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Abstract—Object recognition and object identification are
complex cognitive processes where information is integrated and
processed by an extensive network of brain areas. However,
although object recognition and object identification are similar,
they are considered separate functions in the brain. Interestingly,
the difference between object recognition and object identification
has still not been characterized in a way that brain-computer
interface (BCI) applications can detect or use. Hence, in this
study, we investigated neural features during object recognition
and identification tasks through functional brain connectivity.
Our aim is to discover a reliable feature that might be used
to distinguish between object recognition and identification.
The results demonstrate a significant difference between object
recognition and identification in the participation coefficient and
clustering coefficient of delta activity in the visual and temporal
regions of the brain. Further analysis at the category level shows
that this coefficient differs for different categories of objects.
Overall, what we have found is a feature that might be able to be
used to differentiate between object recognition and identification
within a BCI object recognition system. Further, it may help BCI
object recognition systems to determine a user’s intentions when
selecting an object.

Index Terms—brain-computer interfaces (BCIs); object identi-
fication; object recognition; electroencephalogram (EEG); func-
tional connectivity

I. INTRODUCTION

Humans must process a vast amount of dynamic visual
information in daily life. Simply to interact with the
environment, visual information about our surroundings must
be recognized and quickly processed by our visual system.
Phenomenally, the human brain can search and detect a target
in a panorama of complex natural images with astounding
speed and excellent accuracy. Although many studies have
attempted to solve the mystery of how the brain’s visual
system works, researchers still do not fully understand this
complex system [1]. However, an increasing number of
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researchers are seeking to use our ever-advancing technology
to study and improve our current understanding of the brain’s
visual system .

Currently, there are numerous hypotheses and theories
regarding object recognition in the human brain, including
viewpoint-invariant theory [2], viewpoint-dependent theory
[3] and multiple views theory [4]. However, due to the
complexity of the brain, none of these theories have yet been
proven to explain how object recognition works in the human
brain. However, one hypothesis has been widely accepted
as the prominent model of how the brain neurally processes
vision; it is known as the two-streams hypothesis [5]. The
two-stream hypothesis holds that the visual processing of
objects can be divided into two pathway streams: the dorsal
stream and the ventral stream. The dorsal stream receives
visual information in the occipital lobe, which then travels
to the parietal lobe. This is visual-spatial information that
measures an object’s location relevant to the viewer. By
contrast, the ventral stream receives visual information in
the occipital lobe, after which it travels to the temporal
lobe and is used for object recognition and identification.
This phenomenon of the ventral stream has been illustrated
using fMRI and MEG ([6], [7]), emphasizing the relationship
between the ventral stream and object recognition in the
human brain. This research is inspired by the two-streams
hypothesis, focusing on analyzing the brain regions that are
involved in the hypothesis.

Researchers have decoded a great amount of brain signals
in their attempts to find a feature that can be used to represent
the status of object recognition and identification. Among
these attempts, functional connectivity has become a favoured
measurement for object recognition due to its ability to reflect
distinct connectivity patterns within the brain, also known as
brain network properties [8]. By examining brain network
properties, it is thought that we can better understand the
underlying mechanisms of how the brain processes visual
information [9]. There is evidence for the relationship between
object recognition and network integration [10], which is an
essential attribute of brain network properties. For instance,
it has been shown that patients with psychosis and visual
hallucinations have impaired functional connectivity in the
visual network, possibly with a specific focus on the ventral
attention network [11]. Also, research has demonstrated that
early visual deprivation can lead to decreased functional
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connectivity between the occipital visual cortices and
the parietal somatosensory, frontal motor, and temporal
multisensory cortices [12].

Nevertheless, the majority of studies on functional
connectivity have been conducted using functional magnetic
resonance imaging (fMRI) due to its high spatial resolution.
This has allowed researchers to observe changes in the
brain’s regions in a great deal of definition. However,
electroencephalogram (EEG) provides a better temporal
resolution. With EEG, information can be gathered over
much smaller time intervals, which is not achievable with
an fMRI [13]. In fact, EEGs are the ideal measurement
tool for collecting information related to specific events,
such as object recognition. Recently, EEG signals have
been used for functional connectivity studies in order to
investigate specific brain regions related to object recognition.
For example, a study by Rizkallah et al. [14] investigated
changes in the dynamic brain network modularity while
participants recognized meaningful and meaningless visual
images using EEG-based functional connectivity. Another
two studies ([15], [16]) provided a result that showed the
change in functional connectivity during object-related tasks
in patients with Alzheimer’s disease using EEG. In addition to
detecting changes in the brain network, EEG-based functional
connectivity has also been used to classify different object
categories in BCI research. An example comes from a study
by Tafreshi, Daliri & Ghodousi [17], where they attempted
to use EEG features extracted with functional and effective
connectivity techniques and then use these features to classify
12 different categories of the object.

