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frequently used to treat ADHD (Arnsten 2009). If diagnosed 
early and treated promptly, a recovered individual may be 
able to restore neuronal connections to the prefrontal cor-
tex and resume normal activities of daily living (Mattfeld 
et al. 2014). Otherwise, ADHD symptoms may persist into 
adulthood, increasing the likelihood of developing depres-
sion and antisocial behaviors as well as other undesirable 
outcomes like crime, academic underachievement, interper-
sonal relationship issues, and low employability (Sayal et 
al. 2018; Shaw et al. 2012; TAYLOR et al. 1996). Conduct 
disorder (CD) is frequently comorbid in approximately 30% 
of ADHD cases (Biederman et al. 1991). Some characteris-
tics of CD include aggression towards people and animals, 
theft, violation of rules, and destruction of properties (Lil-
lig 2018b). Furthermore, it has been revealed that patients 
with ADHD and CD are the least responsive to treatment 

Introduction

Attention deficit hyperactivity disorder (ADHD) is a com-
mon pediatric neurodevelopment disorder, with a global 
prevalence of 5% among people aged 18 and under (Sayal et 
al. 2018). Due to the lack of dopamine production, the pre-
frontal cortex, which is crucial for managing behavior, emo-
tion, and attention, is particularly undeveloped in those with 
ADHD (Arnsten 2009; Loh et al. 2022a; Barua et al. 2022). 
As such, ADHD individuals exhibit forgetfulness, disorga-
nization, and loss of concentration and attention (Magnus et 
al. 2021). Hence stimulant medications like Ritalin or Con-
certa, which can increase dopamine levels in the brain, are 
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Abstract
In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied 
alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, 
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mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. 
Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that 
is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented 
and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were 
then used to train the convolutional neural network (CNN) model, and the model’s performance was evaluated using 
10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations 
for the prediction result made by the ‘black box’ CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 
CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, 
ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 
91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM 
also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform 
temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental 
health professionals and clinicians to consider when making a diagnosis.

Keywords  Explainable artificial intelligence (XAI) · Deep learning · ADHD · Conduct disorder · Grad-CAM · CNN · 
EEG

Received: 8 August 2023 / Revised: 4 October 2023 / Accepted: 23 October 2023 / Published online: 28 November 2023
© The Author(s) 2023

ADHD/CD-NET: automated EEG-based characterization of ADHD and 
CD using explainable deep neural network technique

Hui Wen Loh1 · Chui Ping Ooi1 · Shu Lih Oh2 · Prabal Datta Barua2,3,4,5,6,7,8,9,10 · Yi Ren Tan11 ·  
U. Rajendra Acharya12,13,14 · Daniel Shuen Sheng Fung11,15

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-023-10028-2&domain=pdf&date_stamp=2023-11-2


Cognitive Neurodynamics (2024) 18:1609–1625

(Carpentier et al. 2012; Shaw et al. 2012). Therefore, we 
must identify ADHD patients who are comorbid with CD 
to arrange a different treatment protocol that is best suited 
to them rather than receiving the same treatment procedure 
as ADHD.

According to the American Psychiatric Association, a 
comprehensive clinical interview and behavior rating scales 
are required to confirm a diagnosis of ADHD or CD (Levy 
2014; Marshall et al. 2021; Salekin 2016). Clinical inter-
views are conducted with patients, family members, and 
teachers to determine if the patients exhibit symptoms in 
multiple settings (Marshall et al. 2021; Valo and Tannock 
2010). Behavioral rating scales are frequently used in con-
junction with clinical interviews, and they are designed to 
meet the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM) diagnostic requirements (American Psychiatric 
Association 2013; Marshall et al. 2021). These assessment 
approaches, however, are based on subjective judgments, 
and the evaluation process is lengthy and tedious, which 
delays the diagnosis and impedes the delivery of the timely 
intervention. Furthermore, subjective evaluation of symp-
toms is prone to misdiagnosis (Sansone and Sansone 2011); 
there have been cases where students mimic ADHD symp-
toms to obtain ADHD prescription stimulants, which can 
aid in concentration (Hall et al. 2005), weight management 
(Piran and Robinson 2006), academic (Rabiner et al. 2010) 
and athletic performance (McDuff and Baron 2005). There-
fore, an objective evaluation of ADHD and CD is essential 
in facilitating early diagnosis and reducing the likelihood of 
misdiagnosis and abuse of ADHD prescription stimulants.

Studies have shown visible differences in brain activi-
ties recorded using electroencephalograms (EEG) and 
magnetic resonance imaging (MRI) between ADHD and 
controls (Sridhar et al. 2017; Travell and Visser 2006), non-
medicated responders and medicated responders (Loo and 
Barkley 2005). This study will be using EEG data acquired 
from ADHD, ADHD + CD and CD patients to develop a 
computer-aided diagnostic (CAD) tool based on artificial 
intelligence. As EEG is high-dimensional data with a num-
ber of features exceeding that of observations, we will be 
using a deep learning (DL) model, convolutional neural 
network (CNN) in particular, rather than the conventional 
machine learning (ML) models to perform the classifica-
tion (Mirza et al. 2019). This is because feature extraction 
and selection—are crucial procedures when creating a ML 
model—can result in information loss (Faust et al. 2019; 
Loh et al. 2020; Mirza et al. 2019). DL models based on 
neural networks, can process high-dimensional data with 
minimal information loss (Faust et al. 2019). Additionally, 
the feature extraction and selection process is not necessary 
to develop a DL model (Faust et al. 2019).

