expected behaviour, allowing for prompt intervention and mitigation of security‬
‭incidents.‬

‭Following are a few of the factors that need to be addressed in the implementation of automatic‬
‭inspection:‬

‭4.3.1.  Collaborative governance‬

‭Collaborative governance models involve establishing frameworks where stakeholders from various‬
‭domains, including researchers, data custodians, and security experts, work together to govern and‬
‭oversee the implementation of processes and policies within TREs/SREs. These models ensure that‬
‭decisions regarding data access, security protocols, and compliance measures are made collectively,‬
‭taking into account the perspectives and expertise of all involved parties.‬

‭By involving stakeholders in the governance process, transparency is fostered regarding the objectives,‬
‭methodologies, and outcomes of automatic inspection systems. Transparency helps build trust among‬
‭stakeholders and ensures that all parties understand the rationale behind the implementation of‬
‭automated inspection processes.‬

‭Collaborative governance models establish clear lines of accountability, ensuring that responsibilities for‬
‭overseeing and managing automatic inspection processes are clearly defined. This accountability helps‬
‭mitigate risks and ensures that any issues or concerns related to the implementation of automated‬
‭inspection systems are addressed promptly and effectively.‬
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‭Involving stakeholders in the governance of automatic inspection processes enables efficient‬
‭decision-making and implementation. By leveraging the collective expertise and insights of researchers,‬
‭data custodians, and security experts, governance models can streamline workflows, expedite approval‬
‭processes, and optimize resource allocation, leading to increased efficiency in implementing and‬
‭managing automated inspection systems. Lastly, collaborative governance models facilitate proactive risk‬
‭management by enabling stakeholders to collectively identify, assess, and mitigate risks associated with‬
‭automatic inspection processes. By bringing together diverse perspectives and expertise, governance‬
‭models help organizations anticipate potential challenges and develop comprehensive risk mitigation‬
‭strategies to safeguard data integrity, confidentiality, and compliance within TREs/SREs.‬

‭4.3.2. Streamlined approval processes‬

‭Streamlined approval processes within TREs/SREs involve integrating efficient procedures for approving‬
‭data ingress and egress requests with automated inspection systems, enhancing the efficiency and‬
‭accuracy of data monitoring and analysis. By implementing pre-approved templates, checklists, or‬
‭protocols, organizations can expedite the review of data flows while ensuring alignment with security‬
‭and compliance requirements. This approach standardizes the evaluation criteria, facilitates expedited‬
‭review, and enhances oversight and governance of data activities within TREs/SREs. Integrated with‬
‭automated inspection systems, streamlined approval processes optimize workflow efficiency, ensure‬
‭consistency in data analysis, and enable stakeholders to promptly identify and address any anomalies or‬
‭deviations from expected behaviour, thereby strengthening the security and integrity of research‬
‭activities conducted within secure research environments.‬

‭4.3.3.  AIML enabled inspection of data flow‬

‭Machine learning models are computational algorithms trained to recognize patterns and make‬
‭predictions based on data. Within TREs/SREs, these models play a crucial role in automating the‬
‭inspection of data ingress and egress. By training on historical data within TREs/SREs, machine learning‬
‭models (supervised and unsupervised) can predict and classify normal and abnormal patterns in data‬
‭flows. They can detect anomalies or deviations from expected behaviour, automatically analysing data in‬
‭real-time and flagging any deviations warranting further investigation. This automation enhances the‬
‭efficiency and accuracy of data monitoring and analysis within TREs/SREs compared to manual methods,‬
‭which are time-consuming and error prone. Additionally, machine learning models adapt and evolve‬
‭over time, continuously improving their accuracy and effectiveness in detecting anomalies, thus ensuring‬
‭TREs/SREs remain resilient against emerging security threats.‬

‭4.3.4.  Privacy preservation‬

‭Privacy-preserving techniques such as differential privacy, secure multi-party computation, and‬
‭homomorphic encryption provide an extra layer of security in the context of automatic inspection within‬
‭TREs/SREs. While not directly assisting in the automation of inspection processes, these techniques‬
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‭ensure that sensitive data remains confidential and protected throughout automated analysis. These‬
‭privacy-preserving techniques guarantee that data ingress and egress undergo inspection without‬
‭compromising privacy, thus safeguarding sensitive information throughout the automated analysis‬
‭process. Differential privacy (Zhang, Lu, & Liu, 2023) adds noise to data before analysis to prevent‬
‭individual records from being identifiable. It ensures that the output of automated analysis does not‬
‭compromise the confidentiality of underlying data, thereby enhancing overall security. Secure‬
‭Multi-Party Computation (SMPC) (Mansouri, Önen, Jaballah, & Conti, 2023) (Fereidooni, et al., 2021)‬
‭enables multiple parties to compute functions over their inputs while keeping those inputs private.‬
‭SMPC allows for collaborative analysis across multiple nodes without exposing sensitive information,‬
‭thereby bolstering security during automated inspection. Homomorphic encryption (Wibawa, Catak,‬
‭Sarp, & Kuzlu, 2022) enables computations on encrypted data without decryption. It ensures that‬
‭sensitive data remains confidential during automated analysis, adding an additional layer of security to‬
‭the process. Figure 4.2 illustrates the incorporation of secure aggregation in federated learning via‬
‭homomorphic encryption and differential privacy.‬

‭4.3.5.  Conditions in favour of federated learning‬

‭We have seen that TREs, by design, include stringent security protocols, particularly concerning the‬
‭manual mediation of data egress, which can inhibit their direct participation in federated learning. On‬
‭the other hand, federated learning requires continuous interaction among nodes for model updates,‬
‭which poses a challenge for TREs due to their reliance on human-mediated data flows. At every iterative‬
‭step, every federated learning node sends not the data but the model parameters to the central server‬
‭which determines resolution on the common model. This requires seamless information flow between‬
‭devices or servers. However, the security protocols of TREs require manual inspection of data ingress‬
‭and egress for each round, which can be impractical at the frequency of interaction required by‬
‭federated learning in addition to increasing the risk of any potential human error. Besides, the current‬
‭governance structure for TREs also would make it unsuitable for federated learning.‬

‭On the other hand, federated learning actually poses less risk than federated analytics, as the data is not‬
‭exchanged, and the human element is removed. This needs to be recognised in the governance‬
‭structure.‬

‭Currently, there are some promising developments in Federated Analytics in projects like FED-NET, which‬
‭involves periodic and less frequent data exchanges where manual oversight is more feasible. However,‬
‭this springboard holds the potential to evolve and accommodate federated learning, particularly with‬
‭enhancements to support automated data mediation and real-time interaction.‬

‭The current capabilities of platforms like TelePort and TRE-FX illustrate potential pathways for TREs to‬
‭support federated learning in the future. These platforms are designed with multi-toolkit frameworks‬
‭that facilitate data governance and collaboration across different TREs without altering existing‬
‭governance structures.‬
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‭TelePort, for instance, creates an ephemeral common space for data interaction among TREs, governed‬
‭by existing egress rules. According to HDR UK, Trino abstracts the individual database layers and‬
‭TELEPORT creates an interoperable “link” between each TRE, allowing each Trino instance to‬
‭communicate seamlessly. This setup facilitates secure data sharing and collaborative analysis across‬
‭different TREs, while TRE-FX enhances the governance framework by providing standardized egress‬
‭processes and ensuring that data sovereignty and privacy requirements are consistently met across all‬
‭nodes.‬
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‭By abstracting the computation layer and providing a connected space for researchers to operate on and‬
‭access data in different environments. While the current structure is available only for Federated‬
‭Analytics, this setup may pave the way for collaborative federated learning projects without‬
‭compromising data security within this space.‬