Most of the EEG-based object recognition studies have
similar experimental designs where the participant must press
a button when a target stimulus appears. The target stimuli
are the focus of these studies. Often they are keywords that
relate to the target object, such as its category [17] or the
test gauges the meaningfulness [14] or ambiguity [18] of the
object. There are a few studies, however, that have altered the
experimental design to try and detect object identification in
the brain as opposed to object recognition. Although object
recognition and object identification are comparable, object
identification is considered to be an individual process where
different regions of the brain are involved in processing the
information [19]. For instance, a study by Dyck & Brodeur
[18] included an object identification experiment where
the participants were asked to observe several images of a
target object in different scenarios. The task required the
participants to identify all the objects in the scene and detect
the target object within it. Another example comes from a
study by Ra¨ma¨ & Baccino [20], where the participants
were asked to identify chimerical objects. Chimerical images
are constructed by joining two halves of an original drawing
while keeping the lines unbroken and continuous. What these
studies have shown is that the difference between object
recognition and identification largely depends of the number
of objects presented to a person. When presented with just
one object, people will use object recognition, but when

asked to distinguish between many objects, a person will
draw on object identification.

Several researchers have attempted to create a BCI
object identification system with prominent EEG features.
For instance, the current P3-based BCI detects object
identification based on the P3 peak, which happens around
300-500 ms after event onset ([21], [22]). However, this
P3-based BCI paradigm relies on the onset of the visual
stimulus to elicit the P3 response, such as a flash or flashes
over the object of choice. Besides the P3 peak, steady state
visually evoked potential (SSVEP) is also a widely used
feature for BCI-based object identification. This system puts
a flicker at a specific frequency over the object of choice
[23], [24], [25]. In terms of BCI-based object recognition
systems, researchers commonly use EEG features to classify
a target object based on a category. A commonly used EEG
feature is event-related potential (ERP), which is the brain’s
response to a specific event that has occurred. ERPs are
measured when an object appears in the participant’s field of
view and then is classified based on the category of the object
[26], [27], [28]. In addition to ERP, EEG features such as
event-related spectral perturbation (ERSP) [29] and functional
and effective connectivity features [17] have also been tested
for BCI-based object recognition. Despite advancements in
the development of BCI systems capable of differentiating
between object recognition and object identification, these
technologies predominantly remain in nascent stages, not
yet suitable for practical application. The primary challenge
lies in the system’s inability to ascertain the user’s intent
in targeting an object: is the objective to enable the BCI to
recognize the object (object recognition), or is it to prompt the
BCI to select an object within the user’s surroundings (object
identification)? Once the intention of the user is detected, the
BCI system can initiate the algorithm specifically designed
for either object recognition or object identification.

Therefore, with this study, we looked for a neural feature
or features that might help us distinguish between the two
processes of object recognition and object identification. Our
aim was to identify a reliable feature that might be applied
in a BCI application to help the system understand the user’s
objective when selecting a target object.

II. METHODOLOGY

A. Participant and Data Recording

The experiment involved 25 participants (aged 32.5± 10.4
years), with each participant completing a total of 600 trials.
All participants reported normal or corrected-to-normal vision.
The experiment took place at the Computation Intelligence and
Brain-Computer Interface (CIBCI) Centre located in Univer-
sity of Technology Sydney (UTS). Every participant was first
provided with instructions about the experiment and then asked
to sign a consent form before participating. Ethics approval
was issued by the University of Technology Sydney under
ethics ID ETH20-5519. Brain activity was recorded using
a 64-channel EEG system from Neuroscan, Compumedics,
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Australia. This is a medical-grade device that provides high-
density EEG recordings with great accuracy. It has been used
in numerous studies in neuroscience and neurodiagnostics. The
EEG electrode placement was consistent with the extended 10-
20 international system. Data were referenced to an electrode
located closest to the standard position FCZ. The contact
impedance of the electrode was maintained below 5k, and the
EEG recordings were digitally sampled at 1000 Hz.

B. Experimental Design

The participants in our experiment were asked to perform
an object recognition task and an object identification task.
In the object recognition task, they were shown an image
selected at random from the Caltech-256 object category
dataset [30]. Images from four different categories were
included in the trial: animals, flowers, food, and vehicles.
Each category contained five different types of objects, and
each type of object contained ten images. Thus, a total of
200 images were used in the experiment. (see Fig.1). Each
trial started with the participant looking at a picture of their
target object for 1 second. They were then asked if the image
belonged to its category. For example, if the target image
was of a bear, the participant was asked: “animal?” and they
had 2 seconds to answer. This question was asked so the
researchers could determine whether or not the subject had
accurately recognized the target image.