Hence, we propose ADHD/CD-NET, a DL system that 
is a cost-effective CAD tool for ADHD and CD diagnosis. 
DL models, however, are not without drawbacks. The ‘black 
box’ nature of the DL model results in poor interpretability 
of the results, as neither the clinicians nor developers have 
information on how the DL model comes about with its pre-
diction (Loh et al. 2022). Fortunately, explainable artificial 
intelligence (XAI) techniques have recently been developed 
to provide explanations for the DL model’s predicted results 
(Barredo Arrieta et al. 2020; Nazar et al. 2021). In this study, 
ADHD/CD-NET incorporates a well-known XAI technique 
known as gradient-weighted class activation mapping 
(Grad-CAM) to provide an interpretation of the predicted 
result (Zhou et al. 2015). The novelties of our study are 
summarized as follows:

	● To the best of our knowledge, this is the first study to 
use explainable DL approaches to analyze EEG data to 
distinguish ADHD from its comorbidities, ADHD + CD 
and CD.

	● We have also proposed a unique EEG preprocessing 
strategy, which involves estimating the Pearson correla-
tion coefficient between EEG channels and then trans-
forming the correlated EEG channels using CWT to 
generate a channel-wise CWT correlation matrix.

	● We employed the XAI technique (Grad-CAM) to visual-
ize the interactions between EEG channels for patients 
with ADHD, ADHD + CD, and CD. This technique 
highlighted significant pairs of correlated EEG channels 
that played a crucial role in the classification of ADHD, 
ADHD + CD, and CD patients.

Related works

Numerous studies have been conducted to detect ADHD 
objectively. Table  1 contains a list of recent works com-
pleted between 2017 and 2022 that focused on distin-
guishing ADHD patients from healthy controls using EEG 
signals. Exceptional performance have been achieved with 
ML and DL models, with the lowest classification accuracy 
being 81% (Kim et al. 2021) and 83% (Vahid et al. 2019) 
for ML and DL models, respectively, and the highest being 
100% (Kaur et al. 2020; Öztoprak et al. 2017), and 99.50% 
(Ahmadi et al. 2021). In addition, 7 out of 9 DL studies pro-
posed using the CNN model, demonstrating that the CNN 
model is the go-to DL model for EEG analysis in ADHD 
detection, which we had also adopted in our study. Previous 
works have successfully demonstrated that the EEG char-
acteristics of ADHD patients differ from those of healthy 
controls. The next step in improving ADHD diagnosis will 
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be to further distinguish those diagnosed with ADHD from 
CD, which is a common comorbidity of ADHD that is fre-
quently misdiagnosed as the other due to similar clinical 
symptoms (FARAONE et al. 1997; KUHNE et al., 1997). 
Hence distinguishing ADHD, ADHD + CD, and CD is a 
much more difficult task compared to ADHD and healthy 
controls. Therefore, this study proposed ADHD/CD-NET, 

a deep learning system for objectively identifying ADHD 
from CD using EEG signals.

Study Subjects Sampling 
Frequency

Features Classifier Accu-
racy 
(%)

Deep learning (DL)
(Zhou et al. 2022) End-to-end EEG CNN 97.70
(Wang et al. 2022) 44 HC

52 ADD
48 ADHD

256 Hz Event-related potential 
(ERP)

CNN-LSTM 98.23

(Tosun 2021) 1088 HC
1088 ADHD

500 Hz Power spectral 
features

LSTM 92.20

(Ahmadi et al. 
2021)

14 HC
13 ADHD-C
12 ADHD-I

250 Hz Power spectral 
features

CNN 99.50

(Dubreuil-Vall et 
al. 2020),

20 HC
20 ADHD

500 Hz Spectrograms CNN 88.00

(Moghaddari et al. 
2020),

30 HC
31 ADHD

128 Hz Powers pectral band 
separation Making 
RGB images

CNN 98.50

(Vahid et al. 2019) 44 HC
48 ADHD

500 Hz End-to-end EEG CNN 83.00

(Chen et al. 2019b) 57 HC
50 ADHD

1000 Hz Power spectral 
features

CNN 90.30

(Chen et al. 2019a) 51 HC
50 ADHD

1000 Hz Connectivity matrix CNN 94.70

Machine learning (ML)
(Barua et al. 2022) 60 HC

61 ADHD
128 Hz Ternary motif pattern-

based features
kNN 95.57

(Kim et al. 2021) 45 HC
34 ADHD

1000 Hz MMN source activity 
features

SVM 81.00

(Guney et al. 2021) 38 HC
27 ADHD

1000 Hz Event-related potential 
(ERP)

ANN 98.40

(Catherine Joy et 
al. 2022)

