
“© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

1

Dynamic Multi-tier Resource Allocation Framework
for Metaverse

Nam H. Chu, Hieu Q. Nguyen, Diep N. Nguyen, Dinh Thai Hoang, Khoa T. Phan,
Eryk Dutkiewicz, Dusit Niyato, and Tao Shu

Abstract—Since Metaverse requires enormous resources that
have never been seen before, resource management is one of
the biggest challenges hindering Metaverse deployment. Thus,
this paper introduces a novel framework that can effectively
and smartly manage various types of resources in different
network layers to guarantee strict requirements of Metaverse.
In particular, this framework is built based on two innovative
techniques: (i) MetaSlice decomposition providing a flexible
and effective solution in deploying, managing, and updating
Metaverse applications, and (ii) MetaInstance that can maximize
resource utilization by exploiting similarities among Metaverse
applications. Moreover, to address the dynamic, uncertain, and
real-time resource demand in Metaverse, we develop an in-
telligent algorithm that can quickly find the optimal resource
allocation for the system. The key idea of this algorithm is
to automatically learn the optimal policy through interactions
the environment without requiring complete information. The
simulation results show that the proposed framework can not
only improve the long-term revenue for the Metaverse provider
up to 1.8 times but also enhance user experience near 1.5 times
compared with other baseline schemes.

Index Terms—Metaverse, resource management, semi-Markov
decision process, machine learning.

I. INTRODUCTION

Thanks to the recent blossom of emerging technologies,
e.g., artificial intelligence, hardware virtualization, and virtual
reality, Metaverse, a concept introduced in 1992 [1], is not
fiction anymore. Specifically, Metaverse is built on two pillars.
First, it is a blended environment of physical and virtual
worlds. Currently, virtual reality techniques, e.g., Extended
Reality (XR), can achieve the integration of physical and
virtual environments by allowing users to interact seamlessly
with both physical and virtual objects simultaneously. In
addition, Metaverse allows users not only to freely create their
virtual objects but also bring their physical objects (e.g., paint-
ing) to Metaverse by digitalizing technologies (e.g., digital
twins [2]). Moreover, users can share and trade their assets
(e.g., virtual paintings and outfits) with others in Metaverse.

Nam H. Chu, Hieu Q. Nguyen, Diep N. Nguyen, Dinh Thai Hoang,
and Eryk Dutkiewicz are with the School of Electrical and
Data Engineering, University of Technology Sydney, Aus-
tralia (e-mails: namhoai.chu@student.uts.edu.au, hieu.nguyen-
1@student.uts.edu.au, diep.nguyen@uts.edu.au, hoang.dinh@uts.edu.au,
and eryk.dutkiewicz@uts.edu.au).

Khoa T. Phan is with School of Engineering and Mathematical Sciences,
La Trobe University, Melbourne, Australia (e-mail: K.Phan@latrobe.edu.au).

Dusit Niyato is with the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore 639798 (e-mail: dniy-
ato@ntu.edu.sg).

Tao Shu is with the Department of Computer Science and Software Engi-
neering, Auburn University, Auburn, AL 36849. (e-mail: tshu@auburn.edu).

Second, unlike conventional virtual worlds, where each is
created for a particular application (e.g., entertainment or
education), Metaverse is the seamless integration of various
applications. As such, a user only needs to maintain one
account to enjoy all applications (i.e., virtual worlds), thereby
relieving the headache of managing multiple accounts for
different applications. Moreover, analogous to our real lives,
Metaverse allows users to bring/share their virtual assets across
virtual worlds without losing their values. Thus, Metaverse is
a revolution changing not only how we immerse ourselves in
entertainment but also many aspects of our daily lives, e.g.,
industry, education, and healthcare.