Next, we administered the object identification task. Four
images were randomly chosen from the image dataset but
at least one image was chosen from the same category and
subtype as the target image from the previous recognition
task. The four images were placed in four different directions
(up, down, left and right), and the participants had to press
the button corresponding to the image that was most closely
related to the target image. Note that, because the images were
chosen at random, it was possible for there to be choices of
the same category and subtype (see the bottom row of Fig.
1). However, the subjects only had to choose the one they felt
most closely matched their target image. The participants had
3 seconds to respond. Thus, each trial lasted six seconds: the
target image would appear for one second, followed by the
question with two seconds to respond. Then, the four images
appeared with three seconds to respond. Before the target
image appeared, a fixation cross was displayed for 300 ms.
This served as the trial’s baseline. Fig. 1 shows an example
trial.

C. EEG Analysis

The recorded EEG signals were processed using EEGLAB
v14.1.2 [31], a toolbox in MATLAB. The raw EEG data
were filtered using a 1Hz high-pass and a 50Hz low-pass
finite impulse response (FIR) filter and then down-sampled
to 250 Hz. After removing the noisy channels, the data
were re-referenced to the average. Then, adaptive mixed
independent component analysis (AMICA) was applied to
the re-referenced data to decompose them into maximally
independent components (ICs), which are statistically

independent sources of the variance in the EEG. Any
independent components (ICs) related to eye movement,
muscle activity and other noise were rejected using the
IClabel toolbox [32]. Once these bad components had been
rejected, we extracted the epochs. An epoch began 300 ms
prior to the target image appearing (i.e., event onset) and
ended 5 seconds after the target image appeared. Thus, the
whole duration of the trial was covered. Bad epochs were
then identified by checking their data values. It would be
removed if the epoch contained data values outside a given
standard deviation threshold (threshold =150 uV).

The extracted epochs were divided into two parts: the
object recognition portion of the trial (from when the target
image first appeared) and the object identification portion
of the trial (from when the four images appeared). The
epoch data from each participant were then grouped together
based on the four image categories. Thus, we analyzed eight
conditions: object recognition (ATOR, FOTOR, FTOR and
VTOR) and object identification (ATOI, FOTOI, FTOI and
VTOI) in each of the four categories of objects.

D. Functional Connectivity and Network Properties

To tackle the inverse problem of EEG, distributed source
localization was used. Further, functional connectivity was
estimated using the Brainstorm toolbox [33]. The distributed
brain source localization activity was estimated from the data
epochs, and then the brain functional connectivity was esti-
mated from the source activity. Initially, the data epochs were
co-registered with the MRI template [34] and the EEG sensor
locations in the same anatomical landmarks. The openMEEG
[35] process was then used to estimate the lead field of
the cortical mesh. Meanwhile, a noise covariance matrix was
calculated using the fixation cross period of the trial. EEG data
were then projected onto an anatomical framework consisting
of 68 cortical regions as identified by means of re-segmenting
the Desikan-Killiany Cortical Atlas [36] using FreeSurfer [37].
Next, the standardized low-resolution brain electromagnetic
tomography (sLORETA) method [38] was used to reconstruct
the regional time series from the 68 brain regions. Amplitude
envelope correlation (eq. 1) [39] (AEC) was then used to
estimate the functional connectivity between cortical regions,
resulting in a 68 × 68 connectivity matrix. Furthermore,
we restricted the analysis to the delta (1–4 Hz), theta (4–8
Hz), alpha (8–12 Hz), beta (12–30 Hz), low gamma (30-
60 Hz) and high gamma (60-90 Hz). In alignment with the
findings from pertinent research on functional connectivity
[40], [9], [41], [42], [43], the aforementioned connectivity
matrix underwent proportional thresholding. We implemented
a threshold of 10% of the highest AEC values to preserve only
the most significant functional connections. Subsequently, the
remaining AEC connectivity matrices that did not meet this
criterion were excluded from the analysis.