‭Given the significance and complexity of the area, a separate TRE project is being undertaken by ARDC.‬
‭The project brings together a panel of TRE groups on a workshop to explore the key challenges and way‬
‭forward and is also exploring the possibility of local TRE groups collaborating with overseas projects such‬
‭as HDR UK. The interim report can be accessed at online [‬‭TRE Framework Report‬‭].‬

‭4.4 Secure Network of Servers as an Alternative to TREs‬
‭To achieve federated learning among secure nodes, it is possible to create a secure network of servers,‬
‭each embedded in different data hosting locations. This network of servers would create a secure space‬
‭where federated learning can be carried out without the data leaving the premises or jurisdiction.‬

‭Taking a leaf from TelePort and TRE-FX projects as well as upcoming Australian projects such as‬
‭AIS-SHIELDS and FLERA (described later in this report), establishing such a secure network of servers‬
‭involves creating an ephemeral space for secure data interaction. However, it has one less requirement:‬
‭human intervention is needed only during the initial data loading and the final extraction of results (not‬
‭the data). This reduction in human involvement during the machine learning process enhances security‬
‭by minimizing the potential for human error and unauthorized access.‬
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‭5. Use Cases for Federated Learning‬

‭5.1. Existing Implementation Case Study: Australian Cancer Data‬
‭Network (ACDN)‬

‭5.1.1.  Background‬

‭‘Cancer is responsible for Australia’s largest disease burden and is a leading cause of death (Australia,‬
‭2024)’. There are challenges in accessing and thus learning from Australian cancer data which is stored in‬
‭detail at local institutions including hospitals and clinical trial organisations and in silos with state-based‬
‭registries. Providing evidence to support decisions on the most effective form of treatment for individual‬
‭patients can be challenging, particularly for patients who do not meet the eligibility criteria for‬
‭randomised clinical trials that form the backbone of practice guidelines. The ability to harness Australia’s‬
‭cancer data, which includes both tabular items (e.g. age, disease stage), imaging (e.g. CT, MRI), omics‬
‭and other specific data types (e.g. radiotherapy treatment dose distributions) has the potential to enable‬
‭learning and generation of additional evidence for our patients and clinicians.‬

‭The Australian Cancer Data Network (ACDN) is a collaboration from three platforms, seen graphically in‬
‭Figure 5.1. This includes ‘AusCAT’, a federated learning platform developed initially in collaboration with‬
‭a team from MAASTRO clinic (Field M. , et al., 2021), The Netherlands and the Australian radiation‬
‭oncology community; Cancer Alliance QLD (QLD, 2024), a collaborative organisation across health‬
‭services, jurisdictions and organisations in QLD with the goal of supporting clinician-led service‬
‭improvement, harnessing and making available cancer data; and CaVa, a research program working to‬
‭make available clinical practice datasets in a researcher ready format to investigate variations in cancer‬
‭treatment. The specific datasets include clinical practice data from treatment centres, registry data and‬
‭clinical trial datasets. Together our collaboration is using federated learning to learn from large and‬
‭diverse cancer datasets.‬

‭5.1.2.  Governance‬

‭The governance of the three collaborating platforms in the Australian Cancer Data Network are all‬
‭managed separately; however, the governance of the network as a whole is coordinated by a central‬
‭executive committee with representatives from each of the platforms and supported by clinical,‬
‭technical, data and translational expert panels.‬

‭Governance for the federated learning work relies on an overarching ethics protocol with approval to‬
‭utilise data at each of the contributing nodes for the purpose of undertaking combined analysis and‬
‭model development. Sub-projects asking particular research questions are included within the ethics‬
‭protocol or may have other governance arrangements (e.g. legislative approval). Each of the‬
‭institutions/nodes involved can choose which sub-projects they are or aren’t involved in.‬
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‭5.1.3. Federated learning infrastructure‬

‭A custom software platform for distributed learning was developed for the AusCAT network (Field , et al.,‬
‭2022). The AusCAT node infrastructure includes two main parts:‬

‭Firstly, there are components for setting-up databases at the nodes, with a pipeline of data extraction to‬
‭generate a de-identified dataset and a key database that contains the identifiers. The nodes are at‬
‭hospitals around Australia and data storage and computational power is provided by the hospitals either‬
‭hardware or in the cloud with the systems managed within hospital IT infrastructure (and appropriate‬
‭firewalls). The project is working towards setting up nodes for registry datasets (which would be‬
‭vertically partitioned in comparison to the hospital datasets which are horizontally partitioned). This‬
‭requires addressing both governance and data storage requirements (the need for TRE/SREs).‬

‭Secondly, infrastructure enables federated learning. This uses Java web services to coordinate‬
‭communication between clinic systems. Algorithms can be sent to each clinic, where they generate and‬
‭share model parameters and statistics with the central server and then through iterative transfer of‬
‭parameters across the clinics and the server, develop the final model. This has been used for horizontal‬
‭federated learning. The project has demonstrated proof of principle with vertical and combined learning‬
‭but have not yet implemented this on the ACDN network.‬
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‭While the federated learning components of AusCAT have proven effective (Hansen, et al., 2022) (Field‬
‭M. , et al., 2024) a number of open-source platforms as described above are now available and‬
‭maintaining and expanding this proprietary federated learning platform requires significant resources. By‬
‭adopting open-source tools, we can leverage existing technologies without the need for extensive‬
‭in-house development, ensuring that we align with the broader research community. Open-source‬
‭platforms like Flower offer robust, community-supported solutions that facilitate interoperability and‬
‭collaboration. This move will ensure ACDN stays at the forefront of federated learning advancements,‬
‭benefiting from shared innovations and maintaining compatibility with widely used frameworks.‬

‭5.1.4.  Specific example cases (including how training, validation and testing is‬
‭completed)‬

‭Non-small cell lung cancer survival following radiotherapy treatment‬‭.‬‭This investigation (Field M. , et al.,‬
‭2024) developed a survival model for non-small cell lung cancer patients using federated learning across‬
‭6 centres in NSW. This was a linear regression model with data split based on time-period. Data from‬
‭2011-2016 was used for bootstrap training and internal validation and data from 2017-2019 was used for‬
‭validation. This split in data was used to ensure that the model was validated on the most recent data as‬
‭is most useful for considering the clinical applicability of the model. The data used was federated for‬
‭both the training and the validation.‬

‭Cardiac toxicity model following radiotherapy treatment.‬‭A current project is working towards‬
‭developing a cardiac-toxicity model following radiotherapy treatment. There is evidence that radiation‬
‭dose to the heart increases the risk of cardiac toxicity (e.g. heart attacks) following treatment but there‬
‭is limited evidence on how the distribution of dose affects this risk. In this project a developed cardiac‬
‭segmentation algorithm is being used to determine the radiation dose to cardiac substructures using‬
‭imaging and radiation dosimetry data available at individual centres. A combined model will then be‬
‭developed using federated learning. Data will remain federated for both training and validation. A‬
‭random split of data may be used to separate training and validation datasets or one or two centres may‬
‭be separated as the validation cohorts.‬

‭Prognosis models for anal cancer.‬‭In this international‬‭study prognosis models are being developed for‬
‭anal cancer (Theophanous, et al., 2022). Using federated learning enables access to a large dataset‬
‭which would not otherwise be possible for anal cancer which is relatively uncommon. The data is‬
‭remaining federated for training and validation. A separate external validation is also being undertaken‬
‭with datasets from centres that were not involved in the original training and validation.‬

‭5.2. Existing Implementation Case Study: FLERA+‬

‭5.2.1 Background‬
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‭Applied artificial intelligence (AI) research in health, and particularly in human imaging, is a‬
‭transformative technology that will accelerate diagnosis, and facilitate precision management of a range‬
‭of human diseases. Its success relies heavily on data availability during model development or clinical‬
‭validation stages. Many roadblocks obstruct the integration of precision imaging into clinical‬
‭decision-making. Technical, logistical and governance issues have prevented public and private health‬
‭providers, often the custodians of real-world imaging datasets, from participating in cutting-edge applied‬
‭AI research, which has remained largely within the domain of research institutes and technology‬
‭companies.‬

