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An advanced deep learning-based framework is presented in this study, utilizing sequential neural architecture
to enhance precision in short-term load forecasting of low-voltage distribution networks. A three-stage
paradigm for precise forecasting is presented, beginning with a generalizing data preprocessing approach,
followed by multivariate feature construction and selection, and finally model hyperparameter modification.
The proposed model employs feature engineering and clustering techniques, with the former being used to
process historical load data, electricity prices, and ecological variables (temperature, dew point, wind speed,
and humidity), and the latter, to extract highly correlated features as final inputs. The model’s robustness is
ensured by careful exploration and optimization of hyperparameters, and the model after post-optimization
achieves a notable Mean Absolute Percentage Error (MAPE) of 0.57%, 0.99%, and 1.2% for 5, 15, and 30 min
ahead forecasts, respectively. A detailed comparison with other deep learning algorithms reveals that the
suggested model consistently outperforms them in anticipating load demands at different time intervals. This
designed approach not only highlights the impact of the presented data-driven model but also conveys useful
ideas to strengthen energy management in distribution networks.

Introduction dependability. Therefore, U-STLF and STLF have garnered the attention

of a significant number of studies that are now being conducted in the

Accurate load forecasting benefits energy distributors and con-
sumers by facilitating grid-side energy management and effective elec-
trical network operation. There are several reasons why precise fore-
casting is necessary, for example efficient planning of power gener-
ation, managing energy, predicting prices, incorporating renewable
energy sources, and many more [1,2]. The process of load forecasting
can be broken down into three distinct categories, each of which has
a distinct time horizon: ultra-short-term load forecasting (U-STLF),
short-term load forecasting (STLF), and long-term load forecasting
(LTLF) [3]. STLF is concerned with predicting the demand for a
specific time frame, typically ranging from a few hours to several days.
On the other hand, U-STLF involves predicting power consumption
for a shorter time frame, usually ranging from a few minutes to
several hours. In contrast, long-term forecasting predicts electricity
demand spanning months to years. According to [4-7], U-STLF is
frequently utilized in demand response programs, STLF is employed
by utility businesses to ensure a steady and cost-effective supply of
electricity, and LTLF is extensively used in power system planning and
investment decisions. As renewable energy sources are deployed more
often, precise ultra-short-term and short-term demand forecasting is
becoming more and more important for maintaining grid stability and
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power industry.

To predict electricity demand, there are two main types of models:
single-unit models that only make predictions, and hybrid models
that combine an optimization unit with a dependable load forecasting
model. Single-unit models use time-series forecasting to anticipate
energy demand, but they typically underperform for nonlinear load
patterns [8]. However, hybrid models enhance accuracy through fea-
ture engineering and optimization procedures, offering a complexity-
precision trade-off for authorities to choose from. In the beginning,
load forecasting relied on statistical methods, which were considerably
upgraded by computer technology. This led to the development of
models and algorithms such as ARIMA (AutoRegressive Integrated Mov-
ing Average), SARIMA (Seasonal ARIMA), ES (Exponential Smoothing),
MLR (Multiple Linear Regression), SMA (Simple Moving Average),
and WMA (Weighted Moving Average). These strategies improved the
comprehension of the seasonal and temporal fluctuations in electricity
demand by utilizing computing power. In [9], ARIMA and SARIMA
frameworks are proposed for Israel’s energy demands, with the optimal
model possessing a MAPE exceeding 10%. Another study in Ref. [10]
used three models to predict the load in South Korea and found that the
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best MAPEs were between 2.35% and 6.39%. [11] highlights SARIMA’s
seasonal trend capture, while Ref. [12] discusses statistical approaches
in load forecasting and their widespread application.

