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 1.  Background 

 1.1.  Purpose and Context 

 1.1.1.  Purpose 

 In the 4th Quarter of 2023, the Australian Research Data Commons (ARDC) reached out to the Australian 
 Cancer Data Network (ACDN), who had previously collaborated on a federated learning project with 
 ARDC, to jointly develop a pathfinder project. 

 ●  The study aims to explore the uses, needs, and challenges of federated learning in the context of 
 sensi�ve health-related data, while ensuring the maintenance of privacy and confiden�ality. 

 ●  Iden�fy and establish a collabora�ve network among similar research groups. 
 ●  Develop suitable demonstrator ar�facts to centre the dialogues around them. 

 This report presents the findings of this Pathfinder Project (see Sec�on 1.2) for the analysis of sensi�ve 
 health-related data while maintaining privacy and confiden�ality. It focuses on requirements and current 
 experiences with federated learning (Sec�on 1.3). 

 1.1.2.  Context 

 The Australian Research Data Commons (ARDC), through the People Research Data Commons (People 
 RDC), is delivering na�onal scale data infrastructure for health research and transla�on. In this context, 
 the infrastructure is defined broadly as shared resource or coordinated ac�vity and includes both hard 
 and so� resources and assets such as: 

 ●  Underpinning hardware infrastructure:  Compute support program (Nectar, MLeRP), graphics 
 processing unit (GPU), storage 

 ●  Na�onal reference data assets: Data cura�on, vocabularies and analy�c reference datasets, 
 synthe�c data, Research Data Australia, Research Vocabularies Australia, FAIR model for ar�ficial 
 intelligence (AI) reference data and machine learning (ML) models 

 ●  Tools & environment reference programs: Library of tools/collabora�ve and founda�onal 
 infrastructure (models, analy�cs tools, hubs, virtual labs) etc. 

 ●  Na�onal-level cultural and coordina�on assets: Training and capacity development, culture and 
 policy, communi�es of prac�ce, guidelines 

 The People RDC engages with all parts of the health system to address four na�onal-scale challenge 
 areas, as shown in Figure 1.1: 

 1.  Data Strategy and Discovery 

 2.  Secure Data Access 
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 3.  Data Integra�on 

 4.  Advanced Analy�cs 

 An important strategy for addressing the challenges associated with advanced analy�cs is the 
 co-development of a na�onal framework. This framework provides the specifica�ons and reference 
 architecture for future work. One of the known cardinal challenges of healthcare advanced analy�cs is 
 managing the sensi�vity in the data. 

 Healthcare data, as a consequence of various protec�ve regula�ons and concerns, is fragmented. To 
 understand this key issue, People RDC inves�gated the landscape of federated learning and sought to 
 develop a pathfinder to facilitate explora�on of the approach. 
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 As a companion to framework development, the overarching goal is to create a federated learning 
 pathfinder for People RDC projects, which would provide insights for future ARDC partnership programs 
 and foster a sense of community around the feasibility of construc�ng a federated learning 
 infrastructure for healthcare data. 

 1.2.  Background and Introduc�on to Federated Learning 
 High quality data analysis and model development requires access to large, diverse and granular 
 datasets. Ideally this requires detailed (e.g. imaging and detailed treatment informa�on) datasets to be 
 available for learning from different geographical loca�ons both across Australia and interna�onally. 
 With regards to healthcare data, this is challenging due to ethics and privacy requirements that can limit 
 data movement and restrict storage requirements. 

 Federated learning (Li, Fan, Tse, & Lin, 2020) is a decentralised approach to machine learning model 
 training. It is gaining trac�on for its ability to preserve data privacy while allowing for collabora�ve 
 learning across distributed sites. Instead of centralising data on a server, federated learning enables 
 distributed sites to train models locally using their respec�ve datasets and then share only model 
 updates or gradients with a central server, as shown in Figure 1.3. This methodology not only ensures 
 data privacy and security but also enables learning from diverse data sources without the need for 
 centralised data aggrega�on. 
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 (a) Horizontal data par��oning 

 (b) Ver�cal data par��oning 

 (c) Combined data par��oning 

 Figure 1.4. Illustra�on of different data par��oning used in federated learning 

 Various types of federated learning approaches exist to accommodate different data par��oning 
 scenarios (illustrated in Figure 1.4). Horizontal federated learning deals with situa�ons where distributed 
 sites have access to similar features but possess different data points. In contrast, ver�cal federated 
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 learning addresses cases where distributed sites hold different sets of features for the same data points. 
 Further, data can be both horizontally and ver�cally par��oned between the sites. 

 To facilitate the implementa�on of federated learning, numerous open-source tools and frameworks 
 have emerged. These tools provide developers and researchers with the necessary infrastructure and 
 algorithms to experiment with federated learning setups efficiently. However, deploying federated 
 learning in real-world scenarios presents a set of unique challenges. 

 Integra�ng federated learning tools into exis�ng systems can be complex, requiring compa�bility with 
 diverse infrastructures and technologies. Par�cipa�ng sites may not have the required infrastructure or 
 skills. There may be challenges around data governance, in the context of federated learning, which is a 
 change from the well understood centralised data sharing approach. Ensuring the security and privacy of 
 sensi�ve data during federated learning processes must also be carefully managed, par�cularly in 
 applica�ons where regulatory compliance is mandatory. 

 Achieving scalability and op�mal performance while minimising communica�on overhead and resource 
 consump�on poses addi�onal hurdles in real-world deployments. Addressing these challenges demands 
 interdisciplinary collabora�on among experts in machine learning, distributed systems, cybersecurity, 
 and regulatory compliance as well as discipline specific data experts. Innova�ve solu�ons and robust 
 methodologies are necessary to overcome the obstacles and unlock the full poten�al of federated 
 learning in real-world applica�ons. 

 1.3.  Report Focus 
 This report provides an overview of requirements and current experiences with federated learning. It 
 covers the following: 

 1.  A comparison of key federated learning tools available and infrastructure requirements to 
 support federated learning with the goal of establishing a suitable blueprint for a  federated 
 learning  architecture that can be effec�vely implemented.  The inten�on of this work is to 
 iden�fy and assess opportuni�es and requirements for these tools as part of a na�onal 
 infrastructure solu�on. This includes: 

 ●  Building on work to date to review open-source so�ware available for federated learning 
 (horizontal and ver�cal); Sec�on 2. 

 ●  Providing overview of key differen�ators of the different open-source so�ware tools for 
 federated learning (e.g. ease of use, communica�on requirements, ability to adapt 
 so�ware) for both horizontal and ver�cally distributed data; Sec�on 2. 
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 ●  Comparing prac�cal implementa�on of a refined number of open-source so�ware tools 
 (up to 5) for federated learning in the simula�on environment, considering both 
 horizontal and ver�cally distributed datasets; Sec�on 3. 

 ●  Considera�on of the infrastructure, par�cularly data storage, compute, and 
 communica�on pathways necessary to support implementa�on of federated learning 
 generally but specifically in a health care environment; Sec�on 4. 

 It should be noted that data standardisa�on is also a key requirement for effec�ve federated 
 learning. As work on data standardisa�on is being undertaken by the ARDC elsewhere (in the 
 Integra�on Stream 3.* People RDC Projects) it has not been covered in this report. The 
 Integra�on Stream of work covers areas such as Data Standards and Common Models. 

 2.  Considera�on of use cases that could become cardinal edge cases for the development of a 
 na�onal infrastructure, including discussion of case study of designs, deployments, that are 
 available to or informing na�onal infrastructure. The discussions include features, coordina�on 
 and resources required, successes as well as lessons learnt (or pi�alls to be avoided); Sec�on 5. 

 3.  Conclusions and Recommenda�ons to ARDC on infrastructure and other support required to 
 enable and encourage use of federated learning by Australian research groups, par�cularly 
 focused on health care (ARDC people). These recommenda�ons were developed following a 
 workshop on federated learning including research teams working with federated learning or 
 related areas; Sec�on 6. 
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 2.  Comparison of Open-Source Tools 

 2.1. Aim 
 A primary objec�ve of this report is to provide a comprehensive comparison of open-source federated 
 learning tools. Specifically, the aim is to iden�fy tools that not only incorporate the federated learning 
 paradigm but also exhibit robust security features while offering a flexible framework for the integra�on 
 of addi�onal features. 

 2.2. Background 
 A similar study on the comparison of different open-source federated learning tools was done in (Riedel, 
 et al., 2024). Their evalua�on began with a literature review, organised using a Latent Dirichlet Alloca�on 
 model to iden�fy key concepts. The frameworks were then assessed based on criteria categorized into 
 Features, Interoperability, and User Friendliness, and a weighted scoring system was applied. Fi�een 
 open-source FL frameworks were evaluated, with Flower achieving the highest total score of 84.75%. 
 Other frameworks like FLARE, FederatedScope, PySy�, FedML, and OpenFL also performed well. 
 FederatedScope excelled in Features, while PySy�, FedML, Flower, IBM FL, and FLARE topped 
 Interoperability. EasyFL was the best in User Friendliness. On the other hand, FATE AI, PaddleFL, and 
 FedLearner scored the lowest, mainly due to poor Interoperability and User Friendliness. 

 Our work differs from this study by focusing on addi�onal criteria specific to prac�cal and technical 
 aspects relevant to the implementa�on and usability of federated learning frameworks, as described in 
 the next sec�on. 

 2.3. Selec�on Criteria 
 The federated learning tool assessment criteria is aimed to streamline the evalua�on process for 
 federated learning (Li, Fan, Tse, & Lin, 2020) tools. This criterion was determined in discussion with 
 experts in the field, with seven criteria determined as described below: 

 2.3.1. Authen�ca�on and Security 

 Authen�ca�on is the process of verifying the iden�ty of users or systems to ensure that only authorized 
 en��es can access sensi�ve informa�on or perform specific ac�ons. In the context of federated learning, 
 authen�ca�on is crucial for securing communica�on between different nodes or devices par�cipa�ng in 
 the learning process. A robust authen�ca�on system safeguards against unauthorized access and 
 ensures the integrity of the federated learning environment. Security features encompass encryp�on 
 and other measures to protect data during transmission, safeguarding against poten�al threats or 
 breaches. 
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 2.3.2 Node Setup and Ease of Use 

 Node setup refers to the process of configuring and connec�ng individual nodes or devices within a 
 federated learning system. Ease of use evaluates how straigh�orward it is for users to set up and ini�ate 
 the federated learning process. A tool with user-friendly node setup and interfaces streamlines the 
 implementa�on process, reducing the complexity of integra�ng federated learning into exis�ng systems. 
 Tools that are easy to use are more likely to be adopted widely, especially by users with varying levels of 
 technical exper�se. 

 2.3.3 Programming Language Support 

 Programming language support assesses the ability of federated learning tools to work seamlessly with 
 different programming languages. A tool that supports mul�ple languages provides users with flexibility, 
 allowing them to integrate federated learning into projects developed in diverse programming 
 environments. This criterion is essen�al for ensuring that the tool can be easily adapted to exis�ng 
 so�ware ecosystems, promo�ng interoperability and versa�lity in applica�on. 

 2.3.4. Learning Capabili�es 

 Learning capabili�es refer to a federated learning tool's capacity to perform different types of learning 
 tasks. Horizontal learning involves collabora�ve learning on similar data across different nodes, while 
 ver�cal learning entails learning from different but complementary data items across distributed 
 datasets. Robust learning capabili�es are essen�al for addressing a variety of scenarios and data 
 distribu�ons, ensuring the tool's applicability to a wide range of use cases. 

 2.3.5 Technical Exper�se and Debugging 

 Technical exper�se measures the level of proficiency required by users to implement and operate a 
 federated learning tool. A tool that demands minimal technical exper�se facilitates wider adop�on and 
 usability. Addi�onally, debugging tools are crucial for iden�fying and resolving issues during the 
 development and deployment phases. Adequate debugging support simplifies troubleshoo�ng, enabling 
 users to address poten�al challenges efficiently. 

