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Abstract— In human-robot collaboration (HRC) settings, 
hand motion intention prediction (HMIP) plays a pivotal role in 
ensuring prompt decision-making, safety, and an intuitive col- 
laboration experience. Precise and robust HMIP with low com- 
putational resources remains a challenge due to the stochastic 
nature of hand motion and the diversity of HRC tasks. This pa- 
per proposes a framework that combines hand trajectories and 
gaze data to foster robust, real-time HMIP with minimal to no 
training. A novel 3D vector field method is introduced for hand 
trajectory representation, leveraging minimum jerk trajectory 
predictions to discern potential hand motion endpoints. This is 
statistically combined with gaze fixation data using a weighted 
Naive Bayes Classifier (NBC). Acknowledging the potential 
variances in saccadic eye motion due to factors like fatigue or 
inattentiveness, we incorporate stationary gaze entropy to gauge 
visual concentration, thereby adjusting the contribution of gaze 
fixation to the HMIP. Empirical experiments substantiate that 
the proposed framework robustly predicts intended endpoints 
of hand motion before at least 50% of the trajectory is 
completed. It also successfully exploits gaze fixations when 
the human operator is attentive and mitigates its influence 
when the operator loses focus. A real-time implementation in a 
construction HRC scenario (collaborative tiling) showcases the 
intuitive nature and potential efficiency gains to be leveraged by 
introducing the proposed HMIP into HRC contexts. The open- 
source implementation of the framework is made available at 
https://github.com/maleenj/hmip_ros.git. 

I. INTRODUCTION 
During general human collaboration, predicting the inten- 

tion behind human hand motion is a fundamental skill that 
we as humans carry out at an implicit, subconscious, and 
reactive level based on social/physical cues such as gaze and 
hand motion trajectories. Such an implicit predictive capa- 
bility of the intent of hand motion can substantially aid with 
both the efficiency and safety of human-robot collaboration 
(HRC) tasks as it provides valuable information necessary 
for high-level decision-making and planning. Thus, a robot 
with fast hand motion intention prediction can ensure a more 
intuitive collaborative experience for all parties involved. 

The problem of hand motion intention prediction (HMIP) 
in the context of HRC is typically framed in terms of 
matching an intended action of a human participant with 
the robot’s model of a known set of actions or intended 
end points (see Section II for more details). State-of-the- 
art approaches in this regard have been made by utilising 
deep learning-based approaches such as RNNs. However, 
accurate and robust HMIP, which is generalisable beyond 
repetitive tasks, remains a difficult challenge due to the 
stochastic nature of human hand motion. Furthermore, HMIP 
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is a low-level function that typically informs more resource- 
intensive high-level tasks such as decision-making, planning 
and execution. Thus, an ideal HMIP mechanism has to be 
fast and require fewer computational resources. 

Our previous work [1] proposed a vector field-based 
representation of hand motion for endpoint intent prediction 
in 2D workspaces. The primary utility of this method was 
its low computational cost and scalability. However, it is 
clear that for more complex interactions in 3D, a multimodal 
approach from a variety of human signals can improve the 
robustness and predictive capabilities. 

Eye tracking, in particular, can provide valuable infor- 
mation regarding human intention and focus. Related work 
incorporating gaze information in the context of HMIP 
primarily utilises gaze fixation under the assumption that 
fixating on a particular endpoint is predictive of the intention 
to move to that endpoint (see Section II). This assumption 
may be challenged when a human operator is unfocused or 
under high cognitive load, causing random or unfocused sac- 
cadic eye movements. To counteract this effect, the proposed 
framework utilises stationary gaze entropy (SGE), which has 
been shown to be a measure of human visual focus, to weigh 
the contribution of gaze fixation before fusing it with the 
proposed hand-tracking approach. Thus, the contributions of 
this paper are as follows: 

• A 3D vector field-based method to represent hand mo- 
tion and predict endpoint intentions based on minimum 
jerk trajectory (MJT) model-based predictions. 

• A stationary gaze entropy (SGE) based weighted gaze 
fixation approach for HMIP. 