Machine Learning (ML) and Artificial Intelligence (AI)-based al-
gorithms have played a significant roles in improving the accuracy
of forecasting. New data-driven techniques are gaining popularity in
academia for their ability to predict variable load patterns using self-
training capabilities on available data, especially for seasonal or recur-
ring energy usage patterns [13]. Some popular ML methods used for
load forecasting are Random Forest (RF), Support Vector Regression
(SVR), Reinforcement Learning, Extreme Gradient Boost (XGBoost),
Gated Recurrent Unit (GRU), and others. An optimized model with a
MAPE range from 1%-3% was obtained by using SVR for short-term en-
ergy consumption forecasting in Ref. [14-17]. According to [18], SVR
is a good method for estimating load due to its resistance to outliers,
quick decision model updates, and ease of generalization. Recently,
Artificial Neural Network (ANN) techniques have been successful in
predicting various loads, such as air compressor load [19], distribution
substation load [20], university campus load [21], residential unit
load [22], and others [23,24]. Although models for single-stage load
forecasting are very accurate, hybrid models that combine optimization
and feature engineering with forecasting provide increased robustness
and dependability when dealing with unpredictable input data.

As mentioned earlier, a hybrid model with single-stage models, fea-
ture engineering, and optimization, ensures data relevance and optimal
load prediction model’s hyperparameter values. For example, Ref. [25-
27] employed ML-based models and hyperparameter optimization to
accurately predict load demand. The authors in [25] utilized Sparrow
Search, [26] utilized Particle Swarm Optimisation (PSO), and [27]
utilized the Firefly Optimization (FFO) Algorithm to fine-tune the
hyperparameters of the SVM model to improve the accuracy of load
forecasting. These optimizations improved accuracy but increased com-
putational burden. Some researchers also used different special ML
algorithms for forecasting the aggregated/grid load [28,29] or resi-
dential load [30]. Article [28] describes an approach using Modified
Mutual Information (MMI) for data preparation and feature selection.
After feature extraction and noise reduction, the Factored Conditional
Restricted Boltzmann Machine (FCRBM) captures complicated non-
linear correlations in load data for accurate load forecasts. At last, the
Genetic Wind Driven Optimisation (GWDO) method optimizes model
parameters for maximum performance. Projected outcomes show good
performance, but framework complexity and absence of training and
testing time information are major limitations. According to [29], the
Wavelet Transform (WT) was utilized to consider time-series load data
and apply Extreme Machine Learning (EML) for load estimation. After
combining the series mathematically, the authors achieved an accurate
model with a MAPE of 0.6%. The article compares different Neural
Network (NN) models but does not show how to formulate the best
model.

In [31], a hybrid model was utilized that includes Variational
Mode Decomposition (VMD) and NN to predict load and prices in
an isolated microgrid. VMD collects Intrinsic Mode Functions (IMFs)
to reflect load characteristics in the load forecasting model, and the
Gravitational Search Algorithm (GSA) optimizes model parameters to
improve prediction accuracy. However, the weather and calendar data
were not taken into account. Similar techniques were used in Ref. [32,
33], where real-time load data, temperature, and day-type information
were combined with VMD for feature extraction. In [32], the hybrid
model combines concurrent LSTM models with a Bayesian Optimiza-
tion Algorithm (BOA) for model optimization. Several load forecasting
algorithms, including CNN-LSTM [34,35], DRNN-LSTM [36], CNN-
LSTM-BILSTM [37], etc., are designed based on hybrid deep learn-
ing algorithms, with every part serving a distinct purpose in making
predictions. For example, the authors of Ref. [34] used LSTM to pre-
dict future load demand after extracting the load pattern using CNN.
Additionally, the researchers utilized NN algorithms including ANN
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[38], DNN [39], ENN [40], WNN [38], etc. to monitor the trend
of load consumption because NN is capable of remembering previ-
ous patterns like the human brain. To improve the accuracy of their
forecasts, they implemented various clustering techniques [35,38,41].
Although the output of these hybrid models is sometimes superior,
they can suffer from overfitting when fed new data. Different strategies
are applied to mitigate common problems related to deep learning
modes such as limited data availability in the literature. The authors
in Ref. [42] addressed the issue of limited data in Greece’s National
Natural Gas Transmission System by providing a new correlation co-
efficient technique to reduce pseudo-correlation hazards and improve
forecasting precision. Ref. [43] concentrated on transfer learning in
energy systems, employing a hybrid method for selecting the transfer
domain. The proposed WM algorithm combined Wasserstein distance
and maximal information coefficient to create the WM-DSSFA-LSTM-
TL model, which mitigated negative transfers and improved predictive
performance in limited data/resource problems. Table 1 lists contem-
porary load forecasting approaches employing machine learning and
deep learning hybrid models with notable contributions and research
gaps/disadvantages.