However, Metaverse is still only at its infancy, and thus a lot
of effort is needed towards its success. Among obstacles hin-
dering the development of Metaverse, resource management is
one of the most important problems. It is stemmed from the
fact that Metaverse applications require mountainous resources
of various types (e.g., computing, storage, and networking)
with strict requirements. First, reality technologies (e.g., XR)
blending digital objects into the physical environment require
not only intensive computing resources for rendering 3D ob-
jects but also strict delay requirements in both computing and
networking to maintain Quality-of-Experience (QoE) for users.
Second, in Metaverse, interactions between physical and vir-
tual environments are bi-direction. For example, gestures and
body movements can be used to control virtual objects, while a
virtual remote can be used to control household devices. Thus,
Metaverse applications require high-speed connections with
low latency for both directions. Third, due to the integration
of multiple virtual worlds in Metaverse, a huge number of
users is expected to join Metaverse simultaneously, leading to
tremendous resource demand. As such, data forwarded over
networks is expected to increase about 20 times thanks to
Metaverse operation [3]. Moreover, users can enter and leave
anytime, leading to high uncertainty and dynamic resource
demand in Metaverse. Therefore, the Metaverse’s deployment
calls for an innovative solution to address the above challenges
effectively.

To address the aforementioned challenges, this paper intro-
duces a novel resource management framework for deploying
Metaverse applications. In particular, the proposed framework
is established based on two innovative techniques to flexibly
and effectively manage resources by exploiting similarities
among applications. In addition, a deep reinforcement learning
algorithm is developed to address the dynamic, uncertainty,
and real-time resource demand in Metaverse. Simulation re-
sults demonstrate that the proposed solution can improve

2

Metaverse provider’s long-term revenue up to 1.8 times and at
the same time enhance service availability for users near 1.5
times. The main contributions of this paper are summarized
as follows:

• We discuss current resource allocation approaches and
then introduce a novel framework that can dynamically,
effectively, and intelligently manage high volume of re-
sources in various types to maximize the performance of
Metaverse applications.

• We propose two innovative methods, i.e., Metaverse
application decomposition and MetaInstance, that can
exploit similarities among applications to maximize re-
source utilization.

• We develop an intelligent algorithm together with the
underlying model formulated by the semi-Markov deci-
sion process to help the system quickly learn the optimal
resource allocation policy under the uncertainty, dynamic,
and real-time environment.

II. RESOURCE MANAGEMENT FOR METAVERSE

Figure 1 illustrates the network architecture of a Metaverse
system when Metaverse applications are deployed. In practice,
creating a Metaverse application to serve a large number of
users requires a huge amount of different types of resources.
Specifically, it usually requires a lot of computing resources to
create a virtual world to be able to serve many users to join si-
multaneously. For example, according to [4], Fortnite, a game
hosting over 15.3 millions of concurrent users on live virtual
concerts, requires tens of thousands of instances equipped
by AWS Graviton processors whose computing capacity is
equivalent to Intel Xeon Platinum 8259CL. More importantly,
Metaverse applications are much more complicated than those
of existing virtual worlds due to the fully blending between
digital and physical environments. For instance, Metaverse
allow users to create virtual objects by digitalizing real objects
(e.g., paintings). Then, they can interact with these objects
(e.g., touching, modifying, and coloring) as well as share them
with others in Metaverse. Digitalizing real objects from the
real world to the Metaverse environment requires not only
intensive computing resources but also a huge amount of data
to process. Furthermore, users generally join Metaverse on
their portable devices with limited resources, e.g., computing
and energy, and thus streaming services is promising approach
to alleviate mountainous resource demand of Metaverse ap-
plication. However, unlike conventional streaming services,
Metaverse applications require interactive VR 3600 streaming
services in which users can immerse in Metaverse spaces with
3D view and at the same time interact with all surrounding
objects and other users in a such virtual environment. This
will require not only enormous radio resources (including both
uplink and downlink) but also various computing types at
the edges, e.g., to preprocess video streaming. Therefore, this
demands an innovative resource management solution that can
effectively address tremendous demands in various resource
types from Metaverse applications.

In the literature, a few attempts have been conducted to ad-
dress resource allocation problems in Metaverse. Most studies

Tourism Application

Travelling MetaSlice

Cellular

Core Network

Cloud

Backhaul Links

Data Collection

Metaverse
Streaming

Education Application

Fig. 1: The network architecture of Metaverse system.

consider computing resource allocation at the edge [5]–[7].
In [5], the authors consider a task offloading problem in a
Metaverse vehicular application. Particularly, since intensive
Metaverse computing tasks cannot be efficiently processed
locally at a vehicle, the authors propose to use edge computing
to execute these tasks. First, the Metaverse provide will select
qualified vehicles to execute computation tasks based on their
reputation values. To alleviate the straggler effects in the
offloading task problem, the authors then adopt a Coded
Distributed Computing (CDC) approach for computing these
tasks. After that, a Stackelberg game model is proposed to
investigate the reliable and sustainable CDC scheme in this
vehicular Metaverse application.