The above modalities, which can operate independently, 
are combined using a Naive Bayes Classifier (NBC) to 
provide a statistically consistent HMIP framework. The re- 
mainder of this paper is structured as follows: Section II 
discusses the related work relevant to HMIP. Section III 
presents the 3D vector fields approach. Section IV describes 
the SGE-based weighting of gaze fixation and NBC-based 
framework. An evaluation of the proposed framework and a 
real-time implementation in an HRC construction scenario, 
i.e: collaborative tiling, is presented in V. Finally, Section 
VI concludes the paper with remarks on the experimental 
results and thoughts on future work. 

II. RELATED WORK 

Approaches to human motion intention prediction can 
broadly be categorised into explicit model-based approaches 
and learning-based approaches. 

https://github.com/maleenj/hmip_ros.git


Explicit model-based approaches attempt to predict human 
motion and intention by utilising explicitly defined dynamic 
equations based on the physics of human motion. For in- 
stance, the minimum torque change model proposed by Uno 
et al. [2] attempts to model human movement by minimizing 
the time derivative of joint torques. This requires explic- 
itly defining the dynamics equations of the musculoskeletal 
system. An alternative modelling approach known as the 
minimum jerk trajectory (MJT) model proposed by Flash 
et al. [3] proposes that human arms tend to follow a path 
between two points that minimizes the third-order derivative 
of position (i.e jerk). This approach does not require an 
explicit definition of the musculoskeletal system and has 
been successful in describing limb motion based on central 
nervous system (CNS) data from both human and animal 
studies. The MJT model was used by Landi et al. [4] to 
predict targets of human reaching motion, and by Dinh 
et al. [5] for local obstacle avoidance in HRC scenarios. 
Due to the difficulty of mathematically modelling the erratic 
behaviour of human arm motions, these approaches are 
limited to short-term trajectory predictions in repetitive tasks 
in highly controlled settings that include motion capture or 
VR systems. 

In contrast, learning-based approaches are gaining pop- 
ularity due to their ability to capture complex non-linear 
relationships. Machine learning approaches such as Hidden 
Markov Models (HMMs) have been used in predicting 
human intentions in hierarchical human-robot collaborative 
assembly tasks [6]–[8]. Gaussian Mixture Models (GMMs) 
have also been utilised to classify trajectories in repetitive 
tasks as a means to predict endpoints of human hand motion 
[9]–[11]. 

Deep learning approaches such as Recurrent Neural Net- 
works (RNNs) have recently emerged as powerful tools 
capable of predicting sequences based on time series data and 
have been applied to human motion prediction [12]. Formica 
et al [13] utilised RNNs to predict the destination of human 
hand motion in a pick-and-place case study. Improving on 
basic RNNs, Long Short-Term Memory (LSTM) based RNN 
networks have also been utilised to predict human hand 
motion [14], [15]. However, learning-based techniques as 
a whole are computationally expensive and require large 
training data sets to generalise enough to capture previ- 
ously unseen trajectories or sudden changes in hand motion. 
Furthermore, deep learning based approaches lack uncer- 
tainty information about the predictions vital for higher-level 
decision-making and planning purposes. The transparency of 
the prediction, which these techniques do not offer, is also a 
critical issue concerning safety in HRC applications where 
humans and robots collaborate with physical contact. 

Eye tracking and gaze data is another modality that is 
gaining popularity due to the multitude of information it 
provides about human intention and behaviour. Zhou et 
al. [16] combined hand motion trajectories and gaze focus 
trajectories to cluster and predict hand motion patterns based 
on a deep learning technique in a VR simulation. Choi et 
al. [17] used a similar gaze-hand relationship to predict 

human hand motion for object handover tasks. However, 
gaze-related work in this domain has been limited to gaze 
metrics such as fixation and focus trajectories. More in- 
formative metrics, such as stationary gaze entropy (SGE) 
[18] and transitionary gaze entropy (TGE) [19], have been 
largely ignored. SGE and TGE have been shown to be 
very powerful metrics in understanding human attention and 
visual focus [20]. The utility of these entropy metrics has 
been demonstrated in applications such as multiple object 
tracking in air traffic control tasks [21] and capturing human 
trust in HRC applications [22]. We hypothesize that these 
metrics can provide valuable information for human hand 
intention prediction. 