5 HC
5 ADHD

256 Hz Power spectral 
features

ANN 99.80

(Altınkaynak et al. 
2020)

23 HC
23 ADHD

2500 Hz Morphologi
cal, nonlinear,
and wavelet
features

MLP 91.30

(Rezaeezadeh et al. 
2020)

12 HC
12 ADHD

256 Hz Power spectral 
features

SVM 99.60

(Müller et al. 2020) 147 HC
181 ADHD

500 Hz Power spectral 
features, ERP peak 
amplitudes and 
latencies

SVM 80.00

(Chen et al. 2019a, 
b, c)

58 HC
50 ADHD

1000 Hz Power spectral 
features

SVM 84.60

(Kaur et al. 2020) 50 HC
47 ADHD

256 Hz PSR-PSO NDC 100

(Khoshnoud et al. 
2018)

12 HC
12 ADHD

256 Hz Power spectral 
features

SVM 83.30

(Öztoprak et al. 
2017)

38 HC
70 ADHD

1000 Hz Power spectral 
features

SVM 100

Table 1  List of related EEG-
based ML and DL studies that 
used the ADHD vs. healthy con-
trol dataset to detect ADHD
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Diagnostic Interview Schedule for Children (DISC), a stan-
dard diagnostic test that is widely used in ADHD research 
and assessment (Lewin et al. 2014). Participants remained 
resting with their eyes open for 3 min to collect resting-state 
EEG using MP150 single-channel EEG 100c biopotential 
amplifiers linked to data acquisition software Acknowl-
edge. The 12 EEG channels aken are as follows: Fp1, Fp2, 
F3, F4, P3, P4, O1, O2, F7, F8, T3, and T4. As a result, 
123 participants’ 12-channel EEG signals with a sampling 
frequency of 500  Hz were collected, and all 12 channels 
will be used in this study to develop a multi-channel CAD 
tool. Each signal is then segmented into 8 chunks of 21.25s 
epochs, each with 10,625 timesteps (21.25s × 500?Hz
), resulting in 128 CD samples (16children × 8chunks
), 360 ADHD samples(45children × 8chunks ), and 496 
ADHD + CD samples (62children × 8chunks ). The choice 
of a 21.25-second epoch duration was determined through 
extensive experimentation involving various segment dura-
tions. After thorough testing, it became evident that utilizing 
a 21.25-second epoch consistently produced the most opti-
mal and favorable results.

Public dataset (external evaluation)

This study’s available EEG data comes from (Ali Motie 
Nasrabadi, Armin Allahverdy, Mehdi Samavati, 2020), 
which includes 61 children with ADHD and 60 healthy 
controls (HC), all within the age range of 7 to 12 years 
old. A qualified psychiatrist diagnosed the ADHD adoles-
cents using DSM-IV criteria, and they were given Ritalin 
for up to 6 months. There were no psychiatric illnesses, 
epilepsy, or reports of high-risk behaviors among the chil-
dren in the HC group. The EEG recording was based on 
a visual attention test in which the children were given a 

Methods

The deep learning system, ADHD/CD-NET, proposed in 
this study is depicted in Fig. 1. The subsequent sections con-
tain information on the dataset used in this study, describing 
how we convert 12-channel EEG signals into a channel-wise 
CWT correlation matrix, expands on the model architecture 
of ADHD/CD-NET, and introduces Grad-CAM, which is 
employed to explain ADHD/CD-NET.

Data acquisition

Private dataset (internal evaluation)

The private EEG data for this study came from a clinical 
trial that was approved by the Domain Specific Review 
Board (DSRB) of the National Healthcare Group (NHG) 
in Singapore (DSRB 2008/00410) (Raine et al. 2019). 
The goal of the trial, which involved 123 participants 
(7–16 years old) from the Child Guidance Clinic in Sin-
gapore, was to determine whether omega-3 supplements 
have a reduction effect in lowering aggression and whether 
aggression can be further reduced when the supplements 
are used in conjunction with standard therapies. In addi-
tion to analyzing the efficacy of omega supplements, the 
trial also obtained ECG data from its participants at the 
baseline time point. The EEG data were anonymized and 
de-identified to ensure patient confidentiality. These par-
ticipants were divided into three groups: CD only (16 
children), ADHD only (45 participants), and ADHD + CD 
(62 participants), following the diagnostic criteria from 
the Diagnostic and Statistical Manual of Mental Disorders 
fourth edition Text Revision (DSM-IV-TR). Furthermore, 
the parents of these children completed a computerized 

Fig. 1  Flowchart process of ADHD/CD-NET
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denoted by f (t), also describes this CWT mechanism. The 
resulting transformed signal will be converted into a coef-
ficient matrix of n × m  where n  is the total number of scale 
and m  is the length of the signal (Raghavendra et al. 2021). 
In our study, we have set n  = 30 and m  = 10,625 which is 
the timestep of the segmented EEG signal.

