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A B S T R A C T

The distributed nature of Federated Learning (FL) introduces security vulnerabilities and issues related to
the heterogeneous distribution of data. Traditional FL aggregation algorithms often mitigate security risks
by excluding outliers, which compromises the diversity of shared information. In this paper, we introduce a
novel filtering-and-voting framework that adeptly navigates the challenges posed by non-iid training data and
malicious attacks on FL. The proposed framework integrates a filtering layer for defensive measures against the
intrusion of malicious models and a voting layer to harness valuable contributions from diverse participants.
Moreover, by employing Deep Reinforcement Learning (DRL) for dynamic aggregation weight adjustment,
we ensure the optimized aggregation of participant data, enhancing the diversity of information used for
aggregation and improving the performance of the global model. Experimental results demonstrate that the
proposed framework presents superior accuracy over traditional and contemporary FL aggregation methods as
diverse models are utilized. It also shows robust resistance against malicious poisoning attacks.
1. Introduction

Federated Learning (FL) [1] has garnered substantial attention as
a potent solution for data protection and storage issues [2,3] that
eliminates the need to share raw data and facilitates the global model
to evolve by aggregating contributions from diverse participants. How-
ever, the distributed training model employed in FL raises concerns
regarding security challenges [4] because of its vulnerabilities to poten-
tial attacks such as data poisoning and backdoor attacks. To mitigate
security concerns, FL aggregation algorithms, such as Krum [5], me-
dian [6], and trimmed mean [6], implement Byzantine Fault Tolerance
(BFT) [7] by selectively aggregating shared models. While effective in
defending against attacks, these methods often discard unique and valu-
able data from diverse participants. This reduction in the diversity of
aggregated information constrains the potential of the global model to
fully leverage rich, varied datasets and adversely affects the robustness
and generalization ability of the global model [8].

In real-world applications, the diversity of participant data, often
non-independent identical (non-iid) distribution, sparse, and imbal-
anced [9,10], presents additional challenges in FL as the omission
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of models trained on distinctive datasets notably hampers the per-
formance of the global model [11]. For instance, in tasks like fault
diagnosis [12], the scarcity of fault data results in the issue of frag-
mented data islands, making the effective use of these rare datasets
crucial for enhancing the generalization ability and accuracy of FL
models. Thus, the inclusion of diverse data is beneficial and essential
in FL secure aggregation to develop a robust and well-performed global
model, which is overlooked in current research.

Moreover, the rare and valuable information inherent in small
sample sizes may be diluted during the aggregation [13], making it
challenging for the global model to learn their unique knowledge. Fixed
aggregation weights based on the size of training datasets such as
FedAvg [14] fail to meet the needs of non-iid scenarios. Consequently,
the dynamic adjustment of aggregation weights becomes critical as it
directly influences the utilization rate of diverse information, determin-
ing how effectively the FL system can incorporate and benefit from
these distinct data contributions.

This paper is dedicated to enabling secure and diverse aggregation
in an FL environment with malicious participants and non-iid training
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data. Our work introduces a novel filtering and voting framework to
refine the model evaluation in the aggregation process of FL. This
framework effectively rejects malicious models while leveraging col-
lective agreement to preserve the richness and variety of knowledge
learned by the global model. A filtering layer is designed as a first line
of defense, screening out potentially malicious or outlier contributions
based on discrepancies in model behavior. A voting layer, operating in-
dependently and asynchronously from the filtering layer, is introduced
to further assess the pre-screened models with a democratic voting
process. The voting mechanism not only augments the resilience of
the framework against malicious attacks such as data poisoning and
backdoor attacks but also preserves valuable data contributions from
diverse participants, especially from those with unique training data.
Moreover, by integrating Deep Reinforcement Learning (DRL) [15], we
dynamically adjust aggregation weights to prioritize the impact of mod-
els containing rare and valuable information on the global model and to
coordinate the asynchronous outcomes of the proposed two layers. The
DRL-based aggregation weight selection further enhances the diversity
adaptability, and learning efficiency of the model aggregation.

The key contributions of our work are listed as follows.

(1) We propose a novel filtering-and-voting framework for secure and
optimized performance in FL, consisting of a filtering layer based
on model distance computation and a voting layer designed to
assess models excluded by the filtering layer. The filtering layer
defends against malicious attacks on model parameters and data
poisoning, while the voting layer retains the contributions of
honest participants with unique data to the global model.

(2) We evaluate the proposed framework analytically and provide a
convergence bound to substantiate that the asynchronous setup
between the filtering and voting layers does not compromise the
convergence of the FL global model.

(3) We design a DRL-based dynamic aggregation weight selection for
the optimized combination of outcomes from the voting and filter-
ing layers. It effectively prioritizes learning special and important
knowledge from participants with unique data and improves the
generalization capabilities of the global model.

Experiments demonstrate that with MNIST dataset, the proposed
framework can improve accuracy by 7.98% and 6.96%, compared
to FedAvg [14] and multi-Krum [5], respectively; and improve accu-
racy by 6.78% compared to the state-of-the-art FL secure aggregation
method like FLAME [16]. Moreover, under the label-flipping poison-
ing attacks [17], our framework can provide 100% resistance against
malicious attacks and aggregate the valuable models provided by the
participants with unique data with over 90% probability.

The rest of this paper is organized as follows. In Section 2, back-
ground and related works are reviewed. The proposed filtering-and-
voting aggregation FL framework is presented in Section 3 with a
mathematical analysis of the convergence. In Section 4, we discuss the
DRL-based model for dynamically selecting aggregation weights. The
practical feasibility of the proposed framework is evaluated through
experimental in Section 5, followed by conclusions in Section 6.

2. Related work

FL is expanding into diverse real-world applications, intensifying
the challenges associated with non-iid training data. Research indicates
that global data imbalances in FL result in significant reductions in
model accuracy [18]. In response, researchers are turning their atten-
tion to the sparse but crucial data resources present in imbalanced
training data in FL.

To address the deterioration in accuracy caused by non-iid training
data in FL, Astraea [18] was developed as a solution by incorporating
mediators into the training process to achieve global data re-balancing.
However, the integration of mediators within Astraea imposed a re-

quirement on FL participants to disclose details about the distribution
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of their localized training data, potentially giving rise to newfound
privacy apprehensions. In contrast, the research presented in [19] en-
deavored to determine the existence of data imbalance in FL through a
monitoring mechanism, thereby avoiding the need for direct sharing of
information regarding local data distributions. Within each iteration of
FL, a monitor deduced the influence of individual classes on the global
model and introduced a novel loss function, Ratio Loss, as a means to
mitigate the challenges posed by both local and global data imbalances.
The BalanceFL framework [20] divided the issues posed by imbalanced
data into two discernible facets: local and global. To address the global
issue of missing classes, it harnessed the mechanism of knowledge
inheritance, while to tackle the local inter-class imbalance problem, it
employed balanced sampling techniques. Through collaborative efforts
from both parties, it demonstrated superior performance compared to
prevailing FL models. These approaches paid attention to addressing
the challenges associated with non-iid training data in FL, yet they did
not account for the selection of participants or the adjustment of their
corresponding aggregation weights.

To enhance the diversity of knowledge learned by the global model
in non-iid training scenarios, further consideration has been given
to the participant selection and the aggregation weight modification.
Wang et al. [21] incorporated RL to analyze the training data distribu-
tion among FL participants based on the implicit connection between
data distribution and trained model weights. This approach enabled
an intelligent participant selection process in each FL round, effec-
tively offsetting the bias caused by non-iid data and maintaining the
diversity of aggregated information. Moreover, the ABAVG method
was developed to improve the accuracy and convergence speed of
global models in non-iid training data scenarios [13], where scarce
information was magnified because of its greater improvements in
accuracy. This method demonstrated that dynamically adjusted ag-
gregation weights could significantly enhance server-side aggregation,
offering substantial improvements over traditional methods with fixed
aggregation weights. However, the methodologies fall short in address-
ing security challenges presented by Byzantine nodes, as the substantial
variations between benign updates hinder the effective detection of
malicious attacks and malicious intrusions such as backdoor attacks
may not be reflected in accuracy. [22].

To achieve secure aggregation in FL, filtering and aggregation mech-
anisms have been proposed, assuming that the benign models are close
to each other while malicious models are discernibly different from the
benign ones, for instance, Krum [5] and median [6]. Peng et al. [23]
incorporated a resampling strategy into the geometric-median-based
aggregation algorithm. This addition served to diminish the influence of
data variation on model performance, all the while enhancing security.
DiverseFL [24] was designed to address the challenge of Byzantine
behaviors with heterogeneous data distribution in FL. The center server
in DiverseFL identified the Byzantine clients using the guiding gradient,
computed with a small sample, to evaluate whether the update meets
expectations. By comparing data against the samples owned by the
target client rather than with other clients, DiverseFL advanced beyond
the constraints of similarity-based approaches in handling heteroge-
neous and diverse data. This strategy provided fault resiliency of secure
FL, nevertheless, it remains vulnerable to attacks such as data poisoning
and backdoor attacks, because it relies on the assumption that clients
are honest but faulty.