x̃(t) = x(t) + jH{x(t)} = ax̃(t)e
jϕx̃(t) (1)
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Fig. 1: The experimental design. All trials began with a fixation cross lasting for 300 ms, followed by the target image appearing
for one second. After the appearance of the target image, the participants were asked what the object was of and given two
seconds to respond. Subsequently, four images were displayed with at least one image chosen from the same category and
subtype as the target image. The participants had three seconds to select the object that most closely resembled their target
object by pressing a button in the corresponding direction (up, down, left and right). The top half of the figure shows an
example of the trial with the correct response to the question (text in red) and the layout of the object choices. The bottom
half shows an example of the trial with two possible options for the most closely matching object.

x̃(t) is a complex time series uniquely associated with the
original data time series, x(t). The real part of x̃(t) is the
original time series x(t), and the imaginary part is the Hilbert
transform of that same time series H{x(t)}. Module ax̃(t),
and Phase ϕx̃(t) correspond to the instantaneous amplitude
(or envelope) and instantaneous phase of the original time
series x(t), respectively.

Utilizing the selected AEC connectivity matrix, the network
properties of the brain were calculated at each frequency of
each condition. In terms of the experimental task, network
integration was chosen as our measurement because it indi-
cates the global information exchanged at each node (each
cortical region). The network properties were calculated for
all eight conditions of each participant, and then a statistical
test was conducted to compare the difference between them.
We used the Brain Connectivity Toolbox [44] to calculate
the network properties along with the participation coefficient
(Eq. 2) and clustering coefficient (Eq. 3). This participation
coefficient is a measurement that reflects global information
processed in each region of the brain [45], and it will be used
to estimate the integration. The clustering coefficient, which
reflects local information processing in each region, will be
utilized to estimate segregation[46]. The full pipeline of the
analysis is described in Fig. 2.

Pi = 1−
∑Nm

s=1

(
kis
ki

)2

(2)

kis is the number of edges between node i, Nm is the
number of module and the other nodes in module s, and ki
is the total degree of node i. The participation coefficient of
a node is close to 0 if all of its links are within one module
and close to 1 if its links are evenly distributed among all the
modules.

Ci =
2ti

ki(ki − 1)′
(3)

The clustering coefficient is calculated as the proportion of
links among a node’s neighbours divided by the number of
connections that could potentially exist between them. The
number of triangles around node i is represented by ti, and
the number of edges connected to node i is indicated by ki.
The clustering coefficient is 0 if there are no connections and
1 if all neighbours are connected.

E. Binary classification

Subsequent to the computation of brain connectivity features
for all participants, a binary classification analysis (distin-
guishing between object recognition and object identification)
was performed using a variety of classifier models and en-
semble learning techniques. This binary classification was
performed individually for each category of objects, with
the intention of assessing the efficacy of brain connectivity
features across different object types. Upon meticulous eval-
uation, the most effective models were identified as Adaptive
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Fig. 2: Data processing pipeline for Functional connectivity analysis.

Boosting (AdaBoost), K-Nearest Neighbors (KNN), Random
Forest (RF), Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM), and XGBoost with Tree Booster (XGBTree).
These models were sourced from the scikit-learn library [47]
for implementation in the Python programming language.
The hyperparameters for each model were fine-tuned using
Bayesian optimization [48]. Specific optimizations included
the number of estimators and learning rate for AdaBoost;
the number of neighbours for KNN; the number of trees and
maximum tree depth for RF; the size of the hidden layer and
initial learning rate for MLP; the regularization parameter and
kernel coefficient for SVM; and the number of trees, maximum
tree depth, learning rate, gamma, the minimum child weight,
subsample ratio of the training instances and columns when
constructing each tree for XGBTree. Additionally, to assess
the performance of these models, a ten-fold cross-validation
approach was employed.

III. RESULTS

The data for all 25 participants were used to get every
participant’s functional connectivity result, with the data
divided into four groups, one for each category, and
then subdivided into the eight classes mentioned in the
methodology. We calculated the participation coefficients and
clustering coefficients. Significant differences in participation
and clustering coefficients across these tasks and classes were

first assessed via the Friedman test, followed by a post-hoc
pairwise Wilcoxon signed-rank test. Out of all the tested
frequency bands, the results revealed significant differences in
the delta activity of the brain’s visual and temporal regions.
Fig.3A&B shows the results of the Wilcoxon tests for the
participation coefficients of the two tasks as observed in the
visual region (OI and OR, p = 0.00881) and in the temporal
region (OI and OR, p = 0.0137). Furthermore, Fig.3C&D
shows the results of the Wilcoxon tests for the clustering
coefficient in both visual (OI and OR, p = 0.0161) and
temporal region (OI and OR, p = 0.126).