The edge-powered Metaverse is further investigated by
studies in [6] and [7], which considers more types of resources,
i.e., computation and communication. The authors in [6]
study the scenario in which VR service providers offer edge-
computing resources for rendering the VR to Metaverse users.
They propose a framework that maps and prices virtual reality
services between users and the service provider dynamically,
so that the seamless experiences of users are guaranteed. The
objective of this work is to maximize users’ experiences and
perception. For that, an incentive mechanism based on deep
reinforcement learning and double Dutch auction is designed
to achieve effective performance in terms of social welfare
and information exchange cost. In [7], the authors propose a
unified resource allocation framework to tackle stochastic user
demand in the Metaverse education application. In this work, a
stochastic integer programming method is utilized to minimize
the cost of a service provider, given the stochastic demand of
the cyber and physical resources from users. Simulation results
show that the proposed framework achieves better performance
than other baselines in terms of cost for the provider of virtual

3

education. Unlike the above works, the authors in [8] consider
components in Metaverse (e.g., infrastructures and software)
as services, similar to the concept of everything-as-a-service
(XaaS) in cloud systems. For managing and orchestrating
Metaverse services, the authors propose a framework that
can customise various service models with different types of
resources. Simulation results show that the proposed frame-
work can handle resource mapping problems in a travelling
application, given the network’s dynamic rendering capacity
and data rates.

It can be observed that all of the above works focus
on a single-tier resource architecture (i.e., edge computing)
for Metaverse applications, which may lead to a point-of-
congestion problem. The reason is that in edge computing,
users typically are allocated resources that near their locations.
Thus, when a large number of users experience Metaverse
application simultaneously in a small area, their nearby re-
sources are inadequate to meet users’ QoE requirements.
In this context, multi-tier resource allocation architecture is
a promising solution because it can alleviate a point-of-
congestion by distributing resources along the path from users
to the cloud. In addition, it also offers a flexible solution to
deploy Metaverse applications. In particular, Metaverse appli-
cations can be allocated resources at different tiers according
to their requirements. Moreover, none of the above works
and others in the literature can exploit the similarities among
Metaverse applications to improve resource utilization. It is
observed that Metaverse applications may share some same
functions. For example, a digital map likely belongs to the
travel and vehicular Metaverse applications. If this function is
shared among applications, system resource usage efficiency
is greater than that of the scenario in which a digital map is
separately created for each application. In the next section,
we will introduce a novel solution for effectively managing
the resources in Metaverse based on a multi-tier resource
allocation architecture.

III. DYNAMIC MULTI-TIER RESOURCE MANAGEMENT
FRAMEWORK FOR METAVERSE

A. The Multi-tier Resource Allocation Architecture for Meta-
verse Applications

Due to the stringent delay requirement and extremely high
resource demands in various types, we propose a novel multi-
tier resource allocation architecture for implementing Meta-
verse applications. Specifically, resources (e.g., computing,
storage, and networking) can be allocated along the way from
end-user to the cloud to form a multi-tier resource allocation
architecture. Suppose that an user enters a Metaverse appli-
cation via a 5G network so that the first resource tier can be
mapped to 5G small cells (e.g., femtocells, microcells, and
microcell), the second tier can be mapped to 5G macrocells,
and so on, as illustrated in Figs. 1 and 2. If this application
requires a low latency, it can be allocated resources near
end-users, e.g., tier-1. In contrast, if application needs more
intensive resources (e.g., computing), resources at a higher tier
should be used. As a result, the proposed multi-tier resource
allocation architecture offers a highly-effective and flexible
solution for Metaverse applications.

...

Tourism MetaSlice MetaSlice

Decomposition ...

Core Network

Macrocell

(tier-2)

Small cell

(tier-1)

Function
Distribution

Tourism MetaSlice

Functions

Small cell

(tier-1)

Fig. 2: An example of the MetaSlice Decomposition, where
a tourism MetaSlice is decomposed into multiple functions
(e.g., recommendation and digital map) that can be created
and operated independently at different tiers of the multi-tier
resource architecture.