Our previous work [1] utilised vector fields to represent 
human hand motion trajectories in 2D workspaces for HMIP. 
Although theoretically, a trajectory is a continuous moving 
path that can be represented by a sequence of vectors, sensor 
noise and discretisation errors can make such a vector path 
unrepresentative of the nature of the motion. Representing 
trajectory data using a vector field has been shown to be more 
robust as it represents the likeness of where a trajectory ap- 
pears, capturing the overall flow, especially in the context of 
similarity calculations [23]. Furthermore, the computational 
scalability of vector field data and the ability to represent 
different trajectories with the same dimensionality makes 
vector field representations ideal for tasks such as clustering, 
analysis, and similarity query [24]. Such vector field-based 
trajectory analyses have been utilised widely in predicting 
pedestrian and vehicle motion paths, primarily in a 2D 
setting [25], [26]. To the best of our knowledge, 3D vector 
field representations have not been utilised in the context 
of analysing and predicting human hand motion in HRC 
applications. 

The proposed framework (See Figure 1) combines a vector 
field-based 3D representation of hand motion trajectories 
with gaze metrics to provide a robust framework that predicts 
the intended endpoint target of hand motion in an HRC 
setting. 

 

Fig. 1: Overview of Proposed Framework 
 
 

III. 3D VECTOR FIELD METHOD FOR HMIP 

This section describes the 3D vector field-based repre- 
sentation of the hand trajectory data. Hand trajectory data 
can be acquired by any state-of-the-art sensors and tracking 
methodologies, such as the Ultra Leap hand tracker, Kinect 
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sensors or motion capture systems, and is not the focus of 
this paper. 

Hand trajectory data, once obtained, is represented as 
a vector field to better capture its overall flow amidst 
discretisation errors and sensor-tracking noise. A predicted 
set of vector fields is also constructed for each possible 
known endpoint location in the human-robot collaborative 
space based on the minimum jerk trajectory (MJT) model. 
A similarity metric is then calculated between each of the 
predicted vector fields and the observed vector fields, which 
predicts the intended endpoint of the human hand motion. 
Sections III-A to III-C describe this process in more detail. 

A. Vector Field Based Representation 
 

Fig. 2: 2D Projection of the Derivation of Proposed 3D 
Vector Field Representation 

 
Consider an observed hand motion trajectory γ which 

takes discrete time steps n = f to complete, characterised 
by: 

 
γ = {x0, x1, ...xk..., xf } = {xn}n=0:f (1) 

The parameter β controls the impact of this scaling at 
each point on the vector field. This representation is a 3D 
extension and refinement of work presented in [1]. 

 

Fig. 3: Example of 3D Vector Field Generated for a Simple 
Hand Trajectory 

 
B. Trajectory Prediction Based on MJT Model 

We utilise this MJT model to make predicted trajectories 
to each of the possible end point locations in the collabo- 
rative human-robot workspace. Assume a set of m possible 
endpoint locations given by: 

 
E = [1xe,2 xe....mxe] = {axe}a=1:m (4) 

Given an initial time step 0, the final time for trajectory 
completion tf , and model-based predicted hand position vec- 
tor x, the MJT model (in continuous time) can be formally 
presented as minimising the following cost function: 

where xk ∈ R3 represents a trajectory point in space at 1 
∫ tf  d3x

  T  
d3x

 
  dt (5) 

time step n = k and x˙k the corresponding velocity at that 
 

 

2 0 dt3 
 

 

dt3 

point. Thus, let γ˙ = {x˙n}n=0:f be the velocities at each 
point along the trajectory. Consider the workspace domain 
of the human-robot interaction to be discretised by a grid 
resolution of g. Let Sk be the subdomain of the workspace 