Wψ (f ) (a, b) =?f, ψa,b? =
∫ ∞

−∞
f (t)

−
ψa,b (t) dt � (2)

Channel-wise CWT correlation matrix

PyWavelets (Lee et al. 2019), an open-source wavelet trans-
formation program for Python, was used to apply CWT to 
each EEG segment, as indicated in Fig. 2. After experiment-
ing with all of the wavelets available in PyWavelets, we 
chose Gaussian wavelet ‘gaus6’ for our signal transforma-
tion as it produced the best results. As a result, for each EEG 
channel, we were able to obtain a scalogram of size 30 ×  
10,625, giving us 360 ×  10,625 for 12 channels. Then, we 
computed the Pearson correlation coefficient of all the chan-
nels, resulting in a channel-wise CWT correlation matrix of 
size 360 ×  360, which we will use to train our deep learn-
ing model.

Deep CNN model

After undergoing multiple rounds of hyperparameter tun-
ing, we developed ADHD/CD-NET, illustrated in Fig.  3 
and outlined in Table 2. This deep CNN model was specifi-
cally designed to classify channel-wise Continuous Wavelet 
Transform (CWT) correlation matrices into three distinct 
classes: ADHD, ADHD + CD, and CD. It has been shown in 
numerous studies that CNN models are suitable in various 
medical fields that require medical image analysis from CT, 
MRI, PET and X-ray (Soffer et al. 2019; Yamashita et al. 
2018). This is because CNN models are designed to emu-
late the image recognition abilities of the human visual sys-
tem (Balderas Silva et al. 2018). In addition to the analysis 

collection of images with cartoon characters to count. 
Images were presented instantly and uninterrupted after 
the youngster provided their response to ensure continu-
ous stimulation during EEG recording. The EEG data were 
collected at the Psychology and Psychiatry Research Cen-
ter at Roozbeh Hospital (Tehran, Iran) using 19 channels 
(Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, 
P4, T5, T6, O1, O2) at a sampling frequency of 128  Hz. 
Similarly, we divided each EEG signal into 16 chunks of 4s 
epochs, each with 512 timesteps (4s × 128?Hz ), yielding 
976 ADHD (61children × 16chunks ) and 960 HC samples 
(61children × 16chunks ). Likewise, the utilization of a 
4-second epoch duration was determined as optimal through 
thorough experimentation with various segment durations, 
consistently showcasing superior results.

Preprocessing

This subsection explains how EEG signals are converted to 
scalograms using the continuous wavelet transform (CWT) 
and the correlations calculated between each channel scalo-
gram, resulting in a channel-wise CWT correlation matrix.

Continuous wavelets transform (CWT)

Wavelets are a multi-resolution approach that allows for 
time and frequency fidelities in different frequency bands, 
making them extremely useful in signal decomposition 
(Brunton and Kutz 2019). Wavelet fundamentals begin with 
the mother wavelet ψ (t), which is described in Eq. 1, where 

a  and b  plays the role of scaling and translating the mother 
wavelet ψ , respectively (Brunton and Kutz 2019).

ψa,b (t) =
1√
a
ψ

(
t − b

a

)
� (1)

In CWT, wavelets of varying scales and times are used to 
shift across the input signal, yielding coefficients that are 
a function of wavelet scales and shift parameters (Raghav-
endra et al. 2021). Equation 2, in which the input signal is 

Fig. 2  12-Channel EEG segment 
conversion to channel-wise CWT 
correlation matrix
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transformed into 2D channel-wise CWT correlation matri-
ces for our proposed 2D CNN model.

The convolutional layer, pooling layer, and fully-con-
nected layer were the three key layers that made up a fun-
damental CNN model. Equation 3 illustrates the operation 
of the convolutional layer, which converts the input image 
into a much more simplistic representation for image clas-
sification. S  represents the input image, ∗  is known as the 
discrete convolutional operation, and the convolutional 
kernel’s weight is W  which is updated continuously as the 
kernel moves over the input feature (Albawi et al. 2017; 
Yildirim et al. 2019). The result of the convolutional layer 
is the feature map (O ), which is represented by Eq. 4 where 
i  and j  are the feature map’s dimensions (Albawi et al. 
2017; Yildirim et al. 2019). The feature map is further sim-
plified by the max pooling layer, which is applied after each 
convolutional operation. This lowers the feature map’s com-
plexity, lowering the likelihood that the model would overfit 
(Hafemann et al. 2017). In addition, at layer no. 11 (Fig. 3; 
Table 2), we have included a global max pooling layer that 
covers the entire feature map rather than a restricted kernel 
as in the pooling layer. Hence, the global max pooling layer 
can significantly reduce the complexity of the feature map 
compared to a simple max pooling layer.

of medical images, CNN models can also be utilized for 
biosignals. In this case, there are two approaches: (a) use 
1-dimensional (1D) CNN for the full signal analysis or 
(b) convert the biosignals into 2-dimensional (2D) repre-
sentation and use 2D-CNN. The latter method was used 
in this study, where 12-channel EEG data segments were 