Moreover, our proposed architecture can offer a number
of benefits to Metaverse providers and users. First, each
Metaverse application can be allocated resources at different
tiers, so the point-of-failure and network congestion problems
of the conventional cloud can be alleviated. Second, the multi-
tier architecture brings computing resources nearer to users,
and thus it reduces data transmission delay, which is crucial
in Metaverse to maintain QoE for users. Third, this architec-
ture can distribute different resource types (e.g., computing,
radio, and storage) over networks, making it more resilient
and flexible than that of the centralized resource allocation
architecture.

B. MetaSlicing Framework

This subsection presents our novel resource management
framework, i.e., MetaSlicing, that can effectively manage
Metaverse applications built on multi-tier resource architec-
ture. The MetaSlicing consists of two innovative techniques,
i.e., MetaSlice decomposition and MetaInstance, that can
provide flexible solutions in managing and allocating different
types of resources for different Metaverse applications based
on their actual demands.

1) MetaSlice Decomposition: As discussed in Sec-
tion III-A, a multi-tier resource architecture is a very promising
solution for Metaverse application deployment. However, it
still poses several challenges. First, most Metaverse applica-
tions demand low delay on processing and connection, so
they are likely to be created at the edge, i.e., tier-1. Thus,
this leads to overload problems at low tiers, whose resources
are typically lower than those of higher tiers, resulting in a
high delay in computing and transmission or even service
disruption. Note that delay is a crucial factor determining
QoE of users in Metaverse. Second, if a user moves to
an area far from the previous one, the QoE of its ongoing
Metaverse applications may not be guaranteed. A possible
solution for this problem is migrating these applications to a
site near the user’s new location. Nevertheless, the migration
leads to unavoidable high delay due to the re-initialization of
Metaverse application.

To address these challenges, we propose that a Metaverse
application, i.e., MetaSlice, can be decomposed into different

4

functions that can be initialized and operated independently.
For example, a tourism MetaSlice likely has recommendation
and navigation functions. The recommendation function sug-
gests nearby sightseeing according to a user’s location and
preferences, and then the navigation function takes action to
give the best route to the chosen place as illustrated in Fig. 2.
Indeed, these functions can operate independently. As such,
a tourism MetaSlice can be developed by a modular design
whose functions are initialized and operated separately. These
independent functions can be viewed as a complete application
so that they can be connected to others via some interfaces,
similar to how current applications connect to existing online
service platforms, e.g., Google Maps API.

The MetaSlice decomposition can bring numerous benefits
to Metaverse’s deployment and operation. First, it can make
more convenient in managing MetaSlices. For example, if a
function is failed, we can use another equivalent one without
interrupting users and services. Second, since each function
in a MetaSlice is an independent entity, it can be upgraded
separately, resulting in faster evolutions of functions and
MetaSlices. Third, this technique can help MetaSlice developer
to focus more on their unique functions (e.g., a recommenda-
tion function in tourism MetaSlice) rather than putting effort
on other functions (e.g., a digital map) that can be developed
more efficiently by other parties with more experiences in
this area. Fourth, the MetaSlice decomposition, together with
a multi-tier resource allocation architect, provides a flexible
solution for implementing Metaverse since each function of
a MetaSlice can be dynamically created at a different tier
according to its requirements. For example, suppose that a
travelling MetaSlice has digital map and driving assistance
functions. Since the driving assistance requires a low delay, it
should be created and placed near users, e.g., tier-1. Whereas
the digital map, which occasionally needs an update, should be
placed on a higher tier, e.g., the cloud. Finally, the application
migration delay problem, as discussed above, is also alleviated
by MetaSlice decomposition. Specifically, instead of migrating
entire a MetaSlice, only some functions with strict delay
requirement will be migrated, leading to a significant decrease
of migration delay. To support the MetaSlice decomposition, a
MetaSlice can be initialized based on a record describing the
configuration and workflow for creating and managing this
MetaSlice throughout its life-cycle.

2) MetaInstance: To further exploit the benefits of
MetaSlice decomposition, we introduce the MetaInstance to
maximize resource utilization. Specifically, we observe that
different MetaSlices may have some common functions. For
example, MetaSlices for education, tourism, and industry may
have functions for Metaverse users to communicate (e.g.,
instant message and video call). Moreover, one MetaSlice
type may have multiple variants created and managed by
different parties. Thus, there is a high probability that ongoing
MetaSlices have some common functions. As a result, system
resources can be further optimized if these MetaSlices can
share the same function instead of creating one for each
MetaSlice. In this way, the service provider can get more
revenue by better optimizing resource utilization and at the
same time enhance QoE for Metaverse users.