The selection of input factors influences ML and DL models’ capacity
to discover patterns and generate correct predictions. The literature
demonstrates that there is a lack of understanding and require fur-
ther analysis in simultaneously addressing elements such as pricing,
weather, and calendar impacts in load forecasting, even though these
factors have a major impact on power consumption. Furthermore, as
Refs. [44-46] explain, hyperparameter selection is crucial and demands
careful testing for particular scenarios. The framework and input vari-
ables for some load forecasting models are listed in Table Al (See
Appendix A).

The objective of this study is to build a practical and complete
power consumption model that can effectively handle the complicated
nature of load forecasting. In order to be feasible, the proposed load
prediction system uses real-time price data and meteorological data.
Correlation analysis is used to identify highly correlated inputs, which
reduces the overall training time. The study also uses optimizer tools
and expert-driven analysis to make the model more efficient. The
following is a summary of the research contribution:

Estimate electricity demand using a realistic model that accounts
for all relevant factors.

Execute correlation analysis to select highly associated inputs to
reduce training time and complexity.

Consolidate optimizer tools with expert-driven exploration to
augment the efficiency of the model.

Test the model with real-time load data for short-term predicting
accuracy.

The subsequent sections provide an in-depth analysis of the model’s
description and methodology, after which the results and analysis
are thoroughly examined. The concluding discussion with possible
applications is included in the final section of the paper.

Methodology & model description

This section systematically presents a hybrid Sequential Data-Driven
Model (SDDM) for forecasting 5, 15, and 30-minute-ahead load de-
mand. The model, shown in Fig. 1, combines advanced deep learning
and clustering-based methods for more accurate load prediction. The
procedure is broken down into four independent phases which are
interconnected. These phases are as follows: (i) Data collection and
aggregation; (ii) Data processing and analysis; (iii) Model develop-
ment and optimization; and (iv) Performance evaluation. Each of these
phases is discussed in the following sections.
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Table 1
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Recent excellent load forecasting models including achievements and research gaps.

Ref. Model name Opt. method Repository Key contributions/Achievements Research gap
[28] FCRBM GWDO USA power grid + Modified feature selection + Hybrid model and optimization
technique is used. technique reduce model
» Hybrid optimization method helps realization.
fast convergence. + Large execution time due to
+ Outperforms other deep learning complex model.
models.
[29] EML Not ISO New + Alleviate the overtraining and + Ensemble approach uses 24
mentioned England uncertainty problems parameters after WT, increasing
+ Adaptability to seasonal variations model complexity.
« Large execution time due to
complex model.
[31] ANN GSA PMJ & » Good accuracy. » Rules for feature selection are
Favignana Island » Generate one IMF from the unclear.
preceding 200-hour data point. « Electrical price is not considered
here.
[32] VMD-LSTM BOA Hubei Province, + Nonlinear mapping is used for Instead of one model for all seasons,
China feature selection. consider multiple.
» Adaptability to seasonal variations
[35] CNN-LSTM Not Australian 69 + Cluster the households based on Hyperparameter optimization
mentioned Household data energy consumption. information is absent.
of SGSC project + Detailed case studies for different
scenarios.
[37] CNN-LSTM- Not A park in North + CNN and attention block extract * The model is highly complicated.
BiLSTM mentioned China relevant data features. + Runtime is lengthy.