Considering the point-to-point movement of a human 
hand, it can be assumed that the boundary conditions for 
velocity and acceleration would be zero. Furthermore, the 
boundary conditions for the position will be x(t ) = x and that is behind a plane which is perpendicular to the trajectory a 

0 0 

vector xk. A vector field Fk at time step k assigns a vector 
at each point p ∈ Sk, within the given workspace such that: 

 
Fk(p) = σ(p, xk)V (p, x˙k) + (1 − σ(p, xk))Fk−1(p) (2) 

where V (p, x˙k) represents the velocity vector x˙k translated 
to point p (See Figure 2). The parameter σ is used to 
smoothly scale the vector field based on the Euclidean 
distance to the original trajectory points to better capture 
the overall flow and likeness of the hand motion trajectory 

x(tf ) = xe for a given end point location a. Utilising these 
boundary conditions, a unique solution for the optimisation 
problem given in equation 5 can be solved for position, as 
the following polynomial [4]: 

 
xt = x0 + (axe − x0)(10τ 3 + 15τ 4 + 6τ 5) (6) 

Where τ =  t  , which is the normalised time relative to the 
time taken to complete the trajectory. Thus, differentiating 
Equation 6 gives the velocity of the predicted trajectory: 

 
 

(see figure 3). A sigmoid function σ(p, xk) is used to achieve 
this smooth scaling given by: 

x˙ = dτ dxt 
t dt dτ 

(7) 

1 σ(p, x ) = 
 

(3) 
This MJT model is utilised to calculate a set of predicted 

trajectories from the current observed hand position xk to all 
k 

1 + e (  p−xk  ) possible endpoint locations E in the collaborative workspace. β 

C = 



Σ 

S
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Since a prediction is being made for each endpoint, only 
a portion of the trajectory γ = [x0...xk] is observed at 
timestep k. Furthermore, considering the equations 6 and 7, 
the parameters x0,a xe and t are known for a given endpoint 
location and partial observation. Thus in order to calculate 
the predicted trajectory and its velocities, only a reasonable 
estimate of tf is necessary. For this purpose, the partially 
observed trajectory points are fitted to the MJT model in 
order to calculate tf by solving the following optimisation 
problem: 

k 

Stationary Gaze Entropy (SGE), which quantifies the visual 
focus of a human. This is utilised to weigh the contribution of 
the gaze fixation metric aβk, which is fused with the vector 
field similarity metric aαk utilising an NBC. This process is 
outlined from Section IV-A to IV-C. 

A. Gaze Fixation Counts 
Fixation counts associated with each potential endpoint in 

E = {axe}a=1:m are counted from when hand motion is 
detected up to the current time step k. The counting is reset 
when the hand motion stops. Thus a set of gaze fixation 

C(tf ) = 1 
2 n=0 

xk − xk 2 (8) counts G = [1gk,2 gk ......mgk] = {agk}a=1:m associated with 
each end point at time k is obtained. Fixation counts to a 

This estimate of tf is then utilised in equations 6 and given endpoint a as a proportion of the total fixations is 
considered as the second metric utilised as a feature for the 

7 to obtain predicted trajectories to each endpoint in E = 
{axe}a=1:m at each time step k. This results in a set of pre- 
dicted trajectories Γk = {aγk}a=1:m and their corresponding 

NBC. 
 
 
 

agk 
predicted velocities Γ˙k = {ȧγk }a=1:m where each element aβk =  

 

T gk 
(10) 

relates to a given endpoint a. 
Each predicted trajectory is then used to calculate a 

predicted vector field for each endpoint location utilising the 
equations outlined in Section III-A. Thus a set of predicted 
vector fields Φ = {aFk}a=1:m at time k is obtained whose 
elements relate to each endpoint location. 

C. Vector Field Similarity Metric 
Based on sections III-A and III-B; at each time step k we 

obtain an observed  vector field Fk and a set of m predicted 
vector fields Φ = {aFk}a=1:m. 