‭In 2020, the MRFF-funded TRANSCEND (TRanslating AI Networks to Support Clinical Excellence in Neuro‬
‭diseases). This project was established to overcome the bench-to-bedside roadblock by creating a‬
‭permanent bi-directional interface between AI RRD and clinical practice. The TRANSCEND eco-system‬
‭provides a rich federated learning environment for clinical applications and broad expertise to advance‬
‭applied AI research, building upon the team’s previous R&D work in the CRC-P project: “AI: new smarts‬
‭for the medical imaging industry”. FLERA (Federate Learning Ecosystem for Research in Australia)‬
‭represents the natural evolution of TRANSCEND: the goal is to be the partner of choice for supporting‬
‭the accelerated development and adoption of AI solutions in health that rely on federated learning for‬
‭healthcare.‬

‭5.2.2 Outcome‬

‭FLERA comprises four critical capacities:‬

‭1. FLERA Experience‬‭:‬‭This encompasses the overall‬‭federated learning collaboration network and‬
‭successful federated learning experiences of TRANSCEND, which can be referenced for new federated‬
‭learning projects and facilitate multicentre AI collaborations within and outside the FLERA network.‬

‭2. FLERA Box‬‭: An end-to-end engineering solution designed‬‭for the rapid deployment of federated‬
‭learning across stakeholders in health provider networks, ensuring operational efficiency and maximum‬
‭performance. The engineering solution incorporates “requirements-design-evaluation” development‬
‭cycle, which takes requirements from clients and provide support from aspects like performance target,‬
‭hardware requirements, model design, federated training and evaluation. The FLERA Box has been‬
‭tested with hospitals (including Royal Prince Alfred Hospital, St Vincent Hospital, Westmead Hospital,‬
‭etc.) and data providers (including iMed Radiology, Synergy Radiology, Flinders University, etc.) on‬
‭multiple applications.‬

‭3. FLERA AI Research‬‭: Focuses on themes that continually‬‭improve AI training efficiency, advancing the‬
‭field of AI in health research. Previous research has covered multiple aspects in neuroimaging and‬
‭neurological research and applications and to redesign the algorithms used in federated learning‬
‭framework to enhance model performance. We’ve focused on real-world challenges and provided‬
‭solutions when many data centres are involved, including labels with noise, lack of labels from‬

‭PAGE‬‭33‬‭Exploring federated learning tools‬



‭participated centres, imaging inhomogeneity across data centres, and predicting performance‬
‭requirements for given task.‬

‭4. FLERA Team‬‭: Led by the original PIs from TRANSCEND,‬‭this growing multidisciplinary team continues‬
‭to excel in large-scale AI adoption in Australia. Currently led by Prof. Michael Barnett, Prof. Fernando‬
‭Calamante, Dr. Chenyu Wang and Dr. Ryan Sullivan.‬

‭FLERA has translated and implemented AI technologies into health applications across multiple‬
‭disciplines. In Multiple Sclerosis, we developed lesion models, LLM based prognosis models, and spinal‬
‭cord assessment models, which have been made available to the MS research community through FLERA‬
‭and MSBIR for improved disease progression monitoring. Additionally, we developed CT-based brain‬
‭haemorrhage detection models for CT triage and brain tissue models for quantifying various brain‬
‭diseases. Importantly, leveraging NVIDIA MONAI, we created a robust AI development pipeline that‬
‭rapidly transforms imaging analysis tasks into AI-powered applications.‬

‭The research outcomes promote economic solutions for facilitating federated learning, preserving‬
‭privacy in large-scale, multidisciplinary AI collaborations. We have ‘packaged’ all learnings from‬
‭TRANSCEND project into its post MRFF funding cycle form: Federated Learning Ecosystem for Research In‬
‭Australia, the FLERA program. The FLERA program comprises FLERA Teams, FLERA Box, FLERA Research,‬
‭and FLERA Experience, offering a comprehensive ecosystem for AI innovation in health. This‬
‭interdisciplinary collective includes all necessary expertise, AI models, tools, engineering solutions,‬
‭governance, and most importantly, successful experience in large scale AI adoption in health.‬

‭5.3. Implementation Case Study: AIS-SHIELDS‬

‭5.3.1. Australian Imaging Service Background‬

‭The Australian Imaging Service (AIS) is a nationally federated platform for secure imaging data‬
‭management and analysis, focusing on clinical and pre-clinical imaging modalities such as Magnetic‬
‭Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound, Positron Emission Tomography‬
‭(PET), X-Ray, etc. AIS fully launched in 2022 and currently consists of 13 research institutions with‬
‭funding from the Australian Research Data Commons (ARDC) and the National Imaging Facility (NIF)‬
‭NCRIS capabilities.  AIS integrates directly with clinical scanners for consenting patients, doing on-site‬
‭de-identification of direct identifiers before uploading images to university nodes for long term curation,‬
‭analysis, and collaboration. AIS’s mission is to increase research reproducibility and drive the adoption of‬
‭innovative but trusted analysis techniques.‬

‭Starting as an institutional initiative at the University of Sydney in 2017, the national Australian Imaging‬
‭Service was created through the ARDC Platforms 2019 AIS Project with a network of central DVC-R and‬
‭ICT teams across 7 Universities using the open source XNAT for imaging data management. AIS operates‬
‭with core institutional support from the University of Sydney with a portfolio of research grants for‬
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‭feature enhancements. The original ARDC project focused on developing a standardized, secure, and‬
‭scalable architecture built around XNAT and Kubernetes. AIS was subsequently extended in the ARDC‬
‭Platforms 2020 AEDAPT Project adding secure virtual desktops built on Neurodesk (Renton, et al., 2024)‬
‭and in the NIF 2021 AIS Pipelines Project building out the workflow engine built on ARCANA (Close, et‬
‭al., 2020) and with a library of curated pipelines. The 2023 EU Horizon Infrastructure FoundingGIDE‬
‭project is standardizing biological, preclinical, and clinical imaging ontologies used internationally while‬
‭the MRFF NCRI AIS-SHIELDS project is adding NLP, AI Segmentation, and federated learning capabilities.‬

‭AIS uses a data centric computing model with all computational services tightly coupled with the data‬
‭repository.  This increases accessibility by allowing all tools to be accessed via a browser UI,‬
‭reproducibility by using version-controlled software stacks so multi-site studies can use identical tools‬
‭across the full duration of a study, and security by integrating computational data access and auditing‬
‭managed by the data repository without data needing to leave AIS.‬

‭Figure 5.2. Overview of AIS‬

‭AIS currently consists of five key services, as shown in Figure 5.2.‬

‭1.‬‭Data Movement:‬‭Secure movement from image acquisition‬‭to repository, and between repositories,‬
‭including de-identification, encryption, and routing‬

‭2.‬‭Data Management:‬‭Built around XNAT, this provides‬‭long term archival data management, with per‬
‭project, per data type user access controls directly coupled with analysis platforms so data doesn’t need‬
‭to leave the platform‬
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‭3.‬‭Automated Pipelines:‬‭Built around ARCANA/Pydra workflow engine and kubernetes schedulers, this‬
‭provides the ability to run containerized workflows for bulk analysis, automated QC, file conversion,‬
‭pre-processing, etc.‬

‭4.‬‭Interactive Visualization and Analysis:‬‭Built around‬‭JupyterHub and Neurodesk, this provides secure‬
‭virtual desktops preloaded with reproducible imaging software.‬

‭5.‬‭Machine Learning:‬‭(Still in heavy development)‬‭Built around MONAI, this provides AI assisted image‬
‭segmentation and classification by running PyTorch models directly integrated with image viewers.‬

