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A B S T R A C T   

Recently, social network usage has exhibited explosive growth, leading to a huge amount of users’ 
private data available. The main challenge in releasing social network data publicly is the pro-
tection of the users’ privacy while preserving its utility for third parties. Accordingly, several 
social network privacy-preserving methods have been introduced, where anonymization is the 
most common approach. Structural k-anonymity is a widely used anonymization model to mask 
the structure of social networks by clustering the edges and nodes into super-edges and super- 
nodes. However, it comes at the cost of losing structural information, which is measured by a 
criterion called structural information loss (SIL). This study introduces an enhanced discrete 
particle swarm optimization (EDPSO) algorithm, which effectively minimizes the SIL within the 
clustering process of the structural k-anonymity model, leading to a high-utility anonymized 
network. In this regard, we propose a vector-based solution representation that can be efficiently 
exploited by the EDPSO. Moreover, a novel position updating heuristic is suggested for the 
EDPSO, which adaptively tunes the operators’ selection probabilities. This happens based on each 
operator’s performance both in the current iteration and their history regarding the number and 
the average amount of fitness improvements in the previous iterations. We also propose two 
fortified versions of the EDPSO algorithm (EDPSOVNS and EDPSOSA) by employing two new 
network-specific local search strategies to enhance the exploration, exploitation, and convergence 
rate of the process. Simulation results on the nine real-world networks demonstrate the superi-
ority of the suggested algorithms in terms of the fitness value, reliability, and convergence rate 
over other analyzed approaches found in the literature.   
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Nomenclature.  
Sets 
V Set of nodes in the original graph 

E Set of edges in the original graph 
V Set of nodes in the anonymized graph 
E Set of edges in the anonymized graph 
CL Set = [Cl1,⋯,Cls id,⋯,Cls] Set of clusters 
C Nodes Set of candidate nodes whose velocity = 1 in Vi

̅→

Sub Nodes Set of nodes in a subgraph 
Subgraphh

n id 
The subgraph of graph G, including the nodes with the shortest path of h-hops (h = [1,⋯,n − 1]) from the node with n id label 

N Sols Set of new solutions obtained from applying neighborhood operator 
Vectors 

Xt
i

→
= [x1,⋯,xn id,⋯,xn]

The position vector of i th particle at time t 

Velti
̅̅→

= [vel1,⋯,veln id ,⋯,veln ]
The velocity vector of i th particle at time t 

Pbesti
̅̅̅→ The personal best position vector of i th particle 

Gbest
̅̅̅→ The global best position vector in the swarm 

FVt̅→ Fitness value vector at time t 

TFVt̅̅→ Transformed fitness value vector at time t 

NFVt̅̅̅→ Normalized fitness value vector at time t 

NoIt̅̅→ Number of improvement vector at time t 

NNoIt̅̅̅ → Normalized number of improvement vector at time t 

AoIt
̅̅→ Amount of improvement vector at time t 

AvgAoIt̅̅̅̅̅→ The average amount of improvement vector at time t 

NAvgAoIt
̅̅̅̅̅̅→ The normalized average amount of improvement vector at time t 

OSPt̅̅̅→ Operator selection probability vector at time t 

Parameters 
|V| = n Number of nodes 
|E| = m Number of edges 
vn id ∈ V A node (vertex) in the social network graph 
n id ∈ [1,⋯,n] Label of the node in the network 
evi ,vj ∈ E An edge between nodes vi and vj 

admi,j ∈ [0,1] An element of the adjacency matrix 
k Structural k-anonymity constraint 
s id ∈ [1,⋯, s] Label of the super-node 
Cls id A cluster with the label s id 
|Cls id| Number of nodes in the cluster with label s id 
⃒
⃒ECls id

⃒
⃒ Number of intra-edges in the cluster with label s id 

⃒
⃒ECl1 ,Cl2

⃒
⃒ Number of inter-edges between cluster 1 and cluster 2 

Pi : i ∈ [1,⋯,p] The i th particle 

xn id ∈ Xt
i

→ The position value of the node with n id label in the position vector 

veln id ∈ Velti
̅̅→ The velocity value of the node with n id label in the velocity vector 

it Iteration number 
itMax Maximum iteration number 
sub it Sub-iteration number 
sub itMax Maximum sub-iteration number 
temp The temperature in the simulated annealing algorithm 
nPop Swarm size (population size) of the EDPSO algorithm 
Pi.Ft The fitness value of i th particle 
c node A candidate node whose velocity is 1 in Vi

̅→

r node A random node 
sub node A node in a subgraph 
rn id Label of the random node in the network 
cn id Label of the candidate node in the network 
op id The index of the operator 
S op The selected operator 
n sol A new solution obtained from applying neighborhood operator 
w1 Importance weight of the NFVt̅̅̅→

w2 Importance weight of the NNoIt
̅̅̅ →

w3 Importance weight of the NAvgAoIt
̅̅̅̅̅̅→

FtMax The maximum fitness value found so far 
r, r1, r2 The random numbers in the range of [0,1]
Constants 
IW Inertia weight 
c1, c2 Acceleration constants 

(continued on next page) 
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(continued ) 

Sets 
V Set of nodes in the original graph 

T0 Initial temperature 
α Temperature reduction rate 
Other Indices 
G Original social network graph 
G Anonymized social network graph 
ADM The adjacency matrix of the graph 
intraSIL Intra structural information loss 
interSIL Inter structural information loss 
SIL Structural information loss 
MAXSIL Maximum structural information loss 
NSIL Normalized structural information loss  

1. Introduction 

Over the past century, there has been a remarkable surge in the popularity of social networking applications and websites, such as 
Facebook, Twitter, Instagram, and Google + . With millions of users engaging in various communities worldwide, these online social 
networks (OSNs) contain a massive amount of users’ personal and private data as the users share a lot of personal details of their lives 
with millions of other users. The structure of these social data is in a graph form, wherein each node represents a user within the 
network. These nodes can have various attributes, such as name, social security number, zip code, contact details, and more. Also, each 
edge within the graph indicates a connection between two users, delineating their relationships. 

In these OSNs, every user should have the right to decide what information is shared with others and under what circumstances, 
which is called an individual’s privacy. Privacy disclosure risks arise when online platforms decide to publish the OSN data publicly or 
share it with third-party companies for research or business-related purposes. In other words, the major challenge facing social 
network platforms is to strike a balance between publishing a version of the data that is beneficial for analyses conducted by academic 
researchers and business managers while simultaneously protecting the user’s personal and private information. As a result, to address 
this challenge, it is urgent for OSN data owners to adopt reliable privacy-preserving methods, such as anonymization techniques. 
Recently, several anonymization techniques have been proposed to transform a dataset into its anonymous version. These techniques 
involve removing or obfuscating personally identifiable information (PII) from data so that the individuals’ identities are inde-
terminable [1]. One of the simplest anonymization methods is Naïve anonymization, in which synthetic attributes replace the original 
ones [2]. Although Naïve anonymization is a common practice, it is possible for an adversary to reidentify an individual by collecting 
external information on the individual’s relationships. To prevent this issue, various anonymization techniques have the ability to 
change the graph’s structure, resulting in an obfuscated graph that preserves users’ relationships. However, these anonymization 
processes may reduce data utility since changing the graph’s structure may lead to information loss. It is evident that, as the number of 
changes in the graph structure increases, users’ privacy is enhanced, but the utility of the anonymized graph decreases. In other words, 
a trade-off between utility and privacy in the anonymization process necessitates a balance between these two criteria. Hence, while 
the results of analyses performed on the anonymized graph should be similar to those of the original graph, the reconstruction process 
of the original OSN structure should be as arduous as possible, if not impossible. 

In recent decades, graph theory has emerged as a prominent research field for proposing efficient social network anonymization 
techniques. These techniques can be categorized into three main groups involving: Edge/Vertex Modification, Uncertain Graph, and 
Generalization/Clustering approaches [3,4]. The Edge/Vertex Modification approach anonymizes a graph by adding and/or deleting 
edges or vertices in the graph [2]. The Uncertain Graph approach anonymizes a graph by generating an uncertain graph in which a 
probability in the range of [0,1] is assigned to every possible edge in the graph [5]. Generalization/Clustering is a well-known approach 
that clusters nodes and edges into so-called super-nodes and super-edges for the proper anonymization of the network [6–8]. One of the 
most used techniques in the Generalization/Clustering approach is structural k-anonymity, which protects the structural information 
of an OSN by clustering the nodes and edges in a way that the structural properties of each node are indistinguishable from at least k-1 
other nodes [6,8–10]. 

The process of finding optimum clusters in the structural k-anonymity method is proved to be an NP-hard optimization problem 
that can be solved by heuristic methods or by guided random search techniques (e.g., meta-heuristics) [6,9]. Numerous studies have 
proposed greedy or heuristic algorithms for social network anonymization based on the structural k-anonymity method. Although 
these methods try to find the optimal clusters with respect to the privacy and utility criteria, they often suffer from the drawback of 
trapping in local optima, not being able to guarantee to obtain the best possible solution. Therefore, some researchers have recently 
used meta-heuristics and evolutionary algorithms in their suggested models to tackle the mentioned issues, yielding better solutions 
concerning the balance between privacy and utility. 

Accordingly, in the current research study, a practical OSN anonymization approach based on the structural k-anonymity model is 
presented, which utilizes a novel enhanced discrete particle swarm optimization (EDPSO) algorithm to mask the social network. The 
main objective of the proposed approach is to generate an anonymized network that preserves the users’ privacy with respect to their 
relationships while minimizing the structural information loss (SIL) to maintain utility. To meet this goal, we first formulate the 
structural k-anonymity problem using an efficient solution representation based on arrays rather than complex matrix-based solution 
representations used in the previous studies [9,10]. Next, we enhance the discrete particle swarm optimization (DPSO) algorithm 
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introduced in [11] by proposing a novel heuristic to update the position vector of each particle effectively. The suggested heuristic 
modifies the operator selection probability in an adaptive manner based on the fitness values obtained from each operator in the 
current iteration, as well as their historical performance. This historical performance considers the number and the average amount of 
fitness improvements achieved by each operator in the previous iterations. By incorporating this information, the heuristic effectively 
adjusts the operator selection probability, enabling a balance between exploration and exploitation capabilities while avoiding pre-
mature convergence. Eventually, to enhance the suggested algorithm’s performance in terms of fitness values and convergence rate, 
we combined the EDPSO with two local search algorithms, which are based on the simulated annealing (SA) [12] and variable 
neighborhood search (VNS) [13] algorithms, called EDPSOSA and EDPSOVNS, respectively. 

The rest of the paper is organized as follows. The literature review of the existing graph anonymization approaches is surveyed in 
Section 2. In Section 3, we describe the structural k-anonymity problem. The solution representation, the definition of the objective 
function, and the proposed methods, comprising EDPSO, EDPSOSA, and EDPSOVNS, are explained in Section 4. Subsequently, in 
Section 5, we present experimental results, including an evaluation of information loss and a comparison with other state-of-the-art 
methods. Finally, Section 6 concludes the paper and points to potential future work directions. 

2. Literature review 

In recent years, a large and growing body of literature has investigated OSN privacy-preserving using graph anonymization 
techniques. As mentioned earlier, these techniques can be categorized into three classes: Edge/Vertex Modification, Uncertain Graph, 
and Generalization/Clustering. The subsequent sub-sections will delve into further detail on each of these categories.  

a. Edge/Vertex Modification Approach 

This approach anonymizes a graph by adding or deleting edges or vertices in the graph. The existing literature on this approach can 
be broadly categorized into two main groups (i.e., random perturbations and constraint perturbations) depending on the way that the 
modifications are applied to the graph. 

The random perturbation techniques anonymize a graph by introducing random noise to the original data by removing actual 
nodes/edges and adding the fake ones at the same time. One of the pioneering studies in this category was published by Hay et al. in 
2007, in which a graph is anonymized by removing p edges and then randomly adding p fake edges to the perturbed graph [2]. While 
this method has the advantages of low complexity and easy understanding, the original graph can easily be reidentified since this 
method does not protect the network hubs. Afterwards, Casas-Roma employed different graph modification techniques in the Edge/ 
Vertex Modification approach, and the obtained anonymized graphs were analyzed regarding the privacy level and data utility criteria 
to identify the most efficient technique [14]. Most recently, in 2021, Kumar et al. proposed an OSN privacy-preserving approach based 
on the fuzzy sets and rewiring algorithm, focusing on the randomization of the social network while simultaneously preserving the 
degree of each node [15]. 

A great deal of research has also been conducted on the constrained perturbation approach, which involves the application of edge 
addition and deletion techniques to fulfil specific constraints. The most well-known method of this approach is the k-anonymity model 
introduced by Samarati and Sweeney in a study published in 1998 [16]. The primary aim of their model was to anonymize a group of 
individuals while ensuring that the anonymized network satisfies the k-anonymity constraint. Generally, the k-anonymity constraint 
stipulates that each user should not be distinguished from at least k-1 other users in the released anonymized network [17,18]. In other 
words, when attackers strive to reidentify the users’ identities in a k-anonymous network, they should not be able to do so with a 
probability higher than 1/k [19]. 

In recent years, there has been an interest in extending the application of the k-anonymity model to OSN anonymization. For 
instance, in 2020, Rajabzadeh et al. proposed a method based on the Edge/Vertex Modification approach and were able to satisfy the k- 
degree anonymity model using the Genetic Algorithm (GA) [20]. More recently, in 2021, Kiabod et al. suggested an algorithm to 
increase the k-degree anonymization speed and improve the network utility using the Edge/Vertex Modification approach and the 

Table 1 
An Overview of the Studies on the Edge/Vertex Modification Approach.  

Year Authors Key Contribution 

1998 Samarati and Sweeney  
[16] 

Introduced the k-anonymity model for group anonymization. 