A similarity metric aαk between the observed vector field 
Fk and a particular predicted vector field aFk is calculated 
based on vector cosine similarity. This metric quantifies the 
alignment of vectors at each corresponding point p of the 
vector fields and is given using equation 9: 

  1   Σ 
 

 

Where T gk is the total fixation count at time step k. 
Here, it is assumed that a higher gaze fixation metric aβk 
is associated with the intended endpoint of the human hand 
motion. However, since the robustness of this assumption 
varies based on the focus of the user, the contribution made 
by the gaze data is weighted based on the visual focus of a 
particular human operator using SGE. 

B. Stationary Gaze Entropy 
A common practice in studying saccadic gaze data associ- 

ated with fixations to multiple areas of interest (AOIs), such 
as with the available endpoints in a collaborative workspace, 
is to model the gaze transitions as a first-order Markov 
Chain [18]. This allows for the calculation of two entropy 
metrics based on Shannon’s Entropy: the Gaze Transition 
Entropy (GTE) and Stationary Gaze Entropy (SGE). In the 

 
This similarity metric quantifies how close an observed 

vector field is to a given predicted vector field and is 
normalised by the number of points n(Sk) in the workspace 
domain Sk. This, in turn, quantifies how close an observed 
hand trajectory is to a predicted MJT trajectory for a specific 
endpoint. This vector field similarity metric, aαk, is the 
first feature attribute used in the NBC when fusing with 
Gaze data. The value aαk ranges from −1 to 1, indicating 
unaligned to perfectly aligned vector fields, respectively. 

IV. FUSION OF SGE WEIGHTED GAZE FIXATIONS 
As with hand trajectory data, raw gaze data can be 

acquired through a multitude of state-of-the-art sensors and 
approaches such as dedicated eye-tracking glasses and head- 
sets, including or not limited to the Hololens, Pupilcore and 
Tobii eye tracker and is not the focus of this paper. 

The gaze data extracted is primarily in the form of fixation 
counts associated with each possible endpoint. For a given 
moment in time, the fixation counts are utilised to calculate 

quantifies visual focus in a particular AOI/endpoint [19]. 
SGE for a given time step k is calculated as: 

m 

Hk = − aβk log2(aβk) (11) 
a=1 

When the SGE value Hk is higher, it indicates that 
the subject is distributing their visual attention across the 
available AOIs/endpoints. Conversely, a lower value suggests 
that fixations are focused on a few particular AOIs. Thus, 
SGE quantifies visual attention and focus and can be utilised 
as an appropriate weighting factor for the gaze fixation metric 
in the NBC. 

C. Weighted Naive Bayes Classification 
For a given hand trajectory motion at time step k the 

vector field similarity metric αk and gaze fixation metric 
βk is utilised as features for the NBC classifier. For this 
purpose, we assume that αk and βk are independent features. 

n(Sk) 
proposed solution, we utilise the SGE metric, as many studies 
have established that it provides valuable information that 

aαk = Fk · aFk (9) 



We utilise the standard formulation of the NBC for this pur- 
pose, with SGE-related weights modulating the contribution 
provided by the gaze fixation counts. 

For the purpose of our application, the NBC is utilised as 
a binary classifier to identify if a given hand trajectory is 
intended for a given endpoint or not. Thus given a specific 
endpoint, the classifier will query between the following two 
classes: 

• Y: Hand motion is intended for the specified endpoint 
• N: Hand motion is not intended for the specified endpoint 

Based on Baye’s theorem, the probability that a hand mo- 
tion is intended for a specified endpoint a given a particular 
vector field similarity metric and gaze fixation metric is: 

 
 

p(Y |aαk,a βk) ∝ p(Y )p(aαk|Y )p(aβk|Y ) (12) 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
Two sets of experiments were carried out with the objec- 

tive of first evaluating the robustness of the proposed frame- 
work and secondly verifying its validity in terms of efficiency 
gains in a real-world HRC application in the construction 
industry. As previously outlined, hand and eye tracking data 
can be obtained from any state-of-the-art source. For the 
purpose of these experiments, hand and eye tracking data 
were obtained using a monocular camera, OpenCV and 
Google Mediapipe deep learning libraries. 