‭5.3.2. ACRF Centre of Excellence in Melanoma Imaging and Diagnosis Background‬

‭The ACRF Centre of Excellence for Melanoma Imaging and Diagnosis (ACEMID) has been establishing a‬
‭network of 16 Total Body Photography (TB-Photography) clinical scanners in urban and regional locations‬
‭to create a national teledermatology network for detection, monitoring, and treatment of Melanoma‬
‭and related diseases in partnership with QLD Health, NSW Health, VIC Health, and Melanoma Institute of‬
‭Australia. TB-Photography offers an excellent and impactful imaging modality and will lead to major‬
‭advances in the field of dermatology; however, it requires AIS’s input and advanced capabilities as it‬
‭produces images that are very sensitive and need extra protection to maintain patient’s privacy. ACEMID‬
‭has partnered with AIS to build the ACEMID Research Repository across AIS nodes at the University of‬
‭Queensland, University of Sydney, and Monash University, complementing the national clinical‬
‭teledermatology network.‬

‭At present, there is a significant two-fold gap in the maturity and progress of imaging and reporting‬
‭standards in the field of dermatology compared to those found in radiology, especially related to‬
‭diagnosis, monitoring, and treatment of melanoma and skin cancers. Firstly, individual imaging‬
‭modalities are siloed, using non-standard formats and separate software platforms, precluding their‬
‭combined linkage. Secondly, unlike traditional radiology imaging that focuses on the internal parts of the‬
‭body, dermatology focuses on the visible parts of the body; therefore, images are inherently identifiable‬
‭and sensitive (patients are nude or semi-nude), raising significant privacy concerns for patients, affecting‬
‭their willingness to participate in screening programs. This has knock on affects for all melanoma and‬
‭skin cancer patients who undergo 1.1 million Medicare treatment services in Australia every year.‬

‭5.3.3. Federated Learning Infrastructure‬

‭AIS-SHIELDS is a new MRFF National Critical Research Infrastructure project that converges the work on‬
‭AIS, the ACEMID Research Repository, & FLERA to implement federated learning within the AIS context.‬

‭AIS operates as a federated network of institutional nodes deployed on kubernetes with each researcher‬
‭only able to access the project(s) to which they have been granted access. Universities’ have an AIS node‬
‭with all 5 services mentioned above that acts as the decadal data store of the research data. Clinical sites‬
‭where the data is acquired will have Edge Devices, which can perform transient processing such as‬
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‭de-identification, encryption, routing, real-tie analysis, or in this case federated learning, as depicted in‬
‭Figure 5.3.‬

‭The data flow is usually Instrument<->Edge Device<->AIS Node, optionally between AIS Nodes as well.‬
‭All software and containers are stored in the AIS Github Organization‬
‭(‬‭https://github.com/Australian-Imaging-Service‬‭) which‬‭is used for CICD to deploy and update each node.‬

‭Both AIS Nodes and Edge Devices run on Kubernetes on top of a diverse set of underlying‬
‭infrastructures, allowing the tooling to be standardized. The Kubernetes clusters for AIS Nodes tend to‬
‭be larger, using services such as AWS Elastic Kubernetes Service (EKS), potentially with many dozens of‬
‭worker nodes (Virtual Machines assigned to the cluster) with dynamic scaling. Kubernetes clusters for‬
‭AIS Edge Devices are much smaller, often 1-3 individual Virtual Machines on which Microk8s has been‬
‭implemented.‬

‭A challenge with deploying within clinical sites is the differences in technology. Research technology,‬
‭particularly in the case of machine learning, is heavily Linux based with software containers. Hospital IT‬
‭however tends to be Windows based with no containerization. AIS has had some success bridging the‬
‭two by deploying Microk8s on NSWHealth Windows Machines. The University of Sydney central ICT‬
‭team, which manages the AIS GitHub Organization, did a vendor assessment with Microk8s as the‬
‭software application. From the NSWHealth point of view Microk8s is a Windows application, and they‬
‭manage it as other applications, being responsible for the underlying VM and security of the OS image.‬
‭From the AIS point of view, the research tools then see a Linux based Kubernetes cluster. Specific firewall‬
‭whitelists are made to the AIS container registry to allow pre-approved containers to be pulled and‬
‭updated to run on the edge cluster. A second set of firewall rules are made for any egress of data‬
‭between the edge device and the AIS Node. This deployment approach for edge devices has to date‬
‭focused on secure data egress where image data is captured from a scanner and needs to be‬
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‭de-identified, encrypted, and routed to the correct project in XNAT on an AIS node in a secure and‬
‭audited manner. In AIS-SHIELDS, this is being expanded to add local computational capability. In‬
‭principle, an entire AIS Node could be run on an edge device if there were sufficient storage and‬
‭computational resources available.‬

‭The workflow for image labelling is:‬

‭1.‬ ‭Upload data to XNAT‬

‭2.‬ ‭XNAT automatically triggers n many pipelines to run on the images‬

‭3.‬ ‭From XNAT, open the data in an image viewer integrated with MONAI Label to add annotations to‬
‭the dataset‬

‭For federated learning, AIS is working to add NVFlare as a service in the Kubernetes cluster that can be‬
‭accessed via the XNAT UI like how ARCANA pipelines and Neurodesk virtual desktops, matching data‬
‭access of the initiating user. This builds upon the previous FLERA work. AIS will manage the edge devices,‬
‭allow researchers to access the pre-processing pipelines and federated learning clients to run on their‬
‭datasets. The long-term intention is to apply this infrastructure to the ACEMID Total Body Photography‬
‭scanners so that federated learning can be applied securely without the participant data leaving the‬
‭clinical site to widen participation.‬

‭5.4. Existing Implementation Case Study: NINA‬

‭5.4.1 Background‬

‭The National Infrastructure for Federated Learning in Digital Health to Generate New Models of Care for‬
‭Chronic Diseases (NINA) project seeks to answer the following question: Can we leverage disruptive,‬
‭cutting-edge federated learning technology to overcome existing barriers in accessing health data for‬
‭research, thereby facilitating research aimed at enhancing outcomes for chronic diseases?‬

‭Currently, Australian datasets are siloed, isolated both geographically (across different states) and across‬
‭the care continuum (spanning primary and hospital care). NINA aims to establish a national capability‬
‭and infrastructure network to enable federated digital learning in Australia. The overarching hypothesis‬
‭of the project is that by establishing the necessary critical federated learning research infrastructure, we‬
‭can create breakthrough research opportunities for improving outcomes in chronic diseases.‬

‭The main objectives are:‬

‭●‬ ‭Objective 1 - co-design new scalable ethics and governance pathways for federated learning in‬
‭health, ensuring compliance with existing legislation.‬

‭●‬ ‭Objective 2 - establish the technology and demonstrate its potential for safely accelerating‬
‭development of chronic disease research with the creation of national synthetic datasets (as‬
‭required) to test federated learning approaches.‬
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‭●‬ ‭Objective 3 - provide infrastructure that enables healthcare data to remain in situ and‬
‭harmonised in separate databases with data and analytics capability brought to the datasets‬
‭(through federated learning systems) while preserving privacy.‬

‭●‬ ‭Objective 4 - implement federated learning using infrastructure (from 3) to deliver innovative‬
‭research to inform better outcomes for chronic disease exemplars (diabetes, rheumatoid‬
‭arthritis, osteoarthritis and cancer).‬

‭●‬ ‭Objective 5 - ensure this infrastructure is transitioned to business as usual through‬
‭implementation, evaluation and sustainment planning.‬

‭In essence, the NINA project aims to:‬

‭●‬ ‭Integrate and harmonise data: NINA seeks to integrate and harmonise data at each site according‬
‭to globally accepted standards.‬

