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ABSTRACT
This paper introduces a novel classification method that utilizes
genetic programming (GP). The primary purpose of the proposed
method is to enhance future generations of GP, through continu-
ously refining the genetic makeup of the population for improved
classification results. Accordingly, this paper developed the novel
method by modifying Boruta feature selection method in such a
way that allows to evaluate the significance of individuals’ genes.
This method creates modified versions of the genes called "shadow
genes", evaluates their impact on model performance in compet-
ing with shadow genes, and identifies key genes. These key genes
are then used to enhance future generations. The obtained results
demonstrated that the proposed method not only enhances the fit-
ness of the individuals but also steers the population toward optimal
solutions. Furthermore, empirical validation on multiple datasets
reveals that the proposed method significantly outperforms clas-
sic GP models in both accuracy and reduced prediction entropy,
showcasing its superior ability to generate confident and reliable
predictions.
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1 BACKGROUND AND BACKGROUND
The rapid expansion of machine learning (ML) applications across
various domains underscores its transformative potential, particu-
larly in achieving high predictive accuracy. However, ML models
often encounter challenges related to their reliability. The major-
ity of ML models draw conclusions without evaluating the caliber
of these conclusions. This situation risks guiding either a human
operator or an automated controller toward erroneous decisions
[3].

Concerning such lapses in ML outcomes, it’s not enough for
a model to just be accurate; it’s also crucial that it can measure
the level of confidence in its predictions. Despite GP’s success in
various domains, its application in uncertainty awareness remains
underexplored.

Recent developments in GP have addressed classification tasks
focusing on enhancing accuracy. However, the significance of un-
certainty aware decisions in classification tasks is often overlooked
in GP literature and efforts to integrate uncertainty quantification
(UQ) in GP mainly focus on areas beyond classification tasks. Con-
trastingly, existing UQ methods in the literature primarily used in
NNs assess solely uncertainty without inherently boosting model
confidence. On the other hand, GP with its capability to utilize
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sophisticated fitness functions, holds significant potential in devel-
oping uncertainty-aware models for classification tasks, especially
when combined with advancements in NN methodologies. This
area represents a promising direction for further research and de-
velopment.

Accordingly, this study introduces a new variant of GP that in-
tegrates a Boruta feature selection to enhance classification tasks.
The cornerstone of this approach is the innovative use of shadow
genes—not directly in decision-making, but as a strategic tool to
identify and select significant genes, thereby generating potentially
robust individuals within the GP framework. It presents a frame-
work that fills a notable gap in GP research—particularly the lack
of focus on uncertainty awareness.

2 METHODOLOGY
2.1 Preliminary: Boruta Feature Selection
The Boruta algorithm is a straightforward yet effective method
for identifying the most relevant features in a dataset. It accom-
plishes this through a comparative analysis with artificially gener-
ated shadow features. Here’s a simplified breakdown of the process:

• Generation of Shadow Features: The algorithm starts by
duplicating each feature in the dataset. The values of these
duplicates are then shuffled to generate shadow features,
which mimic the structure of the original features but not
their exact content.

• Evaluating with Random Forest: The importance of both
original and shadow features is assessed repeatedly.

• After each iteration, the importance scores from the Random
Forest classifier are used to compare each original feature
against the highest importance score among the shadow
features. An original feature is deemed significant if its im-
portance consistently exceeds that of the best-performing
shadow feature across multiple iterations.

• Iterative Refinement: This cycle of comparison and evalu-
ation continues across several iterations, focusing on pin-
pointing features with genuine predictive value.

• Selecting Key Features: Ultimately, features that reliably out-
perform shadow features are deemed important and retained
for model development.

The proposed method, detailed in subsequent sections, extends the
foundational principle of shadow features in the Boruta algorithm,
to the concept of shadow genes. This principle forms the basis for
the creation of superior individuals, key in attaining the highest
level of fitness across each generation.