 2.3.6. Documenta�on and Tes�ng 

 Documenta�on quality evaluates the clarity, completeness, and accessibility of instruc�onal materials 
 provided by a federated learning tool. High-quality documenta�on is vital for guiding users through the 
 installa�on, configura�on, and u�liza�on processes. Tes�ng suites refer to sets of pre-defined tests that 
 verify the func�onality and reliability of the tool. Well-documented tools with comprehensive tes�ng 
 suites enhance user confidence and contribute to the overall reliability and stability of the federated 
 learning environment. 
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 2.3.7. Cloud Na�ve 

 People RDC is aiming to provide na�onal research infrastructure at scale and in this se�ng ‘cloud na�ve’ 
 is a desirable criterion. The cloud na�ve approach is about building applica�ons which are scalable and 
 can run in public or private cloud or hybrid cloud infrastructure (Amazon, 2024). The cloud na�ve 
 approach is being led by a global body called The Cloud Na�ve Compu�ng Founda�on (CNCF). CNCF is 
 described as “the open source, vendor-neutral hub of cloud na�ve compu�ng, hos�ng projects like 
 Kubernetes and Kubeflow to make cloud na�ve universal and sustainable”.  The driving factors behind 
 the adop�on of Kubernetes are hinged on technical advantages elaborated below: 

 ●  Microservices approach: Adopts the microservices based approach in building modular 
 applica�ons which are easy to manage. Each microservice can be realised in the form of a 
 container (CNCF, 2024). 

 ●  Container orchestra�on: Kubernetes as a container orchestrator allows building an applica�on 
 with many containers working together. Allowing numerous features such as scalability, 
 networking, storage and so on (CNCF, 2024). 

 ●  Scalability: Allows applica�ons to scale up and down based on usage. 

 ●  Simplify infrastructure requirements: Ability to run Kubernetes on varied hardware and 
 underlying so�ware including cloud. 

 ●  Be�er resource u�lisa�on, faster development, simplified cloud migra�on (Amazon, 2024). 

 ●  Off the shelf containerised so�ware: Ever increasing number of containerised applica�ons 
 (Veri�s, 2024), including machine learning pla�orms such as Kubeflow. 

 Given these advantages of cloud na�ve approach, the general recommenda�on for selec�ng a FL 
 framework would be to verify if the framework provides any of the following. Firstly, if the framework 
 has a containerised implementa�on. Second, if the framework has an implementa�on ready to be 
 deployed on Kubernetes in the form of a helm chart, Kubernetes operator or simply has a Kubernetes 
 implementa�on. 

 2.4. Chosen Tools and Analyses 
 The federated learning tools to be further inves�gated were selected by ini�ally looking for tools that 
 had the presence of the term "federated learning" in the GitHub name or descrip�on. Final tools 
 selected were then required to have an open-source codebase, support for encrypted communica�on 
 through Secure Socket Layers, and the availability of ac�vely maintained so�ware documenta�on on 
 GitHub. 

 The tools selected include  FEDn, IBMFL, OpenFL, PySy�,  Flower, AusCAT, Vantage6  , and  Flare  . Each tool's 
 strengths and weaknesses were examined across the criteria described above, offering insights into their 
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 suitability for diverse applica�ons and providing poten�al users with a thorough understanding of the 
 compara�ve advantages and limita�ons of each tool. For each criteria tools were categorised into one of 
 three levels:  Sa�sfactory, Requires improvement  ,  or  Unsa�sfactory  . Following are the analyses for  each 
 tool, which are summarised in Figure 2.1: 

 2.4.1. FEDn 

 FEDn (Ekme�ord, et al., 2022) exhibits a sa�sfactory level of node setup, allowing users to configure and 
 connect nodes efficiently. QuickStart simplicity is another strength. However, challenges arise in 
 authen�ca�on, implying poten�al vulnerabili�es in securing communica�on between nodes. The tool 
 demonstrates commendable capabili�es in horizontal learning; however, it falls short in ver�cal learning, 
 constraining its applicability to specific data par��oned scenarios. FEDn's technical exper�se 
 requirements need improvement, although its built-in debugging tools and so�ware tes�ng suites are 
 sa�sfactory. While QuickStart simplicity meets the required standard, a more robust framework for 
 advanced features and improved security would enhance its versa�lity. In terms of cloud na�ve FEDn is 
 containerised with a plan to move to Kubernetes. 

 2.4.2. IBMFL 

 IBMFL (Ludwig, et al., 2020) excels in node setup, providing users with a streamlined process for 
 integra�on. Built-in debugging tools stand out as a strength, facilita�ng efficient issue resolu�on. 
 However, language support limita�ons hinder its adaptability to diverse programming environments. 
 Authen�ca�on and technical exper�se require improvement, sugges�ng poten�al vulnerabili�es and a 
 steeper learning curve. While horizontal learning capabili�es are sa�sfactory, ver�cal learning and 
 so�ware tes�ng suites fall short. IBMFL does not meet any of the cloud na�ve requirements. IBMFL's 
 strengths lie in scenarios where seamless integra�on and efficient debugging are priori�zed over certain 
 advanced features. 

 2.4.3. OpenFL 

 OpenFL (Reina, et al., 2021) demonstrates sa�sfactory performance in node setup and horizontal 
 learning. However, challenges in language support and ver�cal learning limit its adaptability to diverse 
 scenarios. QuickStart simplicity, built-in debugging tools, and so�ware tes�ng suites require 
 improvement, impac�ng user-friendliness and overall reliability. OpenFL is containerised but does not 
 use kubernetes. Authen�ca�on and technical exper�se also need enhancements. OpenFL's strengths lie 
 in projects where a simplified federated learning setup is acceptable, and users priori�se basic 
 func�onali�es over advanced features. 

 2.4.4. PySy� 

 PySy� (Ziller, et al., 2021) supports both horizontal and ver�cal learning capabili�es, making it 
 well-suited for different data par��oned scenarios. Technical exper�se is a strength, offering users a 

 PAGE  15  Exploring federated learning tools 



 sophis�cated framework for complex machine learning models. However, language support, manual 
 node setup, built-in debugging tools, and documenta�on quality require improvement. So�ware tes�ng 
 suites fall short, poten�ally impac�ng the overall reliability of the tool. PySy� meets all of the cloud 
 na�ve requirements. PySy�'s emphasis on advanced learning capabili�es posi�ons it as a powerful 
 choice for projects where users are willing to invest in technical exper�se and complex machine learning 
 models. 

 2.4.5. Flower 

 Flower ( Beutel, et al., 2020) demonstrates proficiency in horizontal learning, establishing a robust 
 founda�on for collabora�ve learning across nodes. Documenta�on quality is a strength, ensuring users 
 have comprehensive guidance. However, challenges in authen�ca�on, language support, ver�cal 
 learning, and built-in debugging tools impact its overall usability. Manual node setup and so�ware 
 tes�ng suites also require improvement. Flower is containerised with Kubernetes implementa�on 
 planned. Flower's strengths lie in scenarios where a simplified federated learning setup is acceptable, 
 and users priori�se a tool with comprehensive documenta�on and a straigh�orward learning curve. 

 2.4.6. AusCAT 

 Locally developed, AusCAT (Field , et al., 2022), is not currently a true open-source pla�orm but 
 components of AusCAT are open source with the goal for the pla�orm to be more broadly open source. 
 AusCAT demonstrates sa�sfactory performance in node setup and language support, providing users 
 with a founda�on for integra�on. However, challenges in authen�ca�on, ver�cal learning, technical 
 exper�se, QuickStart simplicity, and so�ware tes�ng suites impact its overall suitability for more 
 complex projects. Sa�sfactory documenta�on provides users with guidance, but improvements in 
 security features and advanced capabili�es are crucial for broader applicability. AusCAT is containerised 
 but does not use kubernetes. AusCAT's strengths lie in projects where simplicity and ease of 
 understanding take precedence over advanced func�onali�es. 

 2.4.7. Vantage6 

 Vantage6 (Moncada-Torres , Mar�n, Sieswerda, Soest, & Geleijnse, 2021) showcases strengths in 
 authen�ca�on, ensuring secure communica�on between nodes. Node setup, language support, 
 horizontal learning, and documenta�on quality are also well implemented. It demonstrates a par�cularly 
 strong performance in ver�cal learning. However, challenges in technical exper�se, QuickStart simplicity, 
 and so�ware tes�ng suites highlight areas for improvement. Vantage6 meets all the cloud na�ve 
 requirements. Vantage6's emphasis on security features and sa�sfactory documenta�on posi�ons it as a 
 poten�al choice for projects where robust security is paramount, and users priori�se comprehensive 
 documenta�on for implementa�on. 
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 Figure 2.1 Comparison of FL frameworks against different criteria 

 2.4.8. Flare 

 Flare (Roth, et al., 2022) demonstrates sa�sfactory performance in authen�ca�on, node setup, 
 horizontal learning, and documenta�on quality. However, language support, ver�cal learning, technical 
 exper�se, QuickStart simplicity, and so�ware tes�ng suites fall short. Despite these limita�ons, Flare's 
 strengths in certain usability aspects make it suitable for projects where simplicity and horizontal 
 learning are priori�zed over advanced capabili�es. Flare is containerised but does not use kubernetes. 
 Users valuing a tool with a straigh�orward learning curve may find Flare to be a viable op�on, provided 
 they can accommodate its limita�ons in other areas. 
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 3. Open-Source Tool Deployment 

 Based on the ini�al overview presented in Sec�on 2, three of these available tools were deployed to 
 review the prac�cali�es of deploying these tools using NECTAR. A summary of these deployment 
 experiences is presented here. 

 3.1. Nvidia Flare 

 3.1.1. Quick start development 

 Flare is a tool backed by Nvidia with lots of effort poured into its development and maintenance. 

 With this, the QuickStart  documenta�on  is straight  forward to follow, as a researcher or developer may 
 setup a simulated federated learning environment very easily using Flare’s Proof-of-concept (POC) 
 command line interface. A dummy “  workspace  ”, Flare’s  concept of a directory for managing an en�re 
 federated learning, is setup and ready to perform an example task using a public dataset. This is both 
 advantageous to federated learning researchers who wish to quickly experiment with ideas rapidly using 
 the Flare tool without the need to create dummy virtual machines or perform tedious tasks for 
 simula�ng a virtual federated learning network as are required with Flower’s virtualised tooling for 
 dummy federated learning networks. Addi�onally, POC environment allows developers to test new 
 features that can be added to the Flare toolkit and streamline new features into the tool easily. 

 3.1.2. Real world deployment 

 As men�oned, this tool is backed by Nvidia and as such, a huge effort has gone into making the 
 documenta�on clear for the tool for many things, including real world implementa�on of federated 
 learning using Flare. A sec�on dedicated to this can be found on their  website  . 

 We were successful in re-crea�ng a federated learning system on the NECTAR cloud pla�orm using Flare, 
 by following their documenta�on step by step. They provide many tools to easily facilitate “produc�on 
 grade” setups that would otherwise require developer knowledge of handling this from an end-user 
 point of view. These include Flare’s  provisioning  module that handles the authen�ca�on and 
 authorisa�on steps that are required to ensure that the iden�ty of those contribu�ng to the federated 
 learning network is clear and transparent to the central server. Roles and different/custom levels of 
 authorisa�on can be created using Flare directly allowing for a fine-grained control of par�cipa�on. 
 There is a technical overhead with understanding how to maintain these different op�ons and interface 
 with it, but it is appropriate for those with sufficient so�ware engineering skills to understand and 
 maintain. 
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 As this is an open source product with the backing of a large company, this tool is very promising as 
 many  publica�ons and events  have been conducted on  using Flare and its integra�on into the ecosystem 
 of other AI tools such as Clara. 

 3.1.3. Unique features 

 ●  Dashboard for provisioning 

 ●  POC command line interface 

 ●  Backing and maintenance from Nvidia 

 3.2. Vantage 6 

 3.2.1. Quick start development 

 Vantage6 is a tool developed by The Netherlands Comprehensive Cancer Organisa�on (IKNL), who are 

 interested in using federated learning to solve problems and conduct research ques�ons into 
 radiotherapy problems and challenges. 

 Comprehensive documenta�on exists for this tool, providing informa�on on se�ng up the server and 
 clients. This can be done using command line interface tools to setup a simulated server and clients to 
 perform an example task. Similar to Flare, a POC tool can be used to quickly create a federated learning 
 network. Docker is required to obtain base code for a deployable server and client (termed as “node” in 
 Vantage6), unlike Flower and Flare where Docker images are not necessarily required for deployment. 