A. Experiment 1: Robustness Evaluation 
Experiment 1 consisted of four objects placed on a desk at 

varying locations in 3D space, emulating a generic collabora- 
tive HRC workspace consisting of reaching tasks (See Figure 
4). The proposed framework was utilised to predict which of 
the four objects (endpoints) a particular human participant 
intended to reach. 

For a given prediction all endpoint priors are considered 
to be equally likely, thus p(Y ) = 1/m and can be factored 
out as a constant. Based on the log probability form of 
equation 12, and the standard NBC formulation, we obtain 
a probability score associated with each possible endpoint at 
time k. 

 
 

aPk = ln[p(aαk|Y )] + (1 − Hk)ln[p(aβk|Y )] (13) 
 

here (1 − Hs) weights the contribution made by gaze data 
based on SGE. Since gaze fixation counts as a proportion 
of the total fixations behave as direct likelihoods, we can 
consider: 

 
p(aβk|Y ) = aβk (14) 

 
The vector field similarity metric αk is a continuous 

variable bounded between −1 to 1. Thus considering class 
Y , p(aαk|Y ) can be assumed to be a negative half-normal 
distribution with a mean µy = 1 which indicates perfect 
alignment between predicted and observed vector fields (i.e 
class Y ). The variance σy associated with class Y is obtained 
utilising a short training process or can be tuned heuristically. 
Formulating the problem as a binary classification problem 
generalises a simple training process to any scenario with 
different endpoints. 

Finally, the endpoint with the highest log probability 
score is considered as the most plausible predicted intended 
endpoint Pˆk , based on the observed hand trajectory data and 
gaze data at a time instant k: 

 
Pˆ = argmax(aP ) (15) 

 

 
Fig. 4: Experiment 1: Robustness Evaluation 

 
Five different trajectories were tested, as described in 

Table I. Each trajectory was executed by four participants 
five times for a total of a hundred trajectories. To evaluate 
the prediction accuracy of the proposed HMIP framework 
at different portions of a given trajectory, the prediction 
accuracy at 25% time intervals of the total trajectory time 
is presented in Table I. The results presented in Table I are 
the mean accuracy of all trajectories collected among the four 
participants. Prediction results are presented based solely on 
the vector field similarity metric and the gaze fixation metric 
separately, along with the combined weighted NBC result. 

Objects B and C were intentionally placed close to each 
other (about 4cm apart) to gauge the framework’s response. 
Considering the results for trajectories 1 to 4, when reliable 
gaze focus is maintained, the combined prediction accuracy 
is superior compared to each modality in isolation. This is to 
be expected since a multimodal framework would be more 
robust to occlusions or tracking failures that could plague 
a particular single modality. It should also be noted that all 
results are generally consistently accurate by around 50% of 
the total trajectory, and each modality can still successfully 

k 
a 

k carry out HMIP as an individual system. However, results 
indicate that the vector field-based method drops in accuracy, 

A confidence gate-based threshold can be heuristically 
utilised to make decisions based on this prediction for higher- 
level decision-making. 

especially when objects are close to each other. 
Although the gaze fixation metric appears to outperform 

the vector field metric, it may be prone to false positives if 



TABLE I: Experiment 01: Prediction Accuracy at 25% Increments of Total Trajectory Time 
 

Traj No Description Metric 0-25% 25-50% 50-75% 75-100% 

1 To A with focused gaze fixations VF Similarity Metric 0.85 0.75 0.88 1.00 
  Gaze Fixation Metric 0.94 1.00 0.75 0.63 
  Combined 0.91 1.00 1.00 1.00 

2 To B with focused gaze fixations VF Similarity Metric 0.36 0.53 0.63 0.75 
  Gaze Fixation Metric 1.00 1.00 1.00 1.00 
  Combined 0.67 0.80 0.91 1.00 