2007 Hay et al. [2] Proposed a graph anonymization method by randomly removing and adding edges. 
2020 Rajabzadeh et al. [20] Proposed a method for reducing the utility loss on the graph using Genetic Algorithm (GA). 
2021 Kumar et al. [15] Proposed a Fuzzy Sets and Rewiring Algorithm for OSN privacy-preserving, focusing on randomization while preserving node 

degrees. 
2021 Kiabod et al. [21] Suggested an algorithm to increase k-degree anonymization speed using the firefly optimization algorithm (FA). 
2023 Kaur et al. [22] The average path length of the graph was preserved, and noisy nodes/edges addition was reduced in k-degree-anonymization 

on social networks. 
2023 Kiabod et al. [23] Efficiently finds an optimal k value for each social network graph, striking a balance between privacy and information loss. 
2023 Medková et al. [24] Proposed HAkAu algorithm, which enhances the k-automorphism method using a GA for efficient social network 

anonymization.  
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firefly optimization algorithm (FA) [21]. In 2023, Kaur et al. proposed an enhanced version of k-degree-anonymization for social 
network privacy preservation [22]. This version incorporates a hybrid of Artificial Neural Network (ANN) and Support Vector Machine 
(SVM), known as k-NeuroSVM, to maintain the average path length of the network while substantially minimizing the noisy nodes and 
edge addition. During the same year, Kiabod et al. presented a novel technique called FSopt_k that effectively identifies the optimal 
value of k for each social network to address the increasing information loss and often unnecessary high privacy levels in previous 
studies [23]. Their method considers the graph’s structural features to determine an optimal privacy level, balancing the preservation 
of privacy and the minimization of information loss. Table 1 provides a summary of the discussed studies, focusing on the edge/vertex 
modification approach. Besides, in a recent study, Medková et al. introduced the novel HAkAu algorithm, enhancing k-automorphism 
methods using GA for improved social network anonymization [24]. The authors proposed a unique chromosome representation for k- 
automorphism that inherently ensures k-anonymity and employs a divide-and-conquer strategy for selecting vertex-disjoint subgraphs, 
making it highly efficient.  

b. Uncertain Graphs Approach 

Several recent studies have explored the background concepts of uncertain graphs to achieve anonymized networks. In this 
approach, the anonymization process generates an uncertain graph by assigning a probability in the range of [0,1] to every possible 
edge in the graph. The uncertain graph approach is relatively new compared to the two other approaches, resulting in fewer studies 
focused on it. The earliest method of this approach was proposed by Boldi et al., in which the authors injected uncertainty in social 
graphs and published the resulting uncertain ones [5]. However, their method only considered a subset of vertex pairs in the graph 
while ignoring the rest. Afterwards, in 2018, Yan et al. presented a new method to make a trade-off between privacy and utility through 
the utilization of the uncertain graph approach while modifying the structure of the influential nodes [25]. Also, in the same year, 
Parchas et al. proposed an uncertain graph-based method in which they reduced and redistributed the number of edges while pre-
serving the underlying structure [26]. In a recent study, Qu et al. developed a privacy preservation technique for publishing a ho-
mogeneous network, employing differential privacy uncertainty. Their method involves dividing the network into the community, 
bridging subgraphs, and applying differential privacy and random perturbation techniques for encoding rearrangements and decoding 
the uncertain subgraph [27]. The discussed studies on the uncertain graphs approach are summarized in Table 2.  

c. Generalization/Clustering Approach 

Generalization/Clustering is a well-known approach, which groups the nodes and edges into super-nodes and super-edges to 
properly anonymize users’ information. In recent times, this approach has attracted significant attention within the realm of OSN 
anonymization methods. An early attempt in this category was undertaken by Zheleva et al., who introduced five clustering-based 
social network anonymization techniques, along with the information loss criteria for the problem of sensitive links disclosure [8]. 
A year later, an influential study based on the Generalization/Clustering approach was carried out by Campan et al., in which the 
authors proposed a greedy anonymization algorithm called the social network greedy anonymization algorithm (SANGreea) [6]. This 
method tries to protect social networks’ structural information (neighborhood) by satisfying the structural k-anonymity. The meth-
odology involves transforming a social network graph into an anonymous version in a way that the structural property of each node 
remains unidentifiable with at least k-1 other nodes through clustering nodes and edges into super-nodes and super-edges. In addition, 
the authors tried to simultaneously preserve the utility of the anonymous social network by maintaining the users’ attributes and 
structural information by reducing the generalization information loss (GIL) and SIL criteria. It is important to note that SANGreea 
relies on greedy algorithms, which means it may not consistently achieve the optimal global solution, as greedy algorithms tend to 
make confident choices early on without considering the potential superior choices that may arise in the future. In another study, 
Campan et al. tried to improve the structural k-anonymity model by proposing a greedy clustering-based algorithm that implements 
the p-sensitive k-anonymity model in social networks [28]. In 2011, Tassa et al. introduced Sequential Clustering (SC) as a method to 
improve the clustering phase of SaNGreeA, and it offers superior optimization compared to SaNGreeA due to its ability to modify 
clusters [29]. Later, in 2012, Sihag developed a clustering-based method and applied it to undirected and unlabeled graphs, intending 
to maximize the preservation of privacy in social networks [9]. The author used the GA to achieve the structural k-anonymity model by 
grouping the nodes into clusters with at least k nodes. A notable drawback of this study was its disregard for the utility of the ano-
nymized social network, as the primary focus was solely on increasing the privacy level by maximizing the NSIL of the anonymized 
network. Also, this method proved impractical for large-scale networks due to the reliance on a matrix-based solution representation, 

Table 2 
An Overview of the Studies on Uncertain Graphs Approach.  

Approach Year Authors 

2012 Boldi et al. [5] Introduced the concept of injecting uncertainty in social graphs. 
2018 Yan et al. [25] Presented a new method to make a trade-off between privacy and utility through the utilization of the uncertain graph approach 

while modifying the structure of the influential nodes. 
2018 Parchas et al.  

[26] 
Proposed an uncertain graph-based method in which they reduced and redistributed the number of edges while preserving the 
underlying structure. 

2023 Qu et al. [27] Introduced a method for homogeneous network publishing using differential privacy uncertainty.  
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which negatively affected the algorithm’s process time and required hardware resources. In 2015, Campan et al. published a paper that 
compared the SANGreea with the k-degree method regarding the community preserving criterion [30]. They indicated that the k- 
degree method performs better in preserving the communities, but SANGreea implements a much stronger privacy model than the k- 
degree method. During the same year, Casas-Roma et al. developed the k-shell method based on the Generalization/Clustering 
approach for the undirected and unlabeled networks [31]. In 2019, Ros-Martín et al. presented a graph anonymization method named 
scalable non-deterministic clustering-based k-anonymization (SCAN), which uses a greedy and non-deterministic algorithm to achieve 
k-anonymity on labeled and undirected networks [7]. Their proposed method is inspired by the well-known SANGreea, improving both 
SIL and GIL criteria by introducing a new information loss score for the relationships (ILR) and an information loss score for the at-
tributes (ILA). During the same year, Mohapatra et al. presented a new clustering-based method called Modified Anatomy-based 
Clustering (MAC). Unlike previous works such as SaNGreeA and SC, which heavily rely on generalization-based clustering, MAC 
focuses on preserving data originality. As a result, this technique achieves lower information loss and higher utility than previous 
methods [32]. In a 2020 study, Yazdanjue et al. proposed four OSN privacy-preserving methods based on the structural k-anonymity 
using GA, binary particle swarm optimization (BPSO), and two hybrid methods named GAPSO and PSOGA meta-heuristic algorithms 
[10]. The aim was to optimize the clustering process in the structural k-anonymity model by finding the optimal clusters with the 
minimum SIL and ILR values, leading to a high-utility anonymized social network. The authors developed a modification technique to 
ensure that the matrix-based solution representation aligns with the structural k-anonymity constraint, which requires each super- 
node to contain at least k nodes. However, this modification technique may potentially impact the algorithm’s performance and in-
crease its processing time. During the same year, Langari et al. introduced an anonymization approach for social networks, combining 
the k-member Fuzzy Clustering and Firefly Algorithm (KFCFA) to protect the users’ attributes and network structural data from 
disclosure while minimizing information loss [33]. In 2021, Gangarde et al. proposed a method for anonymizing social networks using 
a multi-graph-properties-based clustering approach [34]. Their method aims to ensure the privacy of edges, nodes, and user attributes 
within social networks while fulfilling k-anonymity, l-diversity, and t-closeness models in each cluster. It implements a data 
normalization algorithm to improve the quality of raw OSN data, followed by k-means clustering based on multiple graph properties to 
achieve an optimized anonymous network. A year later, in 2022, Kadhiwala et al. introduced an anatomy-based clustering approach 
inspired by the MAC method [35]. Their method centered around addressing attribute disclosure in clustering formation as well as 
protecting against identity disclosure during the publishing phase of collaborative social network data through the utilization of the m- 
privacy model. It is worth noting that the authors used the SIL criterion to measure the information loss resulting from their clustering 
approach. Also, in 2023, Wang et al. suggetsed the Graph-Clustering Anonymity with Fused Distance-Attributes (GCA-DA) algorithm, a 
novel method to enhance social network data privacy by clustering nodes based on integrated distance and attribute similarities [36]. 
This technique anonymizes clusters’ nodes to prevent attacks using background knowledge, while preserves data utility. Their results 
demonstrated the effectiveness in improving clustering quality and reducing information loss. In a recent study inspired by their 
previous work in 2021, Gangarde et al. proposed an improved clustering mechanism to protect the privacy of link, node, and user 
attributes while enhancing utility [37]. In this regard, they employed a threshold technique to modify the existing fixed k-means 
clustering used in their previous study. This modification enabled successful k-anonymization of clusters while optimizing them to 
satisfy the requirements of k-anonymity, t-closeness, and l-diversity. Table 3 summarizes the mentioned studies in the generalization/ 
clustering category. 

In summary, while the aforementioned studies have brought insight into OSN privacy-preserving, few of them have explored the 
use of evolutionary algorithms and meta-heuristics in their models to achieve a balance between both privacy and utility criteria. As 
mentioned, the clustering step of the Generalization/Clustering approach, used to satisfy the structural k-anonymity model, is an NP- 

Table 3 
An Overview of the Studies on the Generalization/Clustering Approach.  

Year Authors Key Contribution 

2007 Zheleva et al. [8] Introduced five clustering-based social network anonymization techniques. 
2008 Campan et al. [6] Proposed SANGreea as a greedy anonymization algorithm satisfying structural k-anonymity. 
2010 Campan et al. [28] Improved the structural k-anonymity model using a greedy clustering-based algorithm to implement the p-sensitive k-anonymity 

model. 
2011 Tassa et al. [29] Introduced Sequential Clustering (SC). It offers better optimization compared to SaNGreeA due to its modifiable cluster 

capability. 
2012 Sihag [9] Proposed a GA-based clustering method for undirected and unlabeled graphs to achieve maximum privacy. 
2015 Campan et al. [30] Compared SANGreea with the k-degree method in terms of community preservation. 
2015 Casas-Roma et al.  

[31] 
Developed the k-shell method based on the Generalization/Clustering approach. 

2019 Ros-Martín et al. [7] Presented a method improving both SIL and GIL criteria using SCAN, a greedy and non-deterministic algorithm. 
2019 Mohapatra et al.  

[32] 
Introduced MAC, focusing on preserving data originality through Modified Anatomy-based Clustering. 

2020 Yazdanjue et al. [10] Proposed methods based on structural k-anonymity using GA, BPSO, GAPSO, and PSOGA algorithms. 
2020 Langari et al. [33] Introduced KFCFA, combining k-member Fuzzy Clustering and Firefly Algorithm. 
2021 Gangarde et al. [34] Developed a multi-graph-properties-based clustering approach using the k-means algorithm for anonymizing social networks. 
2022 Kadhiwala et al. [35] Presented a new anatomy-based clustering approach focusing on attribute and identity disclosure protection. 
2023 Wang et al. [36] Presented the GCA-DA algorithm, effectively balancing network data privacy with minimal information loss in clustering. 
2023 Gangarde et al. [37] Proposed a method with an improved k-means clustering mechanism to protect link, node, and user attributes privacy while 

enhancing utility.  
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hard problem [6,9,10]; hence, various state-of-the-art meta-heuristics can be used to find optimal clusters with minimum SIL, resulting 
in an improved structural k-anonymous OSN. Nonetheless, many studies in the literature have relied on heuristic and greedy algo-
rithms to find the structural k-anonymous social network. However, these methods have limitations that may lead to suboptimal 
solutions. For instance, greedy algorithms tend to make early choices and can get stuck in local optima, failing to find the best possible 
solution. Likewise, although heuristics can obtain near-optimal solutions in a relatively reasonable time, they cannot guarantee the 
quality of the solution. In contrast, meta-heuristic algorithms are formally defined as iterative processes that intelligently explore and 
exploit the search space using a small initial population size and a feasible number of iterations. Therefore, proposing an efficient meta- 
heuristic algorithm for the structural k-anonymity problem that can simultaneously preserve network privacy and maintain the 
structural information of the OSN is an active research subject. Therefore, this article presents an enhanced meta-heuristic algorithm to 
solve the structural k-anonymity problem effectively and find high-utility anonymous OSNs. The main contributions of this work can 
be summarized as follows:  

1) As the main contribution of this study, we propose an enhanced DPSO algorithm, called EDPSO, to solve the structural k-anonymity 
problem effectively and efficiently. Our approach involves the intelligent and dynamic application of effective operators, including 
Swap, Reversion, Rotate to Left, Rotate to Right, and Insertion. This increases the algorithm’s exploration and exploitation ca-
pabilities, leading to the discovery of an optimal structural k-anonymous network with a minimum SIL value. To achieve this, we 
have designed a novel heuristic algorithm that significantly improves the update process of each particle’s position vector. This 
algorithm adaptively tunes the selection probabilities of the operators based on the obtained fitness values of each operator in the 
current iteration and also the number and the average amount of fitness improvements made by them in previous iterations. This 
results in a tradeoff between exploration and exploitation capabilities and avoids premature convergence.  

2) In addition, two network-specific local search strategies based on the SA and VNS algorithms have been developed to assist the 
proposed EDPSO algorithm in achieving higher performance. These local searches further improve both the exploration and 
exploitation of the proposed EDPSO algorithm by preventing it from being trapped in local optima and increase the convergence 
rate of the EDPSO. As a result, the integration of these local searches assists the EDPSO algorithm in achieving near-optimal so-
lutions with minimum SIL in a reasonable number of iterations. 

3) We also utilize a vector-based solution representation for solving the structural k-anonymity problem using meta-heuristic algo-
rithms, which mitigates the shortcomings of the matrix-based solution representation used in [9,10]. Unlike the matrix-based 
approach, our vector-based representation inherently satisfies the structural k-anonymity constraint. Consequently, it eliminates 
the need to demand validity checks or modification steps as required in the previous methods [9,10]. Hence, by using this vector- 
based solution representation, the proposed algorithms demonstrate superior exploration and exploitation capabilities compared to 
the previous studies, and they can reach higher-quality solutions. Furthermore, this representation reduces the number of required 
numeric values, leading to a relative decrease in the complexity of the algorithm and the requirement for hardware resources 
during the execution process.  