 This is advantageous to federated learning researchers who wish to experiment with ideas rapidly using 
 the Vantage6 tool without the need to create dummy virtual machines or perform tedious tasks for 
 simula�ng a virtual federated learning network. Addi�onally, this POC environment allows developers to 
 test new features that can be added to the Vantage6 toolkit and streamline new features into the tool 
 easily. 

 3.2.2. Real world deployment 

 Real world development of this tool is not as straight forward as Flare’s dedicated real-world deployment 
 sec�ons but can be achieved using the documenta�on throughout the tool’s website. 

 We were successful in re-crea�ng a federated learning system on the NECTAR cloud pla�orm using 
 Vantage6. Tools are provided to easily facilitate “produc�on grade” setups that would otherwise require 
 developer knowledge of handling this from an end-user point of view. These include a dashboard for 
 handling the setup of different components in their federated learning architecture which runs a docker 
 container and can interface with the central server through its API, such as managing federated learning 
 user authorisa�on, interfacing with encryp�on and API keys to easily manage this on a client level and 
 monitoring learning tasks in the wider network. There is a technical overhead with understanding how to 
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 maintain these different op�ons and interface with it, but this is at an appropriate level for those with 
 so�ware engineering skills to understand and maintain. 

 3.2.3. Unique features 

 ●  Dashboard for handling authorisa�on/authen�ca�on and monitoring the federated learning 
 network. 

 ●  API endpoints that can be called using HTTP requests, not just Python clients. 

 3.3. Flower 

 3.3.1. Quick start development 

 Flower is a federated learning framework that supports large-cohort training and evalua�on, both on 
 real edge devices and on single-node or mul�-node compute clusters. The quick start  documenta�on  is 
 very easy to follow. It is designed with simplicity in mind, offering an intui�ve and user-friendly interface 
 for se�ng up and managing federated learning experiments. Its lightweight coordina�on server and 
 straigh�orward API make it easy for developers to integrate Flower into their exis�ng machine learning 
 pipelines with minimal effort. It can be simulated on a single machine using Python files, without the 
 need of any containerisa�on tool as men�oned at their website. Further, it abstracts away much of the 
 complexity involved in building and deploying federated learning systems, allowing developers to focus 
 on model design and op�misa�on rather than low-level implementa�on details. By providing high-level 
 abstrac�ons for tasks such as model aggrega�on, communica�on, and synchronisa�on, Flower simplifies 
 the development process and accelerates the itera�on cycle for federated learning experiments. 

 3.3.2 Real world deployment 

 We have successfully re-created a simula�on environment on a single machine and on the NECTAR cloud 
 pla�orm as well. It offers built-in datasets for simula�on purposes, alongside the flexibility to use custom 
 datasets. Users can define various machine learning models such as logis�c regression and neural 
 networks for training, employing a client class to train the model on the training dataset and evaluate it 
 on the tes�ng dataset. For the server-side, users can choose the specific averaging techniques for the 
 aggrega�on. Flower enables  SSL  for establishing secure  connec�ons between servers and clients, with 
 comprehensive guidance on star�ng an SSL-enabled secure Flower server and connec�ng Flower clients 
 securely, alongside a complete code example, although users are advised to consult the guide for 
 in-depth SSL setup instruc�ons. For Docker  containerisa�on  ,  it offers two images – a base image 
 containing essen�al dependencies shared by both server and client, and a server image built upon the 
 base image, which installs the Flower server via pip. 
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 3.3.3. Unique features 

 ●  Ease of Use and Deployment 

 ●  Reduced Complexity in Development 

 3.4. PySy� 

 3.4.1. Quick start development 

 PySy� is an open-source federated learning library developed by  OpenMined  . It aims to make private 
 machine learning accessible by enabling secure and privacy-preserving data analysis. PySy� extends 
 popular machine learning frameworks such as PyTorch and TensorFlow. The  documenta�on  is 
 comprehensive and user-friendly providing clear guidance on se�ng up and managing federated 
 learning experiments. 

 PySy� facilitates secure mul�-party computa�on (SMPC) and differen�al privacy ensuring an extra layer 
 of privacy is maintained throughout the learning process. It provides high-level abstrac�ons for tasks 
 such as secure aggrega�on, encrypted communica�on, and differen�al privacy, simplifying the 
 development process and allowing researchers to focus on model design and op�miza�on. 

 3.4.2. Unique features 

 ●  Ease of Use and Deployment 

 ●  Support for Ver�cal data par��oning as well as horizontal 
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 4. Data storage and communica�on 

 4.1. Data Storage and Computa�onal Requirements 
 A diagram for a typical federated learning use case is provided in Figure 4.1. This highlights the resource 
 components that are required for federated learning. 

 The key resource requirements for federated learning are data storage and computa�onal capacity at 
 each of the nodes, a server system with computa�onal capacity and the ability to communicate between 
 these components. Given the reason for using federated learning is o�en to ensure security and privacy 
 of data, these requirements are also likely to impact resource requirements. 

 The magnitude of data storage requirements and computa�onal capacity will vary from project to 
 project depending on the algorithms and data that are being used and the models being developed. 
 Different scenarios for the node/data storage situa�ons are considered here: 

 4.1.1.  Node/s posi�oned within an organisa�onal IT environment 

 A common situa�on is that the data at each node would remain behind an organisa�onal firewall (e.g. a 
 hospital). In this situa�on the data storage and computa�onal capacity must be provided as part of, or at 
 least linked to, the infrastructure of the organisa�on. The requirements for the data storage and 
 computa�onal capacity must also meet the local organisa�onal requirements as well as those for 
 federated learning. This may make it challenging or impossible to be able to u�lise broadly available 
 research data infrastructure (e.g. nectar and MLeRP in its current form). To enable communica�on in this 
 situa�on the ability to communicate outside the organisa�on through the firewall must be addressed. 
 This would commonly require ‘white-lis�ng’ of relevant sites. 

 4.1.2.  Node/s posi�oned within a Trusted Research Environment (TRE) 

 In some instances, for example where registry linked data is involved, data is stored in a trusted research 
 environment (TRE). A TRE can also be known as a secure research environment (SRE), data safe haven or 
 secure data environment. 

 A TRE is controlled compu�ng infrastructure designed to facilitate secure research prac�ces while 
 safeguarding sensi�ve data. It serves as a centralised pla�orm where researchers can access and analyse 
 sensi�ve informa�on without compromising privacy or security. Key characteris�cs of TREs include 
 robust data encryp�on, stringent access controls, comprehensive logging and monitoring systems to 
 track user ac�vi�es and detect any unauthorised access and curated gateways. These environments 
 o�en comply with relevant regula�ons and standards, such as GDPR (Goddard, 2017) in the European 
 Union or HIPAA (Chen & Benusa, 2017) in the United States, to ensure data protec�on and privacy 
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 compliance. Examples of TREs implemented in various countries include the UK Secure Research Service 
 (SRS) (ONS, 2024), Secure eResearch Pla�orm (  SeRP  ).  In Australia, TREs include Secure Unified Research 
 Environment (SURE) (Moore, Guiver , Woollaco�, Klerk, & Gidding, 2016), E-Research Ins�tu�onal Cloud 
 Architecture (ERICA) (ARDC, 2024),  KeyPoint  , or  Monash  SeRP  . A common requirement for these secure 
 environments is that there is manual inspec�on of data ingress and egress. This is a par�cular challenge 
 if data must be stored in a TRE in a federated learning network. 

 There isn't a one-size-fits-all defini�on for what cons�tutes a TRE; rather, design decisions are tailored to 
 meet the specific needs of each organisa�on. The Five Safes Framework has emerged as a cornerstone 
 guiding principle within this realm. Ensuring safe projects underscores the ethical u�lisa�on of data, 
 necessita�ng projects with clearly defined purposes. Access to data is restricted to authorised and 
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 reliable individuals (safe people), who undergo rigorous checks, and receive training in data privacy. Data 
 must be adequately safeguarded, including measures such as de-iden�fica�on to prevent privacy 
 breaches (safe data). Safe se�ngs govern the data environment, demanding secure IT infrastructures 
 and protocols (safe se�ngs). Meanwhile, safe outputs guarantee that sensi�ve informa�on remains 
 undisclosed, aligning with standards set forth by regulatory bodies like the Australian Bureau of Sta�s�cs 
 regarding data publica�on. 

 The Five Safes approach offers flexibility, empowering data custodians to evaluate the risks and 
 poten�als associated with data sharing and release. Typically, TRE administrators oversee safe se�ngs, 
 while stakeholders collec�vely share responsibility for ensuring the other four aspects (safe projects, safe 
 people, etc.). However, governance within the medical domain poses unique challenges, par�cularly 
 concerning the integra�on of health data. The intended flexibility of the Five Safes framework 
 encounters constraints due to the stringent security protocols imposed by data providers. Consequently, 
 many custodians err on the side of cau�on, implemen�ng top-�er security measures across all 
 dimensions, which may prove excessive for certain specific purposes. 

 There are requirements for par�cular datasets to be stored within a TRE. U�lisa�on of federated learning 
 can provide an opportunity to learn from the datasets that must be stored in a TRE without requiring 
 combining of the en�re dataset which may not be possible. Using horizontal, ver�cal or a combina�on of 
 horizontal and ver�cal (as described in Sec�on 1) federated learning different datasets can be u�lised. 
 For instance, in healthcare research, a TRE/SRE might contain pa�ent records from one geographical 
 region, while other nodes hold data from other regions, ensuring data diversity without sharing sensi�ve 
 pa�ent informa�on across nodes. in genomic research, a TRE/SRE might hold gene�c sequences, while 
 other nodes hold phenotypic data or clinical outcomes. In financial research, a TRE/SRE might contain 
 transac�onal data while other nodes hold demographic or socio-economic informa�on. This par��oning 
 strategy allows for collabora�ve analysis without exposing individual-level data across nodes, thus 
 maintaining privacy and security. 

 4.2. Integra�ng Federated Learning within TREs/SREs 
 The integra�on of federated learning within TREs or SREs poses a significant challenge due to the 
 common requirement for manual inspec�on of data ingress and egress within these secure 
 environments. Federated learning, being an itera�ve process that o�en spans mul�ple rounds of sharing 
 the model parameters, necessitates seamless data flow between the par�cipa�ng devices or servers. 
 However, the stringent security protocols of TREs/SREs mandate manual inspec�on of data ingress and 
 egress for each round, which may not be feasible in certain applica�ons of federated learning. 
 Importantly this manual inspec�on process is set-up for reviewing data.  In federated learning it is 
 models and not data which are being transferred into and from TREs and the manual inspec�on process 
 is rarely appropriate for assessing risks of model transfer. This manual inspec�on also introduces 
 poten�al bo�lenecks and delays, hindering the efficiency and scalability of the federated learning 

 PAGE  24  Exploring federated learning tools 



 process within these secure environments. Moreover, the repe��ve nature of manual inspec�on 
 increases the risk of human error and may compromise the �meliness and accuracy of research 
 outcomes. Therefore, there is a pressing need to explore alterna�ve solu�ons or enhancements to 
 streamline the integra�on of federated learning within TREs/SREs, ensuring both data security and 
 research efficiency are effec�vely balanced. 

 4.3. Automa�c Inspec�on of Data for TREs 
 The primary solu�on to address the challenge of manual inspec�on of data ingress and egress for 
 federated learning within TREs/SREs is the implementa�on of automa�c inspec�on systems. Automa�c 
 inspec�on refers to the process of using advanced technological systems and algorithms to monitor, 
 analyse, and detect pa�erns or anomalies in data flows without the need for manual interven�on. 
 Automated approaches can also be more appropriate for review than manual review processes set-up 
 for reviewing data and non-ideal for reviewing models. Within the context of TREs/SREs, automa�c 
 inspec�on systems could play a crucial role in ensuring the security, privacy, and compliance of research 
 ac�vi�es, par�cularly in scenarios such as federated learning where data ingress and egress occur 
 itera�vely over mul�ple rounds. By employing automated tools, organisa�ons can streamline the 
 inspec�on process, reduce the risk of human error, and enhance the efficiency of data monitoring and 
 analysis. Moreover, automa�c inspec�on systems enable real-�me detec�on of suspicious ac�vi�es or 
 devia�ons from expected behaviour, allowing for prompt interven�on and mi�ga�on of security 
 incidents. 