Table 2  Model layer parameters of ADHD/CD-NET
No. Layer Filter 

no.
Ker-
nel 
size

Unit Output

1 Conv2D 8 3 × 3 360 × 360 × 8
2 MaxPooling2D 8 2 × 2 180 × 180 × 8
3 Conv2D 16 3 × 3 180 × 180 × 16
4 MaxPooling2D 16 2 × 2 90 × 90 × 16
5 Conv2D 32 3 × 3 90 × 90 × 32
6 MaxPooling2D 32 2 × 2 45 × 45 × 32
7 Conv2D 64 3 × 3 45 × 45 × 64
8 MaxPooling2D 64 2 × 2 22 × 22 × 64
9 Conv2D 128 3 × 3 22 × 22 × 128
10 MaxPooling2D 64 2 × 2 11 × 11 × 128
11 GlobalMaxPooling2D 128 128
12 Dropout (0.2) 128
13 Dense 32 32
14 BatchNormalization 32
15 Dense (Softmax) 3 3

Fig. 3  Model architecture of ADHD/CD-NET
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Gradient-weighted class activation mapping (Grad-
CAM)

Grad-CAM is a well-known XAI method for interpreting 
CNN models by displaying to users what the CNN model 
“sees” as a significant characteristic when generating a pre-
diction (Jahmunah et al. 2022; Selvaraju et al. 2016). The 
distinctive features will gradually become more noticeable 
as the CNN layers’ convolution operation continue to con-
volve the feature map; as a result, the last convolutional 
layer is considered to have the most distinctive feature 
highlighted. Therefore, Grad-CAM is frequently applied 
to the final convolution layer to determine which features 
have been highlighted by utilizing the gradient informa-
tion provided by the neurons in the convolutional layer as 
they assign importance value to the region of interest on the 
feature map (Jahmunah et al. 2022; Selvaraju et al. 2016). 
Then, Grad-CAM produces a heatmap with the important 
regions highlighted in red and the less important regions 
remaining in blue.

Results

Internal evaluation results (private dataset)

We used 10-fold cross-validation to evaluate the model. Fig-
ure 4 depicts the model performance graph during training, 
which demonstrated that the model did not overfit, as seen 
by the consistently small difference between the training 
and validation curves. In addition, we used a model check-
point during model training to save the best-performing 
model weights obtained during training. The best-perform-
ing model weights will then be used to evaluate the test fold 
in 10-fold cross-validation.

The dataset was divided into ten equal folds for 10-fold 
cross-validation, with 9 folds used for model training and 
the remaining fold used to evaluate model performance. In 
addition, we used 1 fold from the training dataset for model 
tuning as the validation set. This process is repeated ten 
times to ensure that every fold has gone through model train-
ing, validation, and testing. The results of 10-fold cross-val-
idation are shown in Table 3. ADHD/CD-NET achieved a 
high overall performance of 93.70% classification accuracy. 
The model also has a high specificity of 95.35%, which 
means it correctly recognizes the majority of true negative 
samples rather than misclassifying them as false positives. 
The remaining metrics are sensitivity and precision. Sensi-
tivity measures how many samples were correctly classified 
as true positive rather than a false negative, while precision 
compares the true positive class to the false positive class. 
Hence, there is always a trade-off between model sensitivity 

(S ∗ W ) (i, j) =
∑

m

∑

n

S (m, n) W (i − m, j − n)� (3)

Ol
n =

(
SW (i,j) ∗ W (i, j)

)
n � (4)

In ADHD/CD-NET, the convolution and max pooling oper-
ations reduced the input matrix from 360 ×  360 to 11 ×  
11, which is then reduced to a 1D array of length 128 after 
the global max pooling layer. The fully-connected layer, 
which is the neural network component of the CNN model, 
will receive this 1D array as input. The fully-connected 
layer is composed of two layers; the first layer is made up of 
32 neurons, while the final output layer is made up of 3 neu-
rons that use the SoftMax activation function to determine 
the likelihood that the sample would fall into one of three 
categories: CD, ADHD + CD, or CD. In addition, we have 
a dropout layer of 0.2, just before the fully connected layer, 
to lessen the likelihood of model overfitting. As for the opti-
mizer and loss function of the deep CNN model, we used 
Adam with a learning rate of 0.0001 and sparse categorical 
cross entropy, respectively. Then we train the model using 
700 epochs with a batch size of 15. To address the imbal-
ance in the dataset caused by CD samples being signifi-
cantly smaller than ADHD and ADHD + CD samples, the 
weighted loss was also incorporated during model training. 
This guarantees that the minority CD class is given more 
weight than the ADHD and ADHD + CD classes, allowing 
the model to emphasize learning the CD class rather than 
being overwhelmed by the potential bias created by the 
big ADHD + CD class. ADHD/CD-NET was created with 
Python using Tensorflow (v2.9.1). The specifications of the 
computer used to train the model are Intel Core i9-12900 F 
CPU, Nvidia QuadroA2000 12GB, 128GB RAM, and 
1.0 TB 2.5 Inch SATA SSD.