4) Furthermore, a comprehensive set of experiments was conducted on real-world networks to evaluate the performance of the 
proposed algorithms. They were compared with previous meta-heuristic methods (DPSO, PSOGA, and GA) based on fitness value 
(1-NSIL) for different k values. The results showed that the proposed EDPSO, EDPSOSA, and EDPSOVNS algorithms achieved 
higher 1-NSIL values, indicating a balance between exploration and exploitation and avoiding premature convergence. Also, 
comparisons with traditional matrix-based methods demonstrated that the use of vector-based solution representation in EDPSO 
led to superior exploration, exploitation, higher-quality solutions, and reduced process time for larger and more complex datasets. 
The effectiveness of SA and VNS-based local searches in improving convergence rates and attaining near-optimal solutions was also 
assessed, showing that EDPSOVNS and EDPSOSA algorithms achieved higher convergence rates and 1-NSIL values compared to 
other algorithms. Eventually, the proposed algorithms were compared with Anatomy-based clustering, Enhanced k-means clus-
tering, SCAN, and SANGreea methods, considering 1-NSIL and 1-ILR criteria. The results indicated that the proposed algorithms 
achieved lower structural information loss while preserving users’ privacy. 

3. Problem statement 

Building upon the principles of k-anonymity, structural k-anonymity is a specialized technique often used in the Generalization/ 
Clustering approach to anonymize the structure of social networks. It primarily focuses on protecting the structural information, which 
includes the neighborhood relationships and connections of a network’s nodes. In a structurally k-anonymous network, the 
arrangement and properties of connections for each user are generalized or clustered to make them indistinguishable from at least k-1 
other users [6,8–10]. The goal of structural k-anonymity is to preserve the privacy of users against attempts to reidentify them based on 
their structural characteristics within the network. Consequently, an attacker trying to reveal the identity of a user in the network will 
face significant uncertainty. More specifically, the primary challenge in the Generalization/Clustering approach utilizing structural k- 
anonymity is to cluster the nodes and edges of the network into super-nodes and super-edges while minimizing the disruption to the 
original network structure, which is measured through the SIL metric. By keeping the SIL as low as possible, the approach tries to 
preserve the data utility to the greatest extent while still achieving the desired level of anonymity. However, designing an efficient 
algorithm for creating a structurally k-anonymous network through Generalization/Clustering remains a challenging and active 
research area in OSN anonymization. This is because the process of finding optimum clusters in the structural k-anonymity method is 
proved to be an NP-hard optimization problem, which is often solved using heuristic methods or guided random search techniques like 
meta-heuristic algorithms [6,9,10]. 
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Hence, in the current study, we propose three meta-heuristic algorithms (EDPSO, EDPSOVSN, and EDPSOSA) to minimize the SIL 
criterion while satisfying the specified structural k-anonymity constraint. The structural k-anonymity constraint requires that each 
super-node contains a minimum of k ≤ n nodes, where n represents the total number of nodes in the network. Therefore, the number of 
super-nodes can be calculated using Equation (1). 

s = ⌊n/k⌋ (1)  

Here we consider the social network as a simple undirected graph G = (V,E), where V is the set of nodes (representing the users in the 
network), and E ⊆ V × V is the set of edges (representing relationships between the users). The set V consists of n nodes (|V| = n) and 
each node (vn id) is labeled by n id ∈ [1,⋯,n]. In addition, the set E consists of m edges (|E| = m) and evi ,vj ⊆ E denotes an edge between 
nodes vi and vj. It is important to note that only binary relationships are permitted in this context, and all relationships are unsigned 
and undirected. Finally, the anonymized version of the original graph is referred to as G = (V,E). Also, the adjacency matrix (ADM) of a 
social network is defined by Equation (2), which is a n × n binary matrix, where the ones indicate the edges between nodes. The 
elements on the main diagonal of this matrix are zero since the graph is a simple one with no cycles. 

admi,j =

{
1, ifi ∕= jAndevi ,vj ∈ E

0,Otherwise (2)  

As previously mentioned, in the Generalization/Clustering approach, the nodes/users in the network will be grouped into distinct 
clusters called super-nodes. In this study, each of these super-nodes (Cls id) is labeled by s id ∈ [1,⋯,s], and the set of clusters (CL Set) is 
defined as in Equation (3). 

CL Set =
⋃s

s id=1
Cls id = {Cl1,⋯,Cls};Cli ∩ Clj = ∅; i, j ∈ [1s]; i ∕= j (3)  

4. Proposed method 

The suggested meta-heuristic method in this study is based on the PSO algorithm, which is a swarm-based optimization algorithm 
inspired by the behavior of insect swarms, bird flocks, and fish schools in nature [38,39]. In PSO, the optimization process starts with 
the generation of an initial swarm, and each particle of the swarm has a position vector and a velocity vector. The position vector 
denotes the current solution of the corresponding particle, and the velocity vector is used to adjust the particle’s position in the di-
rection of the optimal solution’s position. Although the PSO algorithm was initially proposed to solve continuous optimization 
problems, several versions of this algorithm have been suggested to solve discrete and binary problems. The advantages and disad-
vantages of the PSO algorithm are discussed in the literature. One notable advantage of PSO is its straightforward implementation 
since it uses simple mathematical operators and has a low number of parameters to adjust. Besides, this algorithm converges faster than 
other population-based optimization algorithms, such as GA. However, its main drawback is its tendency for premature convergence, 
which is a result of getting stuck in local optima. 

In 2015, Cai et al. recognized the need to develop a discrete PSO (DPSO) algorithm, addressing the drawbacks of original PSO in 
discrete optimization problems [11]. However, their proposed algorithm still suffers from premature convergence and inadequate 
exploration and exploitation capabilities, particularly in large-scale real-world social networks. Therefore, as the main contribution of 
the current study, EDPSO is proposed to overcome the mentioned issues. To this end, we have developed a novel heuristic algorithm 
that intelligently applies problem-specific operators involving Swap, Reversion, Insertion, Rotate to Left, and Rotate to Right to the 
particles. This algorithm updates the position vector of each particle more effectively by dynamically applying the mentioned oper-
ators. More specifically, the proposed algorithm adaptively tunes the selection probabilities of the operators based on the obtained 
fitness value in the current iteration and the performance history of each operator (i.e., the number and the average amount of fitness 
improvements of them in the previous iterations). This heuristic approach achieves a balanced tradeoff between exploration and 
exploitation capabilities while avoiding premature convergence. 

Additionally, we have reinforced the proposed EDPSO with two auxiliary network-specific local search strategies based on the SA 
and VNS algorithms, called EDPSOSA and EDPSOVNS, respectively. These local search algorithms serve auxiliary roles and enhance 
the exploration and exploitation of the proposed EDPSO algorithm. They prevent the algorithm from being trapped in a local optimum 
and enable it to achieve a structural k-anonymous network with the minimum NSIL. Moreover, these strategies increase the 
convergence rate of the EDPSO, leading it toward the best possible solution in fewer iterations. A comprehensive discussion of the 
proposed EDPSO algorithm and its combinations with the local search strategies (EDPSOSA and EDPSOVNS) will be provided in 
sections 4.1 and 4.2. 

4.1. EDPSO Framework 

Algorithm 1 presents the pseudocode of the EDPSO algorithm, which serves as the global search component of our suggested social 
network privacy-preserving method, aimed at maximizing the 1-NSIL value. The details of the initialization process for each particle 
(Random_Based_Initialization), velocity updating rule, novel position updating heuristic (Adaptive_Heuristic_Position_Updating), and 
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developed local search strategies (Local_Search) are discussed in this section.  
Algorithm 1. “Framework of EDPSO Algorithm” 

1. Inputs: 
The adjacency matrix of the graph G = (V,E): ADM 
Swarm Size: nPop 

Current Iteration:it 
Maximum Number of Iterations:itMax 

Inertia Weight:IW 
Learning Factors: c1, c2 

Minimum Cluster Size:k 
Procedure: 
2. Apply Random_Based_Initialization (nPop) to initialize Swarm with random values 
3. For each Particle Pi in Swarm do 

4. Calculate Particle Fitness: Pi.Ft ← 1 − NSIL (Xt− 1
i
̅̅→

) 

5. Pbesti
̅̅̅ →

←Xt− 1
i
̅̅→

6. End For 

7.Gbest
̅̅̅→

← Find the best Pbesti
̅̅̅ →

8. While it ≤ itMax do 
9. For each Particle Pi in Swarm do 

10. Update Velocity: Velt
i

̅̅→
← Update Velt− 1

i
̅̅̅→

11. Update Position: Xt
i

→
← Adaptive_Heuristic_Position_Updating (Xt− 1

i
̅̅→

) 

12 Pi .Ft ← 1 − NSIL (Xt
i

→
) 

13. If Pi .Ft > 1 − NSIL (Pbesti
̅̅̅ →

) then 

14. Update Pbesti
̅̅̅ →

15. If 1 − NSIL (Pbesti
̅̅̅ →

) > 1 – NSIL (Gbest
̅̅̅→

) then 

16. Update Gbest
̅̅̅→

17. End If 
18. End If 
19. End For 

20. Update Global best solution using local search: Gbest
̅̅̅→

← Local_Search (Gbest
̅̅̅→

,Velt
i

̅̅→
) 

21. Increment it 
22. End While 

23. Output: The Gbest
̅̅̅→

as the anonymized graph G, whose utility as well as privacy, is maximum.  

4.1.1. Solution representation 
In this section, we will outline the solution representation employed by the proposed EDPSO algorithm. Unlike previous matrix- 

based solution representations, the proposed EDPSO algorithm adopts a vector-based solution representation that inherently sat-
isfies the structural k-anonymity constraint, eliminating the need for exhaustive validity checks or modification steps required in prior 
approaches [9,10]. This feature allows the proposed EDPSO to achieve superior exploration and exploitation capabilities, resulting in 
solutions of higher quality and mitigating premature convergence. Also, this representation leads to the use of a smaller number of 
numeric values compared to matrix-based solution representations, which in turn relatively decreases the hardware resources required 
for the execution process. 

The EDPSO algorithm initiates by generating a population of feasible random solutions, referred to as a swarm, that involves p 
particles (solutions). Each of these particles (Pi : i ∈ [1,⋯,p]) comprises position and velocity vectors. As shown in Equation (4), the 

position vector for the i th particle at time t is represented as Xt
i

→
, in which the value of its elements (xn id) correspond to the label of the 

super-node (s id) where the node with the label n id belongs. Similarly, in Equation (5), the velocity vector is represented as Velti
̅̅→

, in 

which the value of its elements (veln id) shows the velocity of the node with n id label. It is worth noting that the Velti
̅̅→

decides whether 
the current position of the particle should be updated or not. If veln id = 1, the corresponding value in the position vector (xn id) will be 
modified; otherwise, if veln id = 0, the corresponding position value remains unchanged. 

For instance, if the network size is n = 7 and the constraint of the structural k-anonymity is k = 2, then based on Equation (1), the 

number of clusters will be s = 3. Subsequently, Equation (6) shows a presumed position vector for the first particle of the swarm ( Xt
1

̅→
), 

such that the nodes with labels n id = 2, n id = 5 are clustered in the first super-node with s id = 1 (i.e., x2 = 1,x5 = 1), the nodes 
with labels n id = 4, n id = 7 are clustered in the second super-node with s id = 2 (i.e., x4 = 2,x7 = 2), and finally the nodes with 
labels n id = 1, n id = 3, n id = 6 are clustered in the third super-node with s id = 3 (i.e., x1 = 3,x3 = 3,x6 = 3) in the targeted social 
network. 

Xt
i

→
= [x1,⋯, xn id ,⋯, xn] (4)  

Velt
i

̅̅→
= [vel1,⋯, veln id ,⋯, veln] (5)  
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Xt
1

̅→
= [3, 1, 3, 2, 1, 3, 2] (6) 

Fig. 1(a) and 1(b) illustrate the Xt
1

̅→
solution vector related to Equation (6) and its graphical representation, respectively. 

According to the concept of the structural k-anonymity constraint, the number of nodes with similar s id in each position vector (i. 

e., the number of nodes in each super-node) must be greater than or equal to k. The mentioned condition for Xt
i

→
is expressed in Equation 

(7). 

∀s id ∈ [1,⋯, s] :
∑n

n id=1
if (xn id == s id) ≥ k (7)  

To initialize the position vector of each particle (Xt
i

→
) in the initial swarm of the EDPSO, the random initialization method is used. This 

method generates position vectors with random numbers, which results in maintaining the randomness of the algorithm. Simulta-
neously, the velocity vectors (Vel0i ) are set to the zeroes vector at the initial phase. As mentioned above, the vector-based representation 
guarantees that all generated solutions throughout the EDPSO’s execution process adhere to the structural k-anonymity constraint. 
This is because the Swap, Reversion, Insertion, Rotate to Left, and Rotate to Right operators, applied to the vector-based solutions, 
solely modify the arrangement of nodes among different clusters without altering the number of nodes within the clusters. 

4.1.2. Fitness function evaluation 
As discussed in the literature review section, many state-of-the-art studies use the well-known SIL criterion to assess the amount of 

structural information loss in the networks resulting from the application of the Generalization/Clustering approach. The SIL serves as 
a measure that quantifies the probability of error in reconstructing the original structure from the network, which is anonymized by 
grouping nodes and edges into super-nodes and super-edges. In the current study, we adopt the same SIL criterion as the objective 
function to find the best structural k-anonymous network with the minimum information loss. The following sub-section presents the 
underlying concepts of SIL as the chosen objective function.  

a) Structural Information Loss 

The primary objective of the clustering method introduced by Campan et al. was to achieve a high level of structural k-anonymity 
that any two users within each cluster could not be distinguished from each other based on their identities and relationships [6]. To 
accomplish this, they presented an edge generalization technique consisting of two components: edge intra-cluster and edge inter- 
cluster generalization. The edge intra-cluster component generalizes the edges within each super-node, while the edge inter-cluster 
component generalizes the edges between super-nodes. 

However, this generalization technique comes with certain consequences, as it results in the loss of some structural information 
from the original graph. To clarify, some structural information will be lost in each of the edge intra-cluster and edge inter-cluster 
generalization components. Consequently, the introduced SIL criterion equals the sum of intra-cluster structural information loss 
(intraSIL) and the inter-cluster structural information loss (interSIL). The intraSIL measures the probability of incorrectly labeling a pair 
of nodes within a cluster as either connected or unconnected, as defined in Equation (8). On the other hand, the interSIL, shown in 
Equation (9), calculates the probability of wrongly labeling a pair of nodes, where one node belongs to one cluster, and the other 
belongs to a different cluster, as either connected or unconnected. 

Fig. 1. The Graphical Representation of the Xt
1

̅→
Solution Vector.  
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intraSIL(Cli) =

⎛

⎜
⎜
⎝

((
|Cli|

2

)

− |ECli |

)

.
|ECli |(
|Cli|

2

)

⎞

⎟
⎟
⎠+

(

|ECli |.

(

1 − |ECli |/

(
|Cli|

2

)))

= 2.|ECli |.

(

1 − |ECli |/

(
|Cli|

2

))

; i

∈ [1,⋯, sid,⋯, s] (8)  

interSIL
(
Cli,Clj

)
=

(
(
|Cli|.