In [16], FLAME was introduced as a defense framework against
malicious poisoning attacks and backdoor attacks. FLAME employed a
clustering algorithm based on the cosine similarity to aggregate models
that exhibit similar characteristics. FLAME also incorporated norm-
based median clipping and proactive noise addition to enhance the
resilience of the global model against variability in shared models
caused by differing training data. These strategies enabled the FLAME
framework to perform effectively in non-iid training data scenarios
as it was less sensitive to such disparities. However, FLAME cannot

fully detect attacks but only mitigate the effects of poisoned models.
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Fig. 1. Vector space of model parameters in FL with special participants and malicious
participants. These special participants with unique data have distinctive training data
information, diverging from that of general participants, while malicious participants
attempt to compromise the global model through data poisoning or model poisoning
attacks. The objective of the proposed framework is to facilitate secure aggregation
in FL, protecting the global model of malicious participants, while optimizing the
utilization of the shared models from special participants with unique data and
minimizing valid information loss.

The processes of clipping and adding noise designed for robustness
did compromise the ability of FLAME to capitalize on distinctive and
crucial information, thereby limiting its effectiveness in preserving the
diversity of valuable knowledge.

Overall, existing secure FL aggregation methods in non-iid training
data scenarios achieved security by compromising on diversity. There
remains a gap in secure aggregation for FL under non-iid training
scenarios to simultaneously ensure accurate detection of malicious
models and maximize the utilization of diverse information. In this
paper, we introduce a novel filtering and voting framework for secure
FL aggregation under non-iid training data sets. By incorporating a
re-selection mechanism within the voting layer, the framework can
include as many benign models as possible for aggregation and reject
malicious models, thereby enriching the diversity of the aggregated
models and enhancing the security and accuracy of the global model.

3. Filtering-and-voting aggregation framework

In this section, we introduce the proposed filtering-and-voting FL
aggregation framework implementing the filtering-and-voting struc-
ture. We begin by outlining the scenarios and research motivations
addressed in this paper, setting forth the objective of achieving secure
aggregation in FL while preserving model diversity. We then detail
the process of the proposed framework, which involves a selection
by the filtering layer followed by a re-evaluation by the voting layer,
coupled with dynamic aggregation weight selection based on DRL.
This approach allows for the effective utilization of valuable shared
models and provides resistance against malicious influences. Finally,
we substantiate the convergence of the proposed framework through
theoretical proof, demonstrating its robustness and efficacy.

3.1. System model

In this paper, we focus on an open FL scenario involving imbalanced
training data and potential attackers. We classify FL participants into
three groups: general participants, special participants with unique
data, and malicious participants. Special participants have unique local
training datasets, resulting in their shared models being distinct from
those of general participants. Malicious participants seek to compro-
mise the performance of the global model through data or model
poisoning attacks. Here, we make the assumption that the number of
malicious participants is fewer than half of the total participant count.

As shown in Fig. 1, trained models shared by general participants
with similar training data demonstrate a high degree of similarity,
resulting in a concentration within the model parameter vector space.
3 
In contrast, the shared models of special and malicious participants
exhibit dissimilarity and remain distant from the models of general par-
ticipants in the vector space. Average aggregation methods in FL, such
as FedAvg [14], incorporate all of them directly for aggregation, lacking
resistance against malicious attacks. Similarity-based aggregation meth-
ods in FL, such as Krum [5], selectively choose models clustered in the
vector space for aggregation. This kind of method effectively excludes
the models from malicious participants, but also discards those from
special participants with unique data, losing valuable information for
the advancement of global models.

There is clearly a need for an evolved FL aggregation method that
can balance security and diversity by effectively assessing the contri-
bution of shared local models to the FL global model and adjusting
aggregation weights accordingly. As observed from Fig. 1, distinguish-
ing between models from participants with unique data and those from
malicious participants is challenging when relying solely on model
distance or similarity. Consequently, the aim of this paper is to de-
sign a framework that dynamically evaluates and selects aggregation
models. This framework seeks to learn from as many benign models
as possible and fully utilize diverse training data to optimize the
performance of the global model. At the same time, it provides pro-
tection against malicious models, effectively balancing security and
performance enhancement.

3.2. Framework design and workflow

In addition to the filtering process in secure FL, the proposed frame-
work introduces an additional layer, an accuracy-based re-selection
mechanism called the voting layer. The filtering layer picks out distinc-
tive models via distance calculations, and the voting layer assesses the
value of models dropped in the filtering layer to improve the global
model based on test accuracy. This strategy significantly enhances
the selection process for aggregation models. Models from special
participants with unique local training datasets can be selected back
for aggregation to ensure the integration of precious knowledge and
contribute to the global model, while the poisoned models supplied
by malicious participants will be excluded from aggregation to reduce
threats and risks. Moreover, the implementation of a DRL-based adap-
tive aggregation weight selection optimizes the performance of the
aggregated global model. It effectively prioritizes the impact of models
containing rare and valuable information and coordinates the outcomes
of the filtering and voting layers.

In our previous work [25], we attempted to re-evaluate participants
through the introduction of the ‘‘Think Tank’’, which significantly
increased the time cost per FL epoch; i.e., it cost nearly triple the
time required by the classical aggregation methods like Krum [5].
Moreover, it necessitated training for an extended number of epochs
to observe any noticeable change in accuracy. Drawing from these ex-
periences, this paper presents an enhanced approach by implementing
asynchronous operations between the filtering and voting layers, sig-
nificantly reducing the time required for each FL epoch and enhancing
the feasibility of our proposed framework.

Assuming that there are 𝑁 participants, denoted as 𝑃1, ⋯, 𝑃𝑖, ⋯,
𝑃𝑁 , each of which owns a local training dataset 𝐷𝑖 and a testing dataset
𝐷𝑡𝑒𝑠𝑡

𝑖 , 𝑖 ∈ NP = {1,… , 𝑁}, and one aggregator consists of committees
that can be composed of participants or trusted servers. Due to the
localized ownership of all datasets by individual participants, both
model training based on the training set and accuracy determination
based on the testing dataset are conducted in a distributed manner.
Alongside the traditional participants and aggregator in classic FL, a
new identity, that of ‘‘voters’’, is introduced. We consider the case
where the voters consist of all participants here, and in future work,
we plan to achieve dynamic voter selection by implementing a credit-
worthiness scoring mechanism. In the epoch 𝑟 of FL, the local model
shared by the participant 𝑃𝑖 is denoted as 𝑀𝑟

𝑖 , and the global model
is denoted as 𝑀𝑟 . The processes of the proposed filtering-and-voting
𝐺
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Fig. 2. Proposed filtering-and-voting aggregation framework with DRL-based weight selection in FL. It shows a five-step process to enhance performance and ensure security,
including global model initialization, local model training, filtering layer for model selection, voting layer for model re-evaluation, and aggregation finalization. We assume that
more than 1∕2 of the participants are benign and effective.
Algorithm 1 Filtering-and-Voting Aggregation Algorithm.
Require:

Global Epoch 𝑟, Voting Layer Processing Epoch 𝑟′, Local Training
Model 𝑀𝑟

𝑖 from Participant 𝑃𝑖 (𝑖 ∈ NP) with Training Dataset 𝐷𝑖
and Test Dataset 𝐷𝑇 𝑒𝑠𝑡𝑖 , Filtering-Layer Coefficient 𝐾, List of Global
Model in each epoch ℒ𝐺, List of Dropped Model from the Filtering
Layer ℒ𝑈

Ensure:
Global Model 𝑀𝑟

𝐺.

[Filtering Layer]
1: 𝑠𝑐𝑜𝑟𝑒𝑟𝑖 =

∑

𝑥∈NP
‖𝑀𝑟

𝑖 −𝑀𝑟
𝑥‖

2

2: 𝑀𝑟
𝐵 =

∑𝐾
𝑗=1

|

|

|

𝐷𝑆𝑗
|

|

|

𝑀𝑟
𝑆𝑗

∑𝐾
𝑗=1

|

|

|

𝐷𝑆𝑗
|

|

|

( 𝑀𝑟
𝑆𝑗

has the K smallest 𝑠𝑐𝑜𝑟𝑒𝑟𝑖 )

3: Update ℒ𝑈 with models except 𝑀𝑟
𝑆𝑗

[Vote Layer]
4: 𝑃𝑖 tests 𝑀𝑟′

𝑈𝑡
∈ ℒ𝑈 and 𝑀𝑟′

𝐺 ∈ ℒ𝐺 on 𝐷𝑇 𝑒𝑠𝑡𝑖 for accuracy 𝐴𝑐𝑐𝑖𝑟
′

𝑈𝑡
and

𝐴𝑐𝑐𝑖𝑟
′

𝐺
5: if 𝐴𝑐𝑐𝑖𝑟

′

𝑈𝑡
≥ 𝐴𝑐𝑐𝑖𝑟

′

𝐺 then
6: 𝐼𝑖𝑟

′

𝑈𝑡
= 1

7: else
8: 𝐼𝑖𝑟

′

𝑈𝑡
= 0

9: end if
10: if ∑𝑁

𝑖=1 𝐼𝑖
𝑟′
𝑈𝑡

≥ 𝑁
2 then

11: 𝑀𝑟′
𝑈𝑡

is assigned to V
12: end if
13: Update V

[Aggregation]
14: if No update from the voting layer then
15: 𝑀𝑟

𝐺 = 𝑀𝑟
𝐵

16: else

17: 𝑀𝑟
𝐺 =

𝑀𝑟−1
𝐺 +

∑

𝑀𝑟′
𝑉𝑞

×𝑤𝑟′
𝑉𝑞

1+
∑

𝑤𝑟′
𝑉𝑞

(𝑀𝑟′
𝑉𝑞

∈ V and 𝑤𝑟′
𝑉𝑞

is calculated by a DRL model)
18: end if

19: return 𝑀𝑟
𝐺

aggregation are shown in Fig. 2 and Algorithm 1, including five steps
as follows:
4 
Global Model Initialization: At the start of FL, the aggregator
initializes the global model 𝑀0