 Following are a few of the factors that need to be addressed in the implementa�on of automa�c 
 inspec�on: 

 4.3.1.  Collabora�ve governance 

 Collabora�ve governance models involve establishing frameworks where stakeholders from various 
 domains, including researchers, data custodians, and security experts, work together to govern and 
 oversee the implementa�on of processes and policies within TREs/SREs. These models ensure that 
 decisions regarding data access, security protocols, and compliance measures are made collec�vely, 
 taking into account the perspec�ves and exper�se of all involved par�es. 

 By involving stakeholders in the governance process, transparency is fostered regarding the objec�ves, 
 methodologies, and outcomes of automa�c inspec�on systems. Transparency helps build trust among 
 stakeholders and ensures that all par�es understand the ra�onale behind the implementa�on of 
 automated inspec�on processes. 

 Collabora�ve governance models establish clear lines of accountability, ensuring that responsibili�es for 
 overseeing and managing automa�c inspec�on processes are clearly defined. This accountability helps 
 mi�gate risks and ensures that any issues or concerns related to the implementa�on of automated 
 inspec�on systems are addressed promptly and effec�vely. 
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 Involving stakeholders in the governance of automa�c inspec�on processes enables efficient 
 decision-making and implementa�on. By leveraging the collec�ve exper�se and insights of researchers, 
 data custodians, and security experts, governance models can streamline workflows, expedite approval 
 processes, and op�mize resource alloca�on, leading to increased efficiency in implemen�ng and 
 managing automated inspec�on systems. Lastly, collabora�ve governance models facilitate proac�ve risk 
 management by enabling stakeholders to collec�vely iden�fy, assess, and mi�gate risks associated with 
 automa�c inspec�on processes. By bringing together diverse perspec�ves and exper�se, governance 
 models help organiza�ons an�cipate poten�al challenges and develop comprehensive risk mi�ga�on 
 strategies to safeguard data integrity, confiden�ality, and compliance within TREs/SREs. 

 4.3.2. Streamlined approval processes 

 Streamlined approval processes within TREs/SREs involve integra�ng efficient procedures for approving 
 data ingress and egress requests with automated inspec�on systems, enhancing the efficiency and 
 accuracy of data monitoring and analysis. By implemen�ng pre-approved templates, checklists, or 
 protocols, organiza�ons can expedite the review of data flows while ensuring alignment with security 
 and compliance requirements. This approach standardizes the evalua�on criteria, facilitates expedited 
 review, and enhances oversight and governance of data ac�vi�es within TREs/SREs. Integrated with 
 automated inspec�on systems, streamlined approval processes op�mize workflow efficiency, ensure 
 consistency in data analysis, and enable stakeholders to promptly iden�fy and address any anomalies or 
 devia�ons from expected behaviour, thereby strengthening the security and integrity of research 
 ac�vi�es conducted within secure research environments. 

 4.3.3.  AIML enabled inspec�on of data flow 

 Machine learning models are computa�onal algorithms trained to recognize pa�erns and make 
 predic�ons based on data. Within TREs/SREs, these models play a crucial role in automa�ng the 
 inspec�on of data ingress and egress. By training on historical data within TREs/SREs, machine learning 
 models (supervised and unsupervised) can predict and classify normal and abnormal pa�erns in data 
 flows. They can detect anomalies or devia�ons from expected behaviour, automa�cally analysing data in 
 real-�me and flagging any devia�ons warran�ng further inves�ga�on. This automa�on enhances the 
 efficiency and accuracy of data monitoring and analysis within TREs/SREs compared to manual methods, 
 which are �me-consuming and error prone. Addi�onally, machine learning models adapt and evolve 
 over �me, con�nuously improving their accuracy and effec�veness in detec�ng anomalies, thus ensuring 
 TREs/SREs remain resilient against emerging security threats. 

 4.3.4.  Privacy preserva�on 

 Privacy-preserving techniques such as differen�al privacy, secure mul�-party computa�on, and 
 homomorphic encryp�on provide an extra layer of security in the context of automa�c inspec�on within 
 TREs/SREs. While not directly assis�ng in the automa�on of inspec�on processes, these techniques 
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 ensure that sensi�ve data remains confiden�al and protected throughout automated analysis. These 
 privacy-preserving techniques guarantee that data ingress and egress undergo inspec�on without 
 compromising privacy, thus safeguarding sensi�ve informa�on throughout the automated analysis 
 process. Differen�al privacy (Zhang, Lu, & Liu, 2023) adds noise to data before analysis to prevent 
 individual records from being iden�fiable. It ensures that the output of automated analysis does not 
 compromise the confiden�ality of underlying data, thereby enhancing overall security. Secure 
 Mul�-Party Computa�on (SMPC) (Mansouri, Önen, Jaballah, & Con�, 2023) (Fereidooni, et al., 2021) 
 enables mul�ple par�es to compute func�ons over their inputs while keeping those inputs private. 
 SMPC allows for collabora�ve analysis across mul�ple nodes without exposing sensi�ve informa�on, 
 thereby bolstering security during automated inspec�on. Homomorphic encryp�on (Wibawa, Catak, 
 Sarp, & Kuzlu, 2022) enables computa�ons on encrypted data without decryp�on. It ensures that 
 sensi�ve data remains confiden�al during automated analysis, adding an addi�onal layer of security to 
 the process. Figure 4.2 illustrates the incorpora�on of secure aggrega�on in federated learning via 
 homomorphic encryp�on and differen�al privacy. 

 4.3.5.  Condi�ons in favour of federated learning 

 We have seen that TREs, by design, include stringent security protocols, par�cularly concerning the 
 manual media�on of data egress, which can inhibit their direct par�cipa�on in federated learning. On 
 the other hand, federated learning requires con�nuous interac�on among nodes for model updates, 
 which poses a challenge for TREs due to their reliance on human-mediated data flows. At every itera�ve 
 step, every federated learning node sends not the data but the model parameters to the central server 
 which determines resolu�on on the common model. This requires seamless informa�on flow between 
 devices or servers. However, the security protocols of TREs require manual inspec�on of data ingress 
 and egress for each round, which can be imprac�cal at the frequency of interac�on required by 
 federated learning in addi�on to increasing the risk of any poten�al human error. Besides, the current 
 governance structure for TREs also would make it unsuitable for federated learning. 

 On the other hand, federated learning actually poses less risk than federated analy�cs, as the data is not 
 exchanged, and the human element is removed. This needs to be recognised in the governance 
 structure. 

 Currently, there are some promising developments in Federated Analy�cs in projects like FED-NET, which 
 involves periodic and less frequent data exchanges where manual oversight is more feasible. However, 
 this springboard holds the poten�al to evolve and accommodate federated learning, par�cularly with 
 enhancements to support automated data media�on and real-�me interac�on. 

 The current capabili�es of pla�orms like TelePort and TRE-FX illustrate poten�al pathways for TREs to 
 support federated learning in the future. These pla�orms are designed with mul�-toolkit frameworks 
 that facilitate data governance and collabora�on across different TREs without altering exis�ng 
 governance structures. 
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 TelePort, for instance, creates an ephemeral common space for data interac�on among TREs, governed 
 by exis�ng egress rules. According to HDR UK, Trino abstracts the individual database layers and 
 TELEPORT creates an interoperable “link” between each TRE, allowing each Trino instance to 
 communicate seamlessly. This setup facilitates secure data sharing and collabora�ve analysis across 
 different TREs, while TRE-FX enhances the governance framework by providing standardized egress 
 processes and ensuring that data sovereignty and privacy requirements are consistently met across all 
 nodes. 
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 By abstrac�ng the computa�on layer and providing a connected space for researchers to operate on and 
 access data in different environments. While the current structure is available only for Federated 
 Analy�cs, this setup may pave the way for collabora�ve federated learning projects without 
 compromising data security within this space. 

 Given the significance and complexity of the area, a separate TRE project is being undertaken by ARDC. 
 The project brings together a panel of TRE groups on a workshop to explore the key challenges and way 
 forward and is also exploring the possibility of local TRE groups collabora�ng with overseas projects such 
 as HDR UK. The interim report can be accessed at online [  TRE Framework Report  ]. 

 4.4 Secure Network of Servers as an Alterna�ve to TREs 
 To achieve federated learning among secure nodes, it is possible to create a secure network of servers, 
 each embedded in different data hos�ng loca�ons. This network of servers would create a secure space 
 where federated learning can be carried out without the data leaving the premises or jurisdic�on. 

 Taking a leaf from TelePort and TRE-FX projects as well as upcoming Australian projects such as 
 AIS-SHIELDS and FLERA (described later in this report), establishing such a secure network of servers 
 involves crea�ng an ephemeral space for secure data interac�on. However, it has one less requirement: 
 human interven�on is needed only during the ini�al data loading and the final extrac�on of results (not 
 the data). This reduc�on in human involvement during the machine learning process enhances security 
 by minimizing the poten�al for human error and unauthorized access. 
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 5. Use Cases for Federated Learning 

 5.1. Exis�ng Implementa�on Case Study: Australian Cancer Data 
 Network (ACDN) 

 5.1.1.  Background 

 ‘Cancer is responsible for Australia’s largest disease burden and is a leading cause of death (Australia, 
 2024)’. There are challenges in accessing and thus learning from Australian cancer data which is stored in 
 detail at local ins�tu�ons including hospitals and clinical trial organisa�ons and in silos with state-based 
 registries. Providing evidence to support decisions on the most effec�ve form of treatment for individual 
 pa�ents can be challenging, par�cularly for pa�ents who do not meet the eligibility criteria for 
 randomised clinical trials that form the backbone of prac�ce guidelines. The ability to harness Australia’s 
 cancer data, which includes both tabular items (e.g. age, disease stage), imaging (e.g. CT, MRI), omics 
 and other specific data types (e.g. radiotherapy treatment dose distribu�ons) has the poten�al to enable 
 learning and genera�on of addi�onal evidence for our pa�ents and clinicians. 

 The Australian Cancer Data Network (ACDN) is a collabora�on from three pla�orms, seen graphically in 
 Figure 5.1. This includes ‘AusCAT’, a federated learning pla�orm developed ini�ally in collabora�on with 
 a team from MAASTRO clinic (Field M. , et al., 2021), The Netherlands and the Australian radia�on 
 oncology community; Cancer Alliance QLD (QLD, 2024), a collabora�ve organisa�on across health 
 services, jurisdic�ons and organisa�ons in QLD with the goal of suppor�ng clinician-led service 
 improvement, harnessing and making available cancer data; and CaVa, a research program working to 
 make available clinical prac�ce datasets in a researcher ready format to inves�gate varia�ons in cancer 
 treatment. The specific datasets include clinical prac�ce data from treatment centres, registry data and 
 clinical trial datasets. Together our collabora�on is using federated learning to learn from large and 
 diverse cancer datasets. 

 5.1.2.  Governance 

 The governance of the three collabora�ng pla�orms in the Australian Cancer Data Network are all 
 managed separately; however, the governance of the network as a whole is coordinated by a central 
 execu�ve commi�ee with representa�ves from each of the pla�orms and supported by clinical, 
 technical, data and transla�onal expert panels. 

 Governance for the federated learning work relies on an overarching ethics protocol with approval to 
 u�lise data at each of the contribu�ng nodes for the purpose of undertaking combined analysis and 
 model development. Sub-projects asking par�cular research ques�ons are included within the ethics 
 protocol or may have other governance arrangements (e.g. legisla�ve approval). Each of the 
 ins�tu�ons/nodes involved can choose which sub-projects they are or aren’t involved in. 
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 5.1.3. Federated learning infrastructure 

 A custom so�ware pla�orm for distributed learning was developed for the AusCAT network (Field , et al., 
 2022). The AusCAT node infrastructure includes two main parts: 

 Firstly, there are components for se�ng-up databases at the nodes, with a pipeline of data extrac�on to 
 generate a de-iden�fied dataset and a key database that contains the iden�fiers. The nodes are at 
 hospitals around Australia and data storage and computa�onal power is provided by the hospitals either 
 hardware or in the cloud with the systems managed within hospital IT infrastructure (and appropriate 
 firewalls). The project is working towards se�ng up nodes for registry datasets (which would be 
 ver�cally par��oned in comparison to the hospital datasets which are horizontally par��oned). This 
 requires addressing both governance and data storage requirements (the need for TRE/SREs). 