...

...

Education MetaSlice (2)

...

Travelling MetaSlice (1)

Tourism MetaSlice (3)

Shared
Functions

1's functions

2's functions

3's functions

MetaInstance

Fig. 3: An example of a MetaInstance that consists of multiple
MetaSlices sharing some same functions (e.g., driving assis-
tant, digital map, and messenger).

Given the above, we propose to group MetaSlices into
multiple groups, named MetaInstances, based on their function
similarities. Specifically, a MetaInstance contains multiple
MetaSlices that share some same functions. As such, in a
MetaInstance, there are two function types, including dedi-
cated functions (which belong to particular MetaSlices) and
shared functions serving multiple MetaSlices, as illustrated in
Fig. 3. Note that a function in a MetaInstance can only be
shared by MetaSlices in this group. To support the creation
and management of MetaInstance, a MetaInstance maintains
a configuration record describing its functions and interactions
between them.

Note that the proposed MetaSlicing mechanism is different
from network slicing mechanism in 5G networks [9]. Specifi-
cally, network slicing aims to provide various virtual networks
(e.g., network slices) over a physical network to address
different communication types for different businesses. For
example, manufacturing customers may require ultra-reliable
connections, while entertainment users usually need low-
latency communications. Thus, network slicing mainly focuses
on the communication aspect from users to MetaSlices, with-
out capturing specific requirements of functions in MetaSlices.
In contrast, our proposed MetaSlicing aims to offer a compre-
hensive solution for the deployment of Metaverse applications
established on the underlying multi-tier resource allocation
architecture. In particular, MetaSlicing first decomposes a
MetaSlice into independent functions. Then, these functions
are distributed across different tiers in the multi-tier re-
source architecture according to their requirements. Moreover,
MetaSlicing groups MetaSlices into multiple MetaInstances, in
which some function are shared among MetaSlices to improve
the system resource utilization.

Based on the above analyses, the MetaSlicing, on the
one hand, can help Metaverse providers to maximize their
resource utilization while minimizing the initialization time
and deployment cost for MetaSlices. On the other hand, it

5

t

MetaSlice
Analyzer

MetaSlice Requests

...

Tier-1

...

...

...

Multi-tier Resource Architecture

...

Shared
Functions

MetaInstance N

Dedicated
Functions

Tier-N

Tier-2

Shared
Functions

MetaInstance 1

Dedicated
Functions

MetaSlicing - Resource Allocation

Similarity
Report

1

2

3

Allocate

Update

Resource &

MetaInstance

Orchestrator

Metaverse Service Provider

Observation Buffer

Mini-batch

Loss
function

Learning
loop

Epsilon
greedy

Environment Action

Estimated

Q-values

Interaction loop

State

Update parameters

Update

iMRA-based RMO

t
...

...

...

...

Q-target

Q-network

DRL-based

Resrouce Allocation

Algorithm

Fig. 4: MetaSlicing framework.

also benefits Metaverse users by improving QoE, e.g., high
reliability and lower delay. To reach these goals, resource al-
location plays a key role. For example, allocating resources for
a MetaSlice sharing some functions with ongoing MetaSlices
can save more resources than others with fewer or no shared
functions. Therefore, in Section IV, we will introduce our
propose algorithm that can effectively address this problem.

IV. INTELLIGENT RESOURCE MANAGEMENT IN THE
METASLICING

Upon receiving a MetaSlice request, a MetaSlice Analyzer
will be used to determine similarities between the incoming
request and current MetaSlices running in the system, as
shown in Fig. 4. Then, this analysis will be used as one
of the key factors to assist the Resource and MetaInstance
Orchestrator (RMO) in deciding whether to allocate resources
for the request or not. If the requested MetaSlice is accepted,
it will be assigned to a MetaInstance with the highest simi-
larity. Then, resources are allocated to initiate the MetaSlice’s
dedicated functions, and the selected MetaInstance’s function
configuration record will be updated accordingly. If the ac-
cepted MetaSlice does not share any function with ongoing
MetaInstances, a new MetaInstance is created for this one.
When a MetaSlice departs, its occupied resources are released,
and the function configuration record of its MetaInstance
is updated accordingly. The following subsections discuss
the MetaSlice analysis procedure and our proposed Deep
Reinforcement Learning (DRL)-based resource allocation in
the MetaSlicing.