Fig. 4  Performance graph of ADHD/CD-NET during model training
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Explanation with Grad-CAM (private dataset)

To demonstrate the explainability of ADHD/CD-NET, 
we performed a separate experiment in which we ran-
domly selected one subject from each category of ADHD, 
ADHD + CD, and CD as the test set, with the remaining 
subjects used to train the model. This ensures that the test 
set is entirely new to the model. Recall that we segmented 
the EEG data of each patient into 8 chunks in Sect. 2.1. Fig-
ure 6 depicts the classification result of the model on the test 
set. As can be seen, the model correctly identifies the ADHD 
and CD classes with 100% accuracy. The ADHD + CD sam-
ples, on the other hand, had three segments misclassified 
as ADHD. We then applied Grad-CAM to all of the seg-
ments and interestingly, we discovered that the correlation 
between channels Fp2 and P4 appears to be the consistent 
significant contributors as to why the segment is predicted 
as ADHD (Fig.  7). Repeating patterns are less visible in 
ADHD + CD and CD samples, especially in the former, 
because it contains the combination of ADHD and CD char-
acteristics (Fig. 8). Nonetheless, there are some regions in 
the CD samples that appear to be significant for predicting 
CD: the correlation between Fp1 with F8 and Fp1 with T3 
(Fig. 9).

External evaluation results (public dataset)

Prior to using an external public dataset to assess ADHD/
CD-NET, the weights from earlier training with internal 
private dataset have already been cleared. This ensures that 
the ADHD/CD-NET is evaluated with a clean slate and that 

and precision, as high model sensitivity may indicate that 
the model is able to correctly recognize most of the true 
positive samples, whereas low model precision indicates 
that the model incorrectly classifies the majority of other 
samples as the true positive class. Fortunately, ADHD/
CD-NET achieves 90.83% and 91.85% for model sensitiv-
ity and precision, indicating that our model can effectively 
balance the trade-off between sensitivity and precision. The 
model performance can also be visualized using a confu-
sion matrix, as shown in Fig. 5, which demonstrates that the 
majority of the samples in each class have been correctly 
identified even when there is a class imbalance, with the CD 
class having the fewest samples, but the model could cor-
rectly predict 115 out of 128 CD samples.

Table 3  Performance parameter of ADHD/CD-NET for internal evalu-
ation with our private dataset
Fold Accuracy 

(%)
Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

1 93.94 91.67 95.24 91.67
2 94.95 94.44 95.24 91.89
3 92.93 86.11 96.83 93.94
4 96.97 97.22 96.82 94.59
5 96.97 94.44 98.41 97.14
6 90.90 94.44 88.89 82.93
7 93.88 91.67 95.16 91.67
8 88.78 75.00 96.77 93.10
9 91.75 91.67 91.80 86.84
10 95.88 91.67 98.36 97.06
Mean ± 
(SD)

93.70 ± 2.53 90.83 ± 5.96 95.35 ± 2.81 91.85 ± 4.16

Fig. 6  Confusion matrix of ADHD/CD-NET on test set of 3 subjects 
from each disorder category. ‘A’ represents ADHD samples, ‘AC’ rep-
resents ADHD + CD samples, and ‘C’ represents CD samples

 

Fig. 5  Normalized confusion matrix of ADHD/CD-NET for internal 
evaluation with our private dataset. ‘A’ represents ADHD samples, 
‘AC’ represents ADHD + CD samples, and ‘C’ represents CD samples
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properly detected 960 out of 976 ADHD samples and 941 
out of 960 HC samples.

Discussion

This study objectively distinguishes ADHD from CD using 
EEG signals via our proposed deep learning system, ADHD/
CD-NET. The treatment protocol for this three combina-
tion of disorders differ; while stimulant and non-stimulant 

memory from earlier training does not interfere with its 
evaluation with an external public dataset. Table 4 displays 
the findings of 10-fold cross validation for external evalua-
tion. ADHD/CD-NET has a high classification accuracy of 
98.19%, sensitivity of 98.36%, specificity of 98.02%, and 
precision of 98.06%. This demonstrates that ADHD/CD-
NET can also perform well with an external dataset and 
accurately distinguish between ADHD and HC control, as 
seen in the confusion matrix in Fig.  10; ADHD/CD-NET 

Fig. 7  Grad-CAM heatmap 
produced for each segment’s 
channel-wise CWT matrix in 
the ADHD subject. Red circles 
indicate the EEG channels rec-
ognized by ADHD/CD-NET as 
important for prediction
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required not only for the benefit of early detection and treat-
ment but also to reduce the likelihood of drug abuse.

Previously, our team proposed ML models using the 
same dataset as in Table 5. This study is the first to use a 
DL model with the unique dataset to differentiate ADHD, 
ADHD + CD, and CD. In (Tor et al. 2021) study, they used 
empirical mode decomposition and discrete wavelet trans-
form to decompose the signal, then extracted nonlinear 
features such as entropy, fractal dimension, Lempel-Ziv 
complexity, and so on. The top few significant features were 

medications are available for ADHD (Brown et al. 2018), 
there are currently no official U.S. Food and Drug Admin-
istration (FDA) medications approved to treat CD (Lillig 
2018a). Misdiagnosis of CD as ADHD increases the like-
lihood of incorrect medication prescription and may also 
result in a higher risk of drug abuse, as was mentioned ear-
lier, where students may fake ADHD symptoms to obtain 
stimulant medication (Sansone and Sansone 2011). There-
fore, objective ADHD, ADHD + CD, and CD diagnosis is 