 Secondly, infrastructure enables federated learning. This uses Java web services to coordinate 
 communica�on between clinic systems. Algorithms can be sent to each clinic, where they generate and 
 share model parameters and sta�s�cs with the central server and then through itera�ve transfer of 
 parameters across the clinics and the server, develop the final model. This has been used for horizontal 
 federated learning. The project has demonstrated proof of principle with ver�cal and combined learning 
 but have not yet implemented this on the ACDN network. 
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 While the federated learning components of AusCAT have proven effec�ve (Hansen, et al., 2022) (Field 
 M. , et al., 2024) a number of open-source pla�orms as described above are now available and 
 maintaining and expanding this proprietary federated learning pla�orm requires significant resources. By 
 adop�ng open-source tools, we can leverage exis�ng technologies without the need for extensive 
 in-house development, ensuring that we align with the broader research community. Open-source 
 pla�orms like Flower offer robust, community-supported solu�ons that facilitate interoperability and 
 collabora�on. This move will ensure ACDN stays at the forefront of federated learning advancements, 
 benefi�ng from shared innova�ons and maintaining compa�bility with widely used frameworks. 

 5.1.4.  Specific example cases (including how training, valida�on and tes�ng is 
 completed) 

 Non-small cell lung cancer survival following radiotherapy treatment  .  This inves�ga�on (Field M. , et al., 
 2024) developed a survival model for non-small cell lung cancer pa�ents using federated learning across 
 6 centres in NSW. This was a linear regression model with data split based on �me-period. Data from 
 2011-2016 was used for bootstrap training and internal valida�on and data from 2017-2019 was used for 
 valida�on. This split in data was used to ensure that the model was validated on the most recent data as 
 is most useful for considering the clinical applicability of the model. The data used was federated for 
 both the training and the valida�on. 

 Cardiac toxicity model following radiotherapy treatment.  A current project is working towards 
 developing a cardiac-toxicity model following radiotherapy treatment. There is evidence that radia�on 
 dose to the heart increases the risk of cardiac toxicity (e.g. heart a�acks) following treatment but there 
 is limited evidence on how the distribu�on of dose affects this risk. In this project a developed cardiac 
 segmenta�on algorithm is being used to determine the radia�on dose to cardiac substructures using 
 imaging and radia�on dosimetry data available at individual centres. A combined model will then be 
 developed using federated learning. Data will remain federated for both training and valida�on. A 
 random split of data may be used to separate training and valida�on datasets or one or two centres may 
 be separated as the valida�on cohorts. 

 Prognosis models for anal cancer.  In this interna�onal  study prognosis models are being developed for 
 anal cancer (Theophanous, et al., 2022). Using federated learning enables access to a large dataset 
 which would not otherwise be possible for anal cancer which is rela�vely uncommon. The data is 
 remaining federated for training and valida�on. A separate external valida�on is also being undertaken 
 with datasets from centres that were not involved in the original training and valida�on. 

 5.2. Exis�ng Implementa�on Case Study: FLERA+ 

 5.2.1 Background 
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 Applied ar�ficial intelligence (AI) research in health, and par�cularly in human imaging, is a 
 transforma�ve technology that will accelerate diagnosis, and facilitate precision management of a range 
 of human diseases. Its success relies heavily on data availability during model development or clinical 
 valida�on stages. Many roadblocks obstruct the integra�on of precision imaging into clinical 
 decision-making. Technical, logis�cal and governance issues have prevented public and private health 
 providers, o�en the custodians of real-world imaging datasets, from par�cipa�ng in cu�ng-edge applied 
 AI research, which has remained largely within the domain of research ins�tutes and technology 
 companies. 

 In 2020, the MRFF-funded TRANSCEND (TRansla�ng AI Networks to Support Clinical Excellence in Neuro 
 diseases). This project was established to overcome the bench-to-bedside roadblock by crea�ng a 
 permanent bi-direc�onal interface between AI RRD and clinical prac�ce. The TRANSCEND eco-system 
 provides a rich federated learning environment for clinical applica�ons and broad exper�se to advance 
 applied AI research, building upon the team’s previous R&D work in the CRC-P project: “AI: new smarts 
 for the medical imaging industry”. FLERA (Federate Learning Ecosystem for Research in Australia) 
 represents the natural evolu�on of TRANSCEND: the goal is to be the partner of choice for suppor�ng 
 the accelerated development and adop�on of AI solu�ons in health that rely on federated learning for 
 healthcare. 

 5.2.2 Outcome 

 FLERA comprises four cri�cal capaci�es: 

 1. FLERA Experience  :  This encompasses the overall  federated learning collabora�on network and 
 successful federated learning experiences of TRANSCEND, which can be referenced for new federated 
 learning projects and facilitate mul�centre AI collabora�ons within and outside the FLERA network. 

 2. FLERA Box  : An end-to-end engineering solu�on designed  for the rapid deployment of federated 
 learning across stakeholders in health provider networks, ensuring opera�onal efficiency and maximum 
 performance. The engineering solu�on incorporates “requirements-design-evalua�on” development 
 cycle, which takes requirements from clients and provide support from aspects like performance target, 
 hardware requirements, model design, federated training and evalua�on. The FLERA Box has been 
 tested with hospitals (including Royal Prince Alfred Hospital, St Vincent Hospital, Westmead Hospital, 
 etc.) and data providers (including iMed Radiology, Synergy Radiology, Flinders University, etc.) on 
 mul�ple applica�ons. 

 3. FLERA AI Research  : Focuses on themes that con�nually  improve AI training efficiency, advancing the 
 field of AI in health research. Previous research has covered mul�ple aspects in neuroimaging and 
 neurological research and applica�ons and to redesign the algorithms used in federated learning 
 framework to enhance model performance. We’ve focused on real-world challenges and provided 
 solu�ons when many data centres are involved, including labels with noise, lack of labels from 
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 par�cipated centres, imaging inhomogeneity across data centres, and predic�ng performance 
 requirements for given task. 

 4. FLERA Team  : Led by the original PIs from TRANSCEND,  this growing mul�disciplinary team con�nues 
 to excel in large-scale AI adop�on in Australia. Currently led by Prof. Michael Barne�, Prof. Fernando 
 Calamante, Dr. Chenyu Wang and Dr. Ryan Sullivan. 

 FLERA has translated and implemented AI technologies into health applica�ons across mul�ple 
 disciplines. In Mul�ple Sclerosis, we developed lesion models, LLM based prognosis models, and spinal 
 cord assessment models, which have been made available to the MS research community through FLERA 
 and MSBIR for improved disease progression monitoring. Addi�onally, we developed CT-based brain 
 haemorrhage detec�on models for CT triage and brain �ssue models for quan�fying various brain 
 diseases. Importantly, leveraging NVIDIA MONAI, we created a robust AI development pipeline that 
 rapidly transforms imaging analysis tasks into AI-powered applica�ons. 

 The research outcomes promote economic solu�ons for facilita�ng federated learning, preserving 
 privacy in large-scale, mul�disciplinary AI collabora�ons. We have ‘packaged’ all learnings from 
 TRANSCEND project into its post MRFF funding cycle form: Federated Learning Ecosystem for Research In 
 Australia, the FLERA program. The FLERA program comprises FLERA Teams, FLERA Box, FLERA Research, 
 and FLERA Experience, offering a comprehensive ecosystem for AI innova�on in health. This 
 interdisciplinary collec�ve includes all necessary exper�se, AI models, tools, engineering solu�ons, 
 governance, and most importantly, successful experience in large scale AI adop�on in health. 

 5.3. Implementa�on Case Study: AIS-SHIELDS 

 5.3.1. Australian Imaging Service Background 

 The Australian Imaging Service (AIS) is a na�onally federated pla�orm for secure imaging data 
 management and analysis, focusing on clinical and pre-clinical imaging modali�es such as Magne�c 
 Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound, Positron Emission Tomography 
 (PET), X-Ray, etc. AIS fully launched in 2022 and currently consists of 13 research ins�tu�ons with 
 funding from the Australian Research Data Commons (ARDC) and the Na�onal Imaging Facility (NIF) 
 NCRIS capabili�es.  AIS integrates directly with clinical scanners for consen�ng pa�ents, doing on-site 
 de-iden�fica�on of direct iden�fiers before uploading images to university nodes for long term cura�on, 
 analysis, and collabora�on. AIS’s mission is to increase research reproducibility and drive the adop�on of 
 innova�ve but trusted analysis techniques. 

 Star�ng as an ins�tu�onal ini�a�ve at the University of Sydney in 2017, the na�onal Australian Imaging 
 Service was created through the ARDC Pla�orms 2019 AIS Project with a network of central DVC-R and 
 ICT teams across 7 Universi�es using the open source XNAT for imaging data management. AIS operates 
 with core ins�tu�onal support from the University of Sydney with a por�olio of research grants for 
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 feature enhancements. The original ARDC project focused on developing a standardized, secure, and 
 scalable architecture built around XNAT and Kubernetes. AIS was subsequently extended in the ARDC 
 Pla�orms 2020 AEDAPT Project adding secure virtual desktops built on Neurodesk (Renton, et al., 2024) 
 and in the NIF 2021 AIS Pipelines Project building out the workflow engine built on ARCANA (Close, et 
 al., 2020) and with a library of curated pipelines. The 2023 EU Horizon Infrastructure FoundingGIDE 
 project is standardizing biological, preclinical, and clinical imaging ontologies used interna�onally while 
 the MRFF NCRI AIS-SHIELDS project is adding NLP, AI Segmenta�on, and federated learning capabili�es. 

 AIS uses a data centric compu�ng model with all computa�onal services �ghtly coupled with the data 
 repository.  This increases accessibility by allowing all tools to be accessed via a browser UI, 
 reproducibility by using version-controlled so�ware stacks so mul�-site studies can use iden�cal tools 
 across the full dura�on of a study, and security by integra�ng computa�onal data access and audi�ng 
 managed by the data repository without data needing to leave AIS. 

 Figure 5.2. Overview of AIS 

 AIS currently consists of five key services, as shown in Figure 5.2. 

 1.  Data Movement:  Secure movement from image acquisi�on  to repository, and between repositories, 
 including de-iden�fica�on, encryp�on, and rou�ng 

 2.  Data Management:  Built around XNAT, this provides  long term archival data management, with per 
 project, per data type user access controls directly coupled with analysis pla�orms so data doesn’t need 
 to leave the pla�orm 
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 3.  Automated Pipelines:  Built around ARCANA/Pydra workflow engine and kubernetes schedulers, this 
 provides the ability to run containerized workflows for bulk analysis, automated QC, file conversion, 
 pre-processing, etc. 

 4.  Interac�ve Visualiza�on and Analysis:  Built around  JupyterHub and Neurodesk, this provides secure 
 virtual desktops preloaded with reproducible imaging so�ware. 

 5.  Machine Learning:  (S�ll in heavy development)  Built around MONAI, this provides AI assisted image 
 segmenta�on and classifica�on by running PyTorch models directly integrated with image viewers. 

 5.3.2. ACRF Centre of Excellence in Melanoma Imaging and Diagnosis Background 

 The ACRF Centre of Excellence for Melanoma Imaging and Diagnosis (ACEMID) has been establishing a 
 network of 16 Total Body Photography (TB-Photography) clinical scanners in urban and regional loca�ons 
 to create a na�onal teledermatology network for detec�on, monitoring, and treatment of Melanoma 
 and related diseases in partnership with QLD Health, NSW Health, VIC Health, and Melanoma Ins�tute of 
 Australia. TB-Photography offers an excellent and impac�ul imaging modality and will lead to major 
 advances in the field of dermatology; however, it requires AIS’s input and advanced capabili�es as it 
 produces images that are very sensi�ve and need extra protec�on to maintain pa�ent’s privacy. ACEMID 
 has partnered with AIS to build the ACEMID Research Repository across AIS nodes at the University of 
 Queensland, University of Sydney, and Monash University, complemen�ng the na�onal clinical 
 teledermatology network. 