⃒
⃒Clj
⃒
⃒ − |ECli ,Clj |

)
.
|ECli ,Clj |

|Cli|.
⃒
⃒Clj
⃒
⃒

)

+

(

|ECli ,Clj |.

(

1 −
|ECli ,Clj |

|Cli|.
⃒
⃒Clj
⃒
⃒

))

= 2.|ECli ,Clj |.

(

1 −
|ECli ,Clj |

|Cli|.
⃒
⃒Clj
⃒
⃒

)

; i, j

∈ [1,⋯, sid,⋯, s], i ∕= j (9)  

In this sense, if the graph G is converted to an anonymous graph G with the cluster set of CL Set = {Cl1, ⋯,Cls id,⋯,Cls}, the total SIL 
can be calculated as in Equation (10). 

SIL(G,CL Set) =
∑s

i=1
(intraSIL(Cli) )+

∑s

i=1

∑s

j=i+1
(interSIL(Cli,Clj)); i, j ∈ [1,⋯, sid,⋯, s], i ∕= j (10)  

The maximum value of the total structural information loss,MAXSIL, can be calculated by Equation (11). 

MAXSIL(G,CL Set) =
∑s

i=1

(
|Cli| • (|Cli| − 1 )

4

)

+
∑s

i=1

∑s

j=i+1

(
|Cli| •

⃒
⃒Clj
⃒
⃒

2

)

=
n × (n − 1)

4
; i, j ∈ [1,⋯, sid,⋯, s], i ∕= j (11)  

It is evident that when the SIL value is maximum, the adversary will face the highest error probability during the reconstruction of the 
original network. However, in this situation, the utility of the anonymized network is minimum since the anonymization algorithm 
shuffles the structure of the social network as much as possible. Consequently, it is essential to make a trade-off between protecting the 
structural data against disclosure attacks and maintaining the utility of the anonymized social network for third-party companies. 

The value of SIL can be normalized through the division of SIL by the MAXSIL, as demonstrated in Equation (12), resulting in NSIL. 
The NSIL ranges from 0 to 1, with 0 indicating no loss of information (for a graph with no edges or a complete graph) and 1 indicating 
maximum loss of information. It is important to note that the less NSIL is, the higher the utility of the anonymous network will be. 
Hence, in this study, we use NSIL to evaluate the total structural information loss of the anonymized network represented by each 
particle in the EDPSO algorithm. To obtain the anonymous network with the highest possible utility, we aim to maximize 1-NSIL, 
shown in Equation (13), which serves as the fitness function. 

NSIL(G,CL Set) =
SIL(G,CL Set)

MAXSIL(G,CL Set)
=

SIL(G,CL Set)
n×(n− 1)

4

(12)  

Fitness(G,CL Set) = 1 − NSIL (13)  

For example, the fitness value (1-NSIL) of the network shown in Fig. 1 (b) can be calculated based on the structural information 
presented in Table 4, and it is equal to 0.4127. 

4.1.3. Update rules 
To achieve an optimal structural k-anonymous social network, the 1-NSIL should be maximized by the suggested EDPSO algorithm. 

In this regard, each particle’s velocity and position vectors in the swarm should be updated in the discrete form, which is explained 
thoroughly in the following sections. 

1) The Velocity Vector Updating Mechanism 
The velocity of each particle indicates the distance traveled by the particle at each iteration and is updated in the next iteration 

based on its personal best experience (Pbest
̅̅̅→

), and the best experience of the whole swarm (Gbest
̅̅̅→

). In the current study, we used the 
velocity updating mechanism introduced in [11] to update the velocity vector of each particle, which is defined by Equation (14). 

Velt
i

̅̅→
←Φ

([
IW*Velt− 1

i

̅̅̅→]
+ [c1r1*

(
Pbesti
̅̅̅ →

⊕ Xt− 1
i

̅̅→)
] + [c2r2*

(
Gbest
̅̅̅→

⊕ Xt− 1
i

̅̅→)
]
)

(14)  

Where IW is the inertia weight, Pbesti
̅̅̅→

indicates the personal best position of i th particle, and Gbest
̅̅̅→

represents the global best position of 
the swarm. Besides, parameters c1 and c2 are acceleration constants for the cognitive and social components, respectively, and r1 and r2 
denote the two generated random numbers within the range [0, 1]. Furthermore, the operator “⊕” in Equation (14) is defined as the 

Table 4 
Number of Nodes, Intra-edges, and Inter-edges of the Super-nodes in the Sample Network.  

Variable |Cl1| |Cl2| |Cl3|
⃒
⃒ECl1

⃒
⃒

⃒
⃒ECl2

⃒
⃒

⃒
⃒ECl3

⃒
⃒ |ECl1,Cl2 | |ECl1,Cl3 | |ECl2,Cl3 |

Value 2 2 3 1 1 2 1 1 1  
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logical XOR operator. In the case of the structural k-anonymity problem, the mentioned “⊕” operator demonstrates the structural 
difference between two k-anonymous networks since each solution is considered as an anonymized network with different structural 
features. 

Subsequently, according to Equation (14), the previous velocity vector of the i th particle (Velt− 1
i

̅̅̅→
), and the result of two XOR op-

erations will be summed together, and the result of the mentioned summation process will be passed to the Φ function, which is defined 
subsequently. 

Given the Z→= [z1, z2,⋯, zn] vector, the Φ
(

Z→
)

will be represented as Φ
(

Z→
)
= [φ(z1),φ(z2)...,φ(zn)], where φ(zi) (i = 1,2, ...,n) is 

defined as a threshold function shown in Equation (15). 

∀zi ∈ Z→ : φ(zi) =

{
0zi < 1;
1zi ≥ 1; (15)  

Overall, for each particle in the swarm, there will be an updated velocity vector (Velti
̅̅→

) including ‘0’ or ‘1’ values associated with the 

elements (nodes) in the position vector (Xt− 1
i
̅̅→

) of that particle. The nodes whose corresponding element in the velocity vector is equal to 
‘0’, have a higher potential to move in the direction of the global optimum, and hence their current positions are better to be reserved. 
On the contrary, the ‘1’ elements in the velocity vector reflect the candidate nodes whose movement directions are deemed unsuitable, 
and they need to be updated based on the proposed adaptive heuristic updating mechanism discussed in the following section. 

2) The Proposed Position Vector Updating Mechanism 
The whole framework of the proposed heuristic mechanism for position vector updating is depicted in Fig. 2. 
In this stage, the position of the particles will be updated in accordance with the updated velocity vector using Equation (16). 

Xt
i

→
←Xt− 1

i

̅̅→
⊛ Velt

i
̅̅→

(16)  

where the operator “⊛” is a heuristic updating mechanism that plays a significant role in guiding the particles to the promising regions. 

Fig. 2. The Proposed Adaptive Heuristic Position Updating Mechanism.  
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The process of updating the particle position through the mentioned heuristic is described in the following seven steps. 
1- In the first step, for each candidate node cand node (i.e., elements in the particle whose corresponding element in the updated 

velocity vector (Velti
̅̅→

) is 1), another node from the same particle should be selected randomly (r node). 
2- Next, five updating operators comprising Swap, Reversion, Insertion, Rotate to Left, and Rotate to Right are applied to the two 

selected nodes in the position vector of i th particle, specified in the previous step. These operators are defined as follows.  

• The Swap
(

Xt− 1
i
̅̅→

, cn id, rn id
)

operator is a function that swaps the cand node ( xcn id) with the r node ( xrn id) in the position vector 

of i th particle.  

• The Rev
(

Xt− 1
i
̅̅→

, cn id, rn id
)

operator (Reversion) is a function that reverses the sequence of the elements which are between the 

cand node ( xcn id) and the r node ( xrn id) in the position vector of i th particle.  

• The Ins
(

Xt− 1
i
̅̅→

, cn id, rn id
)

operator (Insertion) is a function that removes the r node ( xrn id) and inserts it after the cand node 

( xcn id) in the position vector of i th particle.  

• The RtoL
(

Xt− 1
i
̅̅→

, cn id, rn id
)

operator (Rotate to Left) rotates the sequence between cand node ( xcn id) and the r node ( xrn id) one 

step to the left in the position vector of i th particle.  

• Similarly, the RtoR
(

Xt− 1
i
̅̅→

, cn id, rn id
)

operator (Rotate to Right) rotates the sequence between cand node ( xcn id) and the r node 

( xrn id) one step to the right in the position vector of i th particle. 

It is worth mentioning that these operators satisfy the constraint of k-anonymity, which is mentioned in Equation (7) inherently. 
3- In the third step, three input vectors of size 1 × 5 are defined for the i th particle at time t, comprising the fitness value vector 

(FVt̅→
), number of improvement vector (NOIt̅̅→

), and the amount of improvement vector (AOIt̅̅→
). As depicted in Fig. 3, each element in 

these vectors is in reference to one of the five operators described in the previous step and is indexed using op id ∈ [1, 2, 3, 4, 5]. 
Moreover, the initial values of these vectors are set to zeros. 

4- In this step, the fitness value of the updated position vectors obtained from each operator is calculated based on the 1-NSIL fitness 

function and is inserted in the index related to that operator in the FVt̅→
. Since the calculated fitness values are usually close together, it 

is preferable to increase the differences among these values so that the operator that leads to a higher fitness value has a greater chance 

of being selected. Hence, the exponential transformation function shown in Equation (17) is applied to the fitness values stored in FVt̅→

and the outputs are stored in the transformed fitness value vector (TFVt̅̅→
). 

TFVt̅̅̅→
(op id) =

[
FVt̅̅→

(op id)
]α

(17) 

Where α is defined as in Equation (18). 

α =
αmax − αmin

itMax − 1
× (it − 1)+ αmin (18) 

In Equation (18),αmin, αmax, it, and itMax indicate the minimum value of α, the maximum value of α, the current iteration number, and 
the maximum iteration number of the EDPSO algorithm, respectively. It is evident that α increases linearly from αmin to αmax, as the 
EDPSO proceeds from it = 1 to it = itMax. In this study, the experimental results show that the best values for αmin and αmax are 1 and 
itMax, respectively. The gradual rise of α leads to the adaptive increase in the scale difference between transformed fitness values, which 
is a strategy to raise the selection probability of the most effective operators as the EDPSO approaches higher iterations. 

Eventually, the TFVt̅̅→
values are normalized using Equation (19), and the output values are stored in the normalized fitness value 

vector (NFVt̅̅̅→
). 

Fig. 3. The Input Vectors for the i th Particle in Time..t  
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NFVt̅̅̅→
(op id) =

TFVt̅̅̅→
(op id)

∑5
op id=1TFVt̅̅̅→

(op id)
(19) 

5- Next, the fitness values of the updated position vectors (Xt
i

→
), stored in FVt̅→

, are compared elementwise with the fitness value of the 

Xt− 1
i

̅̅→
. As shown in Equation (20), if the fitness value of the updated position vector is greater than the fitness value of the Xt− 1

i

̅̅→
, the 

corresponding updating operator in the NoIt− 1̅̅̅̅→
is incremented by ‘1′, and the result is stored in NoIt̅̅→

. 

NoIt̅̅→
=
[
FVt̅̅→

. >
(

1 − NSIL
(

Xt− 1
i

̅̅→)) ]
.+NoIt− 1̅̅̅→

(20) 

Subsequently, the values of the NoIt̅̅→
are normalized according to Equation (21) and are stored in NNoIt̅̅̅ →

. 

NNoIt̅̅̅ →
(op id) =

NoIt̅̅→
(op id)

∑5
i=1NoIt̅̅→

(op id)
(21) 

6- Following step 5, we subtract each of the fitness values stored in FVt̅→
from the fitness value of Xt− 1

i

̅̅→
and store it in Z→. Next, the 

function L is applied to the result of the subtraction so that if the FVt̅→
(op id) is greater than 1 − NSIL

(
Xt− 1

i

̅̅→)
, the function will return its 

input value as the output; otherwise, it will return zero as the output. The general form of function L can be defined as L
(

Z→
)
= [l(z1),

l(z2)..., l(zn)] where l(zi) (i ∈ {1,2, ...,n}) is expressed as shown in Equation (22). 

∀zi ∈ Z→ : l(zi) =

{
0zi ≤ 0;
zizi > 0; (22) 

Then, the output values of function L will be added elementwise to the numbers that already exist in the AoIt− 1̅̅̅̅→
, and the results are 

stored in AoIt̅̅→
. The above-explained procedure can be summarized as represented in Equation (23). 

AoIt̅̅→
= L

(
FVt̅̅→

. −
(

1 − NSIL
(

Xt− 1
i

̅̅→)))
.+ AoIt− 1̅̅̅→

(23) 

Further to this step, as shown in Equation (24), the average amount of improvement (AvgAoIt̅̅̅̅̅→
) is attained by dividing each of the 

values in AoIt̅̅→
by its corresponding number of improvements (NoIt̅̅→

) achieved in step 5. 

AvgAoIt̅̅̅̅̅→
= AoIt̅̅→

./NoIt̅̅→
(24) 

After all, the values of the AvgAoIt̅̅̅̅̅→
are normalized according to Equation (25), and results are stored in NAvgAoIt̅̅̅̅̅̅→

. 

NAvgAoIt̅̅̅̅̅̅→
(op id) =

AvgAoIt̅̅̅̅̅→
(op id)

∑5
op id=1AvgAoIt̅̅̅̅̅→

(op id)
(25) 

7- As the final step in the proposed adaptive heuristic updating mechanism, the selection probability of each operator in the roulette 

wheel selection strategy is calculated using Equation (26) and is stored in the operator selection probability vector (OSPt̅̅→
). 

OSPt̅̅̅→
(op id) = w1.× NFVt̅̅̅→

+w2.× NNoIt̅̅̅ →
+w3.× NAvgAoIt̅̅̅̅̅̅→

(26) 

It is apparent from this Equation that each operator selection probability value depends on the three obtained vectors, which 

comprise NFVt̅̅̅→
, NNoIt̅̅̅ →

, and NAvgAoIt̅̅̅̅̅̅→
. Also, three weights, including w1, w2, and w3 are considered in Equation (26) to determine the 

importance of NFVt̅̅̅→
, NNoIt̅̅̅ →

, and NAvgAoIt̅̅̅̅̅̅→
, respectively. The values of w1, w2, and w3 are set in a way that they change adaptively in 

each iteration. In this case, in the initial iteration, the amounts of these weights are equal, and in the following iterations, the amount of 
w1 increases, and the amounts of w2 and w3 decrease gradually. Each of these weights is calculated using Equation (27). 

w1 = I +(1 − I)

[

1 − exp(
− β×it
itMax

)

]

,w2 = w3 =
1 − w1

2
(27) 

where parameter I is the initial value, and β is the slope value of the exponential function. In order to tune the I and β parameters, 
different values were evaluated, and the best values (i.e., I = 1/3 and β = 2) were selected empirically. Consequently, the proper w1 

formula is presented in Equation (28). 

w1 =
1
3
+

(

1 −
1
3

)[

1 − exp(− 2×it
itMax

)

]

(28) 

N. Yazdanjue et al.                                                                                                                                                                                                    



Information Sciences 670 (2024) 120631

15

Generally, in each iteration, the suggested heuristic position updating mechanism is applied to the swarm particles. This mechanism 
greatly enhances the exploration and exploitation capabilities of the proposed EDPSO algorithm by effectively directing the particles 
towards the promising regions of the search space. In the following, in order to further enhance the EDPSO algorithm’s exploration and 
exploitation capabilities and increase its convergence rate, two local search strategies are developed, which are thoroughly explained 
in the next section. 