Data collection and aggregation

One of the most important tasks that must be completed during
the first phase is the collection of a wide range of input data from
several different databases. These databases each present themselves in
a different format, such as CSV, Excel, or JSON. In this study, historical
load data, calendar data, weather station data, and central electricity
market operator price data are combined into an Initial data cloud.
To ensure consistency, data from diverse sources in different forms is
translated into CSV format and aggregated by date, time, and other
parameters.

Data processing and analysis

After the data has been acquired, it is subjected to a series of care-
ful processes, including cleaning, normalization, and transformation.
Eq. (1) provides the mathematical expression for the Z-score approach,
which is used to detect and correct anomalies. This method marks data
points as outliers if their standard deviation from the mean is more than
3 standard deviations. One of the biggest challenges after identifying
outliers is handling missing values and NaNs (Not a Number) entries.
Eq. (2) enables linear interpolation to estimate missing values (Xpigging)
within a range (x, and x,) based on a target value. To ensure data
continuity and completeness, Eq. (3) suggests filling NaNs (x,(NaN))
by calculating their average from the preceding n — 1 data points.

7 = X-n
c
Outliers = {x | | Z(x)| > 3} D)
Xy — X
Xmissing = Xa T H X (target — a) 2
x,(NaN) = avg(X,_1,X,_0> Xy_3» -+ s Xp_10) 3

Selecting the most significant variables for predictive analysis is es-
sential to building efficient ML models. When evaluating the linear

relationship between two variables, Pearson’s Correlation Coefficient
(PCC) equation is shown in Eq. (4).

X:iixiandf’ziz’,:)’i

DA ¢ A
VEi X = XS, 0 - ¥R

This methodology employed clustering techniques on the preprocessed
dataset after reducing its dimensionality using PCC. This approach
established a more straightforward foundation for subsequent cluster-
ing by emphasizing the diversity in the dataset and identifying strong
groups. This step improved the clustering algorithms’ efficiency and
effectiveness by allowing them to identify distinct groups with higher
accuracy in a reduced-dimensional space, where the most informative
data was now more visible and less affected by noise. The algorithm
that is utilized for the clustering is presented in the following manner:

4

Fxy =

Model development and optimization

Model description and hyperparameter optimization describe how
to utilize the dataset after clustering, which is divided into train-
ing, validation, and testing parts. This divide is critical for measur-
ing Sequential Data-Driven Model (SDDM) robustness and generality.
Through the integration of several single Data-Driven Units (DDUs) in
a cascade arrangement, the proposed SDDM offers a unique approach
to predicting future demand. Each DDU in this framework processes
sequential data independently, and the outputs are used as inputs by
the following layer, resulting in a tiered and interconnected structure.
The complete SDDM can be represented by an array of n-numbered
DDUs:

SpDM = [DDUY, DDU®, DDU® ..., DDU™] (5)

where n is the number of layers and the schematic diagram of DDU
is depicted in Fig. 2. Appendix B contains a comprehensive explana-
tion of the DDU’s operational principle as well as its corresponding
mathematical equations.
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Fig. 1. Methodological framework for accurate load prediction by using the proposed SDDM.

Next Layer Recurrent Layer

Hases] [lowee] iy

output gate <« ®

i

ht-1

@ input gate e

@ Multiplication
e Branching point

block input
~
A

~——— Connection with time lag
h : hidden vector

! ) x : Input vector
HO‘EOT ‘L N.;.T b : bias

Fig. 2. Schematic diagram of single unit DDU of the proposed SDDM.
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Algorithm 1 Machine learning-based clustering algorithm.

1: function CLUSTER(D, K, num_iterations)
2: Select K unique data points randomly from D as the initial
centroids ¢, ¢y, ..., cg

3: Initialize cluster assignments a(i) for each data point x; in D
4 for i < 1 to num_iterations do

5: // Assignment step

6: for each point x; in D do

7 a(i) < arg min;||x; — cj||2

8 end for

9: // Update step
10: for each cluster j =1 to K do
11: ¢; < mean({x; | a(i) = j})
12: end for
13: // Check for convergence
14: if centroids ¢; have not changed significantly then
15: break
16: end if
17: end for
18: return clusters and centroids

19: end function

Optimizer for DDU

Adaptive Moment Estimation was chosen as the best algorithm
for the DDU because it updates parameters quickly during training.
Algorithm 2 provides an in-depth breakdown of the precise sequential
process used by the optimizer to optimize the proposed DDU. Complete
mathematical formulae for the optimizer are contained in Appendix C.