 At present, there is a significant two-fold gap in the maturity and progress of imaging and repor�ng 
 standards in the field of dermatology compared to those found in radiology, especially related to 
 diagnosis, monitoring, and treatment of melanoma and skin cancers. Firstly, individual imaging 
 modali�es are siloed, using non-standard formats and separate so�ware pla�orms, precluding their 
 combined linkage. Secondly, unlike tradi�onal radiology imaging that focuses on the internal parts of the 
 body, dermatology focuses on the visible parts of the body; therefore, images are inherently iden�fiable 
 and sensi�ve (pa�ents are nude or semi-nude), raising significant privacy concerns for pa�ents, affec�ng 
 their willingness to par�cipate in screening programs. This has knock on affects for all melanoma and 
 skin cancer pa�ents who undergo 1.1 million Medicare treatment services in Australia every year. 

 5.3.3. Federated Learning Infrastructure 

 AIS-SHIELDS is a new MRFF Na�onal Cri�cal Research Infrastructure project that converges the work on 
 AIS, the ACEMID Research Repository, & FLERA to implement federated learning within the AIS context. 

 AIS operates as a federated network of ins�tu�onal nodes deployed on kubernetes with each researcher 
 only able to access the project(s) to which they have been granted access. Universi�es’ have an AIS node 
 with all 5 services men�oned above that acts as the decadal data store of the research data. Clinical sites 
 where the data is acquired will have Edge Devices, which can perform transient processing such as 
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 de-iden�fica�on, encryp�on, rou�ng, real-�e analysis, or in this case federated learning, as depicted in 
 Figure 5.3. 

 The data flow is usually Instrument<->Edge Device<->AIS Node, op�onally between AIS Nodes as well. 
 All so�ware and containers are stored in the AIS Github Organiza�on 
 (  h�ps://github.com/Australian-Imaging-Service  ) which  is used for CICD to deploy and update each node. 

 Both AIS Nodes and Edge Devices run on Kubernetes on top of a diverse set of underlying 
 infrastructures, allowing the tooling to be standardized. The Kubernetes clusters for AIS Nodes tend to 
 be larger, using services such as AWS Elas�c Kubernetes Service (EKS), poten�ally with many dozens of 
 worker nodes (Virtual Machines assigned to the cluster) with dynamic scaling. Kubernetes clusters for 
 AIS Edge Devices are much smaller, o�en 1-3 individual Virtual Machines on which Microk8s has been 
 implemented. 

 A challenge with deploying within clinical sites is the differences in technology. Research technology, 
 par�cularly in the case of machine learning, is heavily Linux based with so�ware containers. Hospital IT 
 however tends to be Windows based with no containeriza�on. AIS has had some success bridging the 
 two by deploying Microk8s on NSWHealth Windows Machines. The University of Sydney central ICT 
 team, which manages the AIS GitHub Organiza�on, did a vendor assessment with Microk8s as the 
 so�ware applica�on. From the NSWHealth point of view Microk8s is a Windows applica�on, and they 
 manage it as other applica�ons, being responsible for the underlying VM and security of the OS image. 
 From the AIS point of view, the research tools then see a Linux based Kubernetes cluster. Specific firewall 
 whitelists are made to the AIS container registry to allow pre-approved containers to be pulled and 
 updated to run on the edge cluster. A second set of firewall rules are made for any egress of data 
 between the edge device and the AIS Node. This deployment approach for edge devices has to date 
 focused on secure data egress where image data is captured from a scanner and needs to be 
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 de-iden�fied, encrypted, and routed to the correct project in XNAT on an AIS node in a secure and 
 audited manner. In AIS-SHIELDS, this is being expanded to add local computa�onal capability. In 
 principle, an en�re AIS Node could be run on an edge device if there were sufficient storage and 
 computa�onal resources available. 

 The workflow for image labelling is: 

 1.  Upload data to XNAT 

 2.  XNAT automa�cally triggers n many pipelines to run on the images 

 3.  From XNAT, open the data in an image viewer integrated with MONAI Label to add annota�ons to 
 the dataset 

 For federated learning, AIS is working to add NVFlare as a service in the Kubernetes cluster that can be 
 accessed via the XNAT UI like how ARCANA pipelines and Neurodesk virtual desktops, matching data 
 access of the ini�a�ng user. This builds upon the previous FLERA work. AIS will manage the edge devices, 
 allow researchers to access the pre-processing pipelines and federated learning clients to run on their 
 datasets. The long-term inten�on is to apply this infrastructure to the ACEMID Total Body Photography 
 scanners so that federated learning can be applied securely without the par�cipant data leaving the 
 clinical site to widen par�cipa�on. 

 5.4. Exis�ng Implementa�on Case Study: NINA 

 5.4.1 Background 

 The Na�onal Infrastructure for Federated Learning in Digital Health to Generate New Models of Care for 
 Chronic Diseases (NINA) project seeks to answer the following ques�on: Can we leverage disrup�ve, 
 cu�ng-edge federated learning technology to overcome exis�ng barriers in accessing health data for 
 research, thereby facilita�ng research aimed at enhancing outcomes for chronic diseases? 

 Currently, Australian datasets are siloed, isolated both geographically (across different states) and across 
 the care con�nuum (spanning primary and hospital care). NINA aims to establish a na�onal capability 
 and infrastructure network to enable federated digital learning in Australia. The overarching hypothesis 
 of the project is that by establishing the necessary cri�cal federated learning research infrastructure, we 
 can create breakthrough research opportuni�es for improving outcomes in chronic diseases. 

 The main objec�ves are: 

 ●  Objec�ve 1 - co-design new scalable ethics and governance pathways for federated learning in 
 health, ensuring compliance with exis�ng legisla�on. 

 ●  Objec�ve 2 - establish the technology and demonstrate its poten�al for safely accelera�ng 
 development of chronic disease research with the crea�on of na�onal synthe�c datasets (as 
 required) to test federated learning approaches. 
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 ●  Objec�ve 3 - provide infrastructure that enables healthcare data to remain in situ and 
 harmonised in separate databases with data and analy�cs capability brought to the datasets 
 (through federated learning systems) while preserving privacy. 

 ●  Objec�ve 4 - implement federated learning using infrastructure (from 3) to deliver innova�ve 
 research to inform be�er outcomes for chronic disease exemplars (diabetes, rheumatoid 
 arthri�s, osteoarthri�s and cancer). 

 ●  Objec�ve 5 - ensure this infrastructure is transi�oned to business as usual through 
 implementa�on, evalua�on and sustainment planning. 

 In essence, the NINA project aims to: 

 ●  Integrate and harmonise data: NINA seeks to integrate and harmonise data at each site according 
 to globally accepted standards. 

 ●  Pioneer AI/ML federated learning: NINA aims to pioneer the use of itera�ve AI/ML federated 
 learning, bringing compu�ng and AI/ML capabili�es directly to the data. 

 ●  Establish a Digital-Health Accelerator: NINA plans to create a Digital-Health Accelerator for both 
 industry and research. This includes an incubator phase that allows research organisa�ons and 
 industries to u�lise synthe�c datasets. These datasets contain equivalent data to that which will 
 be used to train AI/ML at local sites. 

 ●  Develop Best Prac�ces and Educa�onal Programs: NINA will develop standard opera�ng 
 procedures and educa�onal programs to expedite the transforma�on of research data analysis 
 using federated learning. 

 ●  Showcase the Impact of federated learning: To demonstrate the effec�veness of this federated 
 learning model, NINA will focus on applying federated learning to data related to three prevalent 
 chronic diseases in Australia: diabetes, rheumatoid arthri�s, osteoarthri�s and cancer. 

 ●  Ensure Long-Term Impact: NINA is commi�ed to ensuring the transla�on and long-term impact of 
 the project by collabora�ng with industry, health and government departments, universi�es, and 
 peak bodies. 

 5.4.2 Project governance 

 NINA is a five-year program funded by the MRFF Na�onal Cri�cal Research Infrastructure scheme with 
 addi�onal cash and in-kind contribu�ons from UQ, Monash and Macquarie universi�es, the Queensland 
 Cyber Infrastructure Founda�on (QCIF), Styker, Ansen Innova�on, Athri�s Research Canada, ARDC, 
 ARMHUB, BioGrid, CSIRO, Microba, Medical So�ware Industry Associa�on, QLD Health, A3BC Cancer 
 Alliance QLD, the Department of Environmental and Health and Victorian Ins�tute of Forensic Medicine 
 (VIFM). Led by CIA Professor Clair Sullivan, University of Queensland, over 20 organisa�ons are 
 par�cipa�ng in NINA (Figure 5.4.). 
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 The NINA Steering Commi�ee consists of all Chief Inves�gator team members, partner and consumer 
 representa�ves across the four use cases, and has overall responsibility for delivering the project, 
 including monitoring iden�fied risks and managing project risks as they arise.  It meets on a monthly 
 basis and is chaired by Prof. Sullivan. 

 The Na�onal advisory group is comprised of eminent experts in digital health and the clinical domains of 
 the use cases. It includes representa�ves from ADRC, Medical So�ware Industry Australia (MSIA), 
 Australian Alliance for Ar�ficial Intelligence in Healthcare (AAAiH) and Google Health. This commi�ee 
 provides invaluable strategic advice and monitor the project for compliance.  Any issues will be raised 
 directly with Prof. Sullivan, who will be responsible for implemen�ng changes to the project to address 
 the issues raised. 

 Importantly, the NINA project will ensure the voice of consumers is heard by including consumers in the 
 design and evalua�on of poten�al digital health solu�ons. 

 5.4.3 Federated Learning Infrastructure 

 NINA is dedicated to the prac�cal applica�on of federated learning in a variety of real-world se�ngs. The 
 project engages a diverse range of par�cipa�ng sites, such as health services, pathology services, 
 industry partners, and registries. Each of these sites necessitates a specialised infrastructure, possesses 
 varying  degrees of IT and data science exper�se, and adheres to unique data governance protocols and 
 procedures. Through the deployment of tailored infrastructure at each loca�on, NINA aims to evaluate 
 how federated learning can enhance and expedite data accessibility. The project will explore whether 
 federated learning mi�gates exis�ng data access challenges, introduces new concerns, or encounters 
 dis�nct obstacles and roadblocks. 
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 To guide those real-world deployment, a test environment has been deployed on the Nectar cloud for 
 three federated learning frameworks allowing to: 

 ●  Establish the infrastructure requirements for a par�cipa�ng site 

 ●  Conduct performance tes�ng 

 ●  Simplify, fine-tune and document the deployment at a par�cipa�ng site 

 ●  Allow researchers and sites to experiment with the technology 

 ●  Assess security 

 ●  Provide a training ground for researchers and other stakeholders 
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 6. Enabling Implementa�on of Federated Learning - 
 Recommenda�ons to ARDC 

 In the final period of wri�ng this report, a workshop was held including research groups working with 
 federated learning in Australia to exchange ideas on experiences and sugges�ons for suppor�ng 
 federated learning in the Australian research community in the future. This sec�on presents a series of 
 recommenda�ons to the ARDC generated from wri�ng this report and during the workshop. 

 As detailed in this report and references within the report enabling federated learning:  

 ●  Overcomes many barriers that exist with centralised learning. Data can be used for research 
 projects while it remains at a local ins�tu�on overcoming the challenge of moving data between 
 jurisdic�ons to one central loca�on. Some risks associated with linking data can also be overcome 
 with datasets being able to be learnt from jointly but without linking the data. With data 
 remaining at local ins�tu�ons, it can also be updated in a �mely manner overcoming the 
 challenge of how up to date a dataset is once it has been collected and is available for the 
 research.  

 ●  Is in the na�onal interest facilita�ng learning from data across jurisdic�ons, suppor�ng research 
 work across Australia but as importantly suppor�ng work between Australia and the rest of the 
 world. This can be very challenging as not only Australian data requirements need to be met but 
 also those from other countries. Federated learning is also being supported by many other 
 countries and it is important that Australian researchers are able to be involved in these 
 interna�onal efforts.  