4.2. Local search frameworks 

Although the proposed EDPSO algorithm generally performs well in most situations and yields a favorable solution using the 
suggested position updating rule, it may experience slow convergence in real-world large-scale OSNs with numerous users and re-
lations. Hence, we have devised two network-specific local search strategies based on the SA and VNS algorithms, which serve as 
auxiliary methods for the proposed EDPSO, enhancing its exploration and exploitation capabilities and increasing its convergence rate 

by escaping from the local optima. Note that these local searches only apply to the leader particle (Gbest
̅̅̅→

) with the best 1-NSIL value in 
each iteration. The pseudo-codes of the proposed local searches are described in Algorithms 2 and 3, respectively. 

a) VNS-based Local Search 
The VNS was introduced by Mladenović et al. as a single-solution meta-heuristic algorithm, usually used as a local search strategy 

for solving NP-hard problems [13]. This algorithm uses the idea of neighborhood change until the local optimum is attained. In this 
regard, VNS applies systematic techniques to switch to different neighborhoods, allowing further search progress. In this study, we use 
the core idea behind VNS in a straightforward way to introduce a VNS-based local search for the structural k-anonymity problem. This 
local search strategy, combined with the proposed EDPSO algorithm, is called EDPSOVNS. The pseudo-code of the proposed VNS- 
based local search is shown in Algorithm 2. 

At first, the velocity and position vectors of the global best solution, the operator selection probability vector (OSPt̅̅̅→
), and the 

network’s subgraphs (Subgraphh
n id) are passed to the algorithm as the inputs. These subgraphs include the nodes that can be reached 

within h-hops (h = [1,⋯,n − 1]) from the node with label n id. For example, the Subgraph2
1 represents the subset of the graph G that 

consists of the nodes which are reachable with 2-hops from the node with label n id = 1. Given that an OSN graph can be a large-scale 
network with numerous nodes and edges, employing the VNS may be time-consuming to find the proper local optimum solution. To 
mitigate this issue, we divide the original graph into subgraphs to reduce the search space size, leading to a significant decline in the 
algorithm’s process time. 

In the next step, the OSPt̅̅̅→
is sorted in descending order to prioritize the application of neighborhood operators based on their 

effectiveness thus far (step 2). That is, the operator with a higher selection probability has priority over the one with a lower selection 
probability, as they have demonstrated a greater impact on performance improvement up to that point. Afterwards, the nodes whose 
veln id equals 1 are selected as candidate nodes (step 3). For each candidate node, the algorithm tries to find a better solution by 
searching the subgraphs associated with that node, including the subgraph of 1-hop nodes up to the hmax-hop nodes (steps 4 to 25). To 
this end, the algorithm starts from the Subgraph1

cn id and applies the selected operator (S op) based on the order specified in step 2 to the 
global best solution. Specifically, the algorithm uses the first selected operator whose selection probability is higher than others. This 
operator is applied to the solution using the candidate node and the adjacent nodes reachable within 1-hop as inputs, generating new 
solutions (N Sols) called neighborhood solutions (steps 10 to 13). 

Subsequently, the best new solution (n sol) is selected, and if it is better than the global best solution, the global best will be 
updated, and the algorithm will proceed to the next candidate node (steps 14 to 18). Otherwise, the neighborhood operator with the 
next best selection probability will be selected (step 20), and all the described steps 10 to 18 will be repeated. The algorithm will 
continue the search process in the current subgraph with different operators until an improvement occurs in the solution. If the al-
gorithm reaches the last operator and does not discover any improved solution, the subgraph is updated to include nodes that are h +

1-hop away from the candidate node (step 23). Subsequently, the algorithm tries to find a better solution using the aforementioned 
steps 7 to 22 in the updated subgraph. The algorithm will end when steps 5 to 25 are performed for all the candidate nodes. As a result, 
an updated global best solution will be obtained as the output of the VNS-based local search algorithm.  

Algorithm 2. “Framework of VNS-based Local Search” 

1. Inputs: 
Global best solution: i th particle with vectors Xi

→
, Vi
̅→

Operator Selection Probability vector:OSPt̅̅̅→

Nodes reachable with h − hop, where h = [1,⋯,n − 1]: Subgraphh 

Procedure: 

2. Sort OSPt̅̅̅→
in descending order. 

3. C Nodes ← Find nodes with velocity = 1 in Vi
̅→

4. For each c node in C Nodes do 
5.h←1 
6. While h ≤ n − 1 do 
7.op id←1 

(continued on next page) 
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(continued ) 

Algorithm 2. “Framework of VNS-based Local Search” 

8. Sub Nodes ← Retrieve Subgraphh(c node) 

9. While op id ≤ Length of OSPt̅̅̅→

10. S op ← Select the operator OSPt̅̅̅→
(op id)

11. For each sub node in Sub Nodes do 
12. N Sols ← Apply S op(Xi

→, c node, Sub node) 
13. End For 
14. Calculate the fitness of new solutions: 1-NSIL(N Sols)
15. n sol ← Select the best solution in N Sols 
16. If 1 – NSIL(n sol) > 1 − NSIL(Xi

→) then 
17. Update the particle: Xi

→←n sol 
18. Reset op id and h to 1 
19. Go to step 4 // New iteration with updated solution, op id, and h 
20. Else 
21. Increment op id 
22. End If 
23. End While 
24. Increment h 
25. End While 
26. End For 
27. Output: The Xi

→ as a new Global best solution.  

b) SA-based Local Search. 
The SA is another single-solution meta-heuristic algorithm that mimics the heating and slow cooling processes of a material to 

modify its physical properties [12]. This algorithm is known for its simplicity, ease of implementation, and flexibility, allowing it to 
approach the global optimum solution effectively. Hence, in the current study, we proposed another local search strategy utilizing SA. 
This strategy takes the global best solution’s velocity and the updated operator selection probability vectors as inputs and searches the 
local region around the solution space in order to discover a more optimal solution. This SA-based local search strategy, combined with 
the proposed EDPSO algorithm, is called EDPSOSA. The pseudo-code for EDPSOSA is provided in Algorithm 3. 

In the first step, the SA parameters, the operator selection probability vector (OSPt̅̅̅→
), and the global best solution’s velocity and 

position vectors are given to the algorithm as inputs. Then, in every iteration, the algorithm generates a new solution for each 
candidate node (c node) with a velocity of 1 (veln id = 1). This is done by applying an operator which is selected by a roulette wheel 
adjusted based on the operator selection probability. The selected operator uses both the candidate node and another randomly 
selected node (r node) from the set of nodes (V), to generate a new solution (n sol) (steps 9 to 11). The current solution will be updated 
only if the new solution improves 1the − NSIL value compared to the previous solution (steps 12 to 14). Otherwise, the new solution 
will be accepted with a probability of Prob (steps 15 to 21). These steps (i.e., 9 to 22) are repeated until the maximum sub-iteration is 
met. Afterwards, the temperature will be reduced (step 24), and the next iteration will start. The algorithm will terminate when the 
above-mentioned processes are performed for all the candidate nodes. Consequently, an updated global best solution will be achieved 
as the output of the SA-based local search algorithm.  

Algorithm 3. “Framework of SA-based Local Search” 

1. Inputs: 
Global best solution: i th particle with Xi

→
, Vi
̅→ vectors 

Operator Selection Probability vector:OSPt̅̅̅→

Maximum number of iterations:itMax 

Maximum number of sub-iterations:sub itMax 

Initial temperature:T0 

Temperature reduction rate: α 
Procedure: 
2. C Nodes ← Find nodes with velocity = 1 in Vi

̅→

3. temp ←T0 

4. For each c node in C Nodes do 
5. it ←1 
6. While it ≤ itMax do 
7. sub it ←1 
8. While sub it ≤ sub itMax do 

9. S op ← RouletteWheel(OSPt̅̅̅→
) 

10. r node ← A random node from node set V 
11. n sol ← Apply S op(Xi

→, c node, r node) 
12. If 1 − NSIL(n sol) > 1 − NSIL(Xi

→) then 
13. Update the particle: Xi

→←n sol 

(continued on next page) 
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(continued ) 

Algorithm 3. “Framework of SA-based Local Search” 

14. Else 
15. Delta ← 1 − NSIL(n sol) − 1 − NSIL(Xi

→) 
16. r ← Generate a random number in [0,1]
17. Calculate Acceptance Probability: Prob←exp− Delta/temp 

18. If Prob > r then 
19. Update the particle: Xi

→←n sol 
20. End If 
21. End If 
22. Increment sub it 
23. End While 
24. temp ← temp ×α 
25. Increment it 
26. End While 
27. End For 
28. Output: The Xi

→ as a new Global best solution.  

4.3. Computational complexity analysis 

In this section, we analyze the computational complexity of proposed algorithms. The computational cost of the EDPSO algorithm 
can be analyzed by examining the time complexity of each step in its pseudocode shown in Algorithm 1. The Random_-
Based_Initialization function has a time complexity of O(nPop), as it involves initializing each particle’s position randomly. As the for 
loop in Steps 3–6 comprises iterating over each particle in the swarm and calculating its fitness using the 1-NSIL function, it has a time 

complexity of O(nPop*s2*n2), where s is the number of clusters and n is the number of nodes in the social network. Finding the Gbest
̅̅̅→

in 
Step 7 has a time complexity of O(nPop). The while loop in Steps 8–22 is the main loop of the algorithm that runs for a maximum of itMax 

iterations, and within each iteration, it updates the velocity and position of each particle in the swarm and also updates the personal 
best and global best solutions. According to Equation (14), the Update Velocity function in Step 10 has a time complexity of O(1). Also, 
the flowchart shown in Fig. 2 demonstrates that the Adaptive_Heuristic_Position_Updating function in Step 11 has a time complexity of O 
(5*|C Nodes|*s2*n2), where “5″ represents the number of operators applied to each candidate node, |C Nodes| is the number of 
candidate nodes with a velocity of 1, and s2n2 represents the complexity of calculating 1-NSIL for each updated particle. The if 
statement in Steps 13–18 has a time complexity of O(1), as it involves comparing the fitness of each particle to its personal best and 

global best fitness values and updating the Pbesti
̅̅̅→

and Gbest
̅̅̅→

. Finally, Step 20 involves using the Local_Search function, whose time 
complexity is dependent on the complexity of the local search algorithm used. Overall, the complexity of the EDPSO algorithm can be 
estimated as O(nPop + nPop*s2*n2 + nPop + itMax*nPop*

(
5*|C Nodes|*s2*n2) + itMax*O(Local Search)). Considering the highest order of 

growth, the overall time complexity can be simplified to O(itMax*(nPop*5*|C Nodes|*s2*n2 + O(Local Search))). It is worth noting that 
the actual running time of the algorithm may vary depending on the specific implementation of its functions. For instance, in the 
Adaptive_Heuristic_Position_Updating function, all five operators can be applied to a particle simultaneously using parallel processing 
techniques, which reduces the algorithm’s running time. Additionally, the size of the candidate node set |C Nodes| generally decreases 
during the course of the algorithm, which again affects the overall running time of the EDPSO algorithm. In order to provide a detailed 
analysis of the performance of this function, we will examine the time complexities of both the VNS and SA algorithms below. 

The computational complexity of the VNS-based Local Search algorithm can be analyzed by examining the time complexity of each 
step shown in Algorithm 2. Given that there are n nodes in the network and. 

|OSPt̅̅̅→
| = 5 operators in the operator selection probability vector, step 2, which involves sorting the five operator selection prob-

abilities, has a time complexity of O(5 log 5). Step 3, which involves finding candidate nodes with velocity = 1 in the velocity vector, 
has a time complexity of O(1). Next, in steps 4–25, the algorithm involves a nested loop structure, where the outer loop iterates over 
candidate nodes for |C Nodes| times, and the inner loops iterate over the values of hops, operators, and sub-nodes for n − 1, 5, and |
Sub Nodes| times, respectively. Within these loops, the following operations are performed: In step 8, a subgraph of h hops is retrieved 
for each candidate node with a complexity of O(n). In step 10, an operator is selected, and in step 12, this operator is applied to the Xi

→

which both have a complexity of O(1). The fitness values of new solutions are calculated in step 14 with a complexity of O 
(|Sub Nodes|*s2*n2). The following steps, which include selecting the best solution, updating the particle, resetting and incrementing 
the op id and h variables, all have a complexity of O(1). Therefore, the time complexity of the entire algorithm can be expressed as O 
(5log5 + |C Nodes|*n(n*5*|Sub Nodes|

(
1 + s2*n2))) which can be simplified to O(5*n2*|C Nodes|*|Sub Nodes|

(
1+s2*n2)). 

Finally, we analyze the computational complexity of the SA algorithm by examining the time complexity of each step in Algorithm 
3. Steps 2 and 3 involve finding candidate nodes with velocity = 1 and setting the initial temperature, both with the time complexity of 
O(1). Steps 4–27 involve a nested loop structure, where the outer loop iterates over the candidate nodes, and the inner loops iterate 
over the values of iterations and sub-iterations, respectively. The time complexity of these loops depends on the values of |C Nodes|, 
itMax and sub itMax. The time complexity of selecting an operator by the roulette wheel, generating a random number, and applying an 
operator are O(1), and the calculation of the fitness value of the new solution has a time complexity of O(s2*n2). Considering that the 
time complexity of the remaining steps, consisting of updating the particle, calculating Delta, calculating acceptance probability, 
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incrementing the sub it and it variables, and updating the temperature value, is O(1), the overall time complexity of SA algorithm can 
be expressed as O(|C Nodes|*itMax*sub itMax*s2*n2). 