2.2 Proposed Method
The proposed method employes Multi-gene Genetic Programming
(MGGP) that integrates artificial neural network (ANN) classifica-
tion to evolve a population of individuals for effective performance
on classification tasks. Figure S1 from the Supplementary Docu-
ment illustrates the sequential overview of the proposed method.
The process is outlined in simple steps as follows:

• Initialization of Population: The algorithm commences by
creating an initial group of individuals, each comprised of

several genes structured as trees. These genes encode various
operations and terminals that are relevant to the task at hand.

• Differential Fitness Evaluation: MGGP evaluates the collec-
tive output of all genes in an individual. This is achieved
through a shallow neural network, which uses the outputs
of the genes as inputs. The classification probability is thus
determined, and the individual’s fitness is calculated as a
negative log loss comparing the actual and predicted class
labels.

• New Population Creation: After fitness Evaluation, three
subsets of the population form via:
– The first set is derived from genetic operations:

∗ Crossover: The crossover in MGGP involves swapping
subtrees between genes of parent individuals, introduc-
ing diversity in the offspring’s genetic composition.

∗ Mutation: Mutation randomly alters genes, encouraging
genetic diversity and aiding in the exploration of new
solutions within the genetic landscape.

∗ Selection and Reproduction: The selection process in
MGGP prioritizes the fitness of the entire multi-gene
structure. Individuals with higher fitness are selected
for reproduction through the tournament, ensuring the
propagation of beneficial genetic characteristics through
generations.

– The second set consists of elite individuals chosen based
on their fitness.

– The third set is generated from combination of elite indi-
viduals through the Boruta enforced operation elaborated
in section 2.3.

• Hybrid Classification Method with Neural Network Clas-
sification: The classification in the proposed framework is
enhanced by employing an ensemble approach, wherein
multiple genes of an individual collectively contribute to the
final decision-making process as follows:
– Gene evaluation: The symbolic structure of genes within
an individual is evaluated based on training and evaluation
datasets.

– Gene (Ensemble) Integration: The output from multiple
genes is integrated using shallow ANN with fixed struc-
ture. This integration involved training the ANN on the
output of genes from the training data and predict the
probability of validation data class labels.

– Fitness Evaluation: The fitness of synthesized genes within
each individual ("individual fitness") is computed based on
the prediction probability of validation data and ground
truth using a log loss function, which is particularly effec-
tive for classification tasks.

• Termination Criteria: The MGGP algorithm iterates through
this process over successive generations. With each cycle,
the quality of the solutions is refined. The process concludes
once predetermined termination criteria are met.

2.3 Boruta Enforced Individual (BEI): Shadow
Gene Guidance on Creating Elite Individual

Here a fraction of individuals with the highest fitness value among
the population in each generation are selected to perform Boruta

2096



Shadow Gene Guidance: A Novel Approach for Elevating Genetic Programming Classifications GECCO ’24, July 14–18, 2024, Melbourne, Australia

operation to produce a single individual for the next generation.
All genes of selected individuals for this operation are used to
create their shadow counterparts. This method is conceptualized
as follows:

• Creation of Shadow Genes: Initially, shadow genes are gen-
erated. These entities are noise-augmented versions of the
original genes within the dataset. For each gene, Gaussian
noise, scaled to the gene’s standard deviation, is added, fol-
lowed by a shuffling of values. This results in a set of shadow
genes, which are essentially noisy variations of the original
genes.

• Gene Importance Assessment: The evaluation process involves
several steps:
– A shallow ANN is trained using both original and shadow
genes,

– Themodel’s performance, quantified by the F1-score, serves
as a baseline for assessing each gene’s importance.

– Subsequently, each gene undergoes perturbation through
noise addition and reshuffling. The model is retrained with
this altered dataset, and a new F1-score is computed.

– The performance decrement, attributed to the perturbation
of each gene, is documented.