Algorithm 2 Steps of the Optimizer designed for SDDM.

1: function Optivizer1(0, @, B}, §,, €, num_iterations)

2 my < 0 > Initialize biased first moment estimate
3 vy <0 > Initialize biased second moment estimate
4: t<0 > Initialize time step
5: for i < 1 to num_iterations do
6: te—t+1
7: mg < By-m_y+ 1= p)-VJIE)
8: o < By vy + (1= ) - (VI ()
9: iy < %
10: b, « 13_};
11: 0 <6, —a- ’f”
\/v>,+e
12: end for
13: return g,

14: end function

Model hyperparameter optimization

To get the optimum model for forecasting future load demand,
the hyperparameters of the proposed data-driven model are tuned
during the training phase using the approach outlined in Algorithm 3.
This method was specifically developed to systematically explore and
modify hyperparameters using random search techniques, offering an
effective strategy for exploring the hyperparameter space and enhanc-
ing the model’s performance. Algorithm 3 details the optimizer’s op-
erations, highlighting the model’s performance improvement through
hyperparameter optimization.

Performance evaluation

The performance of the proposed model is assessed using several
performance metrics, such as Mean Absolute Error (MAE), Mean Abso-
lute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and
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R-squared (R?) score. The mathematical expression of the performance
indicators are given below:

n
MAE:%ZM_M
i=1

n A
MAPE = 1 Z|u' % 100
=T

n
1 N
RMSE = 4| ~ 3 (; = )
i=1
R2 —1- Z:;l(yl _}’}‘_)2
Z;q:l(yi _)_7)2

The MAE calculates the average absolute difference between the pre-
dicted and actual values. MAPE is a relative error measurement that
calculates the average percentage difference between estimated and
actual values. The square root of the average of squared discrepancies
between the expected and actual values is represented by RMSE. The
R? value calculates the percentage of the dependent variable’s variation
that the independent variables can account for. The R? value represents
the goodness-of-fit of the model and ranges from 0 to 1, with a number
closer to 1 reflecting a better fit.

Algorithm 3 Hyperparameter optimization of intelligent forecasting
model.

1: function HyperOpr(hyperparameter_search_space, num_trials)

2 tuner <« RandomSearchTuner(hyperparameter_search_space)

3 tuner.search(num_trials)

4 best_configuration « tuner.get_best_hyperparameters()

5: return best_configuration
6
7
8

: end function
: function RanpomSEArRcHTUNER(Search_space)
tuner <« RandomSearch(model_builder, objective = val_loss) >
Minimizing validation loss

9: tuner.search(search_space, epochs =
num_epochs, validation_data = val_data)
10: return tuner

11: end function
12: function RanpomSeArcH(search_space, num_iterations)

13: best_configuration < None

14: best_metric « +oo

15: for i « 1 to num_iterations do

16: current_configuration < sample_uniformly(search_space)

17: current_metric « evaluate_performance
(current_configuration)

18: if current_metric < best_metric then

19: best_configuration « current_configuration

20: best_metric < current_metric

21: end if

22: end for

23: return best_configuration

24: end function

25: function sampLeE_uniForMLY(Search_space)

26: return randomly_sample_from(search_space)
27: end function

28: function EVALUATE_PERFORMANCE(configuration)
29: return model_performance(configuration)
30: end function

Result and discussion
Data collection
The electricity load demand and pricing statistics were acquired

from the Australian Energy Market Operator (AEMO), with a specific
focus on the New South Wales (NSW) region in Australia. The dataset
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includes data from September 1, 2022, to February 28, 2023, showing
different load trends and market changes. Meteorological data from the
Australian Bureau of Meteorology (BoM) for the same period was also
used. After gathering all data from the listed sources, they are processed
using the approach outlined in Section “Data processing and analysis”.
This included temperature, humidity, wind speed, and other factors
that affect power consumption. The load forecasting model was made
with Python and Keras and TensorFlow as backend tools. TensorFlow
is a well-known deep learning library, and Keras is a high-level neural
network API that sped up the model-building process.