5. Experimental results 

In this section, first, the Taguchi experiment is performed to set the parameters of the EDPSO algorithm. Then, to investigate the 
effectiveness of the developed EDPSO, EDPSOVNS, and EDPSOSA algorithms, we compare them with the previous related meta- 
heuristic algorithms, such as DPSO [11], PSOGA [10], and GA [9]. In this regard, we first implement the mentioned algorithms on 
various datasets for different k values, which are selected depending on the dataset’s number of nodes. Each algorithm is executed 30 
times on each of the k values, and the average 1-NSIL value is computed. Second, for a specific k value on each dataset, we demonstrate 
the algorithms’ performance and compare them regarding the best 1-NSIL value (FBest), average 1-NSIL value (FAverage), worst 1-NSIL 
value (FWorst), the standard deviation of the obtained 1-NSIL values (STD), and the average process-time (Process-Time Average) criteria. 
Subsequently, to indicate the convergence rate of these algorithms, their convergence behaviors were analyzed. Eventually, to validate 
the performance of the suggested algorithms, they are compared with the four well-known non meta-heuristic methods (Anatomy- 
based clustering [35], Enhanced k-means clustering [37], SANGreea [6] and SCAN [7]), in terms of both 1-NSIL and 1-ILR criteria. 
Finally, the statistical analysis of the obtained results using Friedman is provided to determine if there are any noteworthy distinctions 
among the outcomes of the proposed algorithms compared to the previous algorithms. 

5.1. Experimental networks 

All the mentioned algorithms were implemented in MATLAB R2018b on a PC with Intel (R) Core (TM)-i5, CPU, 2.7 GHz, 8 GB RAM, 
running Windows 10 enterprise. Besides, the experiments were carried out on nine real-world datasets, which are listed in Table 5. 
Some structural features of the experimental networks, such as the number of nodes and edges, are also presented in Table 5. 

5.2. Experiments for setting the parameters 

In the early 1980 s, Genichi Taguchi developed a method based on orthogonal array experiments in which an optimum set of 
parameters in a fewer number of experiments can be reached [48]. To set the optimal parameters in the EDPSO algorithm, including c1, 
c2, IW, nPop, and itMax parameters, the Taguchi method exploits a statistical measure of performance called signal-to-noise ratio (SNR), 
which is a logarithmic function of the desired output. Taguchi’s SNR is the mean (signal) ratio to the standard deviation (noise), taking 
both the mean and the variability into account. The standard SNR ratios are categorized into three types, named nominal is best (NB), 
lower the better (LB), and higher the better (HB). In this study, HB is exploited because the suggested algorithms should achieve the 
highest 1-NSIL value. The optimal parameter set is always the parameter combination with the highest SNR, regardless of the type of 
Taguchi design, and in the current study, the L25 Taguchi design was used, as illustrated in Table 6. It is worth noting that each 
experiment is executed 10 times, and the Taguchi analysis is performed based on the average fitness value (1-NSIL) of these 10 repeats. 

The graphical representation of the SNR is shown in Fig. 4. Also, the optimal level of each parameter for parameter tuning of the 
proposed EDPSO is shown in Table 7. 

As mentioned above, to tune the α parameter of Equation (18), different values were evaluated for the αmin and αmax parameters, 
and it was concluded that 1 and itMax are the best values for them, respectively. 

5.3. Comparison with Meta-Heuristic algorithms 

This experiment sought to investigate the performance comparison of the proposed methods with the previously introduced DPSO, 
PSOGA, and GA algorithms on various datasets and for different k values. As mentioned earlier, each algorithm has been run 30 times 
on each dataset, and the algorithms are compared with each other in terms of the average 1-NSIL value. Note that, to have a reasonable 
comparison, the population size and maximum iteration number parameters of the DPSO algorithm are set similarly to the EDPSO, and 
the parameters of the PSOGA and GA algorithms are set according to the articles presented in [10] and [9], respectively. 

As can be seen in Fig. 5, the proposed algorithms outperform the other meta-heuristic algorithms in all the networks and can find 

Table 5 
Experimental Networks.  

Dataset Nodes Edges 

Karate Club [40] 34 78 
Tailor Shop [41] 39 158 
Prison [42] 67 182 
Joint Senate Press Releases [43] 92 477 
Collaboration in Jazz [44] 198 2742 
Innovation Among Physicians [45] 246 1098 
Facebook Pages Food [46] 620 2103 
Wikipedia Vote [46] 889 2914 
Political Blogs [47] 1490 19,090  
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anonymized networks with higher utility compared to other algorithms. The reason behind this superiority is due to the use of the 
novel heuristic algorithm for the position vector updating process in the EDPSO. This heuristic algorithm adaptively tunes the selection 
probabilities of the used operators based on the obtained fitness values from each operator both in the current iteration and the history 
of each operator’s performance in the previous iterations. So, this algorithm increases the effectiveness of the EDPSO by balancing the 
exploration and exploitation capabilities while preventing it from converging too early. Besides, using the VNS and SA local search 
strategies provides higher search capabilities and convergence rate to the EDPSO since these local searches change the solution’s 
direction to a more favorable region, preventing it from being trapped in local optima. On the contrary, as illustrated in the results, the 
GA method is the worst among the algorithms. This happens mainly because of limiting the search space by omitting the solutions that 
do not satisfy the structural k-anonymity constraint in the crossover step, which in turn downgrades the exploration ability of GA. 
Figs. 5(a) to 5(i) indicate that the EDPSOVNS and EDPSOSA algorithms have almost similar performances, outperforming the other 
algorithms. However, the EDPSOVNS’s performance is slightly better than the EDPSOSA. Indeed, across all datasets and for each 
distinct k value, EDPSOVNS consistently outperforms the other algorithms in finding high-utility anonymized networks. It is also 
noteworthy that the EDPSOSA and EDPSO outperform the DPSO, PSOGA, and GA in all the cases. In what follows, we will analyze the 
results to highlight how our new algorithms (EDPSOVNS, EDPSOSA, and EDPSO) outperform the previous ones (DPSO, PSOGA, and 
GA) at various k values. To keep it short and precise, we will be concentrating our discussion on three specific networks: the Karate 
Club, Collaboration in Jazz, and Political Blogs. 

In the Karate Club network (i.e., Fig. 5(a)), the 1-NSIL value of EDPSOVNS in k = 3 equals 0.7861, which has superiority over the 
EDPSOSA, EDPSO, DPSO, PSOGA, and GA algorithms with 1-NSIL values of 0.7841, 0.7767, 0.7373, 0.7119, and 0.6891, respectively. 
Besides, the EDPSOSA demonstrates a 6.3 %, 10.1 %, and 13.7 % increase in the 1-NSIL value compared to the DPSO, PSOGA, and GA, 

Table 6 
L25 Taguchi Design.  

Factors Levels 
Code EDPSOL Parameters 1 2 3 4 5 

A c1(Personal Learning Coefficient) 1.45 1.5 1.75 1.85 2 
B c2(Global Learning Coefficient) 1.45 1.5 1.75 1.85 2 
C IW(Inertia Weight) 0.7 0.73 0.75 0.77 0.8 
D nPop(Population Size) 10 20 50 70 100 
E itMax(Maximum Iteration) 100 150 200 250 300  

Fig. 4. Graphical Representation of the SNR.  

Table 7 
Optimal Parameters of EDPSO.  

Factor 
c1 c2 IW nPop itMax 

Selected 
Level 

Level 
Value 

Selected 
Level 

Level 
Value 

Selected 
Level 

Level 
Value 

Selected 
Level 

Level 
Value 

Selected 
Level 

Level 
Value 

A4  1.85 B3  1.75 C4  0.77 D5 100 E5 300  
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respectively. Likewise, EDPSO shows a 5 %, 9.1 %, and 12.7 % higher 1-NSIL value over the DPSO, PSOGA, and GA. As previously 
mentioned, the GA algorithm has the worst performance among all the compared methods. Furthermore, in the case of k = 5 in the 
Karate Club network, the 1-NSIL value of EDPSOVNS equals 0.7129, showcasing its superior performance compared to the EDPSOSA, 
EDPSO, DPSO, PSOGA, and GA algorithms, which scored 1-NSIL values of 0.71128, 0.70955, 0.69206, 0.65079, and 0.6307, 
respectively. In addition to this, the EDPSOSA algorithm demonstrates improvements of 2.8 %, 9.3 %, and 12.8 % in the 1-NSIL value 
when compared to the DPSO, PSOGA, and GA algorithms, respectively. Likewise, the EDPSO shows an increase in the 1-NSIL value by 
2.5 %, 9 %, and 12.5 % over the DPSO, PSOGA, and GA, respectively. As in the previous case for k = 3, the GA algorithm still 
underperforms in comparison to all other methods, holding the least favorable results. 

When observing the algorithms’ performance on k = 7 of the Karate Club network, the 1-NSIL value of EDPSOVNS stands at 0.6545, 
maintaining its edge over the other algorithms, EDPSOSA, EDPSO, DPSO, PSOGA, and GA, which reached 1-NSIL values of 0.65038, 
0.64867, 0.6175, 0.63069, and 0.59808, respectively. Also, the EDPSOSA demonstrates a relative enhancement in 1-NSIL value by 
approximately 5.3 %, 3.1 %, and 8.7 % compared to DPSO, PSOGA, and GA algorithms, respectively. Similarly, EDPSO illustrates an 
increase in 1-NSIL value by roughly 5 %, 2.9 %, and 8.5 % in comparison to DPSO, PSOGA, and GA, respectively. It is worth mentioning 
that the PSOGA overtook DPSO in terms of 1-NSIL value, which was not the case at k = 3 and k = 5. This suggests that PSOGA deals 
better with higher k than DPSO in the context of the Karate Club network. Again, as consistently noted from previous results at k = 3 
and k = 5, the GA algorithm continues to perform least favorably among all compared methods, with the lowest results when k = 7. 
Finally, in the case of k = 9 for the Karate Club network, as before, the EDPSOVNS algorithm takes the lead with a 1-NSIL value of 
0.61579, outperforming EDPSOSA, EDPSO, DPSO, PSOGA, and GA, which have 1-NSIL values of 0.61464, 0.61029, 0.58572, 0.59537, 
and 0.57455, respectively. Further, EDPSOSA has an improvement in 1-NSIL value by approximately 4.9 %, 3.2 %, and 7 % when 
compared to DPSO, PSOGA, and GA, respectively. Similarly, EDPSO indicates a rise in the 1-NSIL value by roughly 4.2 %, 2.5 %, and 
6.2 % in relation to DPSO, PSOGA, and GA, respectively. At k = 9, we observe that PSOGA continues to outperform DPSO, which 
reinforces the trend we noticed at k = 7. This hints at the adaptability of PSOGA to larger k values in this dataset. Consistent with the 

Fig. 5. Comparing the Proposed Methods with Previous Meta-heuristics on Various Datasets and for Different k Values.  
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previous findings at k = 3, k = 5, and k = 7, the GA algorithm again has the lowest performance among the compared algorithms. 
Regarding the Collaboration in Jazz network (i.e., Fig. 5(e)), the performance of the algorithms is analyzed at the various k values. 

It is worth noting that, throughout all k values, GA consistently shows the lowest performance, while EDPSOVNS maintains the highest 
1-NSIL values, indicating its superior performance in anonymizing this network. It is also notable that both EDPSOSA and EDPSO 
consistently outperform DPSO, PSOGA, and GA algorithms. At k = 16, EDPSOVNS leads with a 1-NSIL value of 0.70544, outperforming 
EDPSOSA, EDPSO, DPSO, PSOGA, and GA, which reached 1-NSIL values of 0.69757, 0.68203, 0.65162, 0.62398, and 0.59334, 
respectively. It is worth noting that EDPSOSA shows an increase in the 1-NSIL value by roughly 7 %, 11.8 %, and 17.6 % compared to 
DPSO, PSOGA, and GA, respectively. EDPSO also outperforms DPSO, PSOGA, and GA by approximately 4.7 %, 9.3 %, and 14.9 %. For 
k = 19, EDPSOVNS still leads with a 1-NSIL value of 0.68206, surpassing EDPSOSA, EDPSO, DPSO, PSOGA, and GA, whose 1-NSIL 
values are 0.68035, 0.67146, 0.64769, 0.61831, and 0.58573, respectively. In this scenario, EDPSOSA shows an improvement in 1- 
NSIL value by approximately 5 %, 10 %, and 16.2 % compared to DPSO, PSOGA, and GA, respectively. Also, EDPSO shows an in-
crease in 1-NSIL value by roughly 3.7 %, 8.6 %, and 14.6 % over DPSO, PSOGA, and GA, respectively. In the case of k = 24, EDPSOVNS 
maintains its leading position with a 1-NSIL value of 0.67247, superior to EDPSOSA, EDPSO, DPSO, PSOGA, and GA which have 1-NSIL 
values of 0.66361, 0.65408, 0.61993, 0.60531, and 0.58128, respectively. EDPSOSA and EDPSO demonstrate relative increases in 1- 
NSIL value by about 7 %, 9.6 %, 14.2 %, and 5.5 %, 8.1 %, 12.5 % compared to DPSO, PSOGA, and GA, respectively. Finally, at k = 33 
of this network, EDPSOVNS yet again leads with a 1-NSIL value of 0.65356, followed by EDPSOSA, EDPSO, DPSO, PSOGA, and GA, 
which obtained 1-NSIL values of 0.64767, 0.63996, 0.60672, 0.59716, 0.57811, respectively. EDPSOSA shows an improvement in 1- 
NSIL value by approximately 6.7 %, 8.4 %, and 12 % compared to DPSO, PSOGA, and GA, respectively. Similarly, EDPSO exhibits an 
increase in the 1-NSIL value by roughly 5.5 %, 7.2 %, and 10.7 % over DPSO, PSOGA, and GA, respectively. 

Furthermore, with respect to the Political Blogs network, the performance of the algorithms on various k values is analyzed, shown 
in Fig. 5(i). In this dataset, EDPSOVNS consistently shows the highest 1-NSIL values at all given k values, illustrating its strong per-
formance in anonymizing this network to preserve privacy while maintaining its utility. However, the differences among the top three 
algorithms (EDPSOVNS, EDPSOSA, and EDPSO) are quite minimal. On the other hand, GA consistently performs the worst among the 
six algorithms. For k = 80, EDPSOVNS achieves the highest 1-NSIL value of 0.98982, demonstrating better performance than 
EDPSOSA, which achieves a 1-NSIL of 0.98976. EDPSO follows closely with a 1-NSIL of 0.98796, ahead of DPSO with a 1-NSIL of 
0.98725, PSOGA with a 1-NSIL of 0.97508, and GA with a 1-NSIL of 0.97237. At k = 95, EDPSOVNS once again leads with a 1-NSIL 
value of 0.98996, marginally superior to EDPSOSA, which scores a 1-NSIL of 0.98972. EDPSO follows with a 1-NSIL of 0.98748, 
outperforming DPSO with a 1-NSIL of 0.98694, PSOGA with a 1-NSIL of 0.97488, and GA with a 1-NSIL of 0.97199. In the case of k =
110, EDPSOVNS maintains its superior performance with a 1-NSIL value of 0.98984. EDPSOSA follows closely with a 1-NSIL of 
0.98958, ahead of EDPSO with a 1-NSIL of 0.98798, DPSO with a 1-NSIL of 0.98665, PSOGA with a 1-NSIL of 0.97508, and GA with a 
1-NSIL of 0.97167. Lastly, for k = 140, EDPSOVNS again achieves the highest 1-NSIL value of 0.98941, outperforming EDPSOSA, 
which obtains a 1-NSIL of 0.98928, EDPSO with a 1-NSIL of 0.98723, DPSO with a 1-NSIL of 0.98555, PSOGA with a 1-NSIL of 
0.97581, and GA with a 1-NSIL of 0.97193. 