Fig. 8  Grad-CAM heatmap 
produced for each segment’s 
channel-wise CWT matrix in 
the ADHD+CD subject. Red 
circles indicate the EEG channels 
recognized by ADHD/CD-NET 
as important for prediction
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Similarly, (Koh et al. 2022) followed the same proce-
dure to decompose the ECG signals using empirical wavelet 
transform (EWT) and extracted EWT entropies feature to 
train their best performing ML classifier, bagged tree, result-
ing in 87.19% classification accuracy. Likewise, these EWT 
entropies are not clinically recognized as well. Therefore, 
this research aims to improve on previous works by incor-
porating time localization and channel selection. Segment-
ing EEG signals into chunks of 0-21.25  s, 21.26-42.50  s, 
42.51-63.75  s, and so on reveals which EEG segment in 
time exhibits ADHD or CD characteristics. Grad-CAM’s 

then selected using a sequential forward selection tech-
nique to train their k-nearest neighbour (kNN) ML classi-
fier, resulting in a high classification accuracy of 97.88%. 
Despite the high model performance, the proposed tech-
nique suffers from poor interpretability because nonlinear 
features of EEG signals are not recognized as a clinical stan-
dard for ADHD or CD diagnosis. When they decomposed 
the EEG signals to extract nonlinear features, information 
such as time and location of the EEG characteristic contrib-
uting to the diagnosis were lost.

Fig. 9  Grad-CAM heatmap 
produced for each segment’s 
channel-wise CWT matrix in the 
CD subject. Red circles indicate 
the EEG channels recognized by 
ADHD/CD-NET as important for 
prediction
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heatmap provided information on which EEG channel dis-
played such characteristics. This is due to the fact that EEG 
signals are highly varying, which means that not all EEG 
channels may capture the important characteristic contribut-
ing to the diagnosis. Similarly, it is possible that not all time 
segments consistently exhibit the characteristics of ADHD 
or CD patients. Thus, our study addresses this limitation 
by identifying the contributing EEG segment and signifi-
cant channels for ADHD, ADHD + CD, and CD detection, 
thereby providing objective data for relevant medical pro-
fessionals in this field, such as psychologists, pediatricians, 
and neurologists.

Furthermore, we externally evaluated our proposed 
model with a public dataset (Ali Motie Nasrabadi, Armin 
Allahverdy, Mehdi Samavati, 2020) to demonstrate that 
ADHD/CD-NET can discriminate ADHD from HC in addi-
tion to ADHD, ADHD + CD, and CD. As a result, ADHD/
CD-NET produced equivalent results to earlier research 
that employed the same public dataset; as shown in Table 6, 
all studies achieved classification accuracy of greater than 
90% using DL models. (Khare and Acharya 2023) achieved 
the highest classification accuracy of 99.81%, followed 
by (Talebi and Motie Nasrabadi 2022) with classification 
accuracy of 99.09%. ADHD/CD-NET, on the other hand, 
achieved a high comparable classification accuracy of 
98.19%. This shows that ADHD/CD-NET can perform in 
both three-class (ADHD, ADHD + CD, and CD) and binary 
(ADHD and HC) classification tasks. It can be noted from 

Table 4  Performance parameter of ADHD/CD-NET for external eval-
uation with public dataset
Fold Accuracy 

(%)
Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

1 97.93 100 95.83 96.08
2 98.97 97.96 100 100
3 98.45 98.98 97.92 97.98
4 98.97 100 97.92 98
5 98.97 98.98 98.96 98.98
6 96.39 95.92 96.88 96.91
7 99.48 100 98.95 98.98
8 98.45 98.96 97.92 97.96
9 97.41 95.88 98.96 98.94
10 96.89 96.91 96.88 96.91
Mean ± 
(SD)

98.19 ± 0.96 98.36 ± 1.54 98.02 ± 1.18 98.06 ± 1.13

Table 5  List of studies that used the same private dataset for classifica-
tion of ADHD, ADHD + CD, and CD
Study Dataset Features Classifier Accu-

racy 
(%)

(Tor 
et al. 
2021)

45 ADHD
62 
ADHD + CD
16 CD
500 Hz

EEG
(Nonlinear 
features)

ML (kNN) 97.88

(Koh 
et al. 
2022)

ECG (EWT 
entropies)

ML (Bagged tree) 87.19

This 
work

EEG 
(CWT + cor-
relation 
matrix)

DL 
(CNN + Grad-CAM)

93.70

Table 6  List of studies that used the same public dataset for classifica-
tion of ADHD and HC
Study Features Classifier Accu-

racy 
(%)

(Mohammadi et 
al. 2016)

EEG
(Nonlinear features)

DL (MLP) 93.65

(Allahverdy et 
al. 2016)

EEG
(Nonlinear features)

DL (MLP) 96.70

(Talebi and 
Motie Nasrabadi 
2022)

Linear and nonlinear 
connectivity features

DL (ANN) 99.09

(Ahire et al. 
2023)