Input features selections

Following the data preparation, the subsequent task is to identify
the features that exhibit a strong connection with output among a vari-
ety of choices to put in the SDDM. The input attributes are considered
to be closely correlated with the demand, which is the target variable.
Figure Al displays the correlation coefficient between the target and
input variables. The input (x,) and output matrix of the proposed load
forecasting model are shown below where, D= demand, M= minute,
W= no of week in the month, WE= weekday (0) or weekend (1),
MY = month of the year, DM= day of the month, C= cluster, and P=
electricity price.

Dy=oy M=oy Wi=0) WE(=0) MYz DMy Cy=0) F=0)
=|Pa=ny Mu=ty Wi=ty WE4y MYyoyy DMeyy Coziy Pumy

D(t:n) M(t:n) I/V(r:n) WE(t:n) MY(t:n) DM(t:n) C(t:n) P(,:n)
Output, y,,; = SDDM(x,)

The recommended load forecasting model employs a cascade connec-
tion of n number of DDUs, and the same dataset is used for three
separate case studies (5 min, 15 min, and 30 min ahead of time).
In each case study, several hyperparameters varied to see how they
affected the model’s performance and pick the best sets from the
alternatives. The following Table A2 presents the ranges for each of the
following hyperparameters in all case studies: the number of DDUs, the
number of neurons in each layer, the learning rate, the dropout rate,
the batch size, the number of epochs, and the activation function.

Case study 1

This part extensively analyzes the model’s performance and mod-
ifies each hyperparameter independently for 5 min ahead of demand
forecasting which is represented in Figure A2. The optimizer first deter-
mines the initial model parameters, and in the subsequent discussion,
the final model parameters are provided using a heuristic method.

(a) Number of neurons per layer selection: The performance of the
proposed model with two hidden layers for determining the number of
neurons per layer is illustrated in Figure A2a. The model was trained
with a learning rate of 0.001, a batch size of 32, 75 epochs, no dropout,
and a range of 64 to 192 neurons, increasing by 32 at a time. As
illustrated in Figure A2a, the outcomes indicate that the performance
metrics for each case are very similar but the performance is optimal
with 128 neurons. Increased neuron numbers can help the model
capture complicated connections and improve prediction, but they also
increase overfitting risk. Thus, the proposed framework recommends
128 neurons per layer.

(b) Learning rate selection: Figure A2b indicates the impact of differ-
ent learning rates on the performance of the proposed model. According
to the graph, the learning rate of 0.001 resulted in the most accurate
and reliable predictions. The same results were seen at a higher learning
rate of 0.0012, however a higher learning rate speeds convergence but
increases overfitting. Thus, the optimal learning rate is 0.001.

(c) Dropout rate selection: During training, the dropout rate randomly
sets a percentage of neurons to zero to increase unpredictability and
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model robustness. However high dropout rates may hinder the model’s
learning and cause underfitting. Figure A2c shows that a dropout rate of
zero results in the lowest prediction error, making it the optimal value.

(d) Batch size selection: The number of samples processed in each
training cycle is determined by the batch size. Larger batch sizes can
estimate gradients more accurately but require more memory, while
smaller batch sizes may reduce convergence time. According to this
analysis, a batch number up to 32 had lower MAE, MAPE, and RMSE
values and higher R? scores (Figure A2d), but after that, accuracy
started to go down so 32 is the best batch size for this model.

(e) Number of epochs selection The number of epochs determines
how many times the model iterates over the training dataset. Although
adding more epochs can help the model learn better, it should be done
carefully to avoid overfitting. As depicted in Figure A2e, performance
metrics exhibit an upward trend for a period of 75 epochs, after which
they begin to decrease. So, it turns out that 75 epochs is the best
number to use to train the model.