𝐺 and distributes it to all participants.
Local Model Training: In epoch 𝑟 (𝑟 ≥ 1), each participant 𝑃𝑖

trains 𝑀𝑟−1
𝐺 with its local training dataset 𝐷𝑖 to minimize a chosen loss

function by Stochastic Gradient Descent (SGD) [14]:

𝑀𝑟
𝑖 = 𝑀𝑟−1

𝐺 − 𝜂∇ (𝑀𝑟−1
𝑖 ), (1)

where 𝜂 is learning rate and the choice of the loss function  (𝑀𝑖) de-
pends on the model demands of different scenarios. Then, the improved
model 𝑀𝑟

𝑖 is shared with the aggregator for the next step.
Filtering Layer: The aggregator computes distances between these

shared models and selects 𝐾 models with the smallest cumulative
distances from others. These chosen models, denoted as 𝑀𝑟

𝑆𝑗
, 𝑆𝑗 ∈ S

and S ∈ NP, represent the prevailing training trend. The size of S is
determined by the given filtering-layer coefficient 𝐾. The unselected
models, denoted as 𝑀𝑟

𝑈𝑡
, 𝑈𝑡 ∈ U and U ∈ NP, are then dropped to the

voting layer. Here, the following holds:
{

S ∩ U = ∅,

S ∪ U = NP.
(2)

As the asynchronous setup, the filtering layer does not wait for the
outcomes from the voting layer, allowing the aggregator to perform a
preliminary pre-aggregation calculated by:

𝑀𝑟
𝐵 =

∑𝐾
𝑗=1

|

|

|

𝐷𝑆𝑗
|

|

|

𝑀𝑟
𝑆𝑗

∑𝐾
𝑗=1

|

|

|

𝐷𝑆𝑗
|

|

|

, (3)

where, 𝑀𝑟
𝐵 is the result of pre-aggregation, and |

|

𝐷𝑖
|

|

represents the size
of the dataset 𝐷𝑖.

After pre-aggregation, if the voting layer, depicted as the orange
box in Fig. 2, is still in progress and fails to return a new outcome
to the aggregator, i.e., only the filtering outcome is updated, then FL
is proceeding directly to the next epoch of learning for the sake of
efficiency with the 𝑀𝑟

𝐵 as the final aggregation result of the current
epoch, i.e.,

𝑀𝑟
𝐺 = 𝑀𝑟

𝐵 , if only the filtering outcome is updated. (4)

This approach ensures that the FL process maintains momentum with-
out delays, reducing the overall learning time cost. The 𝑀𝑟

𝐺 is immedi-
ately shared with the participants to start the local model learning of
the next epoch.

Additionally, in each epoch, the models discarded by the filtering
layer and the global model are systematically maintained in the list
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ℒ𝑈 = {𝑟 ∶ {𝑀𝑟
𝑈𝑡
}} and ℒ𝐺 = {𝑟 ∶ 𝑀𝑟

𝐺}, respectively, for the subsequent
operations in the voting layer.

Voting Layer: In the voting layer, each participant 𝑃𝑖 acts as a
voter, receiving the list ℒ𝑈 and ℒ𝐺 forwarded by the aggregator. Due
to the asynchronous characteristic, when the filtering layer advances
to the 𝑟 epoch, the voting layer handles the model dropped in the 𝑟′

epoch, i.e. commences by selecting the most recent group {𝑟′ ∶ {𝑀𝑟′
𝑈𝑡
}}

from the list ℒ𝑈 , where

𝑟′ = max
𝑟𝑢∈ℒ𝑈

𝑟𝑢. (5)

Given that the voting layer commences only after the completion of
the filtering layer, it follows that 𝑟′ ≤ 𝑟 − 1. Moreover, we assume that
the voting layer will not lag behind the filtering layer by more than 𝑒
epochs, i.e., the gap between the two layers satisfies:

1 ≤ 𝑟 − 𝑟′ ≤ 𝑒. (6)

The voter 𝑃𝑖 in the voting layer casts his vote for each model
dropped 𝑀𝑟′

𝑈𝑡
from 𝑟′ epoch according to the following and sends the

voting result 𝐼𝑖𝑟𝑈𝑡
to the aggregator:

𝐼𝑖
𝑟′
𝑈𝑡

=

⎧

⎪

⎨

⎪

⎩

1, if 𝐴𝑐𝑐𝑖
𝑟′
𝑈𝑡

≥ 𝐴𝑐𝑐𝑖
𝑟′
𝐺 ,

0, if 𝐴𝑐𝑐𝑖
𝑟′
𝑈𝑡

< 𝐴𝑐𝑐𝑖
𝑟′
𝐺 ,

(7)

where 𝐴𝑐𝑐𝑖𝑟
′

𝑈𝑡
and 𝐴𝑐𝑐𝑖𝑟

′

𝐵 represent the accuracy of 𝑀𝑟
𝑈𝑡

and 𝑀𝑟
𝐵 on the

test dateset 𝐷𝑡𝑒𝑠𝑡
𝑖 , respectively.

Aggregation Finalization: Considering the possibility of Byzantine
behavior and the limits on the number of malicious participants, we fur-
ther set the positive voting should exceed one-half, i.e., more than half
of the participants should be benign and effective voters. This setting
ensures that the voting process is resilient to Byzantine attacks. Model
𝑀𝑟′

𝑈𝑡
is deemed beneficial when it gains recognition from more than

half of the voters and needs to be re-selected for aggregation. Hence,
when the aggregator gets the voting distributed result, it evaluates the
support for each voted model and denotes these re-selected models as
𝑀𝑟′

𝑉𝑞
where V = {𝑉𝑞} is a subset selected from U, satisfying:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈𝑡 ∈ V, if
𝑁
∑

𝑖=1
𝐼𝑖

𝑟′
𝑈𝑡

> 𝑁
2
,

𝑈𝑡 ∉ V, if
𝑁
∑

𝑖=1
𝐼𝑖

𝑟′
𝑈𝑡

≤ 𝑁
2
.

(8)

Next, with the assistance of (4), the aggregator updates the global
odel with the outcomes from the filtering and voting layers, as

ollows.

𝑟
𝐺 =

⎧

⎪

⎨

⎪

⎩

𝑀𝑟
𝐵+

∑

𝑀𝑟′
𝑉𝑞

×𝑤𝑟′
𝑉𝑞

1+
∑

𝑤𝑟′
𝑉𝑞

, if the voting outcome is updated;

𝑀𝑟
𝐵 , if only the filtering outcome is updated,

(9)

here 𝑤𝑟′
𝑉𝑞

represents a weight for 𝑀𝑟
𝑉𝑞

determined by a DRL model
ith information including the processing epoch number in two layers
and 𝑟′, voting results {𝐼𝑖𝑟

′

𝑈𝑡
}, and model accuracy 𝐴𝑐𝑐𝑖𝑟

′

𝑈𝑡
, 𝐴𝑐𝑐𝑖𝑟

′

𝐺 . This
synchronous design ensures that the global model remains efficient
nd effectively incorporates the most recent contributions from both
ayers. The updated global model 𝑀𝑟

𝐺 is then sent back to each
articipant 𝑃𝑖 to start the local training for the next epoch.

To mitigate the adverse impact of outdated models on the global
odel, the voting layer is set frozen in the initial stages of FL. It

nly resumes to operate when the global model reaches a relatively
table state, assisting in the optimization of the global model. The
uration of this frozen period can be selected based on the specific task
equirements and scenarios.
 o

5 
able 1
otation definition.
Notation Definition

𝑁 Number of the participants in FL.
𝑃𝑖 The 𝑖th participant.
𝐷𝑖 The local dataset of 𝑃𝑖.
𝑟 The index of a global epoch
𝑟′ Voting layer processing epoch
𝑀 𝑟

𝑖 The local model of participant 𝑃𝑖 in 𝑟 epoch.
𝑀 𝑟

𝐺 The global model in 𝑟 epoch.
 Loss function.
𝜂 Learning rate.
S The set of selected models in the filtering layer.
U The set of dropped models into the voting layer.
V The set of re-selected models in the voting layer.
𝐼𝑖

𝑟
𝑗 The voting result of 𝑃𝑖 for 𝑀 𝑟

𝑗
𝑤𝑟

𝑖 The aggregation weight for 𝑀𝑖 in the 𝑟th epoch.

For better understanding, we summarize all symbols related to the
proposed filtering-and-voting aggregation framework in Table 1.

3.3. Convergence analysis

In this section, we delve into the convergence of the proposed
filtering-and-voting aggregation. Despite the asynchronous setting be-
tween the filtering and voting layers, as specified in (6), the lag between
the filtering and voting layers is bounded by a predefined threshold,
which is critical to preserving the convergence of the proposed frame-
work. A comprehensive mathematical proof is provided to demonstrate
that this design ensures the global model remains stable and converges
in the proposed framework.