DWT and statistical 
features

ML (Bernoulli 
Naive Bayes)

96.00

(TaghiBeyglou et 
al. 2022)

Raw EEG signals DL (CNN) 95.83

(Atila et al. 
2023)

Features extracted 
based on Sophie 
Germain’s Primes on 
Ulam’s Spiral

ML (SVM) 97.46

(Maniruzzaman 
et al. 2023)

Time domain and 
morphological 
features

ML (Gauss-
ian process 
classification)

97.53

(Khare and 
Acharya 2023)

VMD-HT extracted 
EEG features

ML (EBM) 99.81

This work EEG (CWT + correla-
tion matrix)

DL (CNN) 98.19

Fig. 10  Normalized confusion matrix of ADHD/CD-NET for external 
evaluation with public dataset
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because mental health professionals and clinicians will have 
access to the daily ECG data to see if the patient exhibits 
any characteristics of ADHD or CD. Hence, the path of 
future ADHD or CD detection and monitoring systems 
should shift towards widely accessible physiological data, 
such as ECG (Khare et al. 2023; Loh et al. 2023). As such, 
future work will necessarily require the collection of ECG 
data via wearable devices from ADHD, ADHD + CD, CD, 
and healthy controls to develop this ADHD or CD detection 
and monitoring system.

Conclusion

This work proposes a deep learning system (ADHD/CD-
NET) for EEG signal-based detection of CD, ADHD + CD, 
and ADHD. A unique preprocessing method is used in this 
proposed system to turn segments of 12 EEG channels 
into channel-wise CWT correlation matrices, which the 
deep CNN model then analyzes and categorizes into one 
of three disorder categories. As a result, ADHD/CD-NET 
successfully achieved a high classification accuracy of 
93.70%, proving that our system can distinguish ADHD, 
ADHD + CD, and CD, which is difficult for mental health 
professionals and clinicians to do because they share similar 
clinical symptoms. Additionally, we use Grad-CAM, which 
can assist us in highlighting the critical EEG channels to con-
sider for diagnosis. Hence, ADHD/CD-NET is capable of 
performing time localization from the EEG signal segments 
in time and selection of significant EEG channels for diag-
nosis, offering objecting analysis for mental health profes-
sionals and clinicians to consider when making a diagnosis. 
Additionally, we tested ADHD/CD-NET using an external 
public dataset, and the results showed 98.19% classification 
accuracy when differentiating ADHD from healthy controls. 
In the future, we intend to evaluate our model using a larger 
samples dataset with more patient diversity and additional 
physiological signals, such as the ECG, which can be easily 
obtained via smartwatches.

Supplementary Information  The online version contains 
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Table 6 that, the performance of our proposed model is com-
parable with the state-of-the-art techniques. We have also 
shown that our model is able to classify ADHD from HC 
without changing layer parameters using an external public 
dataset. This justifies that our generated mode is accurate 
and robust.

In summary, the novelties and the significant aspects of 
our research are listed as follows:

	● We are the first study to use an explainable DL model 
to distinguish between ADHD, ADHD + CD, and CD.

	● Another innovative concept is the preprocessing method 
for transforming EEG into a channel-wise CWT correla-
tion matrix.

	● We achieved 93.70% classification accuracy, demon-
strating the efficacy of ADHD/CD-NET.

	● Grad-CAM was also used to highlight the EEG channels 
that significantly influenced the classification outcome.

	● As a result, ADHD/CD-NET can locate the EEG chan-
nels that exhibit abnormal EEG features and provide 
time localization of such traits.

	● ADHD/CD-NET also achieves a high classification 
accuracy of 98.19% with an external public dataset, 
separating ADHD samples from HC samples.

Despite the benefits of ADHD/CD-NET, we are neverthe-
less constrained by issues like the lack of data which com-
promised the performance of ADHD/CD-NET. The data’s 
diversity is also another limitation because Singapore is 
only home to three major races: Chinese, Malays, and Indi-
ans. As a result, the data used in this study can only repre-
sent the Singaporean population and cannot be generalized 
(Chong 2007).

Having an objective CAD tool for ADHD and CD diag-
nosis and differentiation, on the other hand, can significantly 
reduce the healthcare burden in Singapore’s mental health 
institutions, where there is a shortage of healthcare profes-
sionals; the population of psychiatrists to population ratio is 
an appallingly low 2.6:100,000 (Chong 2007). Therefore, 
future work must be undertaken in order to eventually incor-
porate CAD tools in mental healthcare facilities. As a result 
of the success of this study, we hope to develop a DL model 
for ADHD, ADHD + CD, and CD differentiation using ECG 
signals, allowing for an additional parameter for objective 
diagnosis in addition to EEG. Furthermore, unlike EEG, 
the ECG signal can be easily captured by smartwatches as 
compared to the laborious electrodes needed to record EEG 
signals. ECG signal preprocessing is significantly less com-
plex than EEG’s, which lowers computational complexity. 
If such a successful DL system is created, patients with 
ADHD or CD may be able to monitor their conditions using 
smartphones. This will help confirm the diagnosis of ADHD 
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