‭●‬ ‭Pioneer AI/ML federated learning: NINA aims to pioneer the use of iterative AI/ML federated‬
‭learning, bringing computing and AI/ML capabilities directly to the data.‬

‭●‬ ‭Establish a Digital-Health Accelerator: NINA plans to create a Digital-Health Accelerator for both‬
‭industry and research. This includes an incubator phase that allows research organisations and‬
‭industries to utilise synthetic datasets. These datasets contain equivalent data to that which will‬
‭be used to train AI/ML at local sites.‬

‭●‬ ‭Develop Best Practices and Educational Programs: NINA will develop standard operating‬
‭procedures and educational programs to expedite the transformation of research data analysis‬
‭using federated learning.‬

‭●‬ ‭Showcase the Impact of federated learning: To demonstrate the effectiveness of this federated‬
‭learning model, NINA will focus on applying federated learning to data related to three prevalent‬
‭chronic diseases in Australia: diabetes, rheumatoid arthritis, osteoarthritis and cancer.‬

‭●‬ ‭Ensure Long-Term Impact: NINA is committed to ensuring the translation and long-term impact of‬
‭the project by collaborating with industry, health and government departments, universities, and‬
‭peak bodies.‬

‭5.4.2 Project governance‬

‭NINA is a five-year program funded by the MRFF National Critical Research Infrastructure scheme with‬
‭additional cash and in-kind contributions from UQ, Monash and Macquarie universities, the Queensland‬
‭Cyber Infrastructure Foundation (QCIF), Styker, Ansen Innovation, Athritis Research Canada, ARDC,‬
‭ARMHUB, BioGrid, CSIRO, Microba, Medical Software Industry Association, QLD Health, A3BC Cancer‬
‭Alliance QLD, the Department of Environmental and Health and Victorian Institute of Forensic Medicine‬
‭(VIFM). Led by CIA Professor Clair Sullivan, University of Queensland, over 20 organisations are‬
‭participating in NINA (Figure 5.4.).‬
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‭The NINA Steering Committee consists of all Chief Investigator team members, partner and consumer‬
‭representatives across the four use cases, and has overall responsibility for delivering the project,‬
‭including monitoring identified risks and managing project risks as they arise.  It meets on a monthly‬
‭basis and is chaired by Prof. Sullivan.‬

‭The National advisory group is comprised of eminent experts in digital health and the clinical domains of‬
‭the use cases. It includes representatives from ADRC, Medical Software Industry Australia (MSIA),‬
‭Australian Alliance for Artificial Intelligence in Healthcare (AAAiH) and Google Health. This committee‬
‭provides invaluable strategic advice and monitor the project for compliance.  Any issues will be raised‬
‭directly with Prof. Sullivan, who will be responsible for implementing changes to the project to address‬
‭the issues raised.‬

‭Importantly, the NINA project will ensure the voice of consumers is heard by including consumers in the‬
‭design and evaluation of potential digital health solutions.‬

‭5.4.3 Federated Learning Infrastructure‬

‭NINA is dedicated to the practical application of federated learning in a variety of real-world settings. The‬
‭project engages a diverse range of participating sites, such as health services, pathology services,‬
‭industry partners, and registries. Each of these sites necessitates a specialised infrastructure, possesses‬
‭varying  degrees of IT and data science expertise, and adheres to unique data governance protocols and‬
‭procedures. Through the deployment of tailored infrastructure at each location, NINA aims to evaluate‬
‭how federated learning can enhance and expedite data accessibility. The project will explore whether‬
‭federated learning mitigates existing data access challenges, introduces new concerns, or encounters‬
‭distinct obstacles and roadblocks.‬
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‭To guide those real-world deployment, a test environment has been deployed on the Nectar cloud for‬
‭three federated learning frameworks allowing to:‬

‭●‬ ‭Establish the infrastructure requirements for a participating site‬

‭●‬ ‭Conduct performance testing‬

‭●‬ ‭Simplify, fine-tune and document the deployment at a participating site‬

‭●‬ ‭Allow researchers and sites to experiment with the technology‬

‭●‬ ‭Assess security‬

‭●‬ ‭Provide a training ground for researchers and other stakeholders‬
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‭6. Enabling Implementation of Federated Learning -‬
‭Recommendations to ARDC‬

‭In the final period of writing this report, a workshop was held including research groups working with‬
‭federated learning in Australia to exchange ideas on experiences and suggestions for supporting‬
‭federated learning in the Australian research community in the future. This section presents a series of‬
‭recommendations to the ARDC generated from writing this report and during the workshop.‬

‭As detailed in this report and references within the report enabling federated learning: ‬

‭●‬ ‭Overcomes many barriers that exist with centralised learning. Data can be used for research‬
‭projects while it remains at a local institution overcoming the challenge of moving data between‬
‭jurisdictions to one central location. Some risks associated with linking data can also be overcome‬
‭with datasets being able to be learnt from jointly but without linking the data. With data‬
‭remaining at local institutions, it can also be updated in a timely manner overcoming the‬
‭challenge of how up to date a dataset is once it has been collected and is available for the‬
‭research. ‬

‭●‬ ‭Is in the national interest facilitating learning from data across jurisdictions, supporting research‬
‭work across Australia but as importantly supporting work between Australia and the rest of the‬
‭world. This can be very challenging as not only Australian data requirements need to be met but‬
‭also those from other countries. Federated learning is also being supported by many other‬
‭countries and it is important that Australian researchers are able to be involved in these‬
‭international efforts. ‬

‭●‬ ‭Supports leading edge research. Many impactful data research projects require access to large,‬
‭detailed datasets (e.g. imaging data) and to reduce bias in any data project diverse data is‬
‭required. Federated learning enables access to these large datasets and by supporting access to‬
‭diverse data can enable cutting edge research to be undertaken in the most appropriate manner. ‬

‭To ensure these opportunities are effectively harnessed it is recommended to the ARDC that federated‬
‭learning be supported as a mainstream approach.‬‭The‬‭following recommendations are made to the‬
‭ARDC to enable this:‬

‭6.1. Support for Australian Federated Learning collaboration‬
‭There are a number of Australian research teams using federated learning enabling large scale,‬
‭internationally linked, cutting-edge research to be undertaken. Although there is significant enthusiasm‬
‭for this to occur, these research teams have not generally been working together and there is minimal‬
‭support for other research teams who wish to consider using federated learning, limiting the impact use‬
‭of federated learning may have for Australian researchers.‬
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‭6.1.1. Current recommendations to ARDC ‬

‭It is recommended that ARDC support collaboration between researchers undertaking federated‬
‭learning across Australia. Following discussions at the federated learning workshop held in June 2024,‬
‭the recommendation is that this could occur with the establishment of a working/interest group on‬
‭federated learning within the machine learning community of practice (ML4AU CoP) perhaps in‬
‭collaboration with the Australian Research Containers Orchestration Service (ARCOS) and the Australian‬
‭Sensitive Data Interest Group (AuSDIG). ‬

‭6.1.2. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Establishing a communication channel (or links to existing communication channels) for‬
‭Australian researchers working in or exploring the potential of federated learning. A suggestion‬
‭during the workshop is that this could be set-up on Zulip. ‬

‭●‬ ‭Using the communication channel and interest/working group to propose collaborative projects‬
‭that would be of benefit to all federated learning researchers ‬

‭●‬ ‭Using the communication channel and interest/working group to share expertise and‬
‭experiences.‬

‭6.2. Support for Federated Learning Software Tools‬
‭There is a need to provide the necessary software tools for federated learning as described in detail in‬
‭the above sections. To support this, it is important that there is ongoing software understanding and‬
‭development knowledge.‬

‭ 6.2.1. Current recommendations to ARDC ‬

‭●‬ ‭That ARDC endorse the review criteria recommended in the federated learning report as an initial‬
‭criterion for assessing federated learning tools (noting the suggestion for federated learning‬
‭groups to work together to expand this criteria) ‬