Fig. 4A shows the results of the Wilcoxon tests for the
eight classes in the visual region. Significant differences in
the participation coefficients for delta activity were found
between the recognition and identification tasks for the
following categories: animals (ATOI and ATOR, p = 0.019),
food (FOTOI and FOTOR, p = 0.005) and flowers (FTOI and
FTOR, p = 0.039). Fig. 4B shows the results for the temporal
region. Here, there were significant differences in the animal
(ATOI and ATOR, p = 0.034), flower (FTOI and FTOR, p =
0.019) and vehicle (VTOI and VTOR, p = 0.045) categories.
For the clustering coefficient, Fig. 4C shows the results of the
Wilcoxon tests in the visual region. Significant differences
were observed in the categories of flower (FTOI and FTOR,
p = 0.019) and vehicle (VTOI and VTOR, p = 0.045). Fig.
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Fig. 3: Graph properties at visual (A&C) and temporal (B&D) regions: participation coefficient and clustering coefficient
between object recognition and identification task in delta frequency. Pairwise post-hoc Wilcoxon signed-rank tests were used
to check for significant differences between tasks.

4D shows the results for the temporal region, and significant
differences were observed in the animal (ATOI and ATOR,
p = 0.019) and flower (FTOI and FTOR, p = 0.045) categories.

The result of the binary classification of object recognition
and identification is shown in Table I. This classification was
performed for each category using three distinct combinations
of brain connectivity features: Participation Coefficient only
(PC), Clustering Coefficient only (CC), and a combination of
both (PC&CC). In the classification of various categories, the
animal category exhibited the highest accuracy and F1 score,
achieving 80% and 0.78, respectively, when employing both
the participation coefficient and clustering coefficient with
the KNN classifier. The food category, when classified using
the AdaBoost and KNN classifiers, achieved an accuracy
of 60% and an F1 score of 0.71. For the flower category,
the most effective classification result was achieved using
both the Participation Coefficient and Clustering Coefficient
in conjunction with the RF classifier, yielding an accuracy
of 72.5% and an F1 score of 0.70. Lastly, the vehicle
category recorded an accuracy and F1 score of 75% and 0.8,
respectively, when the classification was conducted using the
Participation Coefficient in combination with the XGBTree
classifier.

We further visualized the functional connectivity results
using BrainNet Viewer [49], plotting a full view of the graph
properties (lateral, medial, ventral and dorsal) for the object
identification task in Fig. 5 and the object recognition task
in Fig. 6. An axial view of the graph properties for the
eight classes follows in Fig. 7. The node, the blue dot in
the functional connectivity map, indicates the brain regions
or regions of interest that are defined based on anatomical

or functional criteria. The node size represents the degree of
activity or connectivity of a particular region, with larger nodes
representing more active regions. On the other hand, The red
lines connecting each node represent the edge, which states
the strength of the connection between the two nodes.

IV. DISCUSSION

Object recognition and object identification are essential
aspects of many daily activities. Both require us to process
a vast amount of dynamic visual information and recall
information from memory quickly and precisely. This study
explores these processes in a combined task of object
recognition and object identification by observing differences
in the functional connectivity of the brain. We found that
the differences in functional connectivity between the object
recognition task and the object identification task occur
at visual and temporal integration. Visual and temporal
integration is higher during object identification in the delta
band as measured by the AEC connectivity matrix. This
finding could be an indicator for distinguishing between
object recognition and object identification in BCI systems.

A. Significance of low-frequency signal

The low-frequency signal in the human brain has revealed
its function/reflection in object recognition [50]. Moreover,
this characteristic has been reported in both healthy people
and in patients. For instance, Behroozi et al. [29] conducted
an object recognition experiment with ten healthy participants
and found that the phase patterns of EEG signals across
time in the delta band could be used to discriminate between
different objects. In patients with attention deficit hyperactivity
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Fig. 4: Graph properties in the visual (A&C) and temporal (B&D) regions of the brain. The participation coefficients and
clustering coefficient for four categories during object recognition and identification tasks in the delta frequency. Pairwise
post-hoc Wilcoxon signed-rank tests were used to check for significant differences between classes (* and ** indicate p<0.05
and p<0.01, respectively).

disorder (ADHD) [51], the delta EEG bands highlighted
essential features for classification between both the ADHD
group and the control group. This is further evidence of
how the low-frequency EEG power bands might serve as
potential markers of a visual processing deficit in people
with ADHD. Furthermore, Watrous et al. [52] conducted
an experiment involving an object recognition task with six
patients with medication-resistant epilepsy. They found that
phase-amplitude coupling (PAC) supports phase-dependent
stimulus representations for object categories, and that PAC
was most prevalent in the delta band. Some studies have
reported the usefulness of the delta band frequency as a feature
for identifying the object recognition phenomenon in studies
of EEG-based object recognition and object identification. For
example, Cao et al. [53] attempted to create a computer-aided
design (CAD) program for determining a person’s intention
to select an object based on EEG signals in four frequency
bands. They found that the weights trained from the data of
the delta band were significantly higher than those from the
high-frequency band (beta), thus increasing the classification

accuracy of object selection. Nevertheless, there is limited
information on the delta features of brain connectivity in
EEG studies.