In conclusion, the obtained results demonstrate the effectiveness of the proposed algorithms (EDPSOVNS, EDPSOSA, and EDPSO) 
as a result of utilizing a heuristic mechanism for position vector updating, leading to a trade-off between exploration and exploitation. 
Furthermore, this experiment underscores the effectiveness of the vector-based solution representation in addressing the structural k- 
anonymity problem, outperforming conventional matrix-based approaches like GA and PSOGA. The comparative analysis clearly 
shows that incorporating a vector-based solution representation in the developed EDPSO, EDPSOVNS, and EDPSOSA enhances both 
exploration and exploitation, which is evidenced by the achievement of higher-quality solutions. 

Subsequently, the reliability of the proposed algorithms is investigated, such that if an algorithm achieves similar results in suc-
cessive runs, it is considered to be more reliable. Hence, in Tables 8 to 16, for each of the mentioned algorithms, its performance 
regarding the F Best, F Average, F Worst, STD, and Process-Time Average criteria in a sample k value for each dataset is demonstrated. It is 
evident from these tables that the proposed EDPSOVNS algorithm outperforms other algorithms in terms of the F Average and F Worst 
criteria. Moreover, although this algorithm has superiority over other algorithms regarding the F Best criterion in the majority of times, 
in some cases, such as Karate Club (Table 8), Tailor Shop (Table 9), and Collaboration in Jazz (Table 12), this algorithm and the 
EDPSOSA attain identical F Best value. Therefore, this algorithm can find an anonymized network with the highest utility among the 
compared algorithms. Besides, it has the lowest STD among the compared algorithms, meaning that it reaches similar 1-NSIL values in 
different runs, so the EDPSOVNS can be considered the most reliable algorithm. In addition, according to the comparison results, the 
proposed EDPSOSA and EDPSO algorithms are superior to the DPSO, PSOGA, and GA in terms of the F Best, F Average, and F Worst criteria. 
Regarding the STD criterion, the EDPSOSA achieves a lower STD value than the DPSO, PSOGA, and GA in all cases; hence, it is more 

Table 8 
Results of the Algorithms on Karate Club Dataset with k = 5.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  
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reliable than others. Also, in the majority of the cases, the EDPSO has a lower STD value than DPSO, PSOGA, and GA; nevertheless, in 
Tailor Shop (Table 9) and Innovation Among Physicians (Table 13) datasets, the PSOGA’s STD value is slightly better than the EDPSO. 

Furthermore, the comparative results indicate that the average process time values of the proposed EDPSOVNS and EDPSOSA 
algorithms are higher than the EDPSO, DPSO, and GA. The primary reason for the high computational time of these algorithms is their 
hybrid essence, i.e., the combination of the EDPSO with the VNS and SA local searches results in an increase in the processing time of 
both the EDPSOVNS and EDPSOSA. Note that this increase can be considered acceptable since these two algorithms are able to achieve 
anonymized social networks whose structural information loss is much lower than the previous algorithms. Also, the results indicate 

Table 9 
Results of the Algorithms on Tailor Shop Dataset with k = 6.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 10 
Results of the Algorithms on Prison Dataset with k = 7.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 11 
Results of the Algorithms on Joint Senate Press Releases Dataset with k = 8.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 12 
Results of the Algorithms on Collaboration in Jazz Dataset with k = 16.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 13 
Results of the Algorithms on Innovation Among Physicians Dataset with k = 20.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  
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that the DPSO algorithm has the lowest and the PSOGA has the highest process time. Nonetheless, none of these algorithms could find 
an anonymized network with a higher 1-NSIL value compared to the proposed algorithms. The reason behind the high processing time 
of the PSOGA is due to its matrix-based solution representation and also the hybrid utilization of the PSO and GA algorithms in a 
sequential manner. In addition, as given in the following tables, the average process time of the GA is slightly lower than the EDPSO in 
the low-dimension networks, such as Karate Club, Tailor Shop, and Prison, but its process time grows rapidly as the dimension of the 
evaluated networks increases, mainly due to its matrix-based solution representation. Therefore, the EDPSO has a lower process time 
than the GA in Joint Senate Press Releases, Collaboration in Jazz, and Innovation Among Physicians networks. These findings support 
the fact that the proposed vector-based solution representation offers lower complexity and greater resource efficiency when compared 
to matrix-based solution representation. 

In the last experiment of the current section, the convergence behavior analysis is performed for the above-mentioned algorithms. 
This experiment mainly evaluates the impact of incorporating SA and VNS-based local search strategies into the proposed EDPSO 
algorithm, particularly in enhancing convergence rates and achieving near-optimal solutions, we conducted an in-depth analysis of the 
convergence behavior of each algorithm across various datasets. In this regard, the average number of iterations and standard de-
viation of the convergence rates (i.e., AVG and STD) obtained from running each of these algorithms 30 times are demonstrated in 
Table 17. The STD values indicate how varied the convergence rates are. Lower standard deviation values suggest a higher level of 

Table 14 
Results of the Algorithms on Facebook Pages Food Dataset with k = 50.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 15 
Results of the Algorithms on Wikipedia Vote Dataset with k = 70.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9989  0.9983  0.9972 9.68E-04 20,449 
EDPSOSA  0.9988  0.9979  0.9964 1.18E-03 17,342 
EDPSO  0.9968  0.9958  0.9941 1.54E-03 12,353 
DPSO  0.9961  0.9942  0.9931 1.61E-03 10,589 
PSOGA  0.9931  0.9915  0.9899 1.62E-03 25,365 
GA  0.9922  0.9897  0.9884 2.16E-03 14,087  

Table 16 
Results of the Algorithms on Political Blogs Dataset with k = 80.  

Algorithm FBest FAverage FWorst STD Process-Time Average (S) 

EDPSOVNS  0.9902  0.9898  0.9896 2.05E-04 75,020 
EDPSOSA  0.9901  0.9898  0.9896 2.08E-04 63,996 
EDPSO  0.9883  0.9880  0.9874 4.01E-04 46,701 
DPSO  0.9882  0.9873  0.9864 8.72E-04 37,170 
PSOGA  0.9765  0.9751  0.9740 8.92E-04 92,883 
GA  0.9735  0.9724  0.9718 9.97E-04 50,219  

Table 17 
The Average and Standard Deviation of the Convergence Iteration of Different Algorithms.  

Algorithms EDPSOVNS EDPSOSA EDPSO DPSO PSOGA GA 
Convergence Rate Criteria AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

Karate Club, k = 5 64  11.6 107  12.4 154  12.9 131  13.5 183  14.1 227  14.3 
Tailor Shop, k = 6 76  11.4 95  11.9 165  12.8 142  13.2 232  14.2 270  14.5 
Prison, k = 7 91  10.8 102  12.1 173  13.1 149  13.9 248  15.3 281  15.7 
Joint Senate Press Releases, k = 8 95  12.2 116  12.8 204  13.6 168  14.1 246  14.8 269  15.3 
Collaboration in Jazz, k = 16 79  12.7 98  12.9 197  13.3 152  13.8 236  14.6 276  14.9 
Innovation Among Physicians, k = 20 75  12.1 93  12.5 173  13.6 142  14.2 239  14.6 268  15.9 
Facebook Pages Food, k = 50 83  12.4 112  12.7 162  13.4 145  13.7 235  15.1 266  15.6 
Wikipedia Vote, k = 70 87  11.9 117  12.3 171  13.1 154  13.3 243  14.9 274  15.4 
Political Blogs, k = 80 81  11.5 110  12.2 159  12.7 138  13.1 231  14.7 253  14.8  
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consistency and reliability in an algorithm’s performance. 
It is evident from the comparative results illustrated in Table 17 that the EDPSOVNS algorithm consistently exhibits the fastest 

convergence rate across all datasets. This is attributed to its VNS-based local search, which efficiently directs the algorithm toward 
higher-quality solutions in fewer iterations. Not only does EDPSOVNS achieve optimal results, but its rapid convergence underlines its 
overall efficiency. Furthermore, the EDPSOVNS algorithm demonstrates the most stable performance, as indicated by the lowest 
standard deviation values. This stability reflects the algorithm’s reliability and consistency in performance. In addition, the EDPSOSA 
algorithm is the second-most efficient in terms of convergence rate. Its relatively fast convergence is due to its SA-based local search, 
which enhances the algorithm’s efficiency. It is apparent that the EDPSO and DPSO algorithms have relatively slower convergence 
rates compared to EDPSOVNS and EDPSOSA, but both exhibit faster convergence rates compared to PSOGA and GA. However, these 
two algorithms suffer from a slow convergence rate in real-world and large-scale OSNs with numerous users and relations. On the other 
end of the spectrum, the GA algorithm is the least efficient among the tested algorithms. It requires the highest average number of 
iterations to reach convergence, which is a considerable drawback, especially in applications dealing with large-scale data. 

As an example, in the Karate Club network, EDPSOVNS only required an average of 64 iterations to reach convergence. In contrast, 
GA took the longest, with an average of 227 iterations. This suggests that EDPSOVNS is the most efficient algorithm in this context. The 
standard deviation, which represents the variability of iterations, is also lowest for EDPSOVNS (11.6) and highest for GA (14.3), 
illustrating that the convergence rate for GA has a higher degree of variability. The similar performance pattern in all the other datasets 
further reinforces the finding that EDPSOVNS consistently demonstrates the quickest convergence rate and the most consistent per-
formance among the tested algorithms. 

Additionally, Fig. 6 shows the convergence diagram of the analyzed algorithms for the run with the fastest convergence rate. These 
diagrams clearly approve that the proposed EDPSOVNS and EDPSOSA algorithms have the highest convergence rate compared to 
others. It is also important to note that the EDPSO algorithm uses a proposed heuristic algorithm as the position vector updating 
mechanism to make an efficient tradeoff between exploration and exploitation capabilities and escape premature convergence. In 

Fig. 6. Convergence Diagrams of the Different Algorithms for the Run with the Fastest Convergence Rate.  
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other words, the EDPSO employs a powerful, intelligent mechanism to find a more promising solution than the DPSO, which blindly 
updates its particles. Therefore, it is evident that because of the strong exploration and exploitation capabilities of the EDPSO, it attains 
a better solution at the cost of a slower convergence rate than the DPSO. 

In summary, the results obtained from the experiments demonstrate that the proposed algorithms possess significant advantages 
over previous meta-heuristics in terms of fitness value and reliability. These findings confirm that the EDPSO, EDPSOVNS, and 
EDPSOSA algorithms exhibit superior exploration and exploitation capabilities with their adaptive heuristic position updating 
mechanism. Furthermore, the process-time results for the evaluated algorithms indicate that the use of vector-based solution repre-
sentation not only reduces algorithm complexity and hardware resource requirements but also enables the algorithms to achieve 
higher-quality solutions. Additionally, the EDPSOVNS and EDPSOSA algorithms outperform other algorithms in terms of convergence 
rate, indicating that the proposed local search strategies enhance both exploration and exploitation, preventing the algorithms from 
getting trapped in local optima. Consequently, the suggested algorithms offer a suitable and effective approach for anonymizing social 
networks while preserving high utility. 

5.4. Comparison with non Meta-Heuristic algorithms 

Herein, we compare the proposed algorithms with the four well-known greedy and heuristic methods, namely Anatomy-based 
clustering (Anatomy), Enhanced k-means clustering (Ek-means), SANGreea, and SCAN, regarding both 1-NSIL and 1-ILR informa-
tion loss criteria. Note that ILR is the structural information loss criterion introduced in [7]. Similar to the NSIL criterion, to maintain 
the usefulness of the anonymized social network in our experiments, we maximize the 1-ILR value, which is equivalent to the ILR 
minimization. Besides, we execute the SCAN algorithm 30 times and then use only the best result (1-ILR) of this algorithm, which can 
be seen in Fig. 7. 

The comparison between the EDPSOVNS, EDPSOSA, EDPSO, Anatomy, Ek-means, SCAN, and SANGreea on Karate Club, Tailor 
Shop, Prison, Joint Senate Press Releases, Collaboration in Jazz, Innovation Among Physicians, Facebook Pages Food, Wikipedia Vote, 
and Political Blogs networks is demonstrated in Fig. 7. The obtained results reveal that the proposed algorithms, especially the 
EDPSOVNS, achieve improved 1-NSIL and 1-ILR values when compared to the previous algorithms. In other words, these algorithms 
anonymize a social network while preserving a higher utility than the Anatomy, Ek-means, SCAN, and SANGreea methods. Again, for 
the sake of brevity, in the following paragraphs, we analyze the results obtained from Karate Club, Collaboration in Jazz, and Political 
Blogs networks in more detail. 

Considering the Karate Club network dataset with k = 5 (Fig. 7 (a)) and focusing on the 1-NSIL criterion, EDPSOVNS performed the 
best with a value of 0.7129, indicating it retained information most effectively during the clustering process among all methods. 
EDPSOSA closely followed at 0.7113, and EPDSO was third at 0.7095. Among the well-known greedy and heuristic methods, Anatomy 
had the highest score (0.66032), followed by Ek-means (0.65112), SCAN (0.6328), and SANGreea (0.6145). This implies that, for this 
dataset, the proposed algorithms, especially EDPSOVNS, generally retained more information than the previous methods when 
measured by the 1-NSIL criterion. Regarding the 1-ILR criterion, EDPSOVNS once again performed the best with a score of 0.9433. This 
was closely followed by EDPSOSA (0.9427) and EPDSO (0.9406). Among the previously introduced algorithms, SCAN had the highest 
score (0.934), followed by Ek-means (0.92552), Anatomy (0.91545), and SANGreea (0.9104). Therefore, according to the 1-ILR 
criterion, the proposed algorithms, especially the EDPSOVNS, generally maintained a better balance between data utility and pri-
vacy compared to the previous methods on this dataset. 