‭●‬ ‭That ARDC endorse recommendations for the FLOWER, Vantage6, Pysyft and NVIDIA FLARE‬
‭platforms to be used by Australian research groups ‬

‭●‬ ‭That ARDC enable software engineering and machine learning expertise to be developed in these‬
‭open-source tools to support international efforts and ensure local knowledge.‬

‭●‬ ‭That ARDC provide or support expertise & training (software engineering, federated learning and‬
‭machine learning) for these recommended platforms that Australian research groups can utilise,‬
‭developing and conducting technical tutorials and workshops on how to use key federated‬
‭learning frameworks such as Flare, Vantage6, Pysyft and Flower, highlighting their suitability, and‬
‭pros and cons, for a range of federated learning scenarios.‬
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‭●‬ ‭That ARDC provide or support demonstrations of these platforms set-up on nectar (only publicly‬
‭available or simulated data) for research groups to test and learn on. This could include setting‬‭up‬
‭dedicated compute resources (such as GPU VMs or deployed Jupyter server notebooks) on the‬
‭NECTAR cloud platform to provide a training ground for researchers and other stakeholders who‬
‭are interested in evaluating federated learning frameworks using a production grade federated‬
‭learning systems‬

‭●‬ ‭That ARDC provide or support approaches achieving implementation consistency of these‬
‭federated learning platforms (to enable consistency and support review and implementation for‬
‭data custodians and institutions) ‬

‭●‬ ‭That ARDC provide or support approaches ensuring that these platforms can be rolled out‬
‭robustly across different institutions and local set-ups. ‬

‭6.2.2. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Collaborative review of and further development of the federated learning platform assessment‬
‭criteria to provide a more detailed assessment criteria that can be tailored for individual research‬
‭project assessment of the federated learning platforms. ‬

‭●‬ ‭Using the revised criteria independent assessment of the different platforms by different‬
‭researchers and research teams to provide an uncertainty analysis of these assessments ‬

‭●‬ ‭Consider standard interfaces/approaches to support implementation consistency (considering‬
‭data custodians and institutions) ‬

‭6.3. Supporting Data Storage and Computational Power‬
‭As described above there is a need for data storage and computational power requirements at the nodes‬
‭and at the server as well as communication channels.‬

‭This could potentially be established on nectar and on MLeRP with individual institutions looking after‬
‭their own data storage on these platforms. However, it is unlikely that accessing and storing data on‬
‭nectar and MLeRP will meet the requirements of the health care institutions and particularly the‬
‭registries where the datasets are.‬

‭An additional challenge for federated learning is where datasets (commonly linked registry data) must be‬
‭stored in a trusted research environment as described in Section 4. In this environment aggregate‬
‭analysis using federated data is still achievable (as there is only one or perhaps two exports required)‬
‭however federated learning, particularly with advanced modelling requires multiple iterations and is‬
‭unfeasible with manual review for export from such secure access platforms. This requires either a‬
‭different approach to how the data is stored e.g. an alternative to the current TREs or an alternative‬
‭federated learning architecture with involvement from organisations holding the data. For inclusion of‬
‭registry data in a federated learning network it would be possible to use either a vertical or more likely a‬
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‭combined horizontal and vertical federated learning approach with a node set-up with registry data and‬
‭someone at the registry supporting this to ensure separation of data handling, as necessary to manage‬
‭best practice of managing linked data.‬

‭ 6.3.2. Current recommendations to ARDC ‬

‭●‬ ‭That ARDC consider the options for cloud computing resources that could be used for federated‬
‭learning where these resources need to be accessed from within IT infrastructure at‬
‭organisations where the data is held (primarily health but also registries and other‬
‭organisations).  E.g.‬‭Funding for access to the currently‬‭approved health network cloud‬
‭computing resources (or some available resources that meet the approved cloud computing‬
‭requirements) to enable node set-up and federated learning could be considered.‬

‭●‬ ‭Related to the previous point, it was noted that if NCRIS resources are to be used with health‬
‭data, the requirements for this need to be extended. ISO certification is one of these factors. As‬
‭raised during the workshop this is something that the ARDC is currently discussing and that they‬
‭are committed to progressing. This is a longer-term goal. ‬

‭●‬ ‭Consideration of use of nectar or similar as a federated learning server location in the first‬
‭instance (this is also related to the need for clear security and privacy documentation)‬

‭●‬ ‭That ARDC provide support for increasing robustness in the Kupernedes layer to increase‬
‭confidence for organisations IT departments ‬

‭●‬ ‭That ARDC provide support for discussions across jurisdictions (particularly across states but also‬
‭organisations within each state) regarding accessing data storage and computational resources. ‬

‭●‬ ‭That ARDC provide support for sharing of and co-developing documentation (that is maintained‬
‭as systems, technologies and approaches are updated) to provide to organisations. This could‬
‭include‬‭documentation and pathways for data node set-up‬‭including storage and federated‬
‭learning set-up that have prospectively been reviewed and approved by jurisdiction IT teams (e.g.‬
‭NSWHealth). It is likely that there would still be processes and approvals needed at a local level‬
‭(e.g. in NSW within Local Health Districts) but this would be much smoother if there was central‬
‭IT knowledge and support for such a platform.‬‭ ‬

‭●‬ ‭That ARDC provide support to explore alternate options to TRE/SREs for use of datasets that‬
‭must currently be stored in such environments in a federated learning network. ‬

‭o‬ ‭Support for discussions and where necessary changes in current approvals/practices for‬
‭registries to support a federated learning model, enabling a node to be set-up and‬
‭supported by the relevant registry. In an ideal setting this framework could be used for‬
‭multiple federated learning projects/platforms (e.g. a cancer network as well as a‬
‭neurology and a cardiology network)‬
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‭o‬ ‭Support to work with secure access environment platform providers (e.g. the UNSW‬
‭developed ERICA platform) to provide a secure access environment where there is an‬
‭automated review of data extracted from the secure access environment.‬

‭o‬ ‭Support to work with those establishing policies over how registry data is stored to‬
‭develop adaptions where necessary that meet requirements and what is technically‬
‭feasible.‬

‭6.3.3. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Sharing of experiences regarding establishing datasets for federated learning within the various‬
‭health and registry organisations. Looking at building on success of initial projects to streamline‬
‭this for future projects. ‬

‭●‬ ‭Collaborative effort with research groups and ARDC to approach organisations (e.g. registries and‬
‭health departments) ‬

‭●‬ ‭Sharing experiences in use of cloud resources within health departments as availability and‬
‭costing of these services develop over time. ‬

‭6.4. Security, data privacy and data equity‬
‭Security, data privacy and data equity are key areas that cut across choice and appropriateness of almost‬
‭all areas of federated learning set-up including data storage and computational requirements, software‬
‭choice, governance and the practicalities of implementation. As such during the workshop it was decided‬
‭that this topic should be addressed as a key theme.‬

‭6.4.1. Current recommendations to ARDC ‬

‭●‬ ‭That ARDC provide a service to demonstrate maintained security testing and documentation for‬
‭recommended federated learning platforms that can be consistently shared with institutions so‬
‭that Australian research groups using federate learning are consistent in their messages to‬
‭institutions.  ‬

‭●‬ ‭Can ARDC provide a service to demonstrate these security aspects, so we have a shared set of‬
‭information provided to organisations (especially state health organisations).‬