B. Functional Connectivity

Research has been undertaken on brain connectivity
using EEG data, but the findings of these studies cover
the whole brain network, not the specific regions of the
brain relating to object recognition tasks. Therefore, we
undertook to investigate brain participation in the visual and
temporal cortices. It is well-understood that object perception
occurs predominantly in the visual cortex [54], while object
identification primarily takes place in the temporal cortex [55],
with both processes occurring in the low-frequency band.
However, our results from this study demonstrate that low-
frequency signals in the visual and temporal cortices might
be used as a feature to distinguish between object recognition
and identification processes in the human brain (Figs. 3 and 4).
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TABLE I: Binary classification results for each category with different combinations of brain connectivity features

Animal PC

Classifier Accuracy F1-Score
AdaBoost 50% 0.54
KNN 75% 0.78
MLP 60% 0.67
RF 65% 0.70
SVM 60% 0.67
XGBTree 65% 0.69

Animal CC

Classifier Accuracy F1-Score
AdaBoost 50% 0.51
KNN 60% 0.63
MLP 65% 0.70
RF 55% 0.57
SVM 65% 0.67
XGBTree 65% 0.70

Animal PC&CC

Classifier Accuracy F1-Score
AdaBoost 70% 0.625
KNN 80% 0.78
MLP 70% 0.67
RF 75% 0.71
SVM 72.5% 0.68
XGBTree 72.5% 0.69

Food PC

Classifier Accuracy F1-Score
AdaBoost 60% 0.71
KNN 60% 0.71
MLP 60% 0.67
RF 55% 0.67
SVM 60% 0.67
XGBTree 60% 0.71

Food CC

Classifier Accuracy F1-Score
AdaBoost 35% 0.38
KNN 35% 0.35
MLP 40% 0.45
RF 30% 0.41
SVM 40% 0.39
XGBTree 40% 0.45

Food PC&CC

Classifier Accuracy F1-Score
AdaBoost 52.5% 0.45
KNN 55% 0.53
MLP 40% 0.40
RF 50% 0.5
SVM 40% 0.25
XGBTree 52.5% 0.61

Flower PC

Classifier Accuracy F1-Score
AdaBoost 65% 0.69
KNN 55% 0.64
MLP 55% 0.64
RF 55% 0.64
SVM 55% 0.64
XGBTree 65% 0.67

Flower CC

Classifier Accuracy F1-Score
AdaBoost 50% 0.58
KNN 50% 0.44
MLP 55% 0.47
RF 50% 0.58
SVM 55% 0.53
XGBTree 50% 0.58

Flower PC&CC

Classifier Accuracy F1-Score
AdaBoost 70% 0.67
KNN 62.5% 0.62
MLP 62.5% 0.57
RF 72.5% 0.70
SVM 62.5% 0.51
XGBTree 65% 0.71

Vehicle PC

Classifier Accuracy F1-Score
AdaBoost 55% 0.57
KNN 60% 0.56
MLP 70% 0.75
RF 55% 0.57
SVM 65% 0.78
XGBTree 75% 0.80

Vehicle CC

Classifier Accuracy F1-Score
AdaBoost 55% 0.61
KNN 50% 0.37
MLP 50% 0.5
RF 50% 0.60
SVM 55% 0.53
XGBTree 55% 0.52

Vehicle PC&CC

Classifier Accuracy F1-Score
AdaBoost 62.5% 0.67
KNN 65% 0.69
MLP 70% 0.71
RF 55% 0.47
SVM 70% 0.71
XGBTree 65% 0.68

Furthermore, we extend the investigation into the higher
resolution of the task by looking into the differences between
object recognition and identification in four categories.
Previous studies have shown the significance of the visual
and temporal regions for recognizing and discriminating
between different shapes and objects ([56], [57], [6]). The
results of this study have demonstrated significant differences
in the participation coefficient and clustering coefficient
of delta brain activity for object recognition versus object
identification tasks in the visual region with the animal, food,
and flower categories. This suggests that these categories are
visually different enough for the participants to distinguish
between objects at first glance. In the temporal region, we
saw the same kinds of differences in the animal, flower, and
vehicle categories, which implies that these image categories
may require more complex processing of the brain.