Based on the discussion above, the final value of hyperparameters
for the proposed model is provided in Table A3 along with the value
of performance metrics. The output of the proposed SDDM model for
forecasting load demand is shown in Fig. 3 (only two weekdays and two
weekends are provided for clarity). In the diagram, solid lines reflect
load demand and dotted lines represent model output. The model is
highly accurate and outperforms models discussed in literature review.

Case study 2

The model hyperparameters will now be separately optimized and
displayed with the performance metrics for the 15-minute ahead load
forecasting model. The optimal model hyperparameters and perfor-
mance will be tabulated in the following discussion.

(a) Number of neurons per layer selection: Figures A3a and A3b
illustrate the impact of varying the number of neurons on the proposed
model utilizing the following parameters: a learning rate of 0.0008,
a dropout rate of 0.2, a batch size of 24, and 100 epochs. The first
diagram illustrates that the optimal number of neurons per hidden layer
to attain the lowest MAPE, RMSE, and MAE values of 0.99%, 106 MW,
and 77 MW, respectively, is 128. After changing the number of neurons
in one layer while keeping the same number in the other, the prediction
model will perform best with 128 neurons per layer, as seen in Figure
A3b.

(b) Learning rate and dropout rate selection: The suggested model’s
performance metrics are shown in Figure A3c and A3d, respectively,
for varied learning rates and dropout rates. The findings show that
raising the learning rate enhances performance up to a point of 0.0008,
beyond which additional increases cause performance to deteriorate.
Similar to this, performance metrics increase with dropout rates up
to 0.3 before they begin to decline. The dropout rate of 0.3, which
provides equivalent outcomes to a dropout rate of 0.2 but with shorter
training time, is selected as the best alternative after taking into account
the trade-off between performance and training time.

(c) Batch size and number of epochs selection: Figure A3e and A3f
illustrate the findings from the investigation regarding the most effec-
tive batch size and number of epochs for the forecasting model. The
results demonstrate that the performance indicators are optimum when
the batch size is 24, which is considered to be the ideal batch size
for the model. As the total number of epochs increases, performance
metrics improve and reach their pinnacle at 100 epochs. After this, the
values of RMSE, MAE, and R? mostly remain constant, while the MAPE
score somewhat rises, making 100 epochs the best option for demand
forecasting that is 15 min in advance.

Table A4 shows the final selected hyperparameter values that have
been thoroughly investigated and optimized to maximize the forecast-
ing model’s performance. Fig. 4 compares projected and actual load
demand to demonstrate the effectiveness of the optimized model. The
graph illustrates the precision of the model in forecasting load demands
by employing the chosen hyperparameters.
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Fig. 3. Actual and five minutes ahead predicted load demand from the proposed U-STLF model.
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Fig. 4. Actual and predicted load demand from the proposed 15-minutes ahead STLF model.

Case study 3

In this section, the model performance for 30-minute forecasting
will be investigated by separately adjusting the hyperparameters, and
the optimized values will be tabulated.

(a) Number of neurons per layer selection: The number of neurons in
the hidden layers was systematically increased from 64 to 192 with
a step size of 32, and Figure A4a depicts the performance metrics
over the range of 96 to 160 neurons to provide a clear overview of
the findings. Up to 128 neurons, performance metrics are seen to be
steadily improving, but after that point, they began to drop, and that
is why it is taken as optimum. Individual analyses of the neurons in
each layer (Figure A4b) also consistently confirmed these findings,
emphasizing the idea that 128 neurons produce the best results.

(b) Learning rate and dropout rate selection: During the parameter
tuning procedure, the learning rate is consistently altered between
0.0006, 0.0008, and 0.001, while the dropout rate is examined at values

of 0.1, 0.2, and 0.3. The numerical values of the performance metrics
are shown in Figures A4c and A4d which reveal that the learning
rate and dropout rate’s ideal values are found to be 0.0008 and 0.2,
respectively.