A. MetaSlice Analysis

This subsection presents our proposed MetaSlice analysis
that can determine the similarities between the requested
MetaSlice and ongoing MetaInstances. Note that the similarity
index is a key factor in the MetaSlicing. First, it is important

information for the system to decide whether a MetaSlice
should be allocated resources or not. Second, suppose that
a MetaSlice is accepted to be allocated resources. Its simi-
larity index guides the MetaSlicing to be assigned to a new
MetaInstance or an existing one.

To determine similarities among MetaSlices, we propose
using the configuration records obtained from the requested
MetaSlice and MetaInstance. The reason is that a config-
uration record consists of configurations for all functions
in a MetaSlice/MetaInstance. As such, we can determine a
similarity index between the requested MetaSlice and an on-
going MetaInstance by comparing their configuration records.
First, the similarity score for each function of the requested
MetaSlice is calculated. Suppose that a function configuration
can be represented by a binary vector so that we can leverage
existing methods, e.g., Cosine and Jaccard [10], to output the
similarity score of this function. Specifically, these methods
determine the similarity between two configuration vectors,
i.e., one from the requested MetaSlice and another from the
compared MetaInstance. Note that if a function is not required
by a MetaInstance/MetaSlice, the corresponding vector in the
configuration record is all zeros, and thus the similarity score
is zero for this function. Second, the similarity index of the
requested MetaSlice is defined as an average of the similarity
scores of its functions. In the next subsection, we will present
our proposed resource allocation approach based on DRL
that can leverage the information from MetaSlice analysis to
maximize the system performance.

B. iMRA: A Deep Reinforcement Learning-based Resource
Allocation Approach for Metaverse

As discussed in the previous sections, Metaverse application
may experience a large number of users to join simultaneously.
Moreover, users can come and leave at any time, leading
to the high uncertainty and dynamic of resource demands.
In addition, due to strict delay requirements of Metaverse
applications, real-time resource allocation is a critical issue
in Metaverse. Note that optimization theory-based methods
cannot address effectively these challenges due to dynamic and
unavailability of system parameters, e.g., users’ demands. To
that end, we propose to use the Semi-Markov Decision Process
(SMDP) framework to address the resource allocation problem
in Metaverse. Then, we develop a DRL-based algorithm that
can automatically learn an optimal policy to maximize the sys-
tem performance (e.g., services availability) and revenue for
the MSP without requiring complete environment information
in advance.

1) Real-time Resource Allocation: Our proposed SMDP
framework is especially effective to allocate resources in
Metaverse in a real-time manner due to the following reasons.
First, it allows the system to automatically make the best
action (e.g., whether to allocate resources or not) according
to real-time observations of demands and current available
resources [11]. In addition, unlike the conventional Markov
Decision Process that takes an action at each equal time
slot, SMDP takes action whenever an event occurs (e.g.,
resource demand arrival), making SMDP more suitable for

6

real-time tasks. In the SMDP, a state is the system observation
(e.g., available resources, resource demand, and the requested
MetaSlice’s similarity index) that gives information to the
RMO to make actions. After executing an action, the RMO
receives an immediate reward that indicates system perfor-
mance (e.g., service availability and revenue for the services
provider) according to the selected action. In the next section,
we will discuss our proposed resource allocation algorithm to
help the RMO automatically learn an optimal policy through
interactions with the environment.

2) iMRA: A Deep Reinforcement Learning-based Resource
Allocation Approach: In machine learning, DRL is a special
branch leveraging Deep Neural Networks (DNN) to address
consecutive decision-making problems under uncertainty and
dynamic environments, often formulated as an MDP. In DRL,
an agent often starts with an arbitrary policy (e.g., random
policy), i.e., a mapping from the state space to the action
space. Then, the agent gradually improves its policy based
on interactions with the surrounding environment (e.g., states,
actions, and immediate rewards). Eventually, it can learn an
optimal policy that can maximize a long-term average re-
ward function. This paper develops a DRL algorithm, namely
iMRA, adopting recent advances in DRL. First, the iMRA
adopts the history replay mechanism to break the correlation
between consecutive observation, thus stabilizing the training
process of DNN that is very sensitive to correlated data [12].
Second, the iMRA uses the dueling architecture [13], where
the state value and advantage functions are estimated sepa-
rately and simultaneously, making the learning process more
stable. Third, the iMRA employs two DNNs, i.e., Q-network
for estimating the value of performing an action and Q-target
for action selection as illustrated in Fig. 4. The Q-network
is updated at every time step, whereas the Q-target is only
updated by copying parameters from the Q-network at certain
time steps (e.g., 1000 time steps) to improve the stability of
the learning process [14].