3 To C with focused gaze fixations VF Similarity Metric 0.39 0.41 0.95 0.88 
  Gaze Fixation Metric 0.88 0.75 0.75 1.00 
  Combined 0.97 0.83 0.80 1.00 

4 To D with focused gaze fixations VF Similarity Metric 0.50 0.34 0.38 0.75 
  Gaze Fixation Metric 1.00 1.00 1.00 1.00 
  Combined 0.86 0.78 0.92 1.00 

5 To A with unreliable gaze fixations VF Similarity Metric 0.66 0.76 0.65 1.00 
  Gaze Fixation Metric 0.40 0.50 0.25 0.25 
  Combined 0.45 0.75 0.58 1.00 

 
 

 
Fig. 5: Experiment 2: Collaborative Tiling with HMIP 

 
 

the human operator is unfocused or inattentive. To evaluate 
such scenarios and the SGE-based weighting, trajectory 
5 was carried out with random saccadic eye movements 
simulating an unfocused or tired participant. The low pre- 
diction accuracy given by the gaze metric is indicative of 
these random saccades. However, the combined result is 
minimally impacted by this low accuracy as the SGE lowers 
the contribution of the gaze fixation metric when unreliable 
random and unfocused gaze data is fed into the framework. 
Thus, reliable, focused gaze data adds value and robustness to 
the predictive capabilities, while unreliable, unfocused gaze 
data does not drastically impact the predictive capabilities of 
the proposed HMIP framework. 

B. Experiment 2: Real-time Efficiency Verification 
Experiment 2 consisted of a collaborative tiling scenario 

between a human and a robot (see figure 5). Two scenarios 
are juxtaposed to showcase the intuitive nature of incorporat- 
ing the proposed HMIP into an HRC context. Scenario 1 is 
a conventional approach to HRC-based tiling with no HMIP, 
where the robot is tasked with bringing a tile from a pile 
of tiles to a fixed location close to the human. The human 
then uses the arm and places it in the correct tiling location 
decided by the user. 

In Scenario 2, users employed an intuitive hand motion 
to instruct the robot on the desired destination for the tile. 
Leveraging the proposed real-time HMIP framework, the 

robot brings the tile directly to the user’s desired tile location 
based on the HMIP prediction made before the hand motion 
is fully completed. The mode of the final predictions, with 
a confidence level exceeding a 2-sigma confidence gate, is 
utilized to ascertain the predicted endpoint. 

A temporal efficiency comparison was conducted between 
the two scenarios by four participants. Scenario 2 with HMIP 
showed a 24% efficiency gain overall, underscoring the 
enhanced efficiency derived from the predictive and intuitive 
nature of the proposed HMIP-based interaction. 

 
VI. CONCLUSIONS 

The proposed 3D vector field-based representation utilis- 
ing predicted MJT trajectories, which extends our previous 
work [1], provides a robust and scalable solution to HMIP. 
Results indicate that the fusion of gaze fixation adds value to 
this method. The proposed utilisation of SGE as a weighting 
factor in the NBC classifier ensures that the impact of 
potential false positives caused by fatigue or lack of focus 
is mitigated. Preliminary results indicate that this weighting 
successfully exploits focused gazed fixations and discounts 
unfocused gaze fixations. Thus, it can be concluded that the 
vector field-based method and SGE weighted gaze fixation 
act synergistically to provide a robust HMIP framework. 

The implementation of the proposed framework in a real- 
time HRC scenario in a construction context showcases how 
the proposed HMIP improves the efficiency of collaboration 
due to its intuitive nature. Due to the lack of open-source 
HMIP algorithms for benchmarking, the real-time implemen- 
tation of the framework has been presented as an open-source 
ROS package in an attempt to welcome future comparative 
analysis and benchmarking in this area. 

In terms of future work, we hope to investigate the pro- 
posed HMIP framework’s impact on cognitive and physical 
load in HRC contexts. Furthermore, we hope to exploit other 
multimodal sources, such as skeletal tracking and EEG, to 
improve the robustness of the HMIP framework. We also 
plan on exploring more robust data fusion and classification 
approaches. 
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