‭●‬ ‭Cloud Native Environments are recommended as an option for federated learning infrastructures‬
‭due to their security, privacy, and flexibility. They offer features like identity and access‬
‭management, encryption, and security monitoring, while also supporting machine learning‬
‭frameworks and facilitating horizontal scaling. These environments also enable deployment in‬
‭distinct Secure Networks, ensuring reproducibility and robustness of federated learning‬
‭infrastructure.‬
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‭6.4.2. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Determining collaboratively how we most effectively demonstrate privacy and risks/benefits for‬
‭our research projects using federated learning. In doing this it is important to clarify the‬
‭difference in federated learning on device (e.g. google) vs federated learning on health sites (with‬
‭benefits back to patients). It would also be useful to consider risk tiers/levels and risk of‬
‭re-identification. ‬

‭●‬ ‭Sharing of security testing and documentation on the tools that are being used across the‬
‭research groups. ‬

‭●‬ ‭Work together to formulate appropriate and realistic threat models (e.g., re-identification‬
‭attacks, record linkage attacks, data reconstruction attacks, etc.).  ‬

‭●‬ ‭Work together to determine appropriate privacy protection metrics (e.g., differential privacy‬
‭value adopted by the US census 2020, successful attack rate, etc.).‬

‭●‬ ‭Support each other to evaluate model fairness in federated learning (e.g. assessing accuracy‬
‭across different population groups) and to implement federated learning approaches that‬
‭support the development of non-biased models.‬

‭●‬ ‭Work together to assess and demonstrate the pros and cons of privacy vs model utility in a‬
‭federated learning setting (e.g. adding noise will reduce quality of final model).‬

‭●‬ ‭Undertake a comparison with risks/benefits of federated learning compared to other approaches‬
‭esp. Centralised. Consider a framework that can be used for new projects.‬

‭●‬ ‭For vertical learning (and linking of data for an individual patient), consider the risk of linking‬
‭data ‬

‭●‬ ‭For noting there is a research team at Macquarie University who are looking at risk profiles of‬
‭identification to the individual and to the sites might have good input on risk (Mark Dras &‬
‭Annabelle McIver).‬

‭6.5. Data standardisation‬
‭Although not addressed in this report as this is being considered by other ARDC initiatives the need for‬
‭data standardisation for federated learning is key and recommendations on this are provided here.‬

‭6.5.1. Current recommendations to ARDC‬

‭●‬ ‭That the federated learning research groups are kept in the loop regarding other ARDC activity on‬
‭data standardisation.‬

‭●‬ ‭That ARDC support implementation of data standardisation using a common and well recognised‬
‭framework for federated learning projects (e.g. OMOP). Of note there is a current ARDC project‬
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‭looking at translating electronic medical records to OMOP and there will be a ARDC framework‬
‭document on common data models progressing soon. ‬

‭6.5.2. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Review of approaches to data standardisation across the different research groups and a broad‬
‭goal to try and work towards consistency with the potential of linking across the federated‬
‭projects in the future when appropriate. ‬

‭6.6. Governance to Support Federated Learning‬
‭Similarly to security, governance is a key overarching area for federated learning and recommendations‬
‭to support this have been separated out from the core infrastructure requirements.‬

‭6.6.1. Current recommendations to ARDC‬

‭●‬ ‭That ARDC generate or support generating agreed and consistent documentation regarding risks‬
‭and benefits and IT implementation that can be provided to institutions by research teams‬
‭wishing to undertake federated learning.‬

‭●‬ ‭That ARDC support discussions with overarching organisations such health services and registry‬
‭data holders to ensure understanding of federated learning and requests for changes to process‬
‭and/or resources as may be necessary. (Noted ARDC would be interested in doing this for the PBS‬
‭or a similar dataset)‬

‭●‬ ‭That ARDC undertake or support approaching the NHMRC to consider providing guidance to‬
‭ethics committees regarding federated learning (and perhaps machine learning in general).‬

‭●‬ ‭That ARDC undertakes work or supports work to consider different approaches to SRE/TREs for‬
‭federated learning. This would consider how automation could be used appropriately (how do‬
‭the 5 safes change if there is no human in the loop?) and could review international approaches‬
‭(e.g. UK federation of TRE providers where queries can be shared, noting this is aggregate‬
‭analysis rather than true federated learning).‬

‭●‬ ‭Some of these activities could be incorporated into ARDC plans to look at path finder projects‬
‭working across organisations.‬

‭6.5.2. Collaborative activities to strengthen federated learning across research teams‬

‭●‬ ‭Work together to determine common requirements for organisational governance and IT‬
‭approvals to support work with ARDC to provide documentation for these requirements‬

‭●‬ ‭Sharing of governance documents and experiences, providing the opportunity to build on‬
‭successes and learn from challenges.‬
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‭●‬ ‭Work together to determine common dataset of interest to federated learning projects (e.g. the‬
‭PBS dataset) and a prioritisation of these datasets to support work with ARDC to support access‬
‭to these datasets using federated learning frameworks‬

‭●‬ ‭Where there is a ARDC work with the research teams and the relevant organisation to support‬
‭discussions around how this could be achieved. (Noted ARDC would be interested in doing this‬
‭for the PBS or a similar dataset)‬

‭●‬ ‭To be forward-looking and ensure the developed federated learning systems are compliant with‬
‭the upcoming Australian regulations on AI, which goes beyond the Australian Privacy Act 1988.‬
‭(See DISR’s recent response on AI regulations:‬
‭https://www.industry.gov.au/news/australian-governments-interim-response-safe-and-responsib‬
‭le-ai-consultation‬‭).‬

‭●‬ ‭Consider a consistent vocabulary around federated learning ‬

‭●‬ ‭Of note the NINA project are working on a publication on governance for federated learning.‬
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‭Appendix‬

‭A.1. Flower Implementation Guide‬

‭This section presents in detailed implementation of Flower framework for horizontal data partitioning.‬
‭The dataset considered is tabular, however, imaging data can easily be incorporated. The code is‬
‭available at:‬‭https://github.com/AustralianCancerDataNetwork/FlowerSimulations‬

‭A.1.1. Horizontal Partitioning‬
‭In horizontal data partitioning, all participating clients have the same features (input items) including the‬
‭output item (labels), however, the data points are different as shown in Figure A1.‬

‭A.1.1.1.    Server-Client Architecture‬

‭The horizontal federated learning framework utilizes a server-client architecture. In this setup, there is a‬
‭central server responsible for coordinating the federated learning process, and three clients that‬
‭contribute their local model updates to the server. This architecture enables collaborative model training‬
‭across decentralized data sources while maintaining data privacy.‬

‭A.1.1.2.     Components: Server and Clients‬

‭Server:‬

‭The server acts as the central coordinator in the federated learning process. Its primary responsibilities‬
‭include:‬

‭●‬ ‭Orchestrating communication with clients.‬

‭●‬ ‭Aggregating model updates from multiple clients.‬

‭●‬ ‭Distributing the global model parameters to clients for further training. Managing the overall‬
‭training process, including the number of rounds and convergence criteria.‬

‭Clients:‬

‭Clients represent individual devices or entities with local data that participate in the federated learning‬
‭process. Each client:‬

‭●‬ ‭Trains a local model on its own data without sharing the raw data with the server or other clients.‬

‭●‬ ‭Computes model updates based on its local data and sends these updates to the server.‬

‭●‬ ‭Receives global model updates from the server and incorporates them into its local model for‬

‭further training.‬
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‭A.1.1.3.     Server Code‬

‭The Server code consists of number of different components, described below:‬

‭Import Files‬

‭The code begins with necessary imports from the Flower framework. It imports classes and functions‬
‭required for setting up the server, defining the federated averaging strategy, and handling common‬
‭components such as metrics.‬
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‭FedAvg‬‭Strategy‬

‭The federated averaging strategy, often abbreviated as FedAvg, is a key component of the framework's‬
‭model aggregation process. FedAvg operates as follows:‬

‭●‬ ‭Upon receiving model updates from participating clients, the server aggregates these updates to‬
‭compute a global model update.‬