3) Simulation Results: In this section, simulations are con-
ducted to evaluate the proposed solution, namely iMRA+MT.
The DNN’s hyper-parameters of iMRA are set similar to
those in [12], [13], e.g., the learning rate is 10−3. Note that
our proposed iMRA+MT has two main components, i.e., the
iMRA algorithm and MetaInstance. Therefore, we select three
baseline methods, i.e., (i) iMRA, (ii) Greedy policy [15]
that always allocates resources when the available resources
are sufficient for the request, and (iii) Greedy policy with
MetaInstance, namely Greedy+MT.

Here, we study the performance of our approach in various
scenarios, each with different system resources. In particular,
the total number of functions supported by the system is
increased from 10 to 55. As shown in Fig. 5(a), the average re-
wards of all methods increase as the system resources increase.
The reason is that a system with more resources can host
more MetaSlices simultaneously, leading to a greater average
reward. Fig. 5(a) also shows that the proposed iMRA+MT
always gets the highest average rewards, up to 1.8 times
compared to that of the Greedy+MT, the second-best approach.
Similarly, Fig. 5(b) demonstrates that iMRA+MT brings the
highest system availability, up to 1.47 times, compared to

10 15 20 25 30 35 40 45 50 55
Total Number of Resources

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ov

id
er

's
Lo

ng
-te

rm
 R

ev
en

ue

iMRA+MT
iMRA
Greedy+MT
Greedy

(a) Provider’s Long-term Revenue

10 15 20 25 30 35 40 45 50 55
Total Number of Resources

0.0

0.2

0.4

0.6

0.8

Se
rv

ice
 A

va
ila

bi
lit

y

iMRA+MT
iMRA
Greedy+MT
Greedy

(b) Service Availability

Fig. 5: Evaluation of the proposed MetaSlicing framework in
various schemes with different total system resources.

that of the second-best approach, i.e., Greedy+MT. Moreover,
it also clearly shows that the MetaInstance can increase the
average reward and service availability of both the iMRA
and Greedy by up to 2.68 and 4.6 times, respectively. Thus,
the above results clearly demonstrate the superiority of our
proposed MetaInstance and the iMRA algorithm. While the
MetaInstance exploits function similarities among MetaSlice
to increase resource usage, the iMRA helps the RMO to find an
optimal resource allocation policy without requiring complete
information about the environment in advance.

V. CONCLUSION

In this paper, we have proposed a novel resource man-
agement framework for Metaverse established on the multi-
tier resource allocation architecture. This framework is built
based on two innovative techniques, i.e., the MetaSlice de-
composition and MetaInstance, that not only provide a flexible
solution in Metaverse deployment but also improve resource
usage by exploiting the similarities among MetaSlices. To
deal with the high dynamic, real-time, and uncertainty of
resource demand, we have formulated the problem as an
SMDP and then developed the DRL algorithm to find the
optimal resource allocation policy without requiring complete
environment information in advance. The simulation results
then clearly show the outperformance (in terms of resource
allocation and revenue for the service provider) compared with
other baseline approaches.

7

REFERENCES

[1] N. Stephenson, Snow Crash. New York: Bantam Books, 1992.
[2] Y. Wang et al., “A survey on metaverse: Fundamentals, security, and

privacy,” IEEE Communications Surveys & Tutorials, Sep. 2022.
[3] “Metaverse: A guide to the next-gen internet,” https://www.credit-

suisse.com/media/assets/corporate/docs/about-us/media/media-
release/2022/03/metaverse-14032022.pdf, (accessed: June 01, 2022).

[4] “Epic games on AWS,” https://aws.amazon.com/solutions/case-studies/
innovators/epic-games/, (accessed: May 01, 2022).

[5] Y. Jiang et al., “Reliable distributed computing for metaverse: A
hierarchical game-theoretic approach,” IEEE Transactions on Vehicular
Technology, pp. 1–16, Sep. 2022.