Firstly, we make the following assumptions about the loss function
 :

Assumption 1. Give a smoothness parameter 𝛽 > 0,  is 𝛽-smooth if
∀ 𝑥, 𝑦,  satisfies:

 (𝑦) −  (𝑥) ≤ ⟨∇ (𝑥), 𝑦 − 𝑥⟩ +
𝛽
2
‖𝑦 − 𝑥‖2, (10)

where ⟨⋅, ⋅⟩ stands for inner product calculation and ‖ ⋅ ‖ stands for the
uclidean norm.

ssumption 2. Give a constant 𝜇 > 0,  is 𝜇-strongly convex if ∀ 𝑥,
,  satisfies:

(𝑦) −  (𝑥) ≥ ⟨∇ (𝑥), 𝑦 − 𝑥⟩ +
𝜇
2
‖𝑦 − 𝑥‖2. (11)

Assumption 3. There exists such an 𝑀∗ that can minimize  , i.e.,

𝑀∗ = 𝑖𝑛𝑓
𝑀

 (𝑀) and ∇ (𝑀∗) = 0, (12)

here 𝑖𝑛𝑓 (⋅) stands for the infimum of a set.

These assumptions are suitable for a variety of models with convex
oss functions, such as linear regression [26], logistic regression [27],
nd support vector machines [28], which are widely employed in prac-
ical applications. For instance, logistic regression is frequently utilized
n the autonomous driving sector for image classification in vehicle
ision systems [29], where it is employed to detect various objects
uch as pedestrians, other vehicles, and buildings to enhance naviga-
ion algorithms. Support vector machines are commonly used in text
ecognition tasks due to their ability to handle high-dimensional data
nd their effectiveness in classifying texts based on complex patterns
n data features [30]. While modern machine learning models often
nvolve non-convex loss functions, numerous tasks adhere to convex

r strongly convex assumptions, such as cross-entropy [31] and least
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squares [32]. Models developed under these assumptions are widely
employed due to their analytical tractability and practical effectiveness
across various applications, even with non-convex losses.

We denote the upper bound for the gap between the local model
updates and the global model updates as 𝑄1 and denote the upper
bound for local model updates as 𝑄2, i.e.,

‖∇ (𝑀𝐺) − ∇ (𝑀𝑖)‖
2 ≤ 𝑄1,

‖∇ (𝑀𝑖)‖
2 ≤ 𝑄2, ∀𝑖 ∈ NP.

(13)

Under these assumptions, we analyze the convergence of the pro-
osed filtering-and-voting aggregation framework, demonstrating that
he results of the voting layer do not hinder the convergence of FL. We
resent the convergence upper bound for the proposed filtering-and-
oting aggregation framework, as established in the following theorem:

heorem 1. The convergence bound of the global loss function in the
roposed filtering-and-voting aggregation framework after 𝑅 epochs is

[ (𝑀𝑅
𝐺) −  (𝑀∗)]≤ 𝛽

2
(1−𝜂𝜇)𝑅−𝑒−1‖𝑀0

𝐺−𝑀
∗
‖

2+𝑍, (14)

where 𝑍 = 𝛽
2
∑𝑟−1

𝑡=0 (1 − 𝜂𝜇)𝑡𝜂2𝑄1 +
𝛽
2 𝛼(

𝛽𝜂2

2 𝑄2 − 𝜂 2𝑄2−𝑄1
2 ).

Since 1 − 𝜂𝜇 < 1, we have 𝛽
2 (1 − 𝜂𝜇)𝑅−𝑒−1 → 0, as 𝑅 → ∞. It

ndicates that the proposed filtering-and-voting aggregation framework
an converge to a stable value, and the lag between the voting and
iltering layers does not adversely affect the convergence properties.

roof. We rewrite (9) that with the voting outcome updated part as

𝑟
𝐺 = (1 − 𝛼)𝑀𝑟−1

𝐺 + 𝛼

∑

𝑤𝑟′
𝑉𝑞
𝑀𝑟′

𝑉𝑞
∑

𝑤𝑟′
𝑉𝑞

, (15)

here 𝑟 − 𝑒 ≤ 𝑟′ ≤ 𝑟 − 1 and 𝛼 =
∑

𝑤𝑟′
𝑉𝑞

1+
∑

𝑤𝑟′
𝑉𝑞

∈ (0, 1).

Similar to the proof in previous work [33], we can express 𝑀𝑟
𝐺

as a function of the 𝑀𝑟−1
𝐺 and 𝑀𝑟′

𝑉𝑞
based on (15). Consequently, the

expected difference in the loss function between 𝑀𝑟
𝐺 and 𝑀∗ can be

ounded as:

[ (𝑀𝑟
𝐺) −  (𝑀∗)]

≤ (1 − 𝛼) (𝑀𝑟−1
𝐺 ) + 𝛼E[ (

∑

𝑤𝑟′
𝑉𝑞
𝑀𝑟′

𝑉𝑞
∑

𝑤𝑟′
𝑉𝑞

)] −  (𝑀∗)

≤ (1 − 𝛼) (𝑀𝑟−1
𝐺 ) + 𝛼

∑

𝑤𝑟′
𝑉𝑞

∑

𝑤𝑟′
𝑉𝑞

 (𝑀𝑟′
𝑉𝑞
) −  (𝑀∗)

≤ (1 − 𝛼)[ (𝑀𝑟−1
𝐺 ) −  (𝑀∗)] + 𝛼E[ (𝑀𝑟′

𝑉𝑞
) −  (𝑀∗)].

(16)

By applying (1) and (10), the second term on the right-hand side
(RHS) of the inequality is bounded by:

E[ (𝑀𝑟′
𝑉𝑞
) −  (𝑀∗)]

≤ E[ (𝑀𝑟′−1
𝐺 ) − 𝜂∇ (𝑀𝑟′−1

𝑉𝑞
)] −  (𝑀∗)

≤  (𝑀𝑟′−1
𝐺 ) − 𝜂E

⟨

∇ (𝑀𝑟′−1
𝐺 ),∇ (𝑀𝑟′−1

𝑉𝑞
)
⟩

+
𝛽𝜂2

2
E‖∇ (𝑀𝑟′−1

𝑉𝑞
)‖

2
−  (𝑀∗).

(17)

Using Cauchy–Schwarz inequality and (13), we have
⟨

∇ (𝑀𝑟′−1),∇ (𝑀𝑟′−1)
⟩

≥
2𝑄2 −𝑄1 . (18)
𝐺 𝑉𝑞 2

6 
Inserting the results of (13) and (18) into (17), (17) can be rewritten
as

E[ (𝑀𝑟′
𝑉𝑞
) −  (𝑀∗)]

≤  (𝑀𝑟′−1
𝐺 ) −  (𝑀∗) − 𝜂

2𝑄2 −𝑄1
2

+
𝛽𝜂2

2
𝑄2

≜  (𝑀𝑟′−1
𝐺 ) −  (𝑀∗) +𝑋,

(19)

here 𝑋 = 𝛽𝜂2

2 𝑄2 − 𝜂 2𝑄2−𝑄1
2 .

Substituting (19) into (16), we have

E[ (𝑀𝑟
𝐺) −  (𝑀∗)] ≤ (1 − 𝛼)[ (𝑀𝑟−1

𝐺 ) −  (𝑀∗)]

+ 𝛼[ (𝑀𝑟′−1
𝐺 ) −  (𝑀∗) +𝑋].

(20)

According to (10) and (12), we have

(𝑀𝑟−1
𝐺 ) −  (𝑀∗)

≤
⟨

∇ (𝑀∗),𝑀𝑟−1
𝐺 −𝑀∗⟩ +

𝛽
2
‖𝑀𝑟−1

𝐺 −𝑀∗
‖

2

≤ 𝛽
2
‖𝑀𝑟−1

𝐺 −𝑀∗
‖

2,

(21)

s ∇ (𝑀∗) = 0.
In [34], it was proved that the upper bound of the distance between

𝑟−1
𝐺 and 𝑀∗ could be controlled by the distance between the previous

lobal model and 𝑀∗, i.e.,

𝑀𝑟′−1
𝐺 −𝑀∗

‖

2
≤ (1 − 𝜂𝜇)‖𝑀𝑟′−2

𝐺 −𝑀∗
‖

2
+ 𝜂2𝑄1

≤ (1 − 𝜂𝜇)𝑟−1‖𝑀0
𝐺 −𝑀∗

‖

2 +
𝑟−1
∑

𝑡=0
(1 − 𝜂𝜇)𝑡𝜂2𝑄1

≜ (1 − 𝜂𝜇)𝑟−1‖𝑀0
𝐺 −𝑀∗

‖

2 + 𝑌1,

(22)

here 𝑌1 =
∑𝑟−1

𝑡=0 (1 − 𝜂𝜇)𝑡𝜂2𝑄1.
Substituting (22) into (21), we have

(𝑀𝑟−1
𝐺 ) −  (𝑀∗) ≤ 𝛽

2
‖𝑀𝑟−1

𝐺 −𝑀∗
‖

2

≤ 𝛽
2
[(1 − 𝜂𝜇)𝑟−1‖𝑀0

𝐺 −𝑀∗
‖

2 + 𝑌1].
(23)