• Comparative Importance Assessment and Hit Counting: The al-
gorithm undertakes a comparative evaluation of the original
genes against their shadow counterparts. This assessment
hinges on contrasting the performance decrement of each
original gene with the maximum decrement observed for
shadow genes. A more substantial performance drop for an
original gene, relative to the maximum observed for shadow
genes, signifies its importance. For each gene, a ’hit’ is regis-
tered if its performance decrement exceeds the highest decre-
ment observed among the shadow genes. The ’hit’ count for
each gene is accumulated over multiple iterations, providing
a robust measure of the gene’s relative importance.

• Selection of Important Genes: Genes demonstrating consistent
superiority in importance across iterations, as indicated by
their hit history (H), are flagged as significant. The algorithm
selects the top-ranking genes, guided by the "Maximum al-
lowable gene" parameter, which denotes the maximum num-
ber of genes that is allowable within each individual.

• Producing Boruta Enforced Individual (BEI): The chosen genes
in the previous step form a new single individual for the next
generation. In this step, the most significant genes, as deter-
mined by their hit history and importance, are combined to
form a new, singular individual for the next generation.

3 EXPERIMENTAL SETUP
3.1 Data Sets
Study uses four datasets to assess method performance: (1) the
dataset of Activity Recognition Using Wearable Physiological Mea-
surements (ARWPM)[1], capturing physiological signals with 4,480
instances and 533 features, (2) the Gene Expression Cancer RNA-
Seq Data Set (GECR) dataset[2], offering gene expression profiles
for cancer classification with 801 instances and 20,531 features, (3)
the Gas Sensor Array Drift Dataset at Different Concentrations
(GSAD) dataset[5], recording gas sensor responses with 13,910

instances and 129 features, and (4) the Smartphone-Based Recogni-
tion of Human Activities and Postural Transitions Data Set (HAPT)
dataset[4], detailing human activities and postural transitions with
10,929 instances and 561 features.

3.2 Experiment Configurations
The proposed GP model undergoes 20 runs, each with up to 150
generations, using a population of 25 individuals limited to five
genes each to balance complexity and computational efficiency.
Trees are initialized using the ’Half-and-Half’ method and restricted
to a depth of 10 to prevent overfitting. A tournament selection with
an elite fraction of 0.05 ensures the retention of superior genes.
The model incorporates a 0.05 fraction for Boruta recombination,
enhancing gene selection with a high crossover probability of 0.8
and a mutation probability of 0.1. An ANN using Cross-Entropy loss
for evaluation and specific configurations used for classification
and the Boruta selection mechanism.

4 DISCUSSION AND RESULT
The effectiveness of the proposed method was compared with a
standard GP model through 20 independent evaluations. Each run
divided the dataset into 60% for training, 10% for validation, and
30% for testing. The fitness of the BEI was monitored throughout
each run, alongside the peak fitness within the population for each
generation. As depicted in Figure 1, the evolution of fitness values
across generations for a randomly selected run is presented. Ini-
tially, the BEI’s fitness may lag behind that of the best randomly
generated individuals. However, with progression through gener-
ations, the BEI’s fitness surpasses that of the population’s peak
fitness. Despite occasional surpassing by some individuals within
the population, the BEI, through the recombination mechanism
intrinsic to the proposed method, not only enhances the fitness of
those individuals but also steers the population towards optimal
solutions. This leadership role of the BEI becomes particularly ap-
parent in the latter generations, consistently emerging as the fittest
individual. This phenomenon was consistently observed across all
80 runs for the four datasets, with the BEI concluding as the fittest
individual. For more comprehensive view of all runs, please refer
to the Supplementary Document, Figures S2, S3, S4, and S5.

Cross-entropy distribution comparisons, depicted in Figure 2,
revealed proposed method superior performance over the baseline
GP, particularly in training and testing phases. The limited size
of the GECR dataset and its allocation for validation introduced
variability, yet proposedmethod showed consistent outperformance
in training and testing for this dataset too.

Statistical comparison using the Wilcoxon rank-sum test, with
results summarized in Table 1, confirmed proposed method superi-
ority, with its results outperforming the baseline across all datasets
except for the test stage of the GECR dataset.