The differences in the participation coefficient between the
animal and flower categories across both brain regions are
noteworthy. In terms of the clustering coefficient, differences
were observed solely for the flower category across both
regions. The difference in the animal category was restricted
to the temporal region, with no corresponding variance
observed in the visual region. Nonetheless, the animal
category demonstrated a near-significant difference in the
visual region (p = 0.071). This result suggests that these

categories elicit a different type of response from participants,
but, since we still do not fully comprehend the human brain,
what these results indicate exactly is uncertain. However,
there are some studies that might help us explain this
phenomenon. For instance, these differences may be part of
the brain’s response to living objects. Farah and Rabinowitz
[58] and Mahon et al. [59] both undertook research regarding
the brain’s response to living and non-living objects, and both
found that living objects tend to be more evocative to humans
than non-living objects.

For the food category, significant differences were only
observed in the visual region regarding the participation
coefficient. This phenomenon could be linked to the human
instinct for food [60], which perhaps causes differences in
the visual region to be more evident than in the temporal
region. Lastly, in the vehicle category, we found significant
differences in the temporal region regarding the participation
coefficient and the visual region regarding the clustering
coefficient. The ventral stream theory of visual processing
may possibly explain this result. Since vehicles are complex
objects, the brain may need to process large amounts of
visual information in order to recognize the corresponding
target in the object recognition task, hence the high clustering
coefficient in the visual region. During the object identification
task, when the participants saw the image of the vehicle
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Fig. 5: Functional connectivity of the brain network during
the object identification task. The nodes indicate brain regions
(based on the 68 Desikan-Killiany Atlas). The edges indicate
significant connections between nodes; the edge size indicates
the strength of the connection.

Fig. 6: Functional connectivity of the brain network during
the object recognition task. The nodes indicate brain regions
(based on the 68 Desikan- Killiany Atlas). The edges indicate
a significant connection between nodes; the edge size indicates
the strength of the connection.

presented to them within the choices, they noticed an object
but did not know what it was until the visual information
was transmitted to the temporal region and other brain
regions that are associated with recognizing, recalling and
locating the object. Therefore, the significant differences in
participation coefficient between object recognition and object
identification only occurred in the temporal region.

The participation coefficient measures the diversity of
the intermodular interconnections of individual modules

Fig. 7: Functional connectivity of the brain network across
four categories during the object recognition and identification
task. The nodes indicate brain regions (based on 68 Desikan-
Killiany Atlas). The edges indicate a significant connection
between nodes; the edge size indicates the strength of the
connection.

and provides insight into their functional role among their
own module from multiple modules [44]. Conversely, the
clustering coefficient measures the prevalence of clustered
connectivity surrounding individual nodes [46]. Both the
participation coefficient and clustering coefficient range
between 0 and 1. If the participation coefficient is close to 0,
the module only connects to a few modules and vice versa as
it approaches 1. For the clustering coefficient, the connection
between nodes within the module is weak as it approaches
0 and strong as it approaches 1. As demonstrated in Fig. 3,
object identification has a higher participation coefficient than
object recognition in every category. These high participation
coefficients indicate that the functional integration in the brain
is more robust during object identification tasks than object
recognition tasks. Furthermore, it implies that there is less
segregation between the modules in the visual and temporal
regions during object identification tasks than during object
recognition tasks. More generally, it means that the visual and
temporal regions are more connected to each other and other
brain regions during object identification. Ostensibly, object
identification tasks require the participants to recognize, recall
and identify similarities between selected images. Hence,
the high participation coefficient in the visual and temporal
regions may suggest that more brain regions beyond these
two are also involved in object identification. Regarding
object recognition, the clustering coefficient surpasses that
of object identification in all categories. This high clustering
coefficient signifies that functional segregation within the
brain is more intense during object recognition tasks than
object identification tasks. In object recognition tasks, the
participants are solely required to recognize the object.
The visual information is initially processed in the visual
region to detect the object’s features before transmitting these
characteristics to the temporal region to determine the object’s
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identity. However, the same process is not precisely the same
in the object identification task because object identification
entails more than just recognizing the object, as previously
mentioned. This phenomenon suggests that visual information
is predominantly processed during object recognition tasks in
the visual and temporal regions.