‭●‬ ‭FedAvg typically employs a weighted average scheme (also employed in this example), where the‬
‭contribution of each client's update is weighted by the size of its local dataset or another relevant‬
‭metric.‬

‭●‬ ‭This weighted average helps mitigate the impact of imbalanced or varying dataset sizes across‬
‭clients, ensuring fair representation in the global model.‬

‭Server Configuration‬

‭A “ServerConfig” object is created, specifying the number of training rounds (“num_rounds”, which is set‬
‭to 100) for the federated learning process. Finally, the “ServerApp” is initialized with the specified‬
‭configuration (“config”) and strategy (“strategy”). This sets up the server application ready to start.‬

‭Legacy Mode:‬

‭This part of the code ensures that the server can be started directly when the script is executed as the‬
‭main program. It uses the “start_server” function to start the server with the specified address (IP and‬
‭Port, in this example the IP address is of its own machine, implying that the simulations for the clients‬
‭and the server are done on the same machine, to employ on a different machine, specify the IP address‬
‭and Port number of that specific machine), configuration, and strategy.‬
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‭A.1.1.4.     Client‬‭Code‬
‭The Server code consists of number of different components, described below:‬

‭Import‬‭Files‬

‭The code begins with necessary imports including libraries for data pre-processing (“pandas, sklearn”),‬
‭neural network modeling (“torch, torch.nn”), Flower client setup (“flwr.client”), and other utility‬
‭functions.‬

‭Data‬‭Loading‬

‭The “load_data” function is responsible for loading and preprocessing the dataset. It reads the data from‬
‭a CSV file (it can be any dataset, one can replace this with their own custom dataset, however, make sure‬
‭that the features are in column form and the datapoints are in row form), shuffles it, splits it into input‬
‭features (“X”) and labels (“y”), performs standardization, and converts the data into PyTorch tensors.‬

‭Further, it also split the data into training and testing datasets as well.‬
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‭Train‬‭Function‬

‭This function is responsible for training the neural network model (“model”) using the provided training‬
‭data (“train_data”). It takes parameters such as the model, training data, and number of epochs. It is the‬
‭same training function as can be used in a centralised manner.‬
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‭Test‬‭Function‬

‭This function evaluates the performance of the trained model on the provided test data (“test_data”). It‬
‭takes parameters such as the model and test data. It is the same testing function as can be used in a‬
‭centralised manner.‬
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‭Neural‬‭Network‬‭Model‬

‭The Net class defines the architecture of the neural network. It specifies the layers, activation functions,‬
‭and input/output sizes of the network.‬

‭Flower‬‭Client‬

‭This is the meat of the client code. The “FlowerClient” class extends the “NumPyClient” class provided‬
‭by Flower. It overrides methods such as “get_parameters”, “set_parameters”, “fit”, and “evaluate” to‬
‭define the behaviour of the client during the federated learning and communication process.‬
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‭Starting the Client‬

‭If the script is run directly, it imports the “start_client” function from the Flower client module‬
‭(flwr.client). The “start_client” function is then called with the following arguments:‬

‭●‬ ‭“server_address”: The address of the federated learning server to connect to. In this case, it's‬
‭"127.0.0.1:5009", indicating that the server is running on the local machine (localhost) and‬
‭listening on port 5009.‬

‭●‬ ‭client: An instance of the “FlowerClient” class converted to a Flower client using the “to_client()”‬
‭method. This represents the client that will participate in the federated learning process.‬

‭A.1.1.5.     Running the Example‬
‭We can simply start the server in a terminal as follows:‬

‭“python3 server.py”‬

‭Now we are ready to start the Flower clients which will participate in the learning. To do so simply open‬
‭three more terminal windows and run the following commands.‬

‭Start client 1 in the first terminal:‬

‭“python3 client_1.py”‬

‭Start client 2 in the second terminal:‬

‭“python3 client_2.py”‬

‭Start client 3 in the second terminal:‬

‭“python3 client_3.py”‬

‭The above is for three clients, if there are more clients we need to run those as well. The number of‬
‭participating clients can be specified by the server in “FedAvg” function.‬
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‭A.2. Implementation on Nectar Cloud‬

‭This section presents the implementation of the Horizontal Federated Learning setup using Flower tool.‬
‭The underlying python files and programming environment remains the same as described in section‬
‭A.1.‬

‭A.2.1. Creation of Virtual Machines on Nectar‬
‭The first step is to create Virtual Machines (VMs) on the Nectar. As there are four nodes; one server and‬
‭three clients participating in the federated learning setup, we need to create four VMs. The specific steps‬
‭required to create a VM is mentioned at the official website of Nectar:‬

‭https://tutorials.rc.nectar.org.au/cloud-starter/02-tutorials‬

‭The steps are also illustrated at AusCAT documentation:‬
‭https://australiancancerdatanetwork.github.io/auscatverse/simulation/NECTAR.html‬

‭We will be creating from Ubuntu image and therefore need to generate cryptographic key pairs; the‬
‭public key will be used at the time of VM creation and private key will be used at the time of logging in.‬

‭A.2.2. Login and Copying Files‬
‭To login into the VM, use the following syntax:‬

‭ssh -i ~/.ssh/your-private-ssh-key ubuntu@your-vm-ip‬

‭To copy files from the local machine into the VM, use the following syntax:‬

‭scp /path/to/local/file ubuntu@your-vm-ip:/path/to/remote/directory‬

‭We need to copy the relevant files to the VMs. For the server VM, we need to copy the server python file‬
‭and pyproject.toml file (which lists all the required packages to be installed). For each of three client‬
‭VMs, we need to copy the client python file, pyproject.toml file and data (csv) file.‬

‭A.2.3. Run Python Files‬
‭Once the relevant files are copied to the VM, we need to install the relevant packages listed in‬
‭pyproject.toml for all the server and three client VMs. After this, run the server python file first, once the‬
‭server is up and running, run the client python files from the client VMs (Note: make sure to enter the‬
‭server’s VM’s IP address and port number in each of the client python file).‬
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‭A.3. Implementation on Nectar Cloud using Docker‬

‭This section describes the required steps to implement the above federated learning setup using Docker‬
‭instead of raw python files.‬

‭A.3.1. Docker Installation‬
‭We need to install Docker at each of four VMs. The detailed steps for the installation of Docker in Ubuntu‬
‭VM are mentioned at AusCAT documentation:‬

‭https://australiancancerdatanetwork.github.io/auscatverse/simulation/DOCKER_PORTAINER.html‬

‭A.3.2. DockerFiles‬
‭Once the docker is installed, we need to create docker images on the VMs using DockerFiles. The‬
‭DockerFile for the server and the client will be a bit different; though a same DockerFile will be used for‬
‭all three clients.‬

‭The server DockerFile is illustrated in the following figure:‬

‭First, we are using a python base image to install it. The working directory of the container is set to /app‬
‭(this will be used when we run the container of the image). Next, we are copying all the files from the‬
‭local machine current directory to the container current directory (which is /app set in the previous line);‬
‭need to make sure we have all the required files (client python file, data file, pyproject.toml and‬
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‭DockerFile). Then, we are installing the required packages mentioned in pyproject.toml. Finally, the‬
‭servor python file is being run at the end.‬

‭The client DockerFile is illustrated in the following figure:‬

‭The only difference between is the client python file being run at the last line as compared to the server‬
‭DockerFile.‬

‭A.3.3. Build and Run Images‬
‭To build the Docker Image using DockerFile, use the following syntax:‬

‭docker build -t [name-of-the-image] -f [name-of-the-DockerFile]‬

‭Once the images are created/build, we need to run the containers for these images on the respective‬
‭VMs using the following syntax:‬

‭docker run -it --rm -v $(realpath ../../data):/app/data f [name-of-the-image]‬

‭-it: it is for interactive mode‬

‭-v: to mount the host’s directory to the container’s directory.‬
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