 ●  Supports leading edge research. Many impac�ul data research projects require access to large, 
 detailed datasets (e.g. imaging data) and to reduce bias in any data project diverse data is 
 required. Federated learning enables access to these large datasets and by suppor�ng access to 
 diverse data can enable cu�ng edge research to be undertaken in the most appropriate manner.  

 To ensure these opportuni�es are effec�vely harnessed it is recommended to the ARDC that federated 
 learning be supported as a mainstream approach.  The  following recommenda�ons are made to the 
 ARDC to enable this: 

 6.1. Support for Australian Federated Learning collabora�on 
 There are a number of Australian research teams using federated learning enabling large scale, 
 interna�onally linked, cu�ng-edge research to be undertaken. Although there is significant enthusiasm 
 for this to occur, these research teams have not generally been working together and there is minimal 
 support for other research teams who wish to consider using federated learning, limi�ng the impact use 
 of federated learning may have for Australian researchers. 
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 6.1.1. Current recommenda�ons to ARDC  

 It is recommended that ARDC support collabora�on between researchers undertaking federated 
 learning across Australia. Following discussions at the federated learning workshop held in June 2024, 
 the recommenda�on is that this could occur with the establishment of a working/interest group on 
 federated learning within the machine learning community of prac�ce (ML4AU CoP) perhaps in 
 collabora�on with the Australian Research Containers Orchestra�on Service (ARCOS) and the Australian 
 Sensi�ve Data Interest Group (AuSDIG).  

 6.1.2. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Establishing a communica�on channel (or links to exis�ng communica�on channels) for 
 Australian researchers working in or exploring the poten�al of federated learning. A sugges�on 
 during the workshop is that this could be set-up on Zulip.  

 ●  Using the communica�on channel and interest/working group to propose collabora�ve projects 
 that would be of benefit to all federated learning researchers  

 ●  Using the communica�on channel and interest/working group to share exper�se and 
 experiences. 

 6.2. Support for Federated Learning So�ware Tools 
 There is a need to provide the necessary so�ware tools for federated learning as described in detail in 
 the above sec�ons. To support this, it is important that there is ongoing so�ware understanding and 
 development knowledge. 

  6.2.1. Current recommenda�ons to ARDC  

 ●  That ARDC endorse the review criteria recommended in the federated learning report as an ini�al 
 criterion for assessing federated learning tools (no�ng the sugges�on for federated learning 
 groups to work together to expand this criteria)  

 ●  That ARDC endorse recommenda�ons for the FLOWER, Vantage6, Pysy� and NVIDIA FLARE 
 pla�orms to be used by Australian research groups  

 ●  That ARDC enable so�ware engineering and machine learning exper�se to be developed in these 
 open-source tools to support interna�onal efforts and ensure local knowledge. 

 ●  That ARDC provide or support exper�se & training (so�ware engineering, federated learning and 
 machine learning) for these recommended pla�orms that Australian research groups can u�lise, 
 developing and conduc�ng technical tutorials and workshops on how to use key federated 
 learning frameworks such as Flare, Vantage6, Pysy� and Flower, highligh�ng their suitability, and 
 pros and cons, for a range of federated learning scenarios. 
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 ●  That ARDC provide or support demonstra�ons of these pla�orms set-up on nectar (only publicly 
 available or simulated data) for research groups to test and learn on. This could include se�ng  up 
 dedicated compute resources (such as GPU VMs or deployed Jupyter server notebooks) on the 
 NECTAR cloud pla�orm to provide a training ground for researchers and other stakeholders who 
 are interested in evalua�ng federated learning frameworks using a produc�on grade federated 
 learning systems 

 ●  That ARDC provide or support approaches achieving implementa�on consistency of these 
 federated learning pla�orms (to enable consistency and support review and implementa�on for 
 data custodians and ins�tu�ons)  

 ●  That ARDC provide or support approaches ensuring that these pla�orms can be rolled out 
 robustly across different ins�tu�ons and local set-ups.  

 6.2.2. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Collabora�ve review of and further development of the federated learning pla�orm assessment 
 criteria to provide a more detailed assessment criteria that can be tailored for individual research 
 project assessment of the federated learning pla�orms.  

 ●  Using the revised criteria independent assessment of the different pla�orms by different 
 researchers and research teams to provide an uncertainty analysis of these assessments  

 ●  Consider standard interfaces/approaches to support implementa�on consistency (considering 
 data custodians and ins�tu�ons)  

 6.3. Suppor�ng Data Storage and Computa�onal Power 
 As described above there is a need for data storage and computa�onal power requirements at the nodes 
 and at the server as well as communica�on channels. 

 This could poten�ally be established on nectar and on MLeRP with individual ins�tu�ons looking a�er 
 their own data storage on these pla�orms. However, it is unlikely that accessing and storing data on 
 nectar and MLeRP will meet the requirements of the health care ins�tu�ons and par�cularly the 
 registries where the datasets are. 

 An addi�onal challenge for federated learning is where datasets (commonly linked registry data) must be 
 stored in a trusted research environment as described in Sec�on 4. In this environment aggregate 
 analysis using federated data is s�ll achievable (as there is only one or perhaps two exports required) 
 however federated learning, par�cularly with advanced modelling requires mul�ple itera�ons and is 
 unfeasible with manual review for export from such secure access pla�orms. This requires either a 
 different approach to how the data is stored e.g. an alterna�ve to the current TREs or an alterna�ve 
 federated learning architecture with involvement from organisa�ons holding the data. For inclusion of 
 registry data in a federated learning network it would be possible to use either a ver�cal or more likely a 
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 combined horizontal and ver�cal federated learning approach with a node set-up with registry data and 
 someone at the registry suppor�ng this to ensure separa�on of data handling, as necessary to manage 
 best prac�ce of managing linked data. 

  6.3.2. Current recommenda�ons to ARDC  

 ●  That ARDC consider the op�ons for cloud compu�ng resources that could be used for federated 
 learning where these resources need to be accessed from within IT infrastructure at 
 organisa�ons where the data is held (primarily health but also registries and other 
 organisa�ons).  E.g.  Funding for access to the currently  approved health network cloud 
 compu�ng resources (or some available resources that meet the approved cloud compu�ng 
 requirements) to enable node set-up and federated learning could be considered. 

 ●  Related to the previous point, it was noted that if NCRIS resources are to be used with health 
 data, the requirements for this need to be extended. ISO cer�fica�on is one of these factors. As 
 raised during the workshop this is something that the ARDC is currently discussing and that they 
 are commi�ed to progressing. This is a longer-term goal.  

 ●  Considera�on of use of nectar or similar as a federated learning server loca�on in the first 
 instance (this is also related to the need for clear security and privacy documenta�on) 

 ●  That ARDC provide support for increasing robustness in the Kupernedes layer to increase 
 confidence for organisa�ons IT departments  

 ●  That ARDC provide support for discussions across jurisdic�ons (par�cularly across states but also 
 organisa�ons within each state) regarding accessing data storage and computa�onal resources.  

 ●  That ARDC provide support for sharing of and co-developing documenta�on (that is maintained 
 as systems, technologies and approaches are updated) to provide to organisa�ons. This could 
 include  documenta�on and pathways for data node set-up  including storage and federated 
 learning set-up that have prospec�vely been reviewed and approved by jurisdic�on IT teams (e.g. 
 NSWHealth). It is likely that there would s�ll be processes and approvals needed at a local level 
 (e.g. in NSW within Local Health Districts) but this would be much smoother if there was central 
 IT knowledge and support for such a pla�orm.    

 ●  That ARDC provide support to explore alternate op�ons to TRE/SREs for use of datasets that 
 must currently be stored in such environments in a federated learning network.  

 o  Support for discussions and where necessary changes in current approvals/prac�ces for 
 registries to support a federated learning model, enabling a node to be set-up and 
 supported by the relevant registry. In an ideal se�ng this framework could be used for 
 mul�ple federated learning projects/pla�orms (e.g. a cancer network as well as a 
 neurology and a cardiology network) 
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 o  Support to work with secure access environment pla�orm providers (e.g. the UNSW 
 developed ERICA pla�orm) to provide a secure access environment where there is an 
 automated review of data extracted from the secure access environment. 

 o  Support to work with those establishing policies over how registry data is stored to 
 develop adap�ons where necessary that meet requirements and what is technically 
 feasible. 

 6.3.3. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Sharing of experiences regarding establishing datasets for federated learning within the various 
 health and registry organisa�ons. Looking at building on success of ini�al projects to streamline 
 this for future projects.  

 ●  Collabora�ve effort with research groups and ARDC to approach organisa�ons (e.g. registries and 
 health departments)  

 ●  Sharing experiences in use of cloud resources within health departments as availability and 
 cos�ng of these services develop over �me.  

 6.4. Security, data privacy and data equity 
 Security, data privacy and data equity are key areas that cut across choice and appropriateness of almost 
 all areas of federated learning set-up including data storage and computa�onal requirements, so�ware 
 choice, governance and the prac�cali�es of implementa�on. As such during the workshop it was decided 
 that this topic should be addressed as a key theme. 

 6.4.1. Current recommenda�ons to ARDC  

 ●  That ARDC provide a service to demonstrate maintained security tes�ng and documenta�on for 
 recommended federated learning pla�orms that can be consistently shared with ins�tu�ons so 
 that Australian research groups using federate learning are consistent in their messages to 
 ins�tu�ons.   

 ●  Can ARDC provide a service to demonstrate these security aspects, so we have a shared set of 
 informa�on provided to organisa�ons (especially state health organisa�ons). 

 ●  Cloud Na�ve Environments are recommended as an op�on for federated learning infrastructures 
 due to their security, privacy, and flexibility. They offer features like iden�ty and access 
 management, encryp�on, and security monitoring, while also suppor�ng machine learning 
 frameworks and facilita�ng horizontal scaling. These environments also enable deployment in 
 dis�nct Secure Networks, ensuring reproducibility and robustness of federated learning 
 infrastructure. 
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 6.4.2. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Determining collabora�vely how we most effec�vely demonstrate privacy and risks/benefits for 
 our research projects using federated learning. In doing this it is important to clarify the 
 difference in federated learning on device (e.g. google) vs federated learning on health sites (with 
 benefits back to pa�ents). It would also be useful to consider risk �ers/levels and risk of 
 re-iden�fica�on.  

 ●  Sharing of security tes�ng and documenta�on on the tools that are being used across the 
 research groups.  

 ●  Work together to formulate appropriate and realis�c threat models (e.g., re-iden�fica�on 
 a�acks, record linkage a�acks, data reconstruc�on a�acks, etc.).   

 ●  Work together to determine appropriate privacy protec�on metrics (e.g., differen�al privacy 
 value adopted by the US census 2020, successful a�ack rate, etc.). 

 ●  Support each other to evaluate model fairness in federated learning (e.g. assessing accuracy 
 across different popula�on groups) and to implement federated learning approaches that 
 support the development of non-biased models. 

 ●  Work together to assess and demonstrate the pros and cons of privacy vs model u�lity in a 
 federated learning se�ng (e.g. adding noise will reduce quality of final model). 

 ●  Undertake a comparison with risks/benefits of federated learning compared to other approaches 
 esp. Centralised. Consider a framework that can be used for new projects. 

 ●  For ver�cal learning (and linking of data for an individual pa�ent), consider the risk of linking 
 data  

 ●  For no�ng there is a research team at Macquarie University who are looking at risk profiles of 
 iden�fica�on to the individual and to the sites might have good input on risk (Mark Dras & 
 Annabelle McIver). 

 6.5. Data standardisa�on 
 Although not addressed in this report as this is being considered by other ARDC ini�a�ves the need for 
 data standardisa�on for federated learning is key and recommenda�ons on this are provided here. 

 6.5.1. Current recommenda�ons to ARDC 

 ●  That the federated learning research groups are kept in the loop regarding other ARDC ac�vity on 
 data standardisa�on. 

 ●  That ARDC support implementa�on of data standardisa�on using a common and well recognised 
 framework for federated learning projects (e.g. OMOP). Of note there is a current ARDC project 
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 looking at transla�ng electronic medical records to OMOP and there will be a ARDC framework 
 document on common data models progressing soon.  

 6.5.2. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Review of approaches to data standardisa�on across the different research groups and a broad 
 goal to try and work towards consistency with the poten�al of linking across the federated 
 projects in the future when appropriate.  