Furthermore, our comprehensive analysis, conducted at an
enhanced resolution, is demonstrated through the functional
connectivity map, as illustrated in Figures 5, 6, and 7. These
figures reveal that nodes within the visual and temporal
regions, quantified by the clustering coefficient, are notably
larger, signifying the pivotal role of the visual and temporal
regions in tasks related to object recognition and identification.
Concurrently, the edges linked to the nodes in these regions, as
measured by the participation coefficients, demonstrate robust
connections, indicating significant interactions between the
visual and temporal regions and other areas of the brain.

C. Binary classification

According to the binary classification results shown in Table
I, it is evident that different brain connectivity features have a
varying impact on the outcome for each category. Utilizing the
participation coefficient yielded the most favourable results
for the animal and vehicle categories. This finding suggests
that the differentiation between object recognition and object
identification for these categories is more discernible through
the participation coefficient. On the other hand, the clustering
coefficient didn’t seem to provide significant outcomes for all
the categories, implying that the difference between object
recognition and object identification for these categories is not
as distinguishable using the clustering coefficient. Despite this,
the combination of the participation and clustering coefficients
seems to impact the classification result positively. When
combining both brain connectivity features, most of the
classifiers demonstrated improvement for the animal, flower,
and vehicle categories. Notably, the classification result
for these three categories showed improvement across all
classifiers except the XGBTress classifier for flower and
vehicle categories when the combined features were utilized.
This improvement implies that object recognition and object
identification significantly differ in the participation and
clustering coefficients for these three categories. The findings
indicated that distinguishing between object recognition
and object identification can be achieved by examining the
participation and clustering coefficients as features.

Moreover, this participation coefficient and clustering co-
efficient at visual and temporal regions that can distinguish
between object recognition and object identification has the
potential to help us develop a better BCI system [13]. For
example, this feature could be used within a BCI system
to execute a classification algorithm depending on the user’s
objective. If the user’s intention on an object is to want the BCI
system to recognize the object, the BCI system could initiate
an object recognition algorithm for object recognition ([26],
[27], [28], [29], [17]) and provide feedback to the user. Rather,

if the user wants to select an object within their environment,
the BCI system could instead initiate an object identification
algorithm for object identification ([21], [22], [23], [24], [25])
and select the desired target object. Such a BCI system could
greatly help users with a disability to choose the object they
want and communicate information about it with others.

D. Limitation

The findings of the functional connectivity analysis
demonstrated notable differences between object recognition
and object identification. However, several limitations within
this analysis justify attention.

Firstly, the application of graph theory requires setting
an arbitrary threshold to maintain the strongest connections
consistently across subjects and to exclude spurious
connections from connectivity matrices. This approach, while
necessary, introduces the risk of incorporating false-positive
and irrelevant connections. Given the variety of available
thresholding methods, each with its potential biases, it is
advisable to conduct analyses using different threshold values
to verify the robustness of the results.

Secondly, EEG functional connectivity research continually
grapples with the issue of the volume conduction effect
[61]. Analyses at the source level have been effective in
mitigating this issue, as they derive connectivity metrics from
the time-series data of specific, localized brain regions. This
method does reduce the volume conduction issue, but signal
mixing may still occur in the cortical source space, potentially
leading to false connections between brain regions by some
connectivity methodologies. In this study, leakage correction
methods like the Minimum Norm Estimate (MNE) have been
used, which are designed to ensure that the reconstructed
signals exhibit zero cross-correlation at lag zero [62]. While
theoretically improving interpretation, recent research, such as
that by Palva et al. [63], indicates that estimated connectivity
might deviate significantly from actual connectivity.

Lastly, the study’s participant count of 25, though sub-
stantial, is not sufficiently large to unequivocally validate the
findings, be it in functional connectivity or binary classification
outcomes. Future research should involve a greater number of
participants to lend more credibility to the results.

V. CONCLUSION

In this study, we investigated neural dynamics to determine
the underlying brain mechanisms at work during object
recognition and identification. The results indicate a
significant difference in the participation coefficient and
clustering coefficient of delta activity in the brain’s visual
and temporal regions when engaged in object recognition
as opposed to object identification. This adds to existing
evidence that the visual and temporal regions of the brain
play an essential role in recognizing and identifying objects.
However, digging deeper into this phenomenon, we compared
delta activity during both tasks at the category level and found
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that different categories of objects spark different responses
in the brain and that these categories differ between object
recognition and identification. These results demonstrate
that brain dynamics exhibit considerable variation between
tasks of object recognition and identification, contingent
on the nature of the objects involved. This observation
is further corroborated by the outcomes of the binary
classification analysis, which indicate that the neural features
are less effective in the context of the food category. Such a
difference between object recognition and identification could
be an important feature of a BCI object recognition system,
helping to pinpoint a user’s objective when selecting a target
object.
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