Similarly, we have

(𝑀𝑟′−1
𝐺 ) −  (𝑀∗) ≤ 𝛽

2
‖𝑀𝑟′−1

𝐺 −𝑀∗
‖

2

≤ 𝛽
2
[(1 − 𝜂𝜇)𝑟

′−1
‖𝑀0

𝐺 −𝑀∗
‖

2 +
𝑟′−1
∑

𝑡=0
(1 − 𝜂𝜇)𝑡𝜂2𝑄1]

≜ 𝛽
2
[(1 − 𝜂𝜇)𝑟

′−1
‖𝑀0

𝐺 −𝑀∗
‖

2 + 𝑌2],

(24)

where 𝑌2 =
∑𝑟′−1

𝑡=0 (1 − 𝜂𝜇)𝑡𝜂2𝑄1.
By substituting (23) and (24) into (20), the convergence bound can

e rewritten as

[ (𝑀𝑟
𝐺) −  (𝑀∗)]

≤ 𝛽
2
(1 − 𝛼)[(1 − 𝜂𝜇)𝑟−1‖𝑀0

𝐺 −𝑀∗
‖

2 + 𝑌1]

+
𝛽
2
𝛼[(1 − 𝜂𝜇)𝑟

′−1
‖𝑀0

𝐺 −𝑀∗
‖

2 + 𝑌2 +𝑋]

=
𝛽
2
[(1 − 𝛼)(1 − 𝜂𝜇)𝑟−1 + 𝛼(1 − 𝜂𝜇)𝑟

′−1]‖𝑀0
𝐺 −𝑀∗

‖

2

+
𝛽
2
(1 − 𝛼)𝑌1 +

𝛽
2
𝛼(𝑌2 +𝑋).

(25)

As 𝑟 − 𝑒 ≤ 𝑟′ ≤ 𝑟 − 1, we have 𝑌2 ≤ 𝑌1, and the following inequality
olds:

1 − 𝛼)(1 − 𝜂𝜇)𝑟−1 + 𝛼(1 − 𝜂𝜇)𝑟
′−1

≤ (1 − 𝜂𝜇)𝑟
′−1

𝑟−𝑒−1

(26)
≤ (1 − 𝜂𝜇) .
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Fig. 3. DRL-based dynamic aggregation weight selection with the roles of the agent
(aggregator), the environment (FL aggregation process), states (intermediate results
from the filtering layer and the voting layer), and actions (weight selections for the
target model).

So, (25) can be rewritten as

E[ (𝑀𝑟
𝐺) −  (𝑀∗)]

≤ 𝛽
2
≤ (1 − 𝜂𝜇)𝑟−𝑒−1‖𝑀0

𝐺 −𝑀∗
‖

2 +
𝛽
2
𝑌1 +

𝛽
2
𝛼𝑋

≜ 𝛽
2
≤ (1 − 𝜂𝜇)𝑟−𝑒−1‖𝑀0

𝐺 −𝑀∗
‖

2 +𝑍,

(27)

where 𝑍 = 𝛽
2 𝑌1+

𝛽
2 𝛼𝑋 = 𝛽

2
∑𝑟−1

𝑡=0 (1−𝜂𝜇)
𝑡𝜂2𝑄1+

𝛽
2 𝛼(

𝛽𝜂2

2 𝑄2−𝜂
2𝑄2−𝑄1

2 ). □

Theorem 1 confirms that the inclusion of a voting layer does not im-
pede the execution of FL tasks. This assurance of convergence validates
the practicality and underscores its effectiveness in FL environments,
reinforcing the notion that integrating additional layers, such as the
voting layer, enhances the learning process. The convergence upper
bound provided in Theorem 1 demonstrates that the proposed filtering-
and-voting aggregation framework is convergent. Our convergence
analysis is closely related to practical applications, which we further
substantiate in Section 5 through experiments on image classification.

4. DRL-based adaptive aggregation weight selection

A DRL model is introduced in the proposed frameworks for dynamic
aggregation weight selection to better leverage the value of models
selected by the voting layer. This section elaborates on the elements
of the DRL model used for dynamic aggregation weight selection in
the proposed filtering-and-voting aggregation framework, as shown in
Fig. 3.

Different DRL variables, parameter spaces (discrete or continuous),
and DRL algorithms such as Deep Q-network (DQN) [35], and Trust
Region Policy Optimization (TRPO) [36], can be chosen based on
the specific FL task and device capabilities, providing a flexible and
scalable framework implementation. Additionally, the DRL model can
be trained synchronously during FL or pre-trained. Both online training
DRL model and pre-trained DRL models in FL can effectively enhance
the performance and security of the global model.

The composition of the DRL model used in our work consists of the
following elements:

Agent. The agent is the decision-maker who executes the learning
process and interacts with the environment. Here, the aggregator is an
agent in the DRL for filtering-and-voting aggregation weight selection.

Environment. The environment means the external system with
which the agent interacts. The environment is typically modeled to rep-
resent the problem space or the scenario in which the agent operates.
It responds to the actions of the agent and presents new states to the
agent. In this paper, the FL aggregation process is the environment.

States. A representation of the current environmental situation is
called the state of the DRL. States capture relevant information that
the agent needs to make decisions.
7 
Fig. 4. The timing and dependency relationship between the DRL-based aggregation
weight selection and the voting layer within the proposed FL framework. Each round
of DRL is triggered by the result of a voting layer epoch, depicted sequentially but not
continuously. The voting layer processing epoch is set as continuous training and is
delayed relative to the global FL epochs.

In this paper, the agent (the aggregator) obtains the intermediate
results of the filtering layer and voting layer as the observation of the
environment, which is fed into our DRL model as input. Specifically,
the intermediate results include the following:

• Current learning epoch of FL, calculated based on the number of
rounds conducted by the filtering layer, i.e., 𝑟.

• Freshness of the voting layer, which indicates the degree to which
the voting layer lags behind the filtering layer, i.e., 𝑟′∕𝑟.

• Accuracy of the target model, for whom the weight is calculated
by this DRL model, 𝐴𝑐𝑐(𝑀𝑡𝑎𝑟𝑔𝑒𝑡). It is the most direct indicator of
the contribution of the target model to the global model.

• Voting outcomes from voters regarding that model, i.e., the pro-
portion of voters who believe that the inclusion of the target
model would benefit the global model: ∑ 𝐼𝑖𝑟

′

𝑈𝑡
∕𝑁 . This ratio rep-

resents a critical metric for assessing consensus and the perceived
value of individual model contributions within FL.

Actions. The set of all possible decisions the agent can make in
a given state. The choice of action affects the environment, leading
to a new state. Here, the weights that can be chosen for the target
model are actions, denoted as 𝑊 . The weights can be either discrete
or continuous. In our experiments, some discrete weights are used as
actions to simplify the problem and enhance efficiency. The action
selected for the target model 𝑀𝑞 in 𝑟 epoch is denoted as 𝑤𝑟

𝑞 .
Reward Function. A function that assigns a numerical value to

each action as feedback to the agent about the effectiveness of its
decision. The objective of the agent in DRL is to maximize the re-
ward, which guides the learning of an optimal policy. In this paper,
the reward function calculates the contribution of the target model
aggregated with different weights to the global model, i.e., the model
accuracy improvement for each weight:

𝑅(𝑤,𝑀𝑡𝑎𝑟𝑔𝑒𝑡) =𝐴𝑐𝑐((1 −𝑤) ×𝑀𝐺 +𝑤 ×𝑀𝑡𝑎𝑟𝑔𝑒𝑡)

− 𝐴𝑐𝑐(𝑀𝐺),
(28)

where the 𝑤 is the selected aggregation weight (i.e., action) of the
target model 𝑀𝑡𝑎𝑟𝑔𝑒𝑡.

Note that the DRL-based aggregation weight selection relies on
the outcomes from the voting layer. Each round of DRL corresponds
directly to an epoch of the voting layer, as shown in Fig. 4. From a
temporal perspective, the round of DRL is not continuous because the
start of the DRL must wait for the voting results. As for the voting layer,
we designate the end of a DRL round as the conclusion of a voting
layer processing epoch and the determination of the new 𝑟′ according
to (5) as the start of the next epoch. It makes the voting layer processing
epochs sequential but chronologically behind the global FL epoch. This
temporal alignment keeps the voting process continuously updated, yet
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systematically delayed relative to the global FL training epoch, allowing
for effective training without compromising the integrity of the training
process.

5. Experiment

In this section, we experimentally validate the performance of the
proposed filtering-and-voting aggregation framework in FL. The results
underscore the adaptability of the proposed framework in scenarios
where FL involves both special participants with unique training data
and malicious participants launching poisoning attacks. Our findings
illustrate how the framework adeptly assesses the value of shared
models from different participants, effectively safeguarding against
attacks from malicious participants while maximizing the utilization of
valuable information contributed by the participants with unique data
to enhance the overall performance of the global model.

5.1. Experimental setting

We consider an FL scenario with 10 participants, including one
special participant with unique data and two malicious participants,
alongside seven general participants. Datasets utilized for FL are di-
vided into two categories: one consists of rare and distinct data, which
is accessible exclusively to the special participant; the other category
contains common data, which is owned by all participants. To empha-
size the non-iid nature of the local dataset held by the participants,
the quantity of different common label data varies among participants.
Each participant allocates a portion of their data as a training set for
model learning and another portion as a testing dataset for accuracy
testing. Additionally, participants supplement their testing datasets
with data randomly sampled from a small-sized third-party dataset
with all labels. This setup mirrors real-world scenarios, such as in fault
diagnosis tasks, where participants may not own fault data for training
purposes but can utilize such data for testing. The malicious partici-
pants conduct poisoning attacks in the local model training process and
engage in Byzantine behavior in the voting layer, randomly voting ‘‘1’’
or ‘‘0’’ with a given probability.