 6.6. Governance to Support Federated Learning 
 Similarly to security, governance is a key overarching area for federated learning and recommenda�ons 
 to support this have been separated out from the core infrastructure requirements. 

 6.6.1. Current recommenda�ons to ARDC 

 ●  That ARDC generate or support genera�ng agreed and consistent documenta�on regarding risks 
 and benefits and IT implementa�on that can be provided to ins�tu�ons by research teams 
 wishing to undertake federated learning. 

 ●  That ARDC support discussions with overarching organisa�ons such health services and registry 
 data holders to ensure understanding of federated learning and requests for changes to process 
 and/or resources as may be necessary. (Noted ARDC would be interested in doing this for the PBS 
 or a similar dataset) 

 ●  That ARDC undertake or support approaching the NHMRC to consider providing guidance to 
 ethics commi�ees regarding federated learning (and perhaps machine learning in general). 

 ●  That ARDC undertakes work or supports work to consider different approaches to SRE/TREs for 
 federated learning. This would consider how automa�on could be used appropriately (how do 
 the 5 safes change if there is no human in the loop?) and could review interna�onal approaches 
 (e.g. UK federa�on of TRE providers where queries can be shared, no�ng this is aggregate 
 analysis rather than true federated learning). 

 ●  Some of these ac�vi�es could be incorporated into ARDC plans to look at path finder projects 
 working across organisa�ons. 

 6.5.2. Collabora�ve ac�vi�es to strengthen federated learning across research teams 

 ●  Work together to determine common requirements for organisa�onal governance and IT 
 approvals to support work with ARDC to provide documenta�on for these requirements 

 ●  Sharing of governance documents and experiences, providing the opportunity to build on 
 successes and learn from challenges. 
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 ●  Work together to determine common dataset of interest to federated learning projects (e.g. the 
 PBS dataset) and a priori�sa�on of these datasets to support work with ARDC to support access 
 to these datasets using federated learning frameworks 

 ●  Where there is a ARDC work with the research teams and the relevant organisa�on to support 
 discussions around how this could be achieved. (Noted ARDC would be interested in doing this 
 for the PBS or a similar dataset) 

 ●  To be forward-looking and ensure the developed federated learning systems are compliant with 
 the upcoming Australian regula�ons on AI, which goes beyond the Australian Privacy Act 1988. 
 (See DISR’s recent response on AI regula�ons: 
 h�ps://www.industry.gov.au/news/australian-governments-interim-response-safe-and-responsib 
 le-ai-consulta�on  ). 

 ●  Consider a consistent vocabulary around federated learning  

 ●  Of note the NINA project are working on a publica�on on governance for federated learning. 
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 Appendix 

 A.1. Flower Implementa�on Guide 

 This sec�on presents in detailed implementa�on of Flower framework for horizontal data par��oning. 
 The dataset considered is tabular, however, imaging data can easily be incorporated. The code is 
 available at:  h�ps://github.com/AustralianCancerDataNetwork/FlowerSimula�ons 

 A.1.1. Horizontal Par��oning 
 In horizontal data par��oning, all par�cipa�ng clients have the same features (input items) including the 
 output item (labels), however, the data points are different as shown in Figure A1. 

 A.1.1.1.    Server-Client Architecture 

 The horizontal federated learning framework u�lizes a server-client architecture. In this setup, there is a 
 central server responsible for coordina�ng the federated learning process, and three clients that 
 contribute their local model updates to the server. This architecture enables collabora�ve model training 
 across decentralized data sources while maintaining data privacy. 

 A.1.1.2.     Components: Server and Clients 

 Server: 

 The server acts as the central coordinator in the federated learning process. Its primary responsibili�es 
 include: 

 ●  Orchestra�ng communica�on with clients. 

 ●  Aggrega�ng model updates from mul�ple clients. 

 ●  Distribu�ng the global model parameters to clients for further training. Managing the overall 
 training process, including the number of rounds and convergence criteria. 

 Clients: 

 Clients represent individual devices or en��es with local data that par�cipate in the federated learning 
 process. Each client: 

 ●  Trains a local model on its own data without sharing the raw data with the server or other clients. 

 ●  Computes model updates based on its local data and sends these updates to the server. 

 ●  Receives global model updates from the server and incorporates them into its local model for 

 further training. 
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 A.1.1.3.     Server Code 

 The Server code consists of number of different components, described below: 

 Import Files 

 The code begins with necessary imports from the Flower framework. It imports classes and func�ons 
 required for se�ng up the server, defining the federated averaging strategy, and handling common 
 components such as metrics. 
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 FedAvg  Strategy 

 The federated averaging strategy, o�en abbreviated as FedAvg, is a key component of the framework's 
 model aggrega�on process. FedAvg operates as follows: 

 ●  Upon receiving model updates from par�cipa�ng clients, the server aggregates these updates to 
 compute a global model update. 

 ●  FedAvg typically employs a weighted average scheme (also employed in this example), where the 
 contribu�on of each client's update is weighted by the size of its local dataset or another relevant 
 metric. 

 ●  This weighted average helps mi�gate the impact of imbalanced or varying dataset sizes across 
 clients, ensuring fair representa�on in the global model. 

 Server Configura�on 

 A “ServerConfig” object is created, specifying the number of training rounds (“num_rounds”, which is set 
 to 100) for the federated learning process. Finally, the “ServerApp” is ini�alized with the specified 
 configura�on (“config”) and strategy (“strategy”). This sets up the server applica�on ready to start. 

 Legacy Mode: 

 This part of the code ensures that the server can be started directly when the script is executed as the 
 main program. It uses the “start_server” func�on to start the server with the specified address (IP and 
 Port, in this example the IP address is of its own machine, implying that the simula�ons for the clients 
 and the server are done on the same machine, to employ on a different machine, specify the IP address 
 and Port number of that specific machine), configura�on, and strategy. 
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 A.1.1.4.     Client  Code 
 The Server code consists of number of different components, described below: 

 Import  Files 

 The code begins with necessary imports including libraries for data pre-processing (“pandas, sklearn”), 
 neural network modeling (“torch, torch.nn”), Flower client setup (“flwr.client”), and other u�lity 
 func�ons. 

 Data  Loading 

 The “load_data” func�on is responsible for loading and preprocessing the dataset. It reads the data from 
 a CSV file (it can be any dataset, one can replace this with their own custom dataset, however, make sure 
 that the features are in column form and the datapoints are in row form), shuffles it, splits it into input 
 features (“X”) and labels (“y”), performs standardiza�on, and converts the data into PyTorch tensors. 

 Further, it also split the data into training and tes�ng datasets as well. 
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 Train  Func�on 

 This func�on is responsible for training the neural network model (“model”) using the provided training 
 data (“train_data”). It takes parameters such as the model, training data, and number of epochs. It is the 
 same training func�on as can be used in a centralised manner. 
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 Test  Func�on 

 This func�on evaluates the performance of the trained model on the provided test data (“test_data”). It 
 takes parameters such as the model and test data. It is the same tes�ng func�on as can be used in a 
 centralised manner. 
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 Neural  Network  Model 

 The Net class defines the architecture of the neural network. It specifies the layers, ac�va�on func�ons, 
 and input/output sizes of the network. 

 Flower  Client 

 This is the meat of the client code. The “FlowerClient” class extends the “NumPyClient” class provided 
 by Flower. It overrides methods such as “get_parameters”, “set_parameters”, “fit”, and “evaluate” to 
 define the behaviour of the client during the federated learning and communica�on process. 
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 Star�ng the Client 

 If the script is run directly, it imports the “start_client” func�on from the Flower client module 
 (flwr.client). The “start_client” func�on is then called with the following arguments: 

 ●  “server_address”: The address of the federated learning server to connect to. In this case, it's 
 "127.0.0.1:5009", indica�ng that the server is running on the local machine (localhost) and 
 listening on port 5009. 

 ●  client: An instance of the “FlowerClient” class converted to a Flower client using the “to_client()” 
 method. This represents the client that will par�cipate in the federated learning process. 

 A.1.1.5.     Running the Example 
 We can simply start the server in a terminal as follows: 

 “python3 server.py” 

 Now we are ready to start the Flower clients which will par�cipate in the learning. To do so simply open 
 three more terminal windows and run the following commands. 

 Start client 1 in the first terminal: 

 “python3 client_1.py” 

 Start client 2 in the second terminal: 

 “python3 client_2.py” 

 Start client 3 in the second terminal: 

 “python3 client_3.py” 

 The above is for three clients, if there are more clients we need to run those as well. The number of 
 par�cipa�ng clients can be specified by the server in “FedAvg” func�on. 

 PAGE  57  Exploring federated learning tools 



 A.2. Implementa�on on Nectar Cloud 

 This sec�on presents the implementa�on of the Horizontal Federated Learning setup using Flower tool. 
 The underlying python files and programming environment remains the same as described in sec�on 
 A.1. 

 A.2.1. Crea�on of Virtual Machines on Nectar 
 The first step is to create Virtual Machines (VMs) on the Nectar. As there are four nodes; one server and 
 three clients par�cipa�ng in the federated learning setup, we need to create four VMs. The specific steps 
 required to create a VM is men�oned at the official website of Nectar: 

 h�ps://tutorials.rc.nectar.org.au/cloud-starter/02-tutorials 

 The steps are also illustrated at AusCAT documenta�on: 
 h�ps://australiancancerdatanetwork.github.io/auscatverse/simula�on/NECTAR.html 

 We will be crea�ng from Ubuntu image and therefore need to generate cryptographic key pairs; the 
 public key will be used at the �me of VM crea�on and private key will be used at the �me of logging in. 

 A.2.2. Login and Copying Files 
 To login into the VM, use the following syntax: 

 ssh -i ~/.ssh/your-private-ssh-key ubuntu@your-vm-ip 

 To copy files from the local machine into the VM, use the following syntax: 

 scp /path/to/local/file ubuntu@your-vm-ip:/path/to/remote/directory 

 We need to copy the relevant files to the VMs. For the server VM, we need to copy the server python file 
 and pyproject.toml file (which lists all the required packages to be installed). For each of three client 
 VMs, we need to copy the client python file, pyproject.toml file and data (csv) file. 

 A.2.3. Run Python Files 
 Once the relevant files are copied to the VM, we need to install the relevant packages listed in 
 pyproject.toml for all the server and three client VMs. A�er this, run the server python file first, once the 
 server is up and running, run the client python files from the client VMs (Note: make sure to enter the 
 server’s VM’s IP address and port number in each of the client python file). 
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 A.3. Implementa�on on Nectar Cloud using Docker 

 This sec�on describes the required steps to implement the above federated learning setup using Docker 
 instead of raw python files. 

 A.3.1. Docker Installa�on 
 We need to install Docker at each of four VMs. The detailed steps for the installa�on of Docker in Ubuntu 
 VM are men�oned at AusCAT documenta�on: 

 h�ps://australiancancerdatanetwork.github.io/auscatverse/simula�on/DOCKER_PORTAINER.html 

 A.3.2. DockerFiles 
 Once the docker is installed, we need to create docker images on the VMs using DockerFiles. The 
 DockerFile for the server and the client will be a bit different; though a same DockerFile will be used for 
 all three clients. 

 The server DockerFile is illustrated in the following figure: 

 First, we are using a python base image to install it. The working directory of the container is set to /app 
 (this will be used when we run the container of the image). Next, we are copying all the files from the 
 local machine current directory to the container current directory (which is /app set in the previous line); 
 need to make sure we have all the required files (client python file, data file, pyproject.toml and 
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 DockerFile). Then, we are installing the required packages men�oned in pyproject.toml. Finally, the 
 servor python file is being run at the end. 

 The client DockerFile is illustrated in the following figure: 

 The only difference between is the client python file being run at the last line as compared to the server 
 DockerFile. 

 A.3.3. Build and Run Images 
 To build the Docker Image using DockerFile, use the following syntax: 

 docker build -t [name-of-the-image] -f [name-of-the-DockerFile] 

 Once the images are created/build, we need to run the containers for these images on the respec�ve 
 VMs using the following syntax: 

 docker run -it --rm -v $(realpath ../../data):/app/data f [name-of-the-image] 

 -it: it is for interac�ve mode 

 -v: to mount the host’s directory to the container’s directory. 
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