(c) Batch size and number of epochs selection: Figures A4e and A4f
illustrate the performance metrics that were collected through testing
and analysis to choose the best hyperparameters for our model. Various
batch sizes, including 40, 48, 56, and 64, as well as different numbers of
epochs ranging from 50 to 150 with intervals of 25 epochs, were exten-
sively studied. Based on the results, it was found that batch sizes of 56
and 100 epochs produced the best outcomes, outperforming all other
hyperparameter combinations in terms of overall model performance.

The final hyperparameter values, which have been carefully exam-
ined and optimized to maximize the forecasting model’s effectiveness,
are shown in Table A5. Fig. 5 compares projected and real load de-
mand to demonstrate the optimized model’s effectiveness with the
hyperparameters indicated in the table.
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Fig. 5. Actual and predicted load demand from the proposed 30-minutes ahead STLF model.

Table 2

Performance Metrics Comparison of Different Models.
Model MAPE [%] RMSE [MW] R? score MAE [MW]
Vanilla LSTM 0.88 87.32 0.88 68.69
Bi-LSTM 2.49 218.07 0.96 183.64
CNN 4.28 410.44 0.87 343.73
CNN-LSTM 1.51 153.66 0.98 118.75
SDDM 0.57 56.44 0.998 43.89

Case study 4

This case study compares the accuracy of five-minute forecasts
using a variety of machine learning models, including CNN, BiLSTM,
CNN-LSTM, vanilla LSTM, and the proposed SDDM. This comparison
is shown visually in Fig. 6, which makes it clear that the suggested
model makes better predictions than other methods. The performance
of the conventional LSTM, which is renowned for its ability to cap-
ture long-term dependencies, is comparatively inferior to that of the
suggested model. However, it outperforms all other models except the
proposed one. The CNN model, which is widely used to identify spatial
patterns, performs the worst since the demand data is highly irregular
and nonlinear, and it does not achieve the same level of accuracy as
other benchmark methods. The Bi-LSTM model, which incorporates
bidirectional information flow, also falls short of the suggested model in
terms of accuracy. Finally, the CNN-LSTM model, which combines CNN
and LSTM attributes, can accurately forecast future load but falls short
of the SDDM. The comparative models’ performance indicators are
shown in Table 2 to validate these results. According to these metrics,
the suggested model does better than the others in every aspect.

Apart from comparing the performance of forecasting five minutes
ahead, the model performance is also thoroughly examined for slightly
longer time horizons—specifically, fifteen and thirty minutes ahead.
This comprehensive evaluation is carried out using the aforementioned
deep learning models, and the results are shown in Figure A5 and
Figure A6, respectively. Both figures indicate that the proposed SDDM’s
predicted outcomes are far better than the state-of-the-art models. The
result again points out that the proposed model is better at capturing
and predicting complex data patterns, proving its superiority as a
forecasting tool.

Conclusion

In this paper a deep learning-based intelligent model is developed
that provides an effective way to forecast load by using real-time
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Fig. 6. Comparison of predicted demand by different machine learning models with
the proposed one.

demand, pricing, weather, and calendar data as inputs. Multiple case
studies at different time frames (5 min, 15 min, and 30 min) show that
it consistently performs better than other popular deep learning-based
models. The model offers the lowest errors with a greater temporal res-
olution, such as five-minute intervals, as it is capable of discerning more
intricate patterns within the data. The optimizer tool thoroughly inves-
tigates the model’s hyperparameters and validates them again to ensure
its reliability. Its integration can help in a variety of ways, including
the integration of Distributed Energy Resources (DER) and enhanced
Energy Management Systems (EMS) to minimize Photovoltaic (PV)
curtailment. The model can also aid in the detection of peak demand
periods and make load balancing easier which can promote effective
resource scheduling and grid management. Additionally, its use may
make it easier to estimate future prices in dynamic tariff power system
networks, facilitating efficient energy use and invoicing.
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