The FL process is set with 500 training epochs, and the voting
layer in the proposed framework starts from the 100th epoch. We use
a Convolutional Neural Network (CNN) [37] for the FL image recog-
nition task. The initial model is distributed to all participants by the
aggregator, and the CNN parameters are set with reference to LeNet-5
model [38]. The proposed framework is compatible with prevalent DRL
models, and existing work [39] demonstrates the efficiency and feasi-
bility of DQN-based weight selection in FL under resource-constrained
conditions. To reduce experimental costs, we employ a typical DQN
model [40] for the dynamic selection of aggregation weight. The input
variables of the DQN model include FL epoch, freshness of the voting
layer, model accuracy and voting results. The output of the DQN model
is chosen from a discrete parameter space. Our experiments are run
on NVIDIA PCIe A100, 2 × 40 GB, and we use Python 3.7.16 and
TensorFlow 2.11.0 to build and train the proposed FL framework.

5.2. Benchmarks and experimental groups

We choose FedAvg [14], multi-Krum [5], and FLAME [16] as bench-
marks for the control group due to their widespread recognition and
application in FL. FedAvg [14] is the first and classic FL aggregation
algorithm, which maximizes the use of shared information from all
participants in scenarios absent of malicious participants. FedAvg is an
inevitable benchmark when discussing FL aggregation algorithms. An-
other extensively discussed FL aggregation algorithm is multi-Krum [5],
which introduces a selective aggregation algorithm based on model dis-
tances and achieves BFT in the presence of malicious participants. Since
its presentation, multi-Krum and its variants have remained popular
 p
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in FL applications [41]. Many recent studies about FL secure aggre-
gation still revolve around multi-Krum, combining with homomorphic
encryption and multi-party secure computation techniques [42] or
clustering algorithms [43,44]. Given the centrality and importance of
multi-Krum in these approaches, we choose it as another benchmark
for our experiments.

Furthermore, we consider a cosine-similarity-based algorithm,
FLAME [16], as a state-of-the-art representative of secure FL aggrega-
tion. FLAME clusters the models shared by participants to select those
that align with the majority, thereby resisting the intrusion of malicious
models. Additional norm-based median clipping and noise addition en-
hance the robustness and generalization capability of FLAME. Through
comparisons with these typical methods, we aim to highlight the
distinctive security and performance features of our filtering-and-voting
aggregation framework.

As for the experimental groups, we establish three sets of filtering-
and-voting aggregation approaches with different methods of selecting
aggregation weights. The training of the DRL model used in the pro-
posed framework can either be training during the FL process or
conducted beforehand. Therefore, we demonstrate the performance of
both the proposed framework with online DRL and the proposed frame-
work with pre-trained DRL. To illustrate the advantages of DRL-based
dynamic aggregation weight selection, we also consider a filtering-
and-voting framework with a fixed aggregation weight. Its process is
essentially the same as depicted in Fig. 2, with the only difference
being that during the final aggregation, a fixed aggregation weight is
employed to combine the models endorsed by the voting layer and
those selected by the filtering layer.

In our case, we choose the parameter 𝐾 = 5 in the filtering layer, the
ame as the commonly used parameter in multi-Krum. For the filtering-
nd-voting framework with a fixed aggregation weight, we employ 1∕6

as the given aggregation weight to represent an average aggregation
with the 𝐾 models selected by the filtering layer. The parameters used
n FLAME are configured consistently with those in [16].

.3. Performance across different datasets

To demonstrate the performance of the proposed framework across
ifferent datasets, we use the MNIST [45] and CIFAR-10 [46] datasets,
hich are widely utilized in the fields of computer vision and neural
etworks. The MNIST dataset comprises labeled hand-written digit
mages from 0 to 9, where images labeled as ‘0’ are designated as
are and distinct data accessible only to the special participant. The
emaining labels are randomly assigned to all participants. The CIFAR-
0 dataset features images categorized under various labels, including
irplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
n our experiments, the ‘airplane’ category is assigned as unique data,
hereas the other labels are considered common data. This differenti-
tion in data access among participants simulates the FL scenario with
mbalanced training data.

The malicious participants here conduct label-flipping poisoning
ttacks [17], altering the labels of all training data to the same value
designated ‘9’ in the MNIST dataset and ‘truck’ in the CIFAR-10
ataset) to compromise the performance of the global model. To show
he aggregation strategies of the proposed framework, we evaluate the
lobal model’s test accuracy across various test datasets, i.e. full-label
st set, special-label test set, and poisoned-label test set. Addition-
lly, we provide insights into the differential selection of aggregation
eights by the proposed framework for each type of participant- gen-
ral participant, special participant with unique data, and malicious

articipant with poisoned data.



Y. Jiang et al. Neurocomputing 604 (2024) 128317 
Table 2
Average global model accuracy on various test sets.

Dataset Aggregation method Test accuracy on full-label data Test accuracy on special-label data Test accuracy on poisoned-label data

MNIST

FedAvg [14] 81.05% ± 2.11% 69.59% ± 1.12% 80.22% ± 2.53%
Multi-Krum [5] 82.07% ± 0.03% 0.00% ± 0.00% 89.19% ± 0.05%
FLAME [16] 82.25% ± 0.05% 0.00% ± 0.00% 89.59% ± 0.15%

Ours with
Fixed weight 82.90% ± 0.15% 2.67% ± 2.67% 89.70% ± 0.28%
Online DRL 87.24% ± 1.58% 66.28% ± 2.60% 90.79% ± 0.09%
Pre-trained DRL 89.03% ± 0.07% 73.67% ± 1.33% 90.60% ± 0.09%

CIFAR-10

FedAvg [14] 52.42% ± 2.19% 44.37% ± 3.63% 51.15% ± 3.99%
Multi-Krum [5] 57.52% ± 1.17% 0.00% ± 0.00% 65.79% ± 1.55%
FLAME [16] 59.35% ± 1.72% 0.00% ± 0.00% 66.83% ± 1.96%

Ours with
Fixed weight 60.91% ± 1.26% 1.83% ± 1.83% 69.05% ± 1.03%
Online DRL 65.07% ± 1.78% 46.99% ± 0.76% 70.70% ± 0.82%
Pre-trained DRL 65.71% ± 1.95% 49.09% ± 1.03% 71.29% ± 1.16%
Fig. 5. Case study of the global model test accuracy development throughout the FL training process (using the MNIST dataset). As the voting layer in all filtering-and-voting
frameworks starts from the 100th epoch and changes take time to materialize, the advantage of filtering-and-voting frameworks shows after the 150th epoch, especially those
utilizing DRL. The proposed filtering-and-voting framework with DRL comes evident with a marked increase in test accuracy, outperforming traditional methods like FedAvg [14]
and multi-Krum [5] and state-of-the-art methods like FLAME [16].
5.3.1. Test accuracy
As shown in Table 2, the average accuracies of the global models

across different datasets from the proposed methods and benchmarks
reflect the superior performance of the proposed framework. Whether
on the MNIST or CIFAR-10 datasets, both the proposed framework with
pre-trained DRL and the proposed framework with online DRL show
significant performance advantages with consistently higher accuracy,
which highlights the effectiveness and adaptability of the proposed
frameworks in handling different types of data challenges.

On the full-label test set, the accuracy of the proposed framework
with pre-trained DRL is the highest, surpassing FedAvg by 7.98% with
the MNIST dataset and 13.29% with the CIFAR-10 dataset; surpassing
multi-Krum by 6.96% with the MNIST dataset and 8.19% with the
CIFAR-10 dataset; and surpassing FLAME by 6.78% with the MNIST
dataset and 6.36% with the CIFAR-10 dataset. The accuracy of the
proposed framework with online DRL is second and significantly higher
than that of the other control groups. Due to CIFAR-10’s color com-
position and greater complexity, the overall accuracy of the CIFAR-10
dataset is consistently lower than the accuracy of the MNIST dataset.

On the special-label test set, whether using the MNIST or CIFAR-10
datasets, multi-Krum and FLAME completely neglect the shared model
from special participants with unique data, and the fixed-parameter
filtering-and-voting framework uses too little information from special
participants with unique data, resulting in their loss of recognition
capability on the special label. The accuracy of the proposed frame-
work with pre-trained DRL remains the highest, outperforming FedAvg,
while the performance of the proposed framework with online DRL is
slightly inferior to FedAvg but still comparable. It demonstrates that the
proposed framework effectively leverages the information from special
participants with unique data to optimize the performance of the global
9 
model. On the poisoned-label test set, FedAvg performs poorly because
no protective measures are in place, whereas the other methods are
good at identifying and resisting malicious participants.

Specifically, Fig. 5 shows the development of the global model’s test
accuracy during a specific FL training process for various aggregation
methods. The case study uses the MNIST dataset, and similar devel-
opment trends are observable when employing the CIFAR-10 dataset.
It is worth noting that the voting layer in all filtering-and-voting
frameworks starts from the 100th epoch. Thus, before its work, these
frameworks are similar to multi-Krum. However, the advantages of the
proposed frameworks are not immediately apparent from the start of
the voting layer’s operation. The information from special participants
needs time to accumulate to truly impact the performance of the global
model and be reflected in the test accuracy.