[6] M. Xu et al., “Wireless edge-empowered metaverse: A learning-based
incentive mechanism for virtual reality,” in IEEE International Confer-
ence on Communications, 2022, pp. 5220–5225.

[7] W. C. Ng et al., “Unified resource allocation framework for the edge
intelligence-enabled metaverse,” in IEEE International Conference on
Communications, 2022, pp. 5214–5219.

[8] Y.-J. Liu, H. Du, D. Niyato, G. Feng, J. Kang, and Z. Xiong, “Slic-
ing4meta: An intelligent integration framework with multi-dimensional
network resources for metaverse-as-a-service in web 3.0,” arXiv preprint
arXiv:2208.06081, 2022.

[9] “Description of network slicing concept,” NGMN Al-
liance. Accessed: Apr. 24, 2022. [Online]. Avail-
able: https://www.ngmn.org/wp-content/uploads/Publications/2016/
161010 NGMN Network Slicing framework v1.0.8.pdf

[10] P. Jaccard, “The distribution of the flora in the alpine zone,” The New
Phytologist, vol. 11, no. 2, pp. 37–50, Feb. 1912.

[11] H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003.
[12] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.
[13] Z. Wang et al., “Dueling network architectures for deep reinforcement

learning,” in Proceedings of the 33rd International Conference on
Machine Learning, 2016, pp. 1995–2003.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016, pp. 2094–2100.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

Nam H. Chu is currently a Ph.D. student at the University of Technology
Sydney, Australia. His research interests include applying machine learning
and optimization methods for wireless communication networks.
Nguyen Quang Hieu is currently a Ph.D. student at the University of
Technology Sydney, Australia. His research interests include optimizing
wireless network performance with advanced machine learning and deep
(reinforcement) learning techniques.
Diep N. Nguyen is currently a faculty member with the Faculty of Engi-
neering and Information Technology, University of Technology Sydney. His
research interests include computer networking, wireless communications, and
machine learning application, with emphasis on systems’ performance and
security/privacy.
Dinh Thai Hoang is currently a faculty member at the School of Electrical
and Data Engineering, University of Technology Sydney, Australia. His
research interests include emerging topics in wireless communications and
networking such as machine learning, IoT, and 5G/6G networks.
Khoa T. Phan is currently a Senior Lecturer at the Department of Computer
Science and Information Technology, La Trobe University, Victoria, Australia.
His research interests are broadly design, control, optimization, and security
of next-generation communications networks.
Eryk Dutkiewicz is currently the Head of School of Electrical and Data
Engineering at the University of Technology Sydney, Australia. He also holds
a professorial appointment at Hokkaido University in Japan. His current
research interests cover 5G/6G and IoT networks.
Dusit Niyato is currently a professor in the School of Computer Science and
Engineering and, by courtesy, School of Physical and Mathematical Sciences,
at the Nanyang Technological University, Singapore. He is a Fellow of IEEE.
Tao Shu is currently an associate professor in the Department of Computer
Science and Software Engineering at Auburn University. Before joining
Auburn, he worked as an assistant professor in the Computer Science and
Engineering Department of Oakland University in Rochester, Michigan.

https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf
https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf
https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf
https://aws.amazon.com/solutions/case-studies/innovators/epic-games/
https://aws.amazon.com/solutions/case-studies/innovators/epic-games/
https://www.ngmn.org/wp-content/uploads/Publications/2016/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2016/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf

	2021 IEEE
	mts_mag-1.pdf
	Introduction
	Resource Management for Metaverse
	Dynamic Multi-tier Resource Management Framework for Metaverse
	The Multi-tier Resource Allocation Architecture for Metaverse Applications
	MetaSlicing Framework
	MetaSlice Decomposition
	MetaInstance

	Intelligent Resource Management in the MetaSlicing
	MetaSlice Analysis
	iMRA: A Deep Reinforcement Learning-based Resource Allocation Approach for Metaverse
	Real-time Resource Allocation
	iMRA: A Deep Reinforcement Learning-based Resource Allocation Approach
	Simulation Results

	Conclusion
	References
	Biographies
	Nam H. Chu
	Nguyen Quang Hieu
	Diep N. Nguyen
	Dinh Thai Hoang
	Khoa T. Phan
	Eryk Dutkiewicz
	Dusit Niyato
	Tao Shu