Upon analysis of the Collaboration in Jazz network with k = 16 (Fig. 7(e)), it is worth noting that for the 1-NSIL criterion, 
EDPSOVNS stands out with the highest score of 0.7054. This is followed by EDPSOSA with 0.6976, EPDSO with 0.682, SCAN with 
0.663, Anatomy with 0.5938, Ek-means with 0.5933, and finally SANGreea with 0.5743. The results for this criterion clearly show that 
EDPSOVNS outperforms the other methods, including the Anatomy, Ek-means, SCAN, and SANGreea algorithms. Besides, from the 
obtained results of the 1-ILR criterion, it is evident that, again, EDPSOVNS performs the best with a score of 0.9923. It is followed 
closely by EDPSOSA with 0.992, then EPDSO with 0.9917, SCAN with 0.9912, Ek-means with 0.9875, Anatomy with 0.9871, and 
SANGreea with 0.9869. These results align with those from the 1-NSIL criterion, again showing EDPSOVNS as the best algorithm to 
anonymize the network. 

From the results presented for the Political Blogs network, shown in Fig. 7(i), a comparison of the algorithms based on their 1-NSIL 
and 1-ILR values reveals some clear trends. Regarding the 1-NSIL metric, EDPSOVNS exhibits the highest performance with a score of 
0.98982, closely followed by EDPSOSA with a value of 0.98976. The EPDSO comes next, yielding a score of 0.98796. This indicates 
that these proposed methods have lower information loss and perform better at preserving the overall structure of the data. Besides, 
looking at the previous heuristic and greedy algorithms, SCAN performs relatively well with a score of 0.9625; however, it falls behind 
the proposed methods, followed by Anatomy and Ek-means with scores of 0.95825 and 0.95811, respectively. The lowest score belongs 
to SANGreea, with a 1-NSIL value of 0.95764, showing the most information loss amongst the compared algorithms. The story is much 
the same with the 1-ILR criterion. EDPSOVNS leads the way with a score of 0.99717, closely trailed by EDPSOSA and EPDSO with 
values of 0.99712 and 0.99709, respectively. Among the traditional algorithms, SCAN scores highest with a value of 0.99668, followed 
by Ek-means with 0.99609 and Anatomy with 0.99602. SANGreea shows the highest information loss with a value of 0.996. 

Eventually, from the results, it is evident that the proposed algorithms have privilege over considered non meta-heuristic algorithms 
in terms of both 1-NSIL and 1-ILR criteria, and they are able to find anonymized networks with the best trade-off between privacy and 
utility among all the compared algorithms. 
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5.5. Statistical analysis of results 

The last part of this section involves using the Friedman test to determine if there are any noteworthy distinctions among the 
outcomes of the proposed algorithms (EDPSOVNS, EDPSOSA, EDPSO) with other analyzed approaches (DPSO, PSOGA, GA, Anatomy, 
Ek-means, SANGreea, and SCAN), for all datasets used in this study. The Friedman test is a commonly used non-parametric two-way 
hypothesis test that aims to determine whether the null hypothesis (H0: all algorithms perform similarly) can be rejected. Therefore, in 
this study, the Friedman test is applied to the average 1- NSIL values gathered from 30 distinct runs on each dataset, reported in 
Tables 8–16 and Fig. 7. Table 18 illustrates the average rankings attained by ten studied algorithms across all the datasets. 

A lower average rank in the table indicates better performance of the algorithm in achieving higher fitness values (1-NSIL). The 
statistical Friedman test approach explained in [49] utilizes chi-squared distribution (χ2

F), as shown in Equations (29). However, this 
distribution is highly conservative and suggested an alternative statistic based on the F-distribution with Kal − 1 and (Kal − 1)(ND − 1) 
degrees of freedom, as shown in Equations (30). 

χ2
F =

12ND

Kal(Kal + 1)
[
∑

j
Rj

2 −
Kal(Kal + 1)2

4
] (29) 

Fig. 7. Comparison of the Methods Regarding the 1-NSIL and 1-ILR Criteria.  

Table 18 
Friedman Average Rankings for Ten Algorithms Over All Datasets.  

Algorithm EDPSOVNS EDPSOSA EDPSO DPSO PSOGA GA Anatomy Ek-means SANGreea SCAN 

Avg Ranks  1.06  1.94  3.00  4.11  5.78  7.17  7.06  8.39  9.22  7.06  
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FF =
(ND − 1)χ2

F

ND(Kal − 1) − χ2
F

(30)  

Here, ND, Kal, and Rj represent the number of datasets, the number of algorithms, and the average ranking of algorithm j, respectively. 
Table 19 displays the χ2

F and FF values derived from the average rankings of the algorithms and the corresponding P-value. 
Hypothesis testing algorithms typically use significance levels of 0.1, 0.05, and 0.01 to determine statistically significant results. 

Table 19 demonstrates that the null hypothesis is rejected with a 99 % significance level. Such a small p-value confirms that the null 
hypothesis can be definitively rejected, indicating that the results produced by the analyzed algorithms are significantly different. 
Additionally, based on the average ranking values presented in Table 18, it can be concluded that the proposed approaches 
(EDPSOVNS, EDPSOSA, EDPSO) outperform the other algorithms analyzed in almost all of the datasets considered in this study. 

6. Conclusion 

Our study was driven by the growing need for effective privacy preservation within the realm of social networks, where the volume 
of users’ data continues to expand. We primarily focused on the structural k-anonymity method, which shows promising potential in 
preserving network structural information. 

In this regard, we proposed the EDPSO algorithm to solve the structural k-anonymity problem more efficiently and effectively. This 
is achieved through the intelligent application of several problem-specific operators by introducing a novel adaptive heuristic algo-
rithm to update the position vector of each particle more effectively, creating a balance between exploration and exploitation capa-
bilities and preventing premature convergence. This algorithm adaptively adjusts the selection probabilities of operators based on the 
fitness values obtained in the current iteration as well as the average and the count of fitness improvements in previous iterations. Also, 
two network-specific local search strategies, based on the SA and VNS algorithms, were developed to support the proposed EDPSO 
algorithm, enhancing both the exploration and exploitation capabilities, preventing the algorithm from getting stuck in local optima, 
and increasing the convergence rate. In addition, a vector-based solution representation was utilized in this study, which addresses the 
limitations of the matrix-based solution representation used in prior studies through intrinsic satisfaction of the structural k-anonymity 
constraint and, thus, preventing demanding validity checks or modification steps. It also leads to the use of fewer numeric values, 
reducing the complexity of the algorithm and decreasing the hardware resources needed for the execution process. 

Finally, to evaluate the performance of these new algorithms, extensive empirical tests were conducted on various real-world 
networks. Our proposed algorithms, EDPSOVNS and EDPSOSA, were thoroughly evaluated against previous meta-heuristic methods 
(DPSO, PSOGA, and GA) and non metaheuristic algorithms (Anatomy, Ek-means, SCAN, and SANGreea). In this regard, various 
performance metrics, including 1-NSIL values, convergence rates, and process time, were examined over nine real-world networks 
from 30 different runs. Our algorithms demonstrated significantly superior results, achieving higher fitness values, faster convergence 
rates, and generating high-quality k-anonymous networks. Eventually, we provided the Freedman statistical test evidence for the 
superiority of the proposed algorithms, thus confirming the enhanced capacity of our proposed algorithms to effectively balance data 
utility and privacy. 

While our work yields promising results, it is not devoid of limitations. Generally, meta-heuristic-based anonymization algorithms 
require a significant amount of time to process very large social networks due to their iterative nature. Our proposed method is no 
exception to this limitation. The computational complexity of the proposed EDPSO algorithm, along with the local search strategies 
(VNS and SA), is the main bottleneck that necessitates further improvements. Therefore, in our future endeavors, we aim to address 
these limitations by exploring more efficient and agile methods capable of handling real-world large-scale and dynamic social net-
works. This will involve incorporating a mix of heuristics into our proposed method. Additionally, we plan to investigate the utilization 
of hyperheuristic methods to generate effective heuristics. We also suggest exploring the integration of other anonymization tech-
niques with the structural k-anonymity model and introducing a novel information loss criterion to evaluate the effectiveness of the 
anonymization approach. Additionally, the performance of state-of-the-art meta-heuristic methods should be analyzed for anonym-
izing online social networks. 
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Appendix A 

This section provides a comprehensive example to clarify the steps of the proposed EDPSO’s updating rule mechanisms. In this 

regard, we will show all the mechanisms on the Xt
1

̅→
= [3,1, 3,2, 1,3, 2] solution. In the first section, we will provide an example of the 

velocity vector updating mechanism; then, using the updated velocity and the proposed heuristic algorithm, an example of the position 
vector updating mechanism is presented in the following. 

1) The Velocity Vector Updating Mechanism. 
The example shown in Fig. 1 indicates the function of this operator, where it is considered the position vector of the particle P1 as 

Xt− 1
1
̅̅→

= [3,1,3,2,1,3,2]. Given the personal best position of this particle as Pbest1
̅̅̅̅→

= [1,1,2,2,3,2,3], and the global best position of the 

swarm as Gbest
̅̅̅→

= [2,3,3,2,3,1,2], the Pbest1
̅̅̅̅→

⊕ Xt− 1
1
̅̅→

and Gbest
̅̅̅→

⊕ Xt− 1
1
̅̅→

are calculated as follows. 

Fig. 1. An illustration of the XOR Operator “⊕”.  

First, both Xt− 1
1
̅̅→

and Pbest1
̅̅̅̅→

vectors are compared with each other element-wise. If the two elements are equal, the corresponding 
element in the XOR Out1 will be set to ‘0′; otherwise, it will be set to ‘1′. Therefore, as shown in Fig. 1(a), the third and seventh elements 
of the output vector are set to ‘0′, while the others are set to ‘1′ (i.e.,XOR Out1

̅̅̅̅̅̅̅→
= [1,0,1,0,1,1,1]). Likewise, as illustrated in Fig. 1(b), 

the XOR Out2
̅̅̅̅̅̅̅→ stores the result of Gbest

̅̅̅→
⊕ Xt− 1

1
̅̅→

, which is equal to [0,0,0,1,0,1,0]. 

For instance, assuming that the previous velocity vector of the P1 equals Velt− 1
1

̅̅̅→
= [1, 0, 0,1, 1,0, 1] and the parameters IW, c1, c2, r1,

andr2 have the values defined in Table 1; the updated velocity vector can be calculated as shown in Fig. 2.  

Table 1 
Constant Parameters of the Example.  

Parameter Value 

IW 0.75 
c1 1.45 

(continued on next page) 
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Table 1 (continued ) 

Parameter Value 

r1 0.3 
c2 1.7 
r2 0.8  

Fig. 2. Velocity Updating.  

2) The Proposed Position Vector Updating Mechanism. 

Using as example the position vector of P1(i.e., Xt− 1
1
̅̅→

= [3,1,3,2,1,3,2]), and according to its updated velocity vector Velt1
̅̅→

= [1,0,0,1,
1,1,1], the candidate node whose n idc node = 1 must be updated since its corresponding element in the velocity vector (v1) is equal to 1. 
Thereupon, a random node among nodes with n id = 2 to n id = 7 is selected randomly. In the following steps, we consider the node 
with n idr node = 5 as the selected rand node. 

Following the example in step one, Fig. 3 illustrates the results of updating Xt− 1
1
̅̅→

by applying the mentioned operators, considering 
n idc node and n idr node as 1 and 5, respectively. 

Fig. 3. Applying the Operators to Xt− 1
1
̅̅→

.  

To elucidate the procedure explained above, we use the results of the previous example (Fig. 3) and calculate the fitness value (1- 

NSIL) for each of the updated position vectors. As depicted in Fig. 4, the obtained fitness values are stored in FVt̅→
. 

Fig. 4. Calculating Fitness Value for Each Operator Result.  

Afterwards, we assume that the maximum number of iterations is set to 20 (itMax = 20), and the exponential transformation 
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function is applied to the obtained fitness value vector (FVt̅→
) in iterations 1, 10, and 20. These iteration numbers are equivalent to α =

1, α = 10, and α = 20, respectively. As shown in Fig. 5, the transformed fitness values for each of these α values are stored in TFVt̅̅→

vector, and subsequently, each of the values in each TFVt̅̅→
vector is normalized, with the output values being stored in the NFVt̅̅̅→

vector. 

It is quite clear that the higher the α value, the greater the difference among TFVt̅̅→
, and consequently NFVt̅̅̅→

values. 

Fig. 5. Calculating the Transformed and Normalized Fitness Value Vectors.  

As an example for this step, we assume NoIt− 1̅̅̅̅→
= [7,2,6,4,3]. Considering the obtained FVt̅→

(FVt̅→
= [0.4603,0.2699,0.1904,0.23811,

0.4921]) and the fitness value of Xt− 1
1
̅̅→

(1 − NSIL
(

Xt− 1
1
̅̅→)

= 0.4127), both NoIt̅̅→
and NNoIt̅̅̅→

are calculated as shown in Fig. 6. 

Fig. 6. Calculating the Number of Improvement Vector and Its Normalized Vector.  

To further clarify this step, it is useful to consider the example depicted in Fig. 7, assuming AoIt− 1̅̅̅̅→
=

[0.4396,0.2286, 0.2922,0.3664,0.3546]. First, the fitness value of Xt− 1
1
̅̅→

(1 − NSIL
(

Xt− 1
1
̅̅→)

= 0.4127) is subtracted from the values 

stored in FVt̅→
= [0.4603,0.2699,0.1904,0.23811,0.4921]. Second, the L function is applied to the subtraction result. Eventually, the 

output values of L function are added to the AoIt− 1̅̅̅̅→
and the results are stored in AoIt̅̅→

.  

N. Yazdanjue et al.                                                                                                                                                                                                    



Information Sciences 670 (2024) 120631

31

Fig. 7. Calculating the Amount of Improvement Vector.  

Following the example presented in Fig. 7 and considering calculated NoIt̅̅→
= [8,2,6,4,4], the details of calculating AvgAoIt̅̅̅̅̅→

and 

NAvgAoIt̅̅̅̅̅̅→
are illustrated in Fig. 8. 

Fig. 8. Calculating the Average Amount of Improvement Vector and Its Normalized Vector.  

Continuing the examples given in previous steps, we assume that the current iteration number is equal to 10 and the maximum 
iteration number is 20 (itMax = 20). Therefore, in the 10 th iteration, the values of w1, w2, and w3 are 0.7549, 0.12265, and 0.12265, 

respectively. Also, the amount of α is equal to 10, and the NFVt̅̅̅→
is [3.5E − 1,1.5E − 3,4.9E − 5,4.5E − 4,6.4E − 1]. Moreover, the NNoIt̅̅̅ →

and 

NAvgAoIt̅̅̅̅̅̅→
are [0.3333,0.0833,0.25,0.1666,0.1666] and [0.1436,0.2695,0.1148,0.2160,0.2559], repectively. Eventually, the OSPt̅̅̅→

can 
be calculated as shown in Fig. 9. 
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Fig. 9. Calculating the Operator Selection Probability Vector.  
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