As shown in Fig. 5, starting from the 150th epoch, the optimization
effect of the voting layer on the global model becomes apparent, and
both DRL-based filtering-and-voting frameworks begin to demonstrate
higher accuracy than multi-Krum and FLAME, especially on the special-
label test set. The fixed-parameter method fails to markedly surpass
multi-Krum because it does not utilize the information related to special
labels as extensively. In essence, this method requires a larger number
of epochs to accumulate sufficient information from special partici-
pants to enhance the recognition capabilities for the special label. The
proposed frameworks with online DRL and pre-trained DRL achieve
accuracy on the special label that approaches or even surpasses FedAvg,
as shown in Fig. 5(b). This highlights that the proposed frameworks
effectively utilize information from special participants with unique
data and enhance the performance of the global model by preserving
the information from diverse and benign shared models. Compared
to our framework with pre-trained DRL, the framework with online
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Fig. 6. Aggregation weight for different participant types selected by our methods.
As the proposed double-layer frameworks effectively exclude models provided by
the malicious participant, their aggregation weights remain zero. Aggregation weight
selection via pre-trained DRL exhibits more stability and achieves a similar mean as
the DRL that keeps training during the FL process. Due to the greater variability
among the CIFAR-10 dataset, amplifying the aggregation weights of benign participants,
particularly those with unique data, enhances the accuracy of the global model.
Consequently, the proposed methods tend to assign larger aggregation weights to both
general and special participants for the CIFAR-10 dataset than for the MNIST dataset,
aiming to better harness the diverse characteristics of the dataset.

DRL requires additional computational resources to train the DRL
model, thereby necessitating more time to manifest its improvements
in accuracy.

5.3.2. Aggregation weight selection
Through the comparison and analysis of the global model accuracy,

we note the significance of aggregate parameter selection. Considering
that the filtering-and-voting framework with fixed aggregation weights
performs significantly worse than methods employing dynamic weight
selection, DRL-based dynamic aggregate parameter selection enables
the maximization of the voting layer’s impact, ensuring that each
model endorsed by voters receives the most suitable parameters for
combination with the models selected by the filtering layer.

Fig. 6 illustrates the mean and variance of aggregation weights
(i.e., 𝑤𝑉𝑞 in (9)) assigned to shared models from different participants
in the filtering-and-voting framework. Whether using the MNIST or
CIFAR-10 datasets, the proposed filtering-and-voting framework effec-
tively excludes models provided by the malicious participant through
the voting layer, by setting their aggregation weights to zero, regard-
less of the aggregation weight selection methods. Fixed weight here
is set at 1∕6 to facilitate the averaging aggregation with 𝐾 models
selected by the filtering layer, embodying the core concept of FedAvg.
This setting is a typical example of aggregation weight configuration
commonly used in a FL environment. Compared to the fixed weight,
the aggregation weights derived from the proposed DRL-based methods
are generally larger, expanding the influence of models approved by
the voters. Aggregation weight selection via pre-trained DRL exhibits
stronger stability, with lower variance, yet achieves a similar mean
value across multiple experiments as the online DRL that keeps training
during the FL process. Combined with the comparison of the test
accuracy in Table 2, it suggests that higher aggregation weights for
voter-approved models can effectively enhance model performance and
generalization capability.

Models shared by special participants with unique data are assigned
higher aggregation weights compared to those shared by general par-
ticipants, highlighting that special participants with unique data have
a more significant positive impact on the performance of the global
model. This shows the significance of the proposed framework, particu-
larly in scenarios where the local training datasets of FL participants are
10 
non-iid. Important yet scarce data information can be recognized by the
voting layer and effectively amplified through the RL-based aggregation
weight selection method. The proposed framework allows the global
model to achieve valuable enhancements by capitalizing on diverse
data contributions to improve overall model efficacy.

By comparing the aggregation weight selection across different
datasets, it can be observed that the proposed DRL-based methods
tend to allocate larger weights to both general and special partic-
ipants in the CIFAR-10 dataset than in the MNIST dataset. This is
attributed to the substantial variability within the CIFAR-10 dataset,
characterized by its complex and diverse data. In such contexts, the
importance of aggregation diversity is further emphasized. Amplifying
the aggregation weights of benign participants, particularly those with
unique datasets, is crucial for enhancing the accuracy of the global
model by capitalizing on their distinct contributions. This contrast
underscores the effectiveness of the proposed DRL-based aggregation
weight selection, which can adeptly utilize data diversity to optimize
the performance and accuracy of the global model in scenarios marked
by diverse and complex data types.

The DRL-based dynamic aggregation weight is indispensable for
the proposed filtering-and-voting aggregation framework. Through the
selection of aggregation weight, the limitations of average-based ag-
gregation methods can be overcome, maximizing the utilization of rare
and valuable information related to specific labels in the case of non-
iid training data. This optimization process enhances the recognition
accuracy and generalization ability of the global model.

5.4. Performance under different attacks

In this paper, we explore an open FL scenario, where the shared
model parameters are accessible to all participants; thus, sending
dropped models from the filtering layer to all voters does not introduce
additional risks. However, in this context, attackers are omniscient
and aware of all other participants’ shared model parameters, enabling
them to execute more sophisticated and targeted attacks. So we conduct
experiments with the MNIST dataset to evaluate the performance of the
proposed framework under various FL poisoning attacks, including the
classical label-flipping attack [17] used in the previous experiments and
three advanced state-of-the-art poisoning attacks.

The label-flipping attack [17], manipulates model accuracy by cor-
rupting genuine labels into incorrect ones, thereby introducing tainted
data. In FL, a label-flipping attack only requires an attacker to modify
their local data and train with the altered, incorrect data without
requiring knowledge of the models shared by other benign participants
or the aggregation strategy employed by the aggregator. Consequently,
while label-flipping attacks are straightforward to execute, they are
also relatively easy to mitigate with common FL secure aggregation
methods, such as multi-Krum, which can effectively defend against such
simplistic adversarial interventions. Here we maintain consistency with
previous experiments regarding the setup for the label-flipping attack
by altering all training data labels to a uniform value—specifically,
labels are changed to ‘9’ in the MNIST dataset and to ‘truck’ in the
CIFAR-10 dataset.

When attackers gain access to all benign shared models, they can
leverage this information to further refine their attack models, making
them more difficult to be detected and defended against. This access
allows attackers to understand the characteristics of the benign models,
enabling them to craft attacks that blend more seamlessly with nor-
mal activities, thus posing a significant challenge to existing defense
mechanisms. The ALIE attack [47] utilizes the mean and variance of
benign models to determine a perturbation range for malicious model
parameters, ensuring that the adversarial modifications do not signif-
icantly deviate from those of benign models, thereby increasing the
likelihood of a successful attack. In our experiments, we followed the
method outlined in [47] to calculate the perturbation range and craft
malicious models, with the perturbation factor set to 𝑧 = 0.1 as per the
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Table 3
Average global model accuracy on full-label test sets under various attacks.
Aggregation method Label-flipping attack [17] ALIE attack [47] Min-Max attack [48] Fang attack [7]

FedAvg [14] 81.05% ± 2.11% 89.37% ± 0.67% 89.41% ± 0.19% 85.94% ± 0.09%
Multi-Krum [5] 82.07% ± 0.03% 82.12% ± 0.11% 81.84% ± 0.13% 81.87% ± 0.09%
FLAME [16] 82.25% ± 0.05% 82.48% ± 0.07% 82.55% ± 0.07% 82.06% ± 0.18%

Ours with
Fixed weight 82.90% ± 0.15% 83.84% ± 0.31% 84.30% ± 0.22% 83.65% ± 0.18%
Online DRL 87.24% ± 1.58% 89.26% ± 0.71% 89.86% ± 0.07% 86.13% ± 0.11%
Pre-trained DRL 89.03% ± 0.07% 89.87% ± 0.65% 90.16% ± 0.13% 86.42% ± 0.21%
Table 4
Average percentage of different types of participants selected for aggregation under various attacks.

Aggregation method Label-flipping attack [17] ALIE attack [47] Min-Max attack [48] Fang attack [7]

General Special Malicious General Special Malicious General Special Malicious General Special Malicious

FedAvg [14] 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Multi-Krum [5] 71.43% 0.00% 0.00% 65.29% 0.00% 21.50% 66.57% 0.00% 17.01% 61.51% 0.00% 34.70%
FLAME [16] 86.86% 0.00% 0.00% 82.03% 0.00% 18.50% 80.29% 0.00% 29.26% 78.31% 0.00% 30.10%

Ours with
Fixed weight 78.86% 74.52% 0.00% 78.07% 71.00% 10.26% 86.63% 57.21% 13.61% 82.71% 49.03% 17.35%
Online DRL 81.86% 86.77% 0.00% 80.86% 76.02% 9.07% 89.29% 65.40% 11.03% 85.83% 55.03% 16.60%
Pre-trained DRL 85.11% 98.91% 0.00% 81.57% 76.04% 8.50% 90.64% 73.51% 10.30% 87.57% 64.02% 14.57%
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experimental details in [47]. Unlike the fixed perturbation range in the
ALIE attack, the Min-Max attack [48] introduces a dynamic selection
process for the perturbation factor, aiming to maximize the deviation
caused by the malicious model while ensuring that the maximum
distance between the malicious model and benign models remains less
than the maximum distance among benign models. The experimental
setup for parameters followed the configurations in [48], starting with
a perturbation factor 𝛾𝑖𝑛𝑖𝑡 = 0.01 and a change threshold 𝜏 = 10−5.