Analysis of prediction entropy, shown in Figure 3, demonstrated
proposedmethod enhanced prediction confidence, with a noticeable
pattern of lower entropy values for correct predictions and reduced
high-entropy incorrect predictions. This suggests proposed method
refined capability for uncertainty-aware decision-making, making
it superior in providing more reliable outcomes compared to the
baseline GP model.
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Table 1: Comparison of cross-entropy loss.; Highlighted
shows BEI outperforms base models

ARWPM GECR GSAD HAPT
Train 0.0883 ± 0.0117 0.0327 ± 0.0118 0.0173 ± 0.0044 0.0239 ± 0.0029
Val 0.0982 ± 0.0115 0.0272 ± 0.0139 0.0201 ± 0.0051 0.0255 ± 0.0027BEI
Test 0.1087 ± 0.0146 0.1218 ± 0.0716 0.0243 ± 0.0036 0.0268 ± 0.0034
Train 0.1300 ± 0.0158 0.0627 ± 0.0320 0.0475 ± 0.0099 0.0325 ± 0.0040
Val 0.1371 ± 0.0127 0.0859 ± 0.0196 0.0509 ± 0.0092 0.0343 ± 0.0036Base
Test 0.1392 ± 0.0173 0.1412 ± 0.0693 0.0520 ± 0.0100 0.0344 ± 0.0042
Train 2.56 ×10−7 0.004320 6.8 ×10−8 3.94 ×10−7
Val 6.92 ×10−7 1.06 ×10−7 6.8 ×10−8 3.42 ×10−7P-Value
Test 1.38 ×10−6 0.239323 6.8 ×10−8 5.87 ×10−6

(a) ARWPM (b) GECR

(c) GSAD (d) HAPT

Figure 1: Fitness evolution of BEI and the top individual for
a randomly selected run and all generations.

(a) ARWPM (b) GECR

(c) GSAD (d) HAPT

Figure 2: Boxplots show cross-entropy in proposed method
vs. baseline GP over 20 runs.

5 CONCLUSION
This paper presents a novel approach using a modified Boruta fea-
ture selection method that significantly outperforms traditional GP

(a) Base GP Model; ARWPM (b) Proposed Method; ARWPM

(c) Base GP Model; GECR (d) Proposed Method; GECR

(e) Base GP Model; GSAD (f) Proposed Method; GSAD

(g) Base GP Model; HAPT (h) Proposed Method; HAPT

Figure 3: Histogram of the predictive entropy results.

models by enhancing populations. Future work will explore com-
bining UQ criteria to further refine populations over generations.

ACKNOWLEDGEMENTS
This work was supported by the Australian Government through
the Australian Research Council under Project DE210101808.

REFERENCES
[1] 2019. Activity recognition using wearable physiological measurements. UCI

Machine Learning Repository. DOI: https://doi.org/10.24432/C5RK6V.
[2] Samuele Fiorini. 2016. gene expression cancer RNA-Seq. UCI Machine Learning

Repository. DOI: https://doi.org/10.24432/C5R88H.
[3] Lance Kaplan, Federico Cerutti, Murat Sensoy, Alun Preece, and Paul Sullivan.

2018. Uncertainty aware AI ML: why and how. arXiv preprint arXiv:1809.07882
(2018).

[4] Anguita Davide Oneto Luca Reyes-Ortiz, Jorge and Xavier Parra. 2015.
Smartphone-Based Recognition of Human Activities and Postural Transitions.
UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C54G7M.

[5] Alexander Vergara. 2013. Gas Sensor Array Drift Dataset at Different Concentra-
tions. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5MK6M.

2098


	Abstract
	1 Background and Background
	2 Methodology
	2.1 Preliminary: Boruta Feature Selection
	2.2 Proposed Method
	2.3 Boruta Enforced Individual (BEI): Shadow Gene Guidance on Creating Elite Individual

	3 Experimental Setup
	3.1 Data Sets
	3.2 Experiment Configurations

	4 Discussion and Result
	5 Conclusion
	References