Expanding the capabilities of attackers to an omniscient level, where
hey are aware of all benign shared models and the aggregation strat-
gy, allows them to tailor their adversarial models specifically to
xploit the aggregation mechanism. Represented by Fang’s attack [7],
uch attackers can simulate the aggregator’s process to ensure their
alicious models are incorporated while maximizing the disruption

aused. Based on the upper bound of the perturbation factor provided
n [7], we determined the maximum perturbation factor for our experi-
ents as 𝜆𝑚𝑎𝑥 = 0.001. Following the experimental setup in [7], we also

stablished the minimum perturbation factor as 𝜆𝑚𝑖𝑛 = 10−5, allowing
or finely tuned adjustments to enhance the impact of the attack within
ontrolled parameters.

To evaluate the defensive capabilities of the proposed framework
gainst various attacks, malicious participants are instructed to im-
lement these four different poisoning attack techniques within the
L setting. Special participants possess unique and rare data (label
), while other data is randomly distributed among all participants as
heir local datasets. We assessed the defensive capabilities of different
ggregation methods by comparing their accuracy on full-label test sets.
dditionally, we discussed the selection of participants for aggregation
nder various attacks by different methods, highlighting how the pro-
osed framework optimizes the performance of the global model by
nhancing the diversity and security of the aggregation process.

.4.1. Defensive capability
As shown in Table 3, the average accuracy of the global model

nder various attacks demonstrates the superiority of the proposed
ethod compared to other FL security aggregation methods, such as
ulti-Krum and FLAME. The proposed framework with pre-trained DRL

onsistently achieves the highest accuracy across all attack scenarios,
ncluding label-flipping, ALIE, Min-Max, and Fang’s attacks. It outper-
orms multi-Krum by an average of approximately 7.5% and FLAME by
pproximately 7%.

Unlike malicious models in ALIE, Min-Max, and Fang’s attacks,
hich aim to mimic benign models, those deployed in the label-flipping
ttack significantly deviate from benign behaviors, causing greater
etrimental impacts on the global model. Consequently, FedAvg aggre-

ates malicious models and performs worst under label-flipping attacks.

11 
owever, in targeted attacks like ALIE, Min-Max, and Fang’s attacks,
edAvg outperforms multi-Krum and FLAME. This is because the mali-
ious models, specifically tailored to deceive the selective aggregation
ethods of multi-Krum and FLAME, shift the focus towards malicious

ontributions, while FedAvg’s broader inclusion of benign models di-
utes the malicious perturbations [47]. Meanwhile, due to the non-iid
istribution of training data among participants in FL, and the fact
hat special label data is exclusively held by special participants, the
ccuracy of methods like multi-Krum and FLAME is further impeded.
hese methods often exclude special participants from aggregation,
ence missing out on leveraging their unique contributions, which are
rucial for improving the model’s performance on rare but significant
ata classes.

By integrating as many benign models as possible, the proposed
iltering-and-voting framework achieves performance on par with or
ven superior to FedAvg under ALIE, Min-Max, and Fang’s attacks.
uring label-flipping attacks, the weaknesses of FedAvg’s unconditional
ggregation are avoided by implementing a double-layer validation
hat ensures the security of the model. Experimental results across
arious attacks demonstrate the effectiveness of the filtering and voting
ramework in leveraging benign contributions while mitigating the
mpact of malicious inputs.

.4.2. Aggregation participants selection
To demonstrate the effective selection and re-aggregation of bene-

icial models from different participants in the proposed filtering-and-
oting framework, we calculate the average percentage of participant
odels used for aggregation under various attacks. Since the selection

f shared models for aggregation is only relevant to the filtering-and-
oting architecture, the impact of the aggregation weight selection
ethods is not markedly pronounced. As shown in Table 4, com-
ared with FedAvg, multi-Krum, and FLAME, whether employing fixed
eight, online DRL, or pre-trained DRL methods in the proposed frame-
ork, the outcomes regarding the selection of aggregation models
xhibit a degree of similarity across various scenarios.

Under the label-flipping attack, the proposed framework can iden-
ify and discard the model shared by the malicious participant with
% aggregation probability, equal to multi-Krum and FLAME, which
howcases its robust defense against data poisoning attacks. Simulta-
eously, the proposed framework exhibits an around 90% probability
f recognizing special participants with unique data and incorporating
ts information into the aggregation process, which is similar to the
tilization of special information in FedAvg. This finding highlights
he ability of the proposed framework to discern different participant
oles effectively, consistent with the presented objective demonstrated
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Fig. 7. Average training time per epoch for FL with different aggregation methods
under various attacks. The proposed framework requires slightly more time per FL
epoch, compared to FedAvg, multi-Krum, and FLAM, yet remains around 3 s per epoch.
Given the significant performance improvements achieved by our methods, this slight
increase in time cost is acceptable.

in Fig. 1, selecting the optimal aggregation for the global model while
resisting malicious attacks, even in FL scenarios with non-iid training
data.

Under advanced poisoning attacks, such as ALIE, Min-Max, and
Fang’s attacks, the challenge of identifying malicious models is signifi-
cantly heightened due to their sophisticated design, which makes them
closely resemble benign models. Despite this, the proposed framework
manages to confine the impact of these malicious models on the global
model to a controllable extent. It integrates only about 10% of such ma-
licious models into the aggregation, effectively halving the likelihood
compared to classical secure aggregation methods like multi-Krum
and state-of-the-art approaches like FLAME. Additionally, compared to
multi-Krum and FLAME, the proposed framework incorporates more
benign models into the aggregation process, particularly those shared
by special participants. This strategy not only dilutes the potential
poisoning impact from malicious participants, thereby enhancing the
robustness of the global model, but also significantly increases the
diversity of the aggregation in non-iid data scenarios, which boosts the
accuracy and generalization capability of the global model.

5.4.3. Efficiency
Fig. 7 presents the average time consumed by different aggregation

methods per epoch of FL training under various attacks. In the proposed
filtering-and-voting framework, the voting layer is set to start from the
100th epoch, prompting us to calculate the time from the start of the
voting layer.

As seen in Fig. 7, the proposed framework requires slightly more
time per FL epoch, compared to FedAvg, multi-Krum, and FLAM, yet
remains around 3 s per epoch. In the proposed filtering-and-voting
framework, the filtering layer can proceed to the next FL epoch without
awaiting the outcome of the voting layer, thus adding only a minimal
time cost. Given the significant performance improvements achieved by
our methods, this slight increase in time cost is acceptable.

During Fang’s attack, where malicious models simply require the
perturbation of benign models without local training, and the per-
turbation factor is straightforward to compute, all methods exhibit a
notably shorter average time per epoch of FL training. Conversely,
the Min-Max attack involves a complex process to find the optimal
perturbation factor, consequently demanding the most time among the
attacks evaluated.

The filtering-and-voting aggregation framework utilizing DRL-based
dynamic aggregation weight selection results in longer processing times
compared to the fixed-weight method due to the added computational
12 
demands of DRL. However, employing pre-trained DRL is more time-
efficient than online DRL concurrently with the FL process. Overall,
the proposed filtering-and-voting aggregation framework distinguishes
special and malicious participants with a relatively minor time cost,
leading to notable enhancements in security and accuracy.

6. Conclusion and future work

In this paper, we introduced an innovative filtering-and-voting ag-
gregation framework for FL, specifically designed to address the chal-
lenges posed by non-iid data and the potential threats of adversar-
ial attacks. Combined with a DRL-based method for dynamic aggre-
gation weight selection, the proposed filtering-and-voting framework
enhanced the performance of the global model by effectively incor-
porating valuable contributions from all participants, including those
with rare or specific data, while maintaining strong defenses against
malicious activities. Our experimental findings revealed a significant
enhancement in model accuracy and security, underscoring the efficacy
of the proposed framework in optimizing information utilization in FL
environments. The introduction of a filtering-and-voting aggregation
process, coupled with the strategic application of DRL for weight
optimization, offered a robust solution to distributed model training.

In this paper, we focused on secure and diverse aggregation in
open FL scenarios, with potential future applications to practical fields,
such as energy networks, healthcare data analysis, and smart city
infrastructure. Considering the privacy challenges of model parameter
leakage, our future work will focus on exploring voting mechanisms
that do not disclose shared model details. In the proposed framework,
the voting process relies on the accuracy of the voted model on the
voters’ local test sets, rather than on the precise model parameters
themselves. Therefore, integrating Homomorphic Encryption (HE) [49]
and Secure Multi-Party Computation (MPC) [50] emerges as a viable
strategy to mitigate the risk of parameter leakage. By employing HE
or MPC, the original model parameters can be encrypted or secured
versions, effectively reducing the risks associated with model parameter
leakage in FL. Additionally, integrating Differential Privacy (DP) [51]
techniques can obscure the features of the models shared by partici-
pants and their local training data to further mitigate inference attacks
and enhance the privacy protection of